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Abstract
We define the Grothendieck group of an n-exangulated category. For n odd, we show that
this group shares many properties with the Grothendieck group of an exact or a triangulated
category. In particular, we classify dense complete subcategories of an n-exangulated cate-
gory with an n-(co)generator in terms of subgroups of the Grothendieck group. This unifies
and extends results of Thomason, Bergh–Thaule, Matsui and Zhu–Zhuang for triangulated,
(n + 2)-angulated, exact and extriangulated categories, respectively. We also introduce the
notion of an n-exangulated subcategory and prove that the subcategories in our classification
theorem carry this structure.

Keywords Grothendieck group · n-exangulated category · (n + 2)-angulated category ·
n-exact category · n-exangulated subcategory · Extriangulated subcategory

Mathematics Subject Classification 18E10 · 18E30 · 18F30

1 Introduction

The Grothendieck group of an exact category is the free abelian group generated by iso-
morphism classes of objects modulo the Euler relations coming from short exact sequences.
Similarly, one obtains the Grothendieck group of a triangulated category by factoring out
the relations corresponding to distinguished triangles. It turns out that subcategories of cer-
tain categories relate to subgroups of the associated Grothendieck groups in an interesting
way. More precisely, Thomason proved that there is a one-to-one correspondence between
subgroups of the Grothendieck group of a triangulated category and dense triangulated sub-
categories [16, Theorem 2.1]. This was generalized to (n + 2)-angulated categories with n
odd by Bergh–Thaule [3, Theorem 4.6]. Later, Matsui gave an analogous result for exact
categories with a (co)generator [12, Theorem 2.7].

The notion of extriangulated categories was introduced by Nakaoka–Palu as a simultane-
ous generalization of exact categories and triangulated categories [13]. Many concepts and
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432 J. Haugland

results concerning exact and triangulated categories have been unified and extended using
this framework, see for instance [7] for a generalization of Auslander–Reiten theory in exact
and triangulated categories to this context.

In both higher dimensional Auslander–Reiten theory and higher homological algebra,
n-cluster tilting subcategories of exact and triangulated categories play a fundamental role
[6,8]. This was a starting point for developing the theory of (n + 2)-angulated categories
and n-exact categories in the sense of Geiss–Keller–Oppermann [4] and Jasso [9]. Recently,
Herschend–Liu–Nakaoka defined n-exangulated categories as a higher dimensional ana-
logue of extriangulated categories [5]. Many categories studied in representation theory turn
out to be n-exangulated. In particular, n-exangulated categories simultaneously generalize
(n + 2)-angulated and n-exact categories. In [5, Section 6] several explicit examples of n-
exangulated categories are given. See also [11, Section 4] for a construction which yields
more n-exangulated categories that are neither n-exact nor (n + 2)-angulated.

Inspired by the classification results for triangulated, (n+2)-angulated and exact categories
mentioned above, a natural question to ask is whether there is a similar connection between
subcategories and subgroups of the Grothendieck group for n-exangulated categories. Inde-
pendently of our work, Zhu–Zhuang recently gave a partial answer to this question in the
case n = 1 [17, Theorem 5.7]. In this paper we prove a more general classification result
for n-exangulated categories with n odd. In our main result, Theorem 5.1, we classify dense
complete subcategories of an n-exangulated category with an n-(co)generator G in terms of
subgroups of the Grothendieck group containing the image of G. This recovers both the result
of Zhu–Zhuang for extriangulated categories and the result of Bergh–Thaule for (n + 2)-
angulated categories, as well as Thomason’s and Matsui’s results for triangulated and exact
categories, see Corollary 5.5 for details. Our main theorem also yields new classification
results for n-exact categories, as well as for n-exangulated categories which are neither
(n + 2)-angulated nor n-exact.

The paper is organized as follows. In Sect. 2 we recall the definition of an n-exangulated
category and review some results. In Sect. 3 we explain terminology which is needed in our
main result, such as the notion of an n-(co)generator, complete subcategories and dense sub-
categories. We also introduce n-exangulated subcategories and prove that the subcategories
which will appear in our classification theorem carry this structure. In Sect. 4 we define the
Grothendieck group of an n-exangulated category and discuss some basic results. In Sect. 5
we state and prove our main theorem and explain how this unifies and extends already known
results.

2 Preliminaries on n-exangulated Categories

Throughout this paper, let n be a positive integer and C an additive category. In this section
we briefly recall the definition of an n-exangulated category and related notions, as well as
some known results which will be used later. All of this is taken from [5], and we recommend
to consult this paper for more detailed explanations.

Recall from [13] that an extriangulated category (C,E, s) consists of an additive category
C, a biadditive functor E : Cop × C → Ab and an additive realization s of E satisfying
certain axioms. The functor E is modelled after Ext1. Given two objects A and C in C, the
realization s associates to each element δ ∈ E(C, A) an equivalence class s(δ) of 3-term
sequences in C starting in A and ending in C . Exact and triangulated categories are examples
of extriangulated categories, where short exact sequences and distinguished triangles play
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The Grothendieck Group of an n-exangulated Category 433

the roles of these 3-term sequences. Analogously, an n-exangulated category also consists
of a triplet (C,E, s), where the main difference is that we consider (n + 2)-term sequences
instead of 3-term sequences. In order to give the precise definition, we need to be able to talk
about extensions and morphisms of extensions.

Definition 2.1 Let E : Cop × C → Ab be a biadditive functor. Given two objects A and C in
C, an element δ ∈ E(C, A) is called an E-extension or simply an extension. We can write
such an extension δ as AδC whenever we wish to specify the objects A and C .

Given an extension δ ∈ E(C, A) and two morphisms a ∈ C(A, A′) and c ∈ C(C ′,C), we
denote the extensions

E(C, a)(δ) ∈ E(C, A′) and E(c, A)(δ) ∈ E(C ′, A)

by a∗δ and c∗δ. Notice that E(c, a)(δ) = c∗a∗δ = a∗c∗δ in E(C ′, A′) as E is a bifunctor.
For any pair of objects A and C , the zero element A0C in E(C, A) is called the split

extension.

Definition 2.2 Given extensions AδC and BρD , a morphism of extensions (a, c) : δ → ρ is a
pair of morphisms a ∈ C(A, B) and c ∈ C(C, D) such that a∗δ = c∗ρ in E(C, B).

Wewant to associate each extension AδC to an equivalence class of (n+2)-term sequences
in C starting in A and ending in C . Our next aim is hence to discuss some terminology which
will enable us to describe the appropriate equivalence relation on the class of such (n+2)-term
sequences.

Definition 2.3 Let CC denote the category of complexes in C. We define Cn+2
C to be the full

subcategory ofCC consisting of complexes whose components are zero in all degrees outside
of {0, 1, . . . , n + 1}. In other words, an object in Cn+2

C is a complex X• = {Xi , di } of the
form

X0
d0−→ X1 → · · · → Xn

dn−→ Xn+1.

Morphisms in Cn+2
C are written f• = ( f0, f1, . . . , fn+1), where we only indicate the terms

of degree 0, 1, . . . , n + 1.

Our next two definitions should remind the reader about the long exact Hom-Ext-sequence
associated to a short exact sequence and the long exact Hom-sequence associated to a dis-
tinguished triangle.

Definition 2.4 By the Yoneda lemma, an extension δ ∈ E(C, A) induces natural transforma-
tions

δ� : C(−,C) → E(−, A) and δ� : C(A,−) → E(C,−).

For an object X in C, the morphisms (δ�)X and δ
�
X are given by

(1) (δ�)X : C(X ,C) → E(X , A), f �→ f ∗δ;
(2) δ

�
X : C(A, X) → E(C, X), g �→ g∗δ.

Consider a pair 〈X•, δ〉 with X• in Cn+2
C and δ ∈ E(Xn+1, X0). Using our natural trans-

formations from above, we can associate to 〈X•, δ〉 the following two sequences of functors:
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(1) C(−, X0)
C(−,d0)−−−→ · · · C(−,dn)−−−→ C(−, Xn+1)

δ�−−−→ E(−, X0);

(2) C(Xn+1,−)
C(dn ,−)−−−→ · · · C(d0,−)−−−→ C(X0,−)

δ�−−−→ E(Xn+1,−).

We are particularly interested in pairs 〈X•, δ〉 for which these sequences are exact.

Definition 2.5 When the two sequences of functors from above are exact, we say that the pair
〈X•, δ〉 is an n-exangle. Given two n-exangles 〈X•, δ〉 and 〈Y•, ρ〉, amorphism of n-exangles
f• : 〈X•, δ〉 → 〈Y•, ρ〉 is a chain map f• ∈ Cn+2

C (X•, Y•) for which ( f0, fn+1) : δ → ρ is
also a morphism of extensions.

In order to define our equivalence classes of (n + 2)-term sequences, we need a notion
of homotopy. Two morphisms in Cn+2

C are said to be homotopic if they are homotopic as
morphisms of CC in the usual way. We let the homotopy category Kn+2

C be the quotient of
Cn+2
C by the ideal of null-homotopic morphisms.
Instead of working with Cn+2

C and Kn+2
C , we want to fix the end-terms of our sequences.

Definition 2.6 Let A and C be objects in C. We define Cn+2
(C;A,C)

to be the subcategory of

Cn+2
C consisting of complexes X• with X0 = A and Xn+1 = C . Morphisms in Cn+2

(C;A,C)
are

given by chain maps f• for which f0 = 1A and fn+1 = 1C .

Whenever the category C is clear from the context, we abbreviately denote Cn+2
(C;A,C)

by

Cn+2
(A,C). Notice that C

n+2
(A,C) is no longer an additive category. However, we can still take the

quotient of Cn+2
(A,C) by the same homotopy relation as in Cn+2

C . This yields Kn+2
(A,C), which is

a subcategory of Kn+2
C .

We are now ready to describe an equivalence relation on the class of (n+2)-term sequences
starting in A and ending in C .

Definition 2.7 A morphism f• ∈ Cn+2
(A,C)(X•, Y•) is called a homotopy equivalence if it

induces an isomorphism in Kn+2
(A,C). Two objects X• and Y• in Cn+2

(A,C) are called homotopy
equivalent if there is some homotopy equivalence between them. We denote the homotopy
equivalence class of X• by [X•].

It should be noted that homotopy equivalence classes taken in Cn+2
(A,C) and in Cn+2

C may

be different. We will only use the notation [X•] for equivalence classes taken in Cn+2
(A,C).

We are now ready to explain our desired connection between extensions AδC and equiv-
alence classes [X•] in Cn+2

(A,C).

Definition 2.8 Let s be a correspondence which associates a homotopy equivalence class
s(δ) = [X•] in Cn+2

(A,C) to each extension δ ∈ E(C, A). We call s a realization of E if it
satisfies the following condition for any s(δ) = [X•] and s(ρ) = [Y•]:
(R0) Given any morphism of extensions (a, c) : δ → ρ, there exists a morphism

f• in Cn+2
C (X•, Y•) of the form f• = (a, f1, . . . , fn, c). Such an f• is called a

lift of (a, c).

Whenever s(δ) = [X•], we say that X• realizes δ. A realization s is called exact if in addition
the following conditions hold:

(R1) Given any s(δ) = [X•], the pair 〈X•, δ〉 is an n-exangle.
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(R2) Given any object A in C, we have

s(A00) = [A 1A−→ A → 0 → · · · → 0],
and dually

s(00A) = [0 → · · · → 0 → A
1A−→ A].

It is not immediately clear that the condition (R1) does not depend on our choice of
representative of the class [X•]. For this fact, see [5, Proposition 2.16].

Based on the definition above, we can introduce some useful terminology.

Definition 2.9 Let s be an exact realization of E.

1. An n-exangle 〈X•, δ〉 is called a distinguished n-exangle if s(δ) = [X•].
2. An object X• in Cn+2

C is called a conflation if it realizes some extension δ in
E(Xn+1, X0).

3. A morphism f in C is called an inflation if there exists some conflation X• = {Xi , di }
satisfying d0 = f .

4. A morphism g in C is called a deflation if there exists some conflation X• = {Xi , di }
satisfying dn = g.

Recall that for triangulated categories, the octahedral axiom can be replaced by a mapping
cone axiom [14,15]. This should be thought of as a background for the definition of an n-
exangulated category. Before we can give the definition, we need the notion of a mapping
cone in our context.

Definition 2.10 Let f• ∈ Cn+2
C (X•, Y•) be a morphism with f0 = 1A for some object

A = X0 = Y0 in C. The mapping cone of f• is the complex M f• ∈ Cn+2
C given by

X1
d0−→ X2 ⊕ Y1

d1−→ X3 ⊕ Y2
d2−→ · · · dn−1−−→ Xn+1 ⊕ Yn

dn−→ Yn+1,

where

di =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−dX

1

f1

]

if i = 0

[
−dX

i+1 0

fi+1 dYi

]

if i = 1, 2, . . . , n − 1

[

fn+1 dYn

]
if i = n.

The mapping cocone of a morphism g• where gn+1 is the identity on some object, is defined
dually.

Definition 2.11 An n-exangulated category is a triplet (C,E, s) of an additive category C, a
biadditive functor E : Cop ×C → Ab and an exact realization s of E, satisfying the following
axioms:

(EA1) The class of inflations in C is closed under composition. Dually, the class of defla-
tions in C is closed under composition.
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(EA2) For an extension δ ∈ E(D, A) and a morphism c ∈ C(C, D), let 〈X•, c∗δ〉
and 〈Y•, δ〉 be distinguished n-exangles. Then there exists a good lift f• of
(1A, c), meaning that the mapping cone of f• gives a distinguished n-exangle
〈M f• , (dX

0 )∗δ〉.
(EA2)op Dual of (EA2).

The condition (EA2) is actually independent of choice of representatives of the equivalence
classes [X•] and [Y•], see [5, Corollary 2.31]. Note that we will often not mention E and s

explicitly when we talk about an n-exangulated category C.
Not too surprisingly, a 1-exangulated category is the same as an extriangulated category

[5, Proposition 4.3]. It should also be noted that n-exact and (n+2)-angulated categories are
n-exangulated [5, Proposition 4.34 and 4.5]. For a discussion of examples of n-exangulated
categories which are neither n-exact nor (n + 2)-angulated, see [5, Section 6.3] and [11,
Section 4].

In our study of subcategories of n-exangulated categories in Sects. 3 and 5, the notion of
extension-closed subcategories will be relevant.

Definition 2.12 Let (C,E, s)be ann-exangulated category.A full additive subcategoryS ⊆ C
which is closed under isomorphisms is called extension-closed if for any pair of objects A
and C in S and any extension δ ∈ E(C, A), there is a distinguished n-exangle 〈X•, δ〉 with
Xi in S for i = 1, . . . , n.

Extension-closed subcategories inherit structure from the ambient category in a natural
way. The following result is [5, Proposition 2.35].

Proposition 2.13 Let (C,E, s) be an n-exangulated category and S an extension-closed sub-
category of C. Given objects A and C in S and an extension δ ∈ E(C, A), let 〈X•, δ〉 be
a distinguished n-exangle with Xi in S for i = 1, . . . , n. Define t(δ) = [X•], where the
equivalence class is taken in Cn+2

(S;A,C)
. The following statements hold:

(1) The correspondence t is an exact realization of the restricted functor E|Sop×S , and
(S,E|Sop×S , t) satisfies (EA2) and (EA2)op.

(2) If (S,E|Sop×S , t) satisfies (EA1), then it is an n-exangulated category.

We end this section by reviewing two results which will be needed throughout the rest of
this paper. The following proposition should be well-known, but we include a proof as we
lack an explicit reference. The conflations described in Proposition 2.14 are called trivial.

Proposition 2.14 Let C be an n-exangulated category and A an object in C. Then the (n+2)-
term sequence

0 → · · · → 0 → A
1A−→ A → 0 → · · · → 0

which has A in position i and i + 1 for some i ∈ {0, 1, . . . , n} is a conflation.

Proof By (R2), the statement is true if i = 0 or i = n. We can hence assume that both our
end-terms are zero. Now, our sequence is homotopy equivalent in Cn+2

(0,0) to

0 → 0 → · · · → 0 → 0.

As this sequence is a conflation, again by (R2), also the sequence we started with has to be
a conflation. ��
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The Grothendieck Group of an n-exangulated Category 437

As one might expect, the coproduct of two conflations is again a conflation. For a proof
of this result, see [5, Proposition 3.2].

Proposition 2.15 Let C be an n-exangulated category and X• and Y• conflations in C. Then
also X• ⊕ Y• is a conflation.

3 Subcategories and n-(co)generators

In this section we introduce the terminology which is needed in our main result, such as
the notion of an n-(co)generator, complete subcategories and dense subcategories. We also
define n-exangulated subcategories, and show that the subcategories which will appear in
our classification theorem carry this structure.

Definition 3.1 Let C be an n-exangulated category. A full additive subcategory G of C is
called an n-generator (resp. n-cogenerator) of C if for each object A in C, there exists a
conflation

A′ → G1 → · · · → Gn → A

(Resp. A → G1 → · · · → Gn → A′)

in C with Gi in G for i = 1, . . . , n.

A 1-(co)generator is often just called a (co)generator. Our notion of a (co)generator essen-
tially coincides with what is used in [12] and [17]. There, however, it is not assumed that
the subcategory G is additive. Note that it would be possible to prove our results also with-
out this extra assumption, but we have chosen this convention to simplify the statement in
Proposition 4.3.

We get a trivial example of an n-(co)generator by choosing G to be the entire category C.
Another natural example arises if our category has enough projectives or injectives. Let us
first recall what this means from [11, Definition 3.2].

Definition 3.2 Let C be an n-exangulated category.

(1) An object P in C is called projective if for any conflation

X0
d0−→ X1 → · · · → Xn

dn−→ Xn+1

in C and any morphism f : P → Xn+1, there exists a morphism g : P → Xn such that
dn ◦ g = f .

(2) The category C has enough projectives if for each object A in C, there exists a conflation
A′ → P1 → · · · → Pn → A

in C with Pi projective for i = 1, . . . , n.
(3) We define injective objects and the notion of having enough injectives dually.

The notion of having enough projectives or injectives relates well to our definition of an
n-(co)generator, as demonstrated in the example below.

Example 3.3 Let C be an n-exangulated category. If C has enough projectives, then the full
subcategory P ⊆ C of projective objects is an n-generator of C. Dually, if C has enough
injectives, the full subcategory I ⊆ C of injective objects is an n-cogenerator of C. In the
case where C is a Frobenius n-exangulated category, as defined in [11], the subcategory
P = I is both an n-generator and an n-cogenerator of C.
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438 J. Haugland

Wewill classify subcategories of ann-exangulated categorywhich are dense and complete.

Definition 3.4 Let C be an n-exangulated category and S a full subcategory of C.
(1) The subcategory S is dense in C if each object in C is a summand of an object in S.
(2) The subcategory S is complete if given any conflation in C with n + 1 of its objects in

S, also the last object has to be in S.

Even though it is not a part of the definition, it turns out that given reasonable conditions,
complete subcategories are always additive and closed under isomorphisms.

Lemma 3.5 Let C be an n-exangulated category. Every complete subcategory S of C which
contains 0 is additive and closed under isomorphisms.

Proof Let A and B be objects in S. By taking the coproduct of two trivial conflations, we
get the conflation

A → A ⊕ B → B → 0 → · · · → 0.

As 0 is in S, all objects in this sequence except the second one is in S. By completeness, this
means that also A ⊕ B is in S, which shows additivity.

Given an isomorphism A
�−→ B in C, the (n + 2)-term sequence

A
�−→ B → 0 → · · · → 0

is a conflation in C, as it is equivalent to a trivial conflation. Consequently, if A is in S, then
also B has to be there, so S is closed under isomorphisms. ��

Notice that when a subcategoryS of an n-exangulated category is dense, it is automatically
non-empty.Whenever n is odd andS is both dense and complete, our subcategory necessarily
contains 0. This can be seen by taking an object A in S and using completeness with respect
to the conflation

A
1A−→ A

0−→ A
1A−→ · · · 0−→ A

1A−→ A → 0,

which is a sum of trivial conflations, and in which the last object is the only one not equal to
A. Consequently, dense and complete subcategories are always additive and isomorphism-
closed when n is odd, which will often be the case in our further work. We will show that a
stronger statement is true, namely that every such subcategory is actually an n-exangulated
subcategory of the ambient category. The key requirement of an n-exangulated subcategory
is that the inclusion is an n-exangulated functor, as introduced in [1, Definition 2.31].

Definition 3.6 Let (C1,E1, s1) and (C2,E2, s2) be n-exangulated categories. An additive
functor F : C1 −→ C2 is an n-exangulated functor if there is a natural transformation
η : E1 −→ E2(Fop−, F−) such that if s1(δ) = [X•] for some δ ∈ E1(C, A), then
s2(AηC(δ)) = [FX•].

Notice that the notation AηC is used for the group homomorphism

AηC : E1(C, A) −→ E2(FC, FA) = E2(F
opC, FA)

given by the natural transformation η. We call η an inclusion if AηC is an inclusion of abelian
groups for every pair of objects A and C .

We are now ready to give the definition of an n-exangulated subcategory.
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The Grothendieck Group of an n-exangulated Category 439

Definition 3.7 Let (C,E, s) be an n-exangulated category. An n-exangulated subcategory
of C is a full isomorphism-closed subcategory S which carries an n-exangulated structure
(S,E′, s′) for which the inclusion functor is n-exangulated and the associated natural trans-
formation is an inclusion.

Our definition emphasizes that an n-exangulated subcategory inherits the structure of the
ambient category. In particular, the biadditive functor E′ is an additive subfunctor of the
restricted functor E|Sop×S in the sense of [5, Definition 3.6]. The exact realizations s and s′
agree, meaning that if s′(δ) = [X•] for some δ ∈ E

′(C, A) ⊆ E(C, A), then s(δ) = [X•].
Notice that the first equivalence class is taken in Cn+2

(S;A,C)
, while the second is taken in

Cn+2
(C;A,C)

. In the case n = 1, the subcategories defined above should be called extriangulated
subcategories.

For our applications in Sect. 5, the most important class of examples of n-exangulated
subcategories will arise from subcategories which are extension-closed. In this case we have
E

′ = E|Sop×S . We also give a basic example where E′ is a proper subfunctor.

Example 3.8 (1) Let S be an extension-closed subcategory of an n-exangulated category
(C,E, s) and define t as explained in Proposition 2.13. If the triplet (S,E|Sop×S , t) satisfies
(EA1), then S is an n-exangulated subcategory of C. Notice that the natural transformation
η associated to the inclusion functor is given by AηC = 1E(C,A) for objects A and C in S.

(2) Let C = Ab be the category of abelian groups. This is an extriangulated category with
biadditive functorE = Ext1C . Let S ⊆ C denote the subcategory of semisimple objects. Using
that S is closed under kernels and cokernels, one can check that S is an abelian subcategory of
C. Consequently, one obtains that S is an extriangulated subcategory with biadditive functor
E

′ = Ext1S . As S is not extension-closed in C, we can see that E′ is a proper subfunctor of
E|Sop×S .

Let us finish this section by showing that if n is odd, every dense and complete subcategory
of an n-exangulated category is an n-exangulated subcategory.

Proposition 3.9 Let (C,E, s) be an n-exangulated category with n odd and S a dense and
complete subcategory of C. The following statements hold:

(1) The subcategory S is extension-closed.
(2) The triplet (S,E|Sop×S , t), with t as defined in Proposition 2.13, is an n-exangulated

subcategory of C.
Proof As n is odd, it follows from Lemma 3.5 that the subcategory S is additive and
isomorphism-closed.

Let A andC be objects inS and consider an extension δ ∈ E(C, A). As C is n-exangulated,
there is a distinguished n-exangle 〈X•, δ〉 in C with X• given by

A → X1 → · · · → Xn → C .

The objects Xi are not necessarily contained in S, but we will show that we can pick another
representative of the equivalence class [X•] for which this is satisfied.

For i = 1, . . . , n − 1, use that S is dense and let X ′
i be an object such that Xi ⊕ X ′

i is in
S. By adding trivial conflations involving the objects Xi and X ′

i to the conflation above, we
get a new conflation

A → X1 ⊕ X ′
1 → · · · →

n−1⊕

i=1

(Xi ⊕ X ′
i ) → X → C,
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440 J. Haugland

where X = X1 ⊕ X ′
2 ⊕ X3 ⊕ · · · ⊕ X ′

n−1 ⊕ Xn . Notice that each of the trivial conflations
we have added are equivalent to the zero conflation, i.e. the conflation given by the (n + 2)-
term sequence where every object is zero. Hence, our new conflation represents the same
equivalence class as the one we started with.

It remains to observe that every object in our new conflation except possibly X is contained
in S. As S is complete, this means that also X is in S, which proves (1).

For (2), notice that by Proposition 2.13 and Example 3.8 it is enough to verify that (EA1)
is satisfied. Let f and g be two composable inflations in S. By the definition of t, inflations
in S are also inflations in C. As C satisfies (EA1), there is a conflation

X0
f ◦g−−→ X1 → · · · → Xn → Xn+1

in C. By assumption, we know that X0 and X1 are in S, but the same is not necessarily true
for the last n objects. However, we apply a similar technique as above to get a conflation
where all the objects are in S. For i = 2, . . . , n, let X ′

i be an object such that Xi ⊕ X ′
i is in

S. Adding trivial conflations to the conflation above yields the conflation

X0
f ◦g−−→ X1 → X2 ⊕ X ′

2 → · · · →
n⊕

i=2

(Xi ⊕ X ′
i ) → X ,

where X now denotes the object X2 ⊕ X ′
3 ⊕ X4 ⊕· · ·⊕ X ′

n ⊕ Xn+1. As the first n+1 objects
in this conflation are in S, so is X . Consequently, this is a conflation in S, which shows that
f ◦ g is an inflation in S. A dual argument shows that the class of deflations in S is closed
under composition. ��

4 The Grothendieck Group of an n-exangulated Category

Throughout the rest of this paper, we let C be an essentially small category. Hence, the
collection of isomorphism classes 〈A〉 of objects A in C forms a set, and we can consider
the free abelian group F(C) generated by such isomorphism classes. We will define the
Grothendieck group of an n-exangulated category C to be a certain quotient of this free abelian
group. More precisely, we want to factor out the Euler relations coming from conflations.
Given a conflation

X• : X0 → X1 → · · · → Xn → Xn+1

in C, the corresponding Euler relation is the alternating sum of isomorphism classes

χ(X•) = 〈X0〉 − 〈X1〉 + · · · + (−1)n+1〈Xn+1〉.
Definition 4.1 Let C be an n-exangulated category. The Grothendieck group of C is the
quotient K0(C) = F(C)/R(C), where R(C) is the subgroup generated by the subset

{χ(X•) | X• is a conflation in C} if n is odd and

{〈0〉}∪{χ(X•) | X• is a conflation in C} if n is even.

We denote the equivalence class 〈A〉 + R(C) represented by an object A in C by [A].
It is immediate from the definition that the Grothendieck group K0(C) has a universal

property. Namely, any homomorphism of abelian groups from F(C) satisfying the Euler
relations factors uniquely through K0(C). More precisely, given any abelian group T and a
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homomorphism t : F(C) → T with t(R(C)) = 0, there exists a unique homomorphism t ′
such that the following diagram commutes

F(C) K0(C)

T ,

π

t
t ′

where π is the natural projection.
Let us prove some basic properties of the Grothendieck group of an n-exangulated cat-

egory. These properties are well-known in the cases where our category is triangulated or
exact. Note that 〈0〉 was defined to be inR(C) whenever n is even in order for the following
proposition to hold.

Proposition 4.2 Let C be an n-exangulated category.

(1) The zero element in K0(C) is given by [0], where 0 is the zero object in C.
(2) For objects A and B in C, we have [A ⊕ B] = [A] + [B] in K0(C).

Proof If n is even, the definition ofR(C) immediately implies that [0] is the zero element in
K0(C).

Recall that the (n + 2)-term sequence

0 → 0 → · · · → 0 → 0

is a conflation in C by (R2). Consequently, the sum
∑n+1

i=0 (−1)i 〈0〉 is in R(C). If n is odd,
this sum is equal to 〈0〉, and hence [0] is the zero element in K0(C) also in this case. This
shows (1).

For (2), consider the sequence

A → A ⊕ B → B → 0 → · · · → 0

with n + 2 terms. This sequence is a conflation in C as it is a sum of two trivial conflations.
Using (1), this implies that

〈A〉 − 〈A ⊕ B〉 + 〈B〉 ∈ R(C),

which yields [A ⊕ B] = [A] + [B] in K0(C). ��
Notice that any element in K0(C) can be written as [A] − [B] for some objects A and

B in C, as we can collect positive and negative terms and then use the second part of the
proposition above. In the case where n is odd and our category has an n-(co)generator, we
get an even nicer description.

Proposition 4.3 Let C be an n-exangulated category with n odd. Let G be an n-(co)generator
of C. Then every element in K0(C) can be written as [A] − [G] for some objects A in C and
G in G.

Proof Given an element in K0(C), we know that it can be written as [X ] − [B] for some
objects X and B in C. When G is an n-generator, there exists a conflation

B ′ → G1 → · · · → Gn → B

in C with Gi in G for i = 1, . . . , n. Consequently, using that n is odd, we get

[B] = −[B ′] + [G1] − [G2] + · · · − [Gn−1] + [Gn] (∗)
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in K0(C). Substituting this expression for [B], the element we started with can be written as

[X ] − [B] = [X ] + [B ′] − [G1] + [G2] − · · · + [Gn−1] − [Gn]
= [X ⊕ B ′ ⊕ G2 ⊕ G4 ⊕ · · · ⊕ Gn−1] − [G1 ⊕ G3 ⊕ · · · ⊕ Gn],

where we have collected positive and negative terms from the alternating sum and used
Proposition 4.2.Defining A andG to be the objects in the first and second bracket respectively,
we get that our element can be written as [A] − [G]. Note that as G is additive, the object G
is contained in G.

The proof in the case where G is an n-cogenerator is dual. ��
Note that it was important in the argument above that n was assumed to be odd. If n was

even, there would be no negative sign in front of the term [B ′] in the expression (∗). Hence,
the signs of [X ] and [B ′] in our final equation would be different, and we would not reach
our conclusion.

The description of elements in theGrothendieck groupwhich is provided inProposition 4.3
will be important in our further work. In the following, we will thus often need to assume
that n is odd.

Remark 4.4 Proposition 4.3 is an n-exangulated analogue of a result from [12] concerning
exact categories, which can be found in the proof of Lemma 2.8. As an (n + 2)-angulated
category has G = {0} as an n-(co)generator, Proposition 4.3 can also be thought of as a
generalization of part (3) of [3, Proposition 2.2].

5 Classification of Subcategories

Recall that C is assumed to be essentially small. In this section we state and prove our main
result. For n odd we classify dense complete subcategories of an n-exangulated category
with an n-(co)generator G in terms of subgroups of the Grothendieck group. The subgroups
which appear in the bijection, depend on the n-(co)generator. More precisely, the subgroups
have to contain

HG = 〈[G] ∈ K0(C) | G ∈ G〉 ≤ K0(C),

i.e. the subgroup of K0(C) generated by elements represented by objects in G. When a
subgroup of K0(C) contains HG , we say that it contains the image of G.

Theorem 5.1 Let C be an n-exangulated category with n odd. Let G be an n-(co)generator
of C. There is then a one-to-one correspondence

{
subgroups of K0(C)

containing HG

}
f−→←−
g

{
dense complete subcategories
of C containing G

}

,

where f (H) is the full subcategory

f (H) = {A ∈ C | [A] ∈ H} ⊆ C,

and g(S) is the subgroup

g(S) = 〈[A] ∈ K0(C) | A ∈ S〉 ≤ K0(C).

Remark 5.2 The subcategories in our bijection above are n-exangulated subcategories of C,
where the n-exangulated structure is inherited from that of C as described in Proposition 3.9.
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Proof of Theorem 5.1 We prove the theorem in the case where G is an n-generator. The proof
when G is an n-cogenerator is dual.

Throughout the rest of the proof, let S be a dense complete subcategory of C containing G
and H a subgroup of K0(C) containing HG . Let us first verify that the maps f and g actually
end up where we claim.

Note that g(S) is a subgroup of K0(C) by definition. As S contains G, the subgroup HG
is contained in g(S). Similarly, it is clear that G ⊆ f (H). To see that f (H) is a dense
subcategory, let A be an object in C. As G is an n-generator, there is a conflation

A′ → G1 → · · · → Gn → A

in C with Gi in G for i = 1, . . . , n. Using that n is odd, which implies that the signs in front
of [A] and [A′] in the corresponding Euler relation agree, we get

[A ⊕ A′] = [G1] − [G2] + · · · − [Gn−1] + [Gn] ∈ H .

This means that A⊕ A′ is in f (H), so the subcategory is dense in C. To show completeness,
consider a conflation

X0 → X1 → · · · → Xn → Xn+1

in C, where n + 1 of the n + 2 objects are in f (H). Since

[X0] − [X1] + · · · + (−1)n+1[Xn+1] = 0 ∈ H ,

and n + 1 of the terms in this sum are in H , also the last term has to be there. This means
that also the last object of our conflation above is in f (H), so f (H) is complete.

Our next step is to show that f and g are inverse bijections. The inclusion g f (H) ⊆ H
is immediate. For the reverse inclusion, choose an element in H . By Proposition 4.3, our
element can be written as [A]−[G] for some A in C andG in G. As [A] = ([A]−[G])+[G],
and both [A] − [G] and [G] are in H , so is [A]. Hence, our element is contained in g f (H),
and we can conclude that H = g f (H).

It remains to show that S = f g(S). Again, one of the inclusions is clear from the def-
initions, namely S ⊆ f g(S). For the reverse inclusion, choose an object A in f g(S). This
means that [A] is in g(S). By Lemma 5.4 below, our object A is consequently in S, which
completes our proof. ��

We will prove Lemma 5.4 by showing that the quotient K0(C)/g(S) is isomorphic to
another group GS consisting of equivalence classes.

Given an n-exangulated category C with n odd and a dense complete subcategory S of C,
define a relation ∼ on the set of isomorphism classes of objects in C by 〈A〉 ∼ 〈B〉 if and
only if there exist objects SA and SB in S such that A ⊕ SA � B ⊕ SB . One can check that
this is an equivalence relation. Denote by GS the quotient of the set of isomorphism classes
of objects in C by the relation ∼. Elements in GS are denoted by {A}.
Lemma 5.3 Let C be an n-exangulated category with n odd and S a dense complete subcat-
egory of C. An object A in C is contained in S if and only if {A} = {0} in GS .

Proof If A is in S, then clearly {A} = {0}. Conversely, assume {A} = {0}. This means that
there are objects SA and S0 in S such that A⊕ SA � S0. Consequently, the n + 1 last objects
in the (n + 2)-term sequence

A → A ⊕ SA → SA → 0 → · · · → 0
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are in S. This is a conflation as it is the coproduct of two trivial conflations. Hence, as S is
complete, our object A is also in S. ��
Lemma 5.4 Let C be an n-exangulated category with n odd. Let G be an n-(co)generator of C
and S a dense complete subcategory of C which contains G. The following statements hold:

(1) GS is an abelian group with binary operation {A} + {B} := {A ⊕ B} and identity
element {0}.

(2) The map

K0(C)/g(S)
�−−→ GS

[A] + g(S) �−→ {A}
is a well-defined isomorphism of groups. In particular, an object A in C is contained in
S if and only if [A] is in g(S).

Proof In order to show (1), notice first that our binary operation is well-defined, commutative,
associative and has {0} as identity element. For any object A in C, there exists an object A′
such that A ⊕ A′ is in S, by denseness of S. Using Lemma 5.3, this means that

{A} + {A′} = {A ⊕ A′} = {0}.
Hence, the element {A′} is the inverse of {A}, and GS is an abelian group.

For (2), let us first show that the map

φ : K0(C) −→ GS
[A] �−→ {A}

is well-defined. It suffices to show that the Euler relations are sent to zero. Consider a
conflation

X0 → X1 → · · · → Xn → Xn+1

in C. For i = 1, . . . , n + 1, let X ′
i be an object such that Xi ⊕ X ′

i belongs to S. We can get a
new conflation by adding trivial conflations involving the objects Xi and X ′

i to the conflation
above, namely

X →
n+1⊕

i=1

(Xi ⊕ X ′
i ) → · · · →

n+1⊕

i=n

(Xi ⊕ X ′
i ) → Xn+1 ⊕ X ′

n+1,

where X = X0 ⊕ X ′
1 ⊕ X2 ⊕ · · · ⊕ X ′

n ⊕ Xn+1. As the n + 1 last objects in this conflation
are in S, so is X . Consequently, using Lemma 5.3, we have

{0} = {X} = {X0} + {X ′
1} + {X2} + · · · + {X ′

n} + {Xn+1}
= {X0} − {X1} + {X2} + · · · − {Xn} + {Xn+1}

inGS , soφ iswell-defined. It is noweasy to check thatφ is a surjective group homomorphism.
Our last step is to show that Ker(φ) = g(S). Note that the inclusion g(S) ⊆ Ker(φ)

follows immediately by Lemma 5.3. Using Proposition 4.3, any element in Ker(φ) can be
written as [A] − [G] for some objects A in C and G in G. This means that

{0} = φ([A] − [G]) = {A} − {G} = {A},
where the third equality follows from Lemma 5.3 and the assumption that S contains G.
Consequently, again using Lemma 5.3, the object A is in S. This yields our reverse inclusion.
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Combining the isomorphism K0(C)/g(S) � GS and Lemma 5.3, we see that an object A is
in S if and only if [A] is in g(S). ��

Ourmain theorem, Theorem 5.1, extends and unifies results by Thomason, Bergh–Thaule,
Matsui and Zhu–Zhuang. We also get a classification of subcategories of n-exact categories.

Corollary 5.5 (1) [16, Theorem 2.1] Let C be a triangulated category. Then there is a
one-to-one correspondence between the dense triangulated subcategories of C and the
subgroups of K0(C).

(2) [3, Theorem 4.6] Let C be an (n + 2)-angulated category with n odd. Then there is a
one-to-one correspondence between the dense complete (n+2)-angulated subcategories
of C and the subgroups of K0(C).

(3) [12, Theorem 2.7] Let C be an exact category with a (co)generator G. Then there is a
one-to-one correspondence between the dense G-(co)resolving subcategories of C and
the subgroups of K0(C) containing the image of G.

(4) [17, Theorem 5.7] Let C be an extriangulated category with a (co)generator G. Then
there is a one-to-one correspondence between the dense G-(co)resolving subcategories
of C and the subgroups of K0(C) containing the image of G.

(5) Let C be an n-exact category with n odd. Let G be an n-(co)generator of C. Then there is
a one-to-one correspondence between the dense complete subcategories of C containing
G and the subgroups of K0(C) containing the image of G.

Proof Part (5) follows immediately from Theorem 5.1 as n-exact categories are n-
exangulated.

As (2) implies (1) and (4) implies (3), it suffices to prove (2) and (4). To show (4), notice
that in the case n = 1, a dense subcategory containing G is complete if and only if it is
G-(co)resolving as defined in [17, Definition 5.3]. It is thus clear that Theorem 5.1 implies
(4).

In order to prove that (2) follows from our main result, we will use the definition of an
(n + 2)-angulated category, see [2,4].

Let (C, 	) be an (n + 2)-angulated category. Then C has enough projectives, with 0 as
the only projective object. The same is true for injectives, and hence G = {0} is both an
n-generator and an n-cogenerator of C. As a subgroup necessarily contains the zero element,
all subgroups of K0(C) will contain the image of G.

It remains to show that every complete and dense subcategoryS of C has a natural structure
as an (n+2)-angulated subcategory, by declaring the distinguished (n+2)-angles in C with all
objects in S to be the distinguished (n+2)-angles in S. Recall that a full isomorphism-closed
subcategory S of our (n+ 2)-angulated category (C, 	) is an (n+ 2)-angulated subcategory
if (S, 	) itself is (n + 2)-angulated and the inclusion is an (n + 2)-angulated functor.

Recall from Sect. 3 that as n is odd, the subcategory S contains 0, which again implies
that it is additive and isomorphism-closed. To show that (S, 	) is (n + 2)-angulated, the
crucial parts are to check that S is closed under 	 and that morphisms can be completed to
distinguished (n + 2)-angles.

When we think of C as an n-exangulated category, the distinguished (n + 2)-angles yield
conflations when we remove the last object. To see that S is closed under 	, let A be an
object in S. As

A → 0 → · · · → 0 → 	A
1	A−−→ 	A

is a distinguished (n + 2)-angle in which the n + 1 first objects are in S, also 	A is in S. A
dual argument shows that 	−1A is in S.
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Let f : X0 → X1 be a morphism in S. We need to show that f can be completed to a
distinguished (n + 2)-angle in S. As C is (n + 2)-angulated, there is a distinguished (n + 2)-
angle

X0
f−→ X1 → X2 → · · · → Xn+1 → 	X0

in C. For i = 2, . . . , n, use that S is dense and let X ′
i be an object such that Xi ⊕ X ′

i is in S.
By adding trivial (n + 2)-angles involving the objects Xi and X ′

i to the (n + 2)-angle above,
we get a new distinguished (n + 2)-angle

X0
f−→ X1 → X2 ⊕ X ′

2 → · · · →
n⊕

i=2

(Xi ⊕ X ′
i ) → X → 	X0,

where X = X2 ⊕ X ′
3 ⊕ X4 ⊕ · · · ⊕ X ′

n ⊕ Xn+1. As the n + 1 first objects in this sequence
are contained in S, so is X . Consequently, this is a distinguished (n + 2)-angle in S which
completes the morphism f .

The remaining axioms of an (n + 2)-angulated category are immediately verified using
the fact that S is full. As the distinguished (n + 2)-angles in S are chosen in such a way that
the inclusion functor is (n + 2)-angulated, we can conclude that S is an (n + 2)-angulated
subcategory of C. Consequently, also (2) follows from Theorem 5.1. ��
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