

A Formula for Codensity Monads and Density Comonads

Jiří Adámek¹ · Lurdes Sousa^{2,3}

Received: 7 December 2017 / Accepted: 7 May 2018 / Published online: 29 May 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract For a functor F whose codomain is a cocomplete, cowellpowered category \mathcal{K} with a generator S we prove that a codensity monad exists iff for every object s in S all natural transformations from $\mathcal{K}(X, F-)$ to $\mathcal{K}(s, F-)$ form a set. Moreover, the codensity monad has an explicit description using the above natural transformations. Concrete examples are presented, e.g., the codensity monad of the power-set functor \mathcal{P} assigns to every set X the set of all nonexpanding endofunctions of $\mathcal{P}X$. Dually, a set-valued functor F is proved to have a density comonad iff all natural transformations from X^F to 2^F form a set. Moreover, that comonad assigns to X the set of all those transformations. For preimages-preserving endofunctors F of **Set** we prove that F has a density comonad iff F is accessible.

Keywords Codensity monad · Density comonad · Accessible functors

Dedicated to Bob Lowen on his seventieth birthday

Communicated by Walter Tholen.

This work was partially supported by the Centre for Mathematics of the University of Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

Lurdes Sousa sousa@estv.ipv.pt

> Jiří Adámek J.Adamek@tu-bs.de

¹ Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

² CMUC, University of Coimbra, 3001-501 Coimbra, Portugal

³ ESTGV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal

1 Introduction

The important concept of density of a functor $F : A \to \mathcal{K}$ means that every object of \mathcal{K} is a canonical colimit of objects of the form *FA*. For general functors, the *density comonad* is the left Kan extension along itself:

$$C = \operatorname{Lan}_F F.$$

This endofunctor of \mathcal{K} carries the structure of a comonad. We speak about the *pointwise* density comonad if C is computed by the usual colimit formula: given an object X of \mathcal{K} , form the diagram $D_X : F/X \to \mathcal{K}$ assigning to each $FA \xrightarrow{a} X$ the value FA, and put

$$CX = \operatorname{colim} D_X.$$

This assumes that the above, possibly large, colimit exists in \mathcal{K} . The density comonad is a measure of how far away F is from being dense: a functor is dense iff its pointwise codensity monad is trivial (i.e., $Id_{\mathcal{K}}$). Pointwise density comonads were introduced by Appelgate and Tierney [4] where they are called standard constructions. For every left adjoint F the comonad given by the adjoint situation is the density comonad of F. For functors $F : \mathcal{A} \to \mathbf{Set}$ we prove that F has a density comonad iff for every set X there is only a set of natural transformations from X^F to 2^F . Moreover, the density comonad C is always pointwise, and is given by the formula

$$CX = Nat(X^F, 2^F).$$

We also prove that every accessible functor between locally presentable categories has a density comonad, and, in case of set functors, conversely: the existence of a density comonad for *F* implies its accessibility, assuming that *F* preserves preimages (which is a very mild condition). For $FX = X^n$ the density comonad is X^{n^n} . For general polynomial functors $FX = \prod_{i \in I} X^{n_i}$ it is given by $CX = \prod_{i \in I} \prod_{j \in I} \prod_{j \in I} X^{n_i^{j}}$, see Example 5.2.

The dual concept, introduced by Kock [7], is the *codensity monad*, i.e., the right Kan extension of F over itself:

$$T = \operatorname{Ran}_F F.$$

Linton proved in [8] that if $\mathcal{K} = \mathbf{Set}$, then *F* has a codensity monad iff for every set *X* all natural transformations from F^X to *F* form a set. We generalize this to \mathcal{K} arbitrary as follows. Given a functor $F : \mathcal{A} \to \mathcal{K}$, denote by $F^{(X)} : \mathcal{A} \to \mathbf{Set}$ the composite $\mathcal{K}(X, -) \cdot F$ for every $X \in \mathcal{K}$. Assuming that \mathcal{K} has a generator *S* which detects limits (see Definition 3.1), a functor *F* with codomain \mathcal{K} has a codensity monad iff for every $X \in \mathcal{K}$ all natural transformations from $F^{(X)}$ to $F^{(s)}$, $s \in S$, form a set. And the codensity monad is then pointwise. All locally presentable categories possess a limit-detecting generator, and every monadic category over a category with a limit-detecting generator possesses one, too. In fact, in a cocomplete and cowellpowered category every generator detects limits. We also obtain a formula for the codensity monad *T*: we can view \mathcal{K} as a concrete category over *S*-sorted sets. And for every object *X* the underlying set of *TX* has the following sorts:

