
Applied Categorical Structures (2019) 27:111–123
https://doi.org/10.1007/s10485-018-9545-z

Universal Central Extensions of Lie Crossed Modules Over a
Fixed Lie Algebra

Behrouz Edalatzadeh1

Received: 21 May 2016 / Accepted: 22 October 2018 / Published online: 29 October 2018
© Springer Nature B.V. 2018

Abstract
Let L be a Lie algebra over a field of arbitrary characteristic. In this paper, we give a necessary
and sufficient condition for the existence of universal central extensions in the category of
crossed modules of Lie algebras over L . Also, we determine the structure of the universal
central extension of a crossed L-module and show that the kernel of this extension is related
to the first non-abelian homology of L .
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1 Introduction

Originally the concept of the universal central extension appeared in the contexts of group
theory to characterize perfect groups. Analogously, the structure of perfect Lie algebras and
their universal central extensions and the relation between the second homology group and the
universal central extension of a perfect Lie algebra were investigated in [10,14,26]. Similar
results in the category of Leibniz algebras were obtained in [7].

It was shown in [5,6] that there is a common approach to universal central extensions in the
category of (all) crossed modules of Lie algebras. Many authors discussed similar concepts
in the category of (all) crossed and pre-crossed modules of groups, one can see [1,2,16] for
instance. Casas and Van der Linden in [8] established the general theory of universal central
extensions in a semi-abelian category with respect to a Birkhoff subcategory, based on the
general approach of central extensions due to Janelidze and Kelly [20]. Everaert and Gran
in [12] extended some results on the low-dimensional homology and central series in quasi-
pointed, exact and protomodular categories, that in particular are applied to the category of
internal crossed modules over a fixed base object.
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112 B. Edalatzadeh

In the present work, we study universal central extensions in the category of crossed
L-modules over a fixed Lie algebra L , where extensions are central with respect to the
subcategory of crossed L-modules with aspherical commutator submodule. It should be
noted that the category of crossed modules of Lie algebras over L is not semi-abelian, simply
since it is not pointed, hence the main results of this paper about universal central extensions
can not be straightly obtained from [8]. However, the basic set-up of the theory fits into the
framework developed in [12], where the general notion of central extension defined in [20]
is studied in the context of quasi-pointed exact homological categories.

In Sect. 4, we give a construction of the universal central extension based on the non-
abelian tensor product of Lie algebras. This is used in Sect. 5, where the Schur multiplier of
a pair of Lie algebras is interpreted in terms of a Hopf-type formula involving a free crossed
module.

2 Preliminaries

We first remind the reader of the notion of an action between Lie algebras. Let L and M
be two Lie algebras over a field �. An action of L on M is a �-bilinear map L × M →
M, (l, m) �→ lm satisfying

[l,l ′]m = l(l ′m) − l ′(lm), l [m, m′] = [ lm, m′] + [m, lm′],
for all l, l ′ ∈ L and m, m′ ∈ M . We follow the notations and terminology of [25] for the
L–center and L–commutator of M which are defined as follows:

Z(L, M) = 〈m ∈ M | lm = 0, for all l ∈ L〉,
[L, M] = 〈 lm | l ∈ L, m ∈ M〉.

Definition 2.1 Let L and M be Lie algebras such that L acts on M . A crossed L-module
(M, ∂) is a Lie homomorphism ∂ : M → L satisfying the following conditions:

(i) ∂(lm) = [l, ∂(m)], for all l ∈ L , m ∈ M ,
(ii) ∂(m)(m′) = [m, m′], for all m, m′ ∈ M .

It is readily checked that the kernel of ∂ is an L-invariant ideal contained in the center of M
and the image of ∂ is an ideal of L .

Example 2.2 (i) Let N be an ideal of the Lie algebra L . Then (N , i) is a crossed L-module,
where i : N ↪→ L is the inclusion map and the action of L on N is induced by the Lie
bracket of L . In particular, Id : L → L and 0 : 0 ↪→ L are crossed modules and so we can
consider any Lie algebra as a crossed module in any of these ways. A subterminal object in
the category of crossed L-modules is a subobject of the terminal object (L, Id); these are
precisely the crossed L-modules of the form (N , i), where N is an ideal of L .
(ii) Let ∂ : M → L be a surjective Lie homomorphism whose kernel lies in the center of M .
If we consider the action of L on M as lm = [l̄, m], where l̄ is any element in the pre-image
of l, then (M, ∂) is a crossed L-module.
(iii) Let M be an L-module and 0 : M → L the zero homomorphism. Then (M, 0) is a
crossed L-module.

Crossedmodules of Lie algebras are algebraic objects which can be viewed as a simultaneous
generalization of the concepts of ideals andmodules over Lie algebras. They were introduced
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in 1982 by Kassel and Loday [21]. Janelidze in [19] characterized internal crossed modules
in a semi-abelian category in terms of internal object actions, in such a way that a category
equivalence between internal crossed modules and internal categories is obtained. Of course,
crossed modules of Lie algebras are an instance of this general concept.

Definition 2.3 Let (Mi , ∂i ), i = 1, 2 be crossed L-modules. A morphism f : (M1, ∂1) →
(M2, ∂2) of crossed L-modules is a commutative diagram of Lie homomorphisms

M1

L

M2
f

∂1 ∂2

such that f is an L-equivariant Lie homomorphism, i.e. f ( lm) = l f (m) for all m ∈ M1

and l ∈ L . It is worth noting that ker( f ) ⊆ ker(∂1) and so (ker( f ), 0) and (M1/ ker( f ), ∂̄1)

are also crossed L-modules, where ∂̄1 is the morphism induced by ∂1. It should be mentioned
that it is possible that there are no morphisms between two crossed L-modules, for instance
in the case that ∂ is not zero there are no morphisms from (M, ∂) to (0, 0).

For a Lie algebra L , we denote the category of crossed modules of Lie algebras over L
by CM(L). It can be seen that CM(L) is a subcategory of the category of all Lie crossed
modules which is denoted by CM. In fact, CM(L) is the fibre category over L under the
functor U : CM → Lie, which takes a crossed module to its target. Nevertheless, there are
some basic differences between these categories. For instance, CM(L) is not a semi-abelian
category, because it does not have a zero object, while 0 : 0 → 0 is the zero object of
CM. However, (0, 0) and (L, Id) are the initial and final objects of CM(L) respectively and
therefore CM(L) is a quasi-pointed category.
According to the notions of quasi-pointed categories, we say that the sequence

(M1, ∂1)
f

� (M2, ∂2)
g
� (M3, ∂3),

of crossed L-modules is exact if the following sequence of Lie algebras is exact

0 → M1
f→ M2

g→ M3 → 0.

This means that f is the kernel of g and g is the cokernel of f . Note that, in this condition
∂1 = ∂3 ◦ (g ◦ f ) = 0, hence for any m1, m′

1 ∈ M1 we have [m1, m′
1] = ∂1(m1)m′

1 = 0 and
so M1 must be an abelian Lie algebra.

Let AC-CM(L) be the full subcategory of CM(L) consisting of crossed L-modules
of Lie algebras (M, ∂) such that the commutator submodule ([L, M], ∂|[L,M]) is aspher-
ical, i.e. ker(∂|[L,M]) = 0. The inclusion of AC-CM(L) in CM(L) has a left adjoint
F : CM(L) → AC-CM(L) which assigns to a crossed L-module (M, ∂) the quotient
(M/(ker(∂) ∩ [L, M]), ∂̄), where ∂̄ : M/(ker(∂) ∩ [L, M]) → L and the action of L on
M/(ker(∂) ∩ [L, M]) are induced by (M, ∂). Note that F preserves the initial object (0, 0).

Recall from [13] that a functor F between protomodular (pointed) categories is called
protoadditive if it preserves split short exact sequences. Although CM(L) is not pointed, we
may employ this notion for our further considerations.
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114 B. Edalatzadeh

Proposition 2.4 The reflector F is protoadditive.

Proof Suppose

(K , 0) (M1, ∂1) (M, ∂)
f

s

is a split short exact sequence of crossed L-modules. For any m1 ∈ M1 there exists k ∈ K
and m ∈ M such that m1 = k + s(m), hence for all l ∈ L

f ( lm1) = l f (k) + l f (s(m)) = lm.

This implies that lm = 0 if and only if lm1 ∈ ker( f ). Also, we have

lm1 = l k + s( lm),

which deduces lm1 ∈ ker( f ) if and only if lm1 ∈ [L, K ]. This means that by applying the
commutator [−, L], we get the split exact sequence of Lie algebras

[L, K ] [L, M1] [L, M].
[1L , f ]

This also implies that

[L, K ] ∩ K [L, M1] ∩ ker(∂1) [L, M] ∩ ker(∂),
[1L , f ]

is a short exact sequence, which (via the 3 × 3 Lemma) proves that

F(K , 0) F(M1, ∂1) F(M, ∂),
F f

Fs

is a split short exact sequence. ��
Now, we define the concept of a central extension in CM(L) that is determined by the

adjunction

CM(L)
F−−→←−−↩ AC-CM(L),

Our definition of central extension fits into Janelidze and Kelly’s theory of central extensions
[20].

For a given extension of crossed L-modules

(K , 0) � (M1, ∂1)
f

� (M, ∂), ((*))

suppose π1, π2 : R[ f ] → (M1, ∂1) are the kernel pair projections and s : R[ f ] → (M1, ∂1)

the subdiagonal morphism. The extension (∗) is central if π1 is trivial, i.e. in the following
diagram the right-hand side square is pullback

(K , 0) R[ f ] (M1, ∂1)

F(K , 0) F R[ f ] F(M1, ∂1)

η(K ,0)

π1

s

Fπ1

Fs

where η is the unit of the adjunction. Since F is protoadditive by [4, Lemma 1, Proposition
7] η(K ,0) is an isomorphism if and only if the right-hand side square is pullback. This means
that (K , 0) is in AC-CM(L) if and only if (∗) is a central extension. Now, we are ready to
summarize the above discussions in the following proposition.
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Universal Central Extensions of Lie Crossed Modules Over… 115

Proposition 2.5 A surjective morphism of crossed L-modules f : (M1, ∂1) � (M, ∂) is
a central extension of (M, ∂) if and only if ker( f ) ⊆ Z(L, M1). This is equivalent to
[ker( f ), M1] = 0.

Let Set(L) be the category of set mappings with target L and its morphisms are all maps of
sets such that the corresponding triangles are commutative. For any object f : X → L of the
category Set(L), let A(X) be the free �-module on the set X , U L the universal enveloping
algebra of L and L(U L ⊗� A(X)) the free Lie algebra generated by U L ⊗� A(X). The
action of L on U L ⊗� A(X) induces an L-module structure on L(U L ⊗� A(X)). Using the
fact that L is a U L-module, the L-homomorphism

f̄ : U L ⊗� A(X) → L

a ⊗ x �→ a · f (x)

induces an L-equivariant homomorphism ∂̄ : L(U L ⊗� A(X)) → L . Let I be tha ideal of
L(U L ⊗� A(X)) generated by the elements [x, y] − ∂̄(x)y. Since I is L-invariant, if we set
C(X) = L(U L ⊗� A(X))/I then the induced homomorphism ∂ : C(X) → L is a crossed
L-module. The forgetful functor U : CM(L) → Set(L) has has a left adjoint functor F ,

where F(X
f→ L) = (C(X), ∂), see [10] for more details.

Projective objects with respect to the regular epimorphisms (= surjective morphisms) in
CM(L) are called projective crossed L-modules. The construction of the functor F ensures
thatCM(L) has enough projective objects, i.e. for each crossed L-module (M, ∂) there exists
a surjection f : (P, δ) � (M, ∂) such that (P, δ) is a projective crossed L-module. By a
projective presentation of (M, ∂), we mean an exact sequence of crossed L-modules

(ker( f ), 0) � (P, δ)
f

� (M, ∂),

such that (P, δ) is a projective crossed L-module.

3 Universal Central Extensions

ALie algebra is called perfect if it coincides with its derived subalgebra. In [14], it was shown
that any perfect Lie algebra L admits a universal central extension, i.e. the (unique) central
extension of Lie algebras

0 → M → L∗ π→ L → 0,

such that for any central extension

0 → M1 → K1
π1→ L → 0,

there exists a unique Lie homomorphism f : L∗ → K1 such that π1 ◦ f = π . In this section,
we generalize these concepts to the central extensions of crossed L-modules. Note that, by
considering L as a crossed L-module in the usual form of (L, Id), the results of this section
can generalize the main results of [26].

Definition 3.1 Let E : (M1, ∂1)
f1� (M, ∂) and E ′ : (M2, ∂2)

f2� (M, ∂) be two cen-
tral extensions of the crossed L-module (M, ∂). Then we say that the extension E covers
(uniquely covers) E ′ if there exists a morphism (or a unique morphism, respectively)
φ : (M1, ∂1) → (M2, ∂2) such that the following diagram commutes:
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116 B. Edalatzadeh

E : (M1, ∂1) (M, ∂)

E ′ : (M2, ∂2) (M, ∂)

f1

f2

φ Id

A central extension E of the crossed L-module (M, ∂) is called universal if it uniquely covers
any central extension of (M, ∂). On the other hand, the universal central extension of (M, ∂)

is the initial object amongst all central extensions of (M, ∂).

The next proposition follows immediately from the fact that an initial object is unique up
to isomorphism.

Proposition 3.2 If E and E ′ are universal central extensions of (M, ∂) then there is an
isomorphism (M1, ∂1) → (M2, ∂2). In other words, when it exists, the universal central
extension of (M, ∂) is unique up to isomorphism of crossed L-modules.

As we shall see, a crossed L-module (M, ∂) admits a universal central extension if and
only if [L, M] = M . Just as in the characterisation of central extensions, this condition only
depends on the action of L on M : this action must be perfect with respect to the coinvariants
reflector. Reformulated in terms of the reflector F : CM(L) → AC-CM(L), this means that
F(M, ∂) is a subterminal object (N , i) such that [L, N ] = N . Let indeed (N , i) denote the
support of (M, ∂), i.e., i : N → L is the monomorphism (and p : M → N the regular
epimorphism) in the regular epi-mono factorisation ∂ = i ◦ p of ∂ : M → L . Then in the
diagram with short exact rows

0 K ∩ [L, M] [L, M] [L, N ] 0

0 K M N 0
p

where K = ker(∂) = ker(p), the middle vertical arrow is an isomorphism if and only if
so are the outer arrows. For the one on the left this means that K ∼= K ∩ [L, M], which
is equivalent to the condition that F(M, ∂) is the support (N , i) of (M, ∂). In other words,
F(M, ∂) is subterminal. The isomorphism [L, N ] ∼= N on the right says that the conjugation
action of L on N is perfect with respect to taking coinvariants.

Lemma 3.3 Let (M, ∂) be a crossed L-module and E : (M1, ∂1)
f1� (M, ∂), E ′ : (M2, ∂2)

f2�
(M, ∂) be central extensions of (M, ∂). The following statements hold:

(i) If E is a universal central extension then (M, ∂) and (M1, ∂1) are L-perfect.
(ii) If (M1, ∂1) is L-perfect then E covers E ′ if and only if E uniquely covers E ′.

(iii) If E is a universal central extension then any central extension of (M1, ∂1) splits.
(iv) If (M1, ∂1) is L-perfect and any central extension of (M1, ∂1) splits then E is a universal

central extension.

Proof (i) Let δ : M1 ⊕ M1[L,M1] → L be the Lie homomorphism defined by δ(m, m′ +
[L, M1]) = ∂1(m) for all m, m′ ∈ M1. If we define the action of L on M1 ⊕ M1[L,M1] as

l(m, m′ + [L, M1]) = ( lm, 0),
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Universal Central Extensions of Lie Crossed Modules Over… 117

then (M1 ⊕ M1[L,M1] , δ) is a crossed L-module. Now, consider the following central extension

E ′′ :
(

M1 ⊕ M1

[L, M1] , δ
)

ψ
� (M, ∂),

where ψ(m, m′ + [L, M1]) = f (m). Suppose for i = 1, 2,

φi : (M1, ∂1) →
(

M1 ⊕ M1

[L, M1] , δ
)

are morphisms defined by φ1(m) = (m, 0 + [L, M1]) and φ2(m) = (m, m + [L, M1]) for
all m ∈ M1. Hence ψ ◦ φ1 = ψ ◦ φ2 = f1, so by the universal property of E , we conclude
that φ1 = φ2. It follows that M1 = [L, M1]. Also, f1 is a surjection and so we have

M = f1(M1) = f1([L, M1]) = [L, f1(M1)] = [L, M].
(ii) Suppose φi : M1 → M2 (i = 1, 2) are morphisms such that f2 ◦ φ1 = f1 = f2 ◦ φ2. Let
φ : M1 → M2 be the linear map defined by φ(m) = φ1(m) − φ2(m) for all m ∈ M1. Hence
f2(φ(M1)) = 0 so φ(M1) ⊆ Z(L, M2) and

φ(M1) = φ([L, M1]) ⊆ [L, φ(M1)] = 0,

which implies φ1 = φ2.

(iii) Let E ′′ : (M3, ∂3)
f3� (M1, ∂1) be any central extension. Then it can be easily checked

that f1 ◦ f3 : (M3, ∂3) � (M, ∂) is a central extension of (M, ∂). Since E is universal, there
exists a morphism g : (M1, ∂1) → (M3, ∂3) such that f3 ◦ g = IdM1 , this yields the desired
result.
(iv) By (ii), it is enough to prove E covers E ′. Put

M3 = {(m1, m2) ∈ M1 ⊕ M2 | f1(m1) = f2(m2)},
and ∂3(m1, m2) = ∂1(m1) then (M3, ∂3) is a crossed L-module and the natural projection

(M3, ∂3)
π1� (M1, ∂1) is a central extension. By the hypothesis, there exists a morphism

g : (M1, ∂1) → (M3, ∂3) and so there is a morphism π2 ◦ g : (M1, ∂1) → (M2, ∂2), hence
E covers E ′. ��

The structure of (weakly) universal central extensions in a semi-abelian category with
enough projectives was detected in [8], that is far from our case of CM(L) which is quasi-
pointed. In the following theorem, we use a projective presentation to construct the universal
central extension of (M, ∂).

Theorem 3.4 Let (M, ∂) be an L-perfect crossed L-module. If

(R, 0) � (P, δ)
β
� (M, ∂)

is a projective presentation of (M, ∂) then

E :
( [L, P]

[L, R] , δ̄
)

� (M, ∂),

is the universal central extension of (M, ∂).

Proof Let (M1, ∂1)
f1� (M, ∂) be a central extension of the crossed L-module (M, ∂). As

(P, δ) is projective, there is a morphism φ1 : (P, δ) � (M1, ∂1) such that the following
diagram commutes:
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118 B. Edalatzadeh

(R, 0) (P, δ) (M, ∂)

(ker( f1), 0) (M1, ∂1) (M, ∂)

β

f1

φ1 Id

[L, R] ⊆ ker(δ) ∩ ker(β) ∩ ker(φ1), so β induces the central extension β ′ : ( P
[L,R] , δ̄) �

(M, ∂) and φ1 induces the morphism φ2 : ( P
[L,R] , δ̄) → (M1, ∂1) such that the following

diagram commutes:

( P
[L,R] , δ̄) (M, ∂)

(M1, ∂1) (M, ∂)

β

f1

φ2 Id

Now, we can obtain a morphism φ : ( [L,P]
[L,R] , δ̄) → (M1, ∂1) by composing of the inclusion

morphism i : ( [L,P]
[L,R] , δ̄) → ( P

[L,R] , δ̄) with φ2. To show that φ is unique, by Lemma 3.3

(ii), it is sufficient to verify [L, [L, P]] + [L, R] = [L, P], i.e. that [L, [L,P]
[L,R] ] = [L,P]

[L,R] . The
inclusion [L, [L, P]] + [L, R] ⊆ [L, P] is obvious. For the converse,

P

R
= M = [L, M] ∼= [L,

P

R
] = [L, P] + R

R

so any element p ∈ P can be written as p = l ′ p′ + r for some p′ ∈ P, l ′ ∈ L, r ∈ R.
Obviously, we have

l p = l( l ′ p′ + r) = l( l ′ p′) + lr ∈ [L, [L, P]] + [L, R],
which implies the required assertion. ��
Example 3.5 (i) Let L be an arbitrary Lie algebra. The inclusion crossed L-module (0, i)
admits the universal central extension

(0, i) � (0, i).

(ii) Let L be a perfect Lie algebra and 0 → M → L∗ π→ L → 0 be the universal central
extension of L . Using Example 2.2 (ii), we can see that

(L∗, π) � (L, Id),

is the universal central extension of the crossed L-module (L, Id).

A crossedmodule of Lie algebras ∂ : M → L is said to be abelian (respectively, perfect) if M
and L are abelian Lie algebras and L acts trivialy on M (respectively, L is a perfect Lie algebra
and M is L-perfect). The category of abelian crossedmodules,ACM, is a subcategory ofCM.
The inclusion of abelian crossed modules in CM admits a left adjoint ab : CM → ACM
which assigns to a crossed module ∂ : M → L the abelian crossed module ∂̄ : M/[L, M] →
L/[L, L]. Casas and Ladra in [6] considered the universal central extensions of CM with
respect to this adjunction. They proved that a crossed module ∂ : M → L has a universal
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Universal Central Extensions of Lie Crossed Modules Over… 119

central extension in CM if and only if ∂ : M → L is a perfect crossed module. It should be
mentioned that if L is not a perfect Lie algebra then i : 0 → L is not perfect in CM and so
it does not admit any universal central extensions in the category of crossed modules, but as
mentioned in Example 3.5, (0, i) has a universal central extension in CM(L).

4 Relation to the Non-abelian Tensor Product

In this section, we construct the universal central extension of a crossed L-module in terms of
non-abelian tensor product of Lie algebras. At first, let us recall from [10] the definition and
basic properties of the non-abelian tensor product of Lie algebras. Suppose M1 and M2 are
Lie algebras that act on each other. The non-abelian tensor product M1 ⊗ M2 is the algebra
generated by the elements m1 ⊗ m2 with (m1, m2) ∈ M1 × M2, subject to the relations

c(m1 ⊗ m2) = cm1 ⊗ m2 = m1 ⊗ cm2, [m1, m′
1] ⊗ m2 = m1 ⊗ ( m′

1m2) − m′
1 ⊗ ( m1m2)

(m1 + m′
1) ⊗ m2 = m1 ⊗ m2 + m′

1 ⊗ m2, m1 ⊗ [m2, m′
2] = ( m′

2m1) ⊗ m1 − ( m2m1) ⊗ m′
2

m1 ⊗ (m2 + m′
2) = m1 ⊗ m2 + m1 ⊗ m′

2, [(m1 ⊗ m2), (m
′
1 ⊗ m′

2)] = −( m2m1) ⊗ ( m′
1m′

2).

for all m1, m′
1 ∈ M1, m2, m′

2 ∈ M2 and scalar c ∈ �.
For any Lie algebra T , a bilinear map f̄ : M1 ⊕ M2 → T is called a Lie pairing if for any
m1, m′

1 ∈ M1, m2, m′
2 ∈ M2

f̄ ([m1, m′
1], m2) = f̄ (m1,

m′
1m2) − f̄ (m′

1,
m1m2),

f̄ (m1, [m2, m′
2]) = f̄ ( m′

2m1, m1) − f̄ ( m2m1, m′
2),

f̄ ([ m2m1,
m′
1m′

2]) = −[ f̄ (m1, m2), f̄ (m′
1, m′

2)].
The non-abelian tensor product M1 ⊗ M2 can be identified by its universal property; given
a Lie algebra T and a Lie pairing f̄ : M1 ⊕ M2 → T , there is a unique Lie homomorphism
f : M1 ⊗ M2 → T such that f̄ (m1, m2) = f (m1 ⊗ m2). Note that, if M1 and M2 act on
each other trivially then the non abelian tensor product M1 ⊗ M2 is isomorphic to the usual
tensor product of �-modules M1/[M1, M1] ⊗� M2/[M2, M2]. See [10] for more details.

Let (M1, ∂1) and (M2, ∂2) be crossed L-modules. Then M1 and M2 act on each other by
the action of L via ∂1 and ∂2, i.e. for any m1 ∈ M1 and m2 ∈ M2

m1m2 = ∂(m1)m2 , m2m1 = ∂(m2)m1.

In this case, L acts on M1 ⊗ M2 by the rule

l(m1 ⊗ m2) = lm1 ⊗ m2 + m1 ⊗ lm2,

for all m1 ∈ M1, m2 ∈ M2 and l ∈ L . Using the action of L on M1 ⊗ M2, the following
proposition constructs the crossed L-module [∂1, ∂2] : M1 ⊗ M2 → L .

Proposition 4.1 Let (M1, ∂1) and (M2, ∂2) be crossed L-modules. Then (M1 ⊗ M2, [∂1, ∂2])
is a crossed L-module, where [∂1, ∂2] is the commutator map which is defined on generators
by [∂1, ∂2](m1 ⊗ m2) = [∂1(m1), ∂2(m2)] for all m1 ∈ M1, m2 ∈ M2.

Let (M, ∂) be a crossed L-module. One can check that δM : L ⊗ M → M defined on
generators by δM (l ⊗ m) = lm is an L-equivariant Lie homomorphism, where the action
of L on itself is given by the adjoint map. In this case, the cokernel and the kernel of δM

are called the zeroth and the first non-abelian homology groups of the Lie algebra L with
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coefficients in the crossed L-module (M, ∂) and are denoted by H0(L, M) and H1(L, M),
respectively. Guin in [17] introduced these low degree non-abelian homology modules. The
higher degree non-abelian homology modules were introduced in [18] by Inassaridze et al.,
as the non-abelian left derived functors of the non-abelian tensor product.
The following theorem determines the kernel of a universal central extension in terms of the
non-abelian homology of L .

Theorem 4.2 Let (M, ∂) be an L-perfect crossed L-module. The sequence

(H1(L, M), 0) � (L ⊗ M, [Id, ∂]) δM� (M, ∂),

is the universal central extension of (M, ∂).

Proof Suppose f : (M1, ∂1) � (M, ∂) is a central extension of (M, ∂). For any m ∈ M
choose m̄ ∈ M1 be such that f (m̄) = m. Clearly, the mapping (l, m) �→ l m̄ is a well-defined
Lie pairing and so by the universal property of the non-abelian tensor product there exists a
Lie homomorphism φ : L ⊗ M → M1 such that φ(l ⊗ m) = l m̄. φ is an L-equivariant Lie
homomorphism because for all m ∈ M and l1, l2 ∈ L

φ( l1(l2 ⊗ m)) = φ([l1, l2] ⊗ m + l2 ⊗ l1m)

= [l1,l2]m̄ + l2( l1m̄)

= l1( l2m̄)

= l1φ(l2 ⊗ m).

Clearly f ◦φ = δM and ∂1 ◦φ = [Id, ∂], so φ is a morphism of crossed L-modules. To prove
that φ is unique, by Lemma 3.3(ii), it is enough to show that [L, L ⊗ M] = L ⊗ M . But for
any l1, l2 ∈ L and m ∈ M , we have

l1 ⊗ ( l2m) = l1(l2 ⊗ m),

hence the equality [L, M] = M implies that L ⊗ M ⊆ [L, L ⊗ M]. The converse is trivial.
��

Remark 4.3 A short exact sequence of L-modules M1 � M2 � M is called an L-central
extension of M whenever L acts on M1 trivially. Analogously as [3,23] (in Lie algebras), one
can deduce that M admits a universal central extension in the category of L-modules if and
only if [L, M] = M . Note that, since the category of L-modules is a semi-abelian category,
by considering central extensions and perfect objects with respect to the Birkhoff subcategory
of L-module with trivial action, one can obtain this assertion directly by applying the results
of [8]. In this case, K � I L ⊗U L M � M is the universal central extension of M , where K
is isomorphic to the first (Chevalley-Eilenberg) homology of L with coefficients in M and
U L , I L are the universal enveloping algebra and the augmentation ideal of L , respectively.
As any L-module M can be considered as the crossed L-module (M, 0), Theorem 4.2 implies
that if [L, M] = M then I L ⊗U L M ∼= L ⊗ M . See also [5, Proposition 13] for a similar
result.
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5 An Application to a Pair of Lie Algebras

Let L be a Lie algebra over an arbitrary field � and Hn(L) be the n-th homology group of
L with coefficients in �. If N is an ideal of L then there exists a long exact sequence

· · · → Hn(L; N ) → Hn(L) → Hn

(
L

N

)
→ Hn−1(L; N ) → · · ·

→ H2(L; N ) → H2(L) → H2

(
L

N

)
→ H1(L; N ) → H1(L) → H1

(
L

N

)
→ 0.

Further details about the construction of this sequence in general case for semi-abelian cat-
egories can be found in [11], [15, Theorem 2.6]. The abelian Lie algebra H2(L; N ) is called
the Schur multiplier of the pair (L, N ) and is denoted by M(L, N ). A central extension of
the inclusion crossed module (N , i) is called a relative central extension of the pair of Lie
algebras (L, N ). The theory of relative central extensions and their connections with the
Schur multiplier of a pair of Lie algebras have been studied in several papers and some of
the known notions in the contexts of central extensions have been generalized, see [9,24] for
instance. A relative central extension of which the kernel is the abelian crossed L-module
(M(L, N ), 0) is called a relative cover of (L, N ). Using Theorem 4.2, we can obtain the
following result which determines the relative cover of a special pair of Lie algebras.

Proposition 5.1 Let (L, N ) be a pair of Lie algebras such that [L, N ] = N then

(M(L, N ), 0) � (L ⊗ N , [Id, i]) [Id,i]
� (N , i),

is the universal central extension of the inclusion crossed module (N , i).

Proof It is readily checked that the subspace L�N of L ⊗ N generated by the elements n ⊗n
for all n ∈ N is a central ideal of L ⊗ N . There is a natural exact sequence of Lie algebras

�

(
N

[L, N ]
)

→ L ⊗ N → L ∧ N → 0,

where �(−) is the universal quadratic functor and L ∧ N = L ⊗ N/L�N , see [10] for more
details. But N = [L, N ] implies that L ⊗ N ∼= L ∧ N . Now, by [10, Theorem 35], there is
an isomorphism

M(L, N ) ∼= ker(L ⊗ N
[Id,i]→ L).

This completes the proof. ��
Example 5.2 Let L be a two dimensional Lie algebrawith a basis {x, y} and themultiplication
given by [x, y] = x and N = 〈x〉. It can be checked that L ⊗ N is the two dimensional
abelian Lie algebra generated by {a = x ⊗ x, b = y ⊗ x} and L acts on the generators of
L ⊗ N by

x a = 0 , x b = a
ya = −2a , yb = −b.

Hence M(L, N ) is the one dimensional ideal generated by the set {x ⊗ x}.
We recall from [9, Theorem 24] that if N is an ideal of L and (P, δ) is a projective crossed

L-module with δ(P) = N then

H2(N ) ∼= ker(δ) ∩ [P, P],

123



122 B. Edalatzadeh

that can be seen as a crossed version of the Hopf formula

H2(N ) ∼= R ∩ [F, F]
[F, R] ,

where 0 → R → F → N → 0 is a free presentation of N . Now, we can give a similar
result for the Schur of a pair of Lie algebras in terms of a projective presentation.

Theorem 5.3 Let (L, N ) be a pair of Lie algebras such that [L, N ] = N and (P, δ) any
projective crossed L-module such that δ(P) = N. Then M(L, N ) ∼= ker(δ) ∩ [L, P].
Proof It is obvious that

(ker(δ), 0) � (P, δ) � (N , i),

is a projective presentation of the inclusion crossed L-module (N , i). By Theorem 3.4(
ker(δ) ∩ [L, P]

[L, ker(δ)] , 0

)
�

(
P

[L, ker(δ)] , δ̄
)

� (N , i),

is the universal central extension (N , i). But ker(δ) ⊆ Z(L, P) and so we have

ker(δ) ∩ [L, P]
[L, ker(δ)] = ker(δ) ∩ [L, P].

Now, Proposition 5.1 gives the result. ��
Remark 5.4 Let μ : L → Q be a surjective Lie algebra morphism. A relative central
extension of μ by an abelian Lie algebra A is an exact sequence

0 → A → M
∂→ L

μ→ Q → 0,

such that (M, ∂) is a crossed L-module and A ⊆ Z(L, M). Amorphism between two relative

central extensions 0 → A1 → M1
∂1→ L

μ→ Q → 0 and 0 → A2 → M2
∂2→ L

μ→ Q → 0,
is a morphism f : (M1, ∂1) → (M2, ∂2) of crossed L-modules. A relative central extension

0 → A → M
∂→ L

μ→ Q → 0, is called universal if there exists a unique morphism from
it to other relative central extensions of μ. A Lie version of results in [22] implies that μ

admits a universal relative central extension if and only if [L, kerμ] = kerμ. Note that, we
can obtain this result by applying Lemma 3.3 to the crossed L-module (kerμ, i), where i is
the inclusion map.
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