$$Nat(F^{(X)}, F^{(s)}) \ (s \in S).$$

Again, accessible functors always possess a pointwise codensity monad, that is, *T* is given by the limit formula (assigning to *X* the limit of the diagram $((X \xrightarrow{a} FA) \mapsto FA)$). However, in contrast to the density comonad, many non-accessible set functors possess a codensity

monad too—and, as we show below, codensity monads of set-valued functors are always pointwise. Example: the power-set functor \mathcal{P} has a codensity monad given by

TX = nonexpanding self-maps of $\mathcal{P}X$.

The subfunctor \mathcal{P}_0 on all nonempty subsets is its own codensity monad. But the following modification $\overline{\mathcal{P}}$ of \mathcal{P} is proven not to have a codensity monad: on objects *X*

$$\overline{\mathcal{P}}X = \mathcal{P}X$$

and on morphism $f: X \to Y$

$$\overline{\mathcal{P}}f(M) = \begin{cases} \mathcal{P}f(M) \text{ if } f/M \text{ is monic}\\ \emptyset & \text{else.} \end{cases}$$

For $FX = X^n$ the codensity monad is obvious: this is a right adjoint, so *T* is the monad induced by the adjoint situation, $TX = n \times X^n$. For general polynomial functors $FX = \prod_{i \in I} X^{n_i}$ the codensity monad is $TX = \prod_{(X_i)} \prod_{j \in I} \left(\prod_{i \in I} n_i \times X_i \right)^{n_j}$ where the first product ranges over all disjoint decompositions $X = \bigcup_{i \in I} X_i$, see Example 5.7

2 Accessible Functors

Throughout the paper all categories are assumed to be locally small.

Recall from [6] that a category \mathcal{K} is called *locally presentable* if it is cocomplete and for some infinite regular cardinal λ it has a small subcategory \mathcal{K}_{λ} of λ -presentable objects K(i.e. such that the hom-functor $\mathcal{K}(K, -)$ preserves λ -filtered colimits) whose closure under λ -filtered colimits is all of \mathcal{K} . And a functor is called *accessible* if it preserves, for some infinite regular cardinal λ , λ -filtered colimits. Recall further that every locally presentable category is complete and every object X has a presentation rank, i.e., the least regular cardinal λ such that X is λ -presentable. Finally, locally presentable categories are locally small, and \mathcal{K}_{λ} can be chosen to represent all λ -presentable objects up to isomorphism.

Theorem 2.1 Every accessible functor between locally presentable categories has:

- (a) a pointwise codensity monad and
- (b) a pointwise density comonad.

Proof Given an accessible functor $F : A \to \mathcal{K}$ and an object X of \mathcal{K} , we can clearly choose an infinite cardinal λ such that \mathcal{K} and A are locally λ -presentable, F preserves λ -filtered colimits, and X is a λ -presentable object. The domain restriction of F to A_{λ} is denoted by F_{λ} .

(a) We are to prove that the diagram

$$B_X: X/F \to \mathcal{K}, \ (X \xrightarrow{a} FA) \mapsto FA$$

has a limit in \mathcal{K} . Denote by $E: X/F_{\lambda} \hookrightarrow X/F$ the full embedding. Since \mathcal{K} is complete, the small diagram $B_X \cdot E$ has a limit. Thus, it is sufficient to prove that E is final (the dual concept of cofinal, see [10]): (i) every object $X \xrightarrow{a} FA$ is the codomain of some morphism departing from an object of X/F_{λ} , and (ii) given a pair of such morphisms, they can be connected by a zig-zag in X/F_{λ} .

Indeed, given $a : X \to FA$, express A as a λ -filtered colimit of λ -presentable objects with the colimit cocone $c_i : C_i \to A$ $(i \in I)$. Then $Fc_i : FC_i \to FA$, $i \in I$, is also a colimit of a λ -filtered diagram. Since X is λ -presentable, $\mathcal{K}(X, -)$ preserves this colimit, and this implies that (i) and (ii) hold.

(b) Now we prove that the diagram

$$D_X: F/X \to \mathcal{K}, \ (FA \xrightarrow{a} X) \mapsto FA$$

has a colimit in \mathcal{K} . Denote the colimit of the small subdiagram $F_{\lambda}/X \to \mathcal{K}$ by K with the colimit cocone

$$\overline{a}: FA \to K$$
 for all $a: FA \to X$ in F/X , $A \in \mathcal{A}_{\lambda}$.

We extend this cocone to one for D_X as follows: Fix an object $a : FA \to X$ of F/X. Express A as a colimit $c_i : C_i \to A$ $(i \in I)$ of the canonical diagram $H_A : A_\lambda/A \to A$ assigning to each arrow the domain. Then $Fc_i : FC_i \to FA$ $(i \in I)$ is a colimit cocone, and all $\overline{a \cdot Fc_i} : FC_i \to K$ form a compatible cocone of the diagram $F \cdot H_A$. Hence, there exists a unique morphism

$$\overline{a}: FA \to K$$
 with $\overline{a} \cdot Fc_i = a \cdot Fc_i \quad (i \in I).$

We claim that this yields a cocone of D_X . That is, given a morphism f from $(FA \xrightarrow{a} X)$ to $(FB \xrightarrow{b} X)$ in F/X, we prove $\overline{a} = \overline{b} \cdot Ff$.

Since (Fc_i) is a colimit cocone, it is sufficient to prove

$$\overline{a} \cdot Fc_i = b \cdot F(f \cdot c_i)$$
 for a all $i \in I$.

Indeed, let $c'_j : C'_j \to B$ $(j \in J)$ be the canonical colimit cone of $H_B : \mathcal{A}_{\lambda}/B \to \mathcal{A}$. Since C_i is λ -presentable, the morphism $f \cdot c_i$ factorizes through some $c'_i, j \in J$, say

$$f \cdot c_i = c'_i \cdot g.$$

This makes g a morphism from $FC_i \xrightarrow{a \cdot Fc_i} X$ to $FC'_j \xrightarrow{b \cdot Fc'_j} X$ in F_{λ}/X , hence the following triangle

commutes. That is, we have derived the required equality:

$$\overline{a} \cdot Fc_i = \overline{b} \cdot Fc'_i \cdot Fg = \overline{b} \cdot Ff \cdot Fc_i.$$

🖉 Springer

It is now easy to verify that the above cocone is a colimit of D_X . Given another cocone $\widetilde{a} : FA \to \widetilde{K}$ for all $a : FA \to X$ in F/X, the subcocone with domain F_{λ}/X yields a unique morphism $r : K \to \widetilde{K}$ with

$$r \cdot \overline{a} = \widetilde{a}$$
 for all $a : FA \to X, A \in \mathcal{A}_{\lambda}$.

It remains to observe that given $a : FA \to X$ arbitrary, we also have $r \cdot \overline{a} = \widetilde{a}$:

Indeed, the cocone (Fc_i) is collectively epic and for each *i* we know that $r \cdot \overline{a \cdot Fc_i} = \widetilde{a \cdot Fc_i}$. Now $\widetilde{a \cdot Fc_i} = \widetilde{a} \cdot Fc_i$ since c_i is a morphism from $FC_i \xrightarrow{a \cdot Fc_i} X$ to $FA \xrightarrow{a} X$. We conclude $r \cdot \overline{a} \cdot Fc_i = \widetilde{a} \cdot Fc_i$ for all *i*, thus, $\widetilde{a} = r \cdot \overline{a}$.

Proposition 2.2 Let \mathcal{K} be a category with a generator. Every functor $F : \mathcal{A} \to \mathcal{K}$ with a codensity monad has only a set of natural transformations $\alpha : F \to F$.

Proof By the universal property of $T = \operatorname{Ran}_F F$, natural self-transformations of F bijectively correspond to natural transformations from $\operatorname{Id}_{\mathcal{K}}$ to T. If $(K_i)_{i \in I}$ is a generator, we will prove that every natural transformation $\alpha : \operatorname{Id}_{\mathcal{K}} \to T$ is determined by its components $\alpha_{K_i}, i \in I$, which proves our claim.

Let β : Id_X \rightarrow *T* be a natural transformation with $\beta_{K_i} = \alpha_{K_i}$ for all *i*. Then for every object *X* we have $\beta_X = \alpha_X$. Indeed, otherwise there exists $i \in I$ and a morphism $h : K_i \rightarrow X$ with $\alpha_X \cdot h \neq \beta_X \cdot h$.

This contradicts to the naturality squares for α and β .

Corollary 2.3 Let \mathcal{K} be a category with a cogenerator. Every functor $F : \mathcal{A} \to \mathcal{K}$ with a density comonad has only a set of natural transformations $\alpha : F \to F$.

Example 2.4 A set functor without a codensity monad or a density comonad. Recall the modified power-set functor $\overline{\mathcal{P}}$ in Introduction. By Proposition 2.2 it has no codensity monad since for every cardinal λ we have a natural transformation

$$\alpha^{\lambda}:\overline{\mathbb{P}}\to\overline{\mathbb{P}}.$$

It assigns to a subset \underline{M} of power $|\underline{M}| \ge \lambda$ itself, otherwise \emptyset . The naturality squares are easy to verify. Thus, Nat $(\overline{\mathcal{P}}, \overline{\mathcal{P}})$ is a proper class.

Deringer

3 Codensity Monad Theorem

Let S be a generator of a category \mathcal{K} . Then \mathcal{K} can be viewed as a concrete category over S-sorted sets: the forgetful functor

$$U: \mathcal{K} \to \mathsf{Set}^{\mathsf{S}}$$

has components

$$U_s = \mathcal{K}(s, -) : \mathcal{K} \to \mathsf{Set} \ (s \in S).$$

Recall that a functor U is said to *detect limits* if for every (possibly large) diagram D in \mathcal{K} for which $\lim U \cdot D$ has a limit, a limit exists in \mathcal{K} .

In case of the functor U above the existence of $\lim U \cdot D$ says precisely that for every $s \in S$ the diagram D has only a set of cones with domain s. This leads us to the following

Definition 3.1 A generator *S* of *K* is called *limit-detecting* if

(a) Every (possibly large) diagram D in \mathcal{K} which has only a set of cones with domains in S has a limit,

and

(b) Copowers of every object of S exist.

Example 3.2 Every generator is limit-detecting in the following categories:

(1) Every *total* category \mathcal{K} , i.e., such that the Yoneda embedding into $[\mathcal{K}^{op}, \mathbf{Set}]$ has a left adjoint, as introduced by Street and Walters [11]. They also proved that a total category is cocomplete and hypercomplete, i.e., every diagram D such that for any object $K \in \mathcal{K}$ there exists only a set of cones with domain K has a limit.

Suppose *D* has the property in Definition 3.1(a) above. Then given *K* we express it as quotient of a coproduct of objects in *S*:

$$e: \coprod_{i\in I} s_i \twoheadrightarrow K$$

Every cone with domain *K* yields one with domain $\coprod_{i \in I} s_i$ which, since *e* is epic, determines the original one. Since there is only a set of cones with domain $\coprod_{i \in I} s_i$, it follows that there is only a set of cones with domain *K*. Thus $\lim D$ exists.

- (2) Every cocomplete and cowellpowered category. Indeed, \mathcal{K} is total, see [5].
- (3) Every locally presentable category. This follows from (2), see [6] or [3].
- (4) Categories from general topology, e.g., Top, Top₂ (Hausdorff spaces), Unif (uniform spaces), approach spaces of Lowen [9], etc. These are concrete categories over Set which are solid, thus total, see [12].
- (5) Monadic categories over categories with a limit-detecting generator. Indeed, let *S* be a limit-detecting generator of \mathcal{K} . For every monad $\mathbb{T} = (T, \eta, \mu)$ the set of free algebras

$$S' = \{(Ts, \mu_s); s \in S\}$$

is a limit-detecting generator of $\mathcal{K}^{\mathbb{T}}$. In fact, it is clearly a generator, (a) above follows since (large) limits are created by the forgetful functor $U^{\mathbb{T}}$ of $\mathcal{K}^{\mathbb{T}}$, and (b) is clear since the left adjoint of $U^{\mathbb{T}}$ preserves copowers.

Notation 3.3 For every functor $F : \mathcal{A} \to \mathcal{K}$ and every object X of \mathcal{K} we denote by $F^{(X)}$ the set-valued functor

$$F^{(X)} \equiv \mathcal{A} \xrightarrow{F} \mathcal{K} \xrightarrow{\mathcal{K}(X,-)}$$
 Set

Thus in case $\mathcal{K} = \text{Set}$ this is just the power F^X of $F : \mathcal{A} \to \text{Set}$ to X. The following theorem generalizes Linton's result, see [8], that a set-valued functor F has a pointwise codensity monad iff there is only a set of natural transformations from F^X to F (for every set X):

Theorem 3.4 (Codensity Monad Theorem) Let *S* be a limit-detecting generator of a category \mathcal{K} . For every functor *F* with codomain \mathcal{K} the following conditions are equivalent:

- (i) F has a codensity monad,
- (ii) F has a pointwise codensity monad, and
- (iii) for every pair of objects $s \in S$ and $X \in \mathcal{K}$ the collection

 $Nat(F^{(X)}, F^{(s)})$

of natural transformations from $F^{(X)}$ to $F^{(s)}$ is small.

Remark. We will see in the proof that the object CX assigned to $X \in \mathcal{K}$ by the codensity monad *C* has the *S*-sorted underlying set given by

$$U(CX) \cong \left(Nat(F^{(X)}, F^{(s)})\right)_{s \in S}$$

Proof (i) \rightarrow (iii). Since $s \in S$ has all copowers, $\mathcal{K}(s, -)$ is left adjoint to $\phi_s : M \mapsto \coprod_M s$.

Let C be a codensity monad of F. We prove that the set $\mathcal{K}(s, CX)$ is isomorphic to $Nat(F^{(X)}, F^{(s)})$. Indeed, we have the following bijections:

$\mathcal{K}(s, CX)$	
$\mathcal{K}(X,-) \to \mathcal{K}(s,-) \cdot C$	Yoneda lemma
$\phi_s \cdot \mathfrak{K}(X,-) \to C$	$\phi_s \dashv \mathfrak{K}(s, -)$
$\phi_s \cdot \mathcal{K}(X, -) \cdot F \to F$	universal property of C
$\overline{\mathcal{K}(X,-)\cdot F}\to \mathcal{K}(s,-)\cdot F$	$\phi_s \dashv \mathfrak{K}(s, -)$
$F^{(X)} \to F^{(s)}$	

(iii) \rightarrow (ii). For every object $X \in \mathcal{K}$ it is our task to prove that the diagram $D_X : X/F \rightarrow \mathcal{K}$ given by

$$D_X(X \xrightarrow{a} FA) = FA$$

has a limit. Given $s \in S$, a cone of D_X with domain s has the following form

$$\frac{X \xrightarrow{a} FA}{s \xrightarrow{a'} FA}$$

and we obtain a natural transformation

$$\alpha: F^{(X)} \to F^{(s)}$$

Deringer

assigning to every $a \in F^{(X)}A = \mathcal{K}(X, FA)$ the value $\alpha_A(a) = a' \in F^{(s)}A$. Indeed, the naturality square

commutes for every $f : A \to B$ in \mathcal{A} . This follows from the morphism

in X/F: Our cone (-)' is compatible, thus

$$Ff \cdot a' = b' = (Ff \cdot a)',$$

which proves that the above square commutes when applied to a.

Conversely, every natural transformation $\alpha : F^X \to F^{(s)}$ has the above form. We obtain a cone of evaluations at *a*:

$$a' = \alpha_A(a)$$
 for every $a : A \to FX$ (i.e., $a \in F^{(X)}A$)

Indeed the above triangle commutes since the naturality square does when applied to a.

It is easy to verify that we obtain a bijection between $Nat(F^{(X)}, F^{(s)})$ and the collection of all cones of D_X with domain s. Consequently, the latter collection is small for every $s \in S$. Since S is limit-detecting, D_X has a limit in \mathcal{K} .

(ii) \rightarrow (i). This is trivial.

Finally, the claim in the remark above

$$U_s(CX) \cong Nat(F^{(X)}, F^{(s)}) \quad \text{for } s \in S$$

follows from the fact that $U_s = \mathcal{K}(s, -)$ preserves limits. We have seen above that D_X has a limit, say, with the following cone

$$\frac{X \xrightarrow{a} FA}{CX \xrightarrow{\widehat{a}} FA} \quad \text{for all } a: X \to FA \text{ with } A \in \mathcal{A}$$

Then the cone of underlying functions $U(CX) \xrightarrow{U\hat{a}} U(FA)$ is, up to isomorphism of the domain, the cone of evaluations $ev_a : Nat(F^{(X)}, F^{(s)}) \to U_s(FA), s \in S.$

Remark 3.5 (a) Suppose \mathcal{K} is *transportable*, i.e., given an object K and an isomorphism $i: M \to UK$ in Set^S there exists an object $K' \in \mathcal{K}$ such that UK' = M and i carries an isomorphism $K' \xrightarrow{\cong} K$ in \mathcal{K} . (Up to equivalence, all categories concrete over Set^S have this property, see [1], Lemma 5.35.) Then the codensity monad C can be chosen so that the underlying set of CX has components

$$U_s(CX) = Nat(F^{(X)}, F^{(s)}) \quad s \in S.$$

(b) Moreover, the evaluation maps with sorts

$$ev_a: Nat(F^{(X)}, F^{(s)}) \to U_s(FA) \quad (\text{for } s \in S)$$

given by

$$ev_a(\alpha) = \alpha_A(a)$$
 (for all $a : X \to FA$)

carry morphisms from CX to FA. Indeed, the limit cone (\hat{a}) of CX was shown to fulfil this in the above proof.

- (c) To characterize the object CX of \mathcal{K} , we use the concept of *initial lifting*, see [1]. Given a (possibly large) collection of objects $K_i \in \mathcal{K}$, $i \in I$, and a cone $v_i : V \to UK_i$ $(i \in I)$ in **Set**^S, the initial lifting is an object K of \mathcal{K} with UK = V such that
 - (i) each v_i carries a morphism from K to K_i $(i \in I)$

and

(ii) given an object K' of \mathcal{K} , then a function $f : UK' \to UK$ carries a morphism from K' to K iff all composites $v_i \cdot f$ carry morphisms from K' to K_i $(i \in I)$.

Corollary 3.6 (Codensity Monad Formula) Let *S* be a limit-detecting generator making \mathcal{K} a transportable category over **Set**^S. If a functor $F : \mathcal{A} \to \mathcal{K}$ has a codensity monad *C*, then *C* assigns to every object *X* the initial lifting of the cone of evaluations

$$ev_a: \left(Nat(F^{(X)}, F^{(s)})\right)_{s\in S} \to UFA$$

for $A \in A$ and $a : X \to FA$. Here $(ev_a)_s(\alpha) = \alpha_A(a)$ for every natural transformation $\alpha : F^{(X)} \to F^{(s)}$.

Indeed, the limit cone $\hat{a} : CX \to FA$ can (due to transportability) be chosen so that $U\hat{a} = ev_a$ for all $a : X \to FA$ in X/F. Given an object K' and a function $f : UK' \to U(CX)$ such that each composite $ev_a \cdot f$ carries a morphism $\tilde{a} : K' \to FA$ in \mathcal{K} , the fact that U is faithful implies that (\tilde{a}) forms a cone of D_X . Thus there exists $\overline{f} : K' \to CX$ with $\tilde{a} = \hat{a} \cdot \overline{f}$ for every a in X/F. This is the desired morphism carrying f: we have $U\overline{f} = f$ because the limit cone (ev_a) is collectively monic and for each $a : X \to FA$ we have

$$ev_a \cdot U\overline{f} = U(\widehat{a} \cdot \overline{f}) = U\widetilde{a} = ev_a \cdot f.$$

Remark 3.7 The definition of *C* on morphisms $f : X \to Y$ of \mathcal{K} is canonical: *Cf* is carried by the *S*-sorted function from $Nat(F^{(X)}, F^{(s)})$ to $Nat(F^{(Y)}, F^{(s)})$ which takes a natural transformation $\alpha : \mathcal{K}(X, -) \cdot F \to \mathcal{K}(s, -) \cdot F$ to the composite

$$\mathcal{K}(Y,-)\cdot F \xrightarrow{\mathcal{K}(f,-)\cdot F} \mathcal{K}(X,-)\cdot F \xrightarrow{\alpha} \mathcal{K}(s,-)\cdot F.$$

This follows easily from the fact that Cf is the unique morphism such that the above limit morphisms $\hat{a} : CX \to FA$ make the following triangles

commutative.

4 Density Comonads

Notation 4.1 For every functor $F : \mathcal{A} \to \mathcal{K}$ and every object X of \mathcal{K} we denote by X^F the set-valued functor

$$X^{F} \equiv \mathcal{A}^{op} \xrightarrow{F^{op}} \mathcal{K}^{op} \xrightarrow{\mathcal{K}(-,X)} \mathsf{Set}$$

Theorem 4.2 (Density Comonad Theorem) Let S be a cogenerator of a complete and wellpowered category. For every functor F with codomain \mathcal{K} the following conditions are equivalent:

- (i) F has a density comonad,
- (ii) F has a pointwise density comonad, and
- (iii) for every pair of objects $s \in S$ and $X \in \mathcal{K}$ the collection

$$Nat(X^F, s^F)$$

of natural transformations from X^F to s^F is small.

Indeed, since S detects colimits by the dual of Example 3.2(2), this is just a dualization of Theorem 3.4.

Corollary 4.3 A set-valued functor F has a density comonad iff for every set X there is only a set of natural transformations from X^F to 2^F . Moreover, the density comonad is then given by

$$CX = Nat(X^F, 2^F).$$

For set-valued functors preserving preimages (i.e., pullbacks of monomorphisms along arbitrary morphisms) and with "set-like" domains, we intend to prove that

accessibility \Leftrightarrow existence of a density comonad.

For that we are going to use Theorem 4.6 below. The "set-like" flavour is given by the following:

Definition 4.4 A locally λ -presentable category is called *strictly locally* λ -*presentable* if for every morphism $b : B \to A$ with a λ -presentable domain there exists a commutative square

$$\begin{array}{cccc}
B & \longrightarrow & A \\
b & & \uparrow & \\
A & \longrightarrow & B'
\end{array}$$

with B' also λ -presentable.

Example 4.5 (See [2]) Let λ be an infinite regular cardinal.

- (1) Set is strictly locally λ -presentable.
- (2) Many-sorted sets, \mathbf{Set}^S , are strictly locally λ -presentable iff card $S < \lambda$.
- (3) K-Vec, the category of vector spaces over a field K, is strictly locally λ -presentable.
- (4) The category of groups and homomorphisms is not strictly locally λ -presentable.
- (5) For every group G the category G-Set of sets with an action of G is strictly locally λ-presentable iff |G| < λ.</p>

The same holds for the category $\mathsf{Set}^{\mathbb{G}^{op}}$ of presheaves on a small groupoid \mathbb{G} , i.e., a category with invertible morphisms: it is strictly locally λ -presentable iff \mathbb{G} has less than λ morphisms.

We are going to use the following characterization of accessibility proved in [2]:

Theorem 4.6 A functor $F : A \to B$ with A and B strictly locally λ -presentable is λ -accessible iff for every object $A \in A$ and every subobject $m_0 : M_0 \to FA$ with M_0 λ -presentable in B there exists a subobject $m : M \to A$ with $M \lambda$ -presentable in A such that m_0 factorizes through Fm:

Example 4.7 (1) A set functor *F* is λ -accessible iff for every element of *FA* there exists a subset $m : M \hookrightarrow A$ with card $M < \lambda$ such that the element lies in Fm[FM].

- (2) Analogously for endofunctors of *K*-Vec: just say dim $M < \lambda$ here.
- (3) For *S* finite, an endofunctor of **Set**^{*S*} is finitary iff every element of *FA* lies in *Fm*[*FM*] for some finite subset $m : M \hookrightarrow FA$.

This does not generalize for *S* infinite. Consider the endofunctor *F* of $\mathsf{Set}^{\mathbb{N}}$ given as the identity function on objects (and morphisms) having all but finitely many components empty. And *F* is otherwise constant with value 1, the terminal object. This functor is not finitary: it does not preserve, for 2 = 1 + 1, the canonical filtered colimit of all morphisms from finitely presentable objects to 2. But it satisfies the condition that every element of *FA* lies in *Fm*[*FM*] for some finite subset $m : M \hookrightarrow A$.

Theorem 4.8 Let A be a category where epimorphisms split and such that there is a cardinal μ for which A is strictly locally λ -presentable and λ -presentable objects are closed under subobjects, whenever $\lambda \ge \mu$.

Then a functor $F : \mathcal{A} \to \text{Set}$ preserving preimages has a density comonad iff it is accessible.

Proof Since epimorphisms split, A has regular factorizations— indeed, locally presentable categories have (strong epi, mono)-factorizations, see [3]. In view of Theorem 2.1 we only need to prove the non-existence of a density comonad in case F is not accessible. Let us call an element $x \in FA \lambda$ -accessible if there exists a λ -presentable subobject $m : M \rightarrow A$ with $x \in Fm[FM]$. From the preceding theorem we know that, for all $\lambda \ge \mu$, F possesses an element that is not λ -accessible. Without loss of generality, μ is an infinite regular cardinal.

(1) Define regular cardinals λ_i ($i \in Ord$) by transfinite recursion as follows:

 $\lambda_0 = \mu;$

Given λ_i choose an element $x_i \in FA_i$ for some $A_i \in A$ which is not λ_i -accessible and define λ_{i+1} as the least regular cardinal with A_i λ_{i+1} -presentable;

Given a limit ordinal j define λ_j as the successor cardinal of $\bigvee_{i < j} \lambda_i$.

We thus see that for every ordinal *i* the element x_i is λ_{i+1} -accessible but not λ_i -accessible.

(2) To prove that F does not have a density comonad, we present pairwise distinct natural transformations

$$\alpha^i: 2^F \to 2^F \ (i \in \text{Ord}).$$

For every object $A \in A$, a subset $M \subseteq FA$ (i.e., an element of 2^{FA}) and an element $a \in M$, we call the triple $(A, M, a) \lambda_i$ -stable if there exists a subobject $u_a : U_a \rightarrow A$ in A with $a \in Fu_a[FU_a]$ such that for all subobjects $v : V \rightarrow U_a$ we have

if *V* is λ_i -presentable, then $M \cap F(u_a v)[FV] = \emptyset$.

Our natural transformation α^i has the following components $\alpha^i_A : 2^{FA} \to 2^{FA}$:

$$\alpha_A^i(M) = \{a \in M; (A, M, a) \text{ is } \lambda_i \text{-stable}\}.$$

We must prove that for every morphism $h: A \to B$ the naturality square

$$\begin{array}{c|c} 2^{FB} & \xrightarrow{\alpha_B^i} 2^{FB} \\ (Fh)^{-1}(-) & & & \downarrow (Fh)^{-1}(-) \\ 2^{FA} & \xrightarrow{\alpha_A^i} 2^{FA} \end{array}$$

commutes. That is, given

$$M \subseteq FB$$
 and $\overline{M} = (Fh)^{-1}(M) \subseteq FA$

then for all elements

$$a \in M$$
 and $b = Fh(a) \in M$

we need to verify that

(A, M, a) is λ_i -stable $\Leftrightarrow (B, M, b)$ is λ_i -stable.

(a) Let (A, \overline{M}, a) be λ_i -stable. For the given subobject $u_a : U_a \rightarrow A$ form a regular factorization of hu_a :

$$\begin{array}{c|c} U_a \xrightarrow{e} & U_b \\ \downarrow u_a & \downarrow & \downarrow u_b \\ A \xrightarrow{h} & B \end{array}$$

We have $a' \in FU_a$ with $a = Fu_a(a')$, therefore b lies in the image of Fu_b :

$$b = Fh(a) = Fu_b(Fe(a')).$$

For every subobject $v : V \to U_b$ with $V \lambda_i$ -presentable we need to prove that $M \cap F(u_b v)[FV] = \emptyset$. Choose a splitting w of e, i.e., $e \cdot w = id_{U_b}$. Then for the subobject

$$wv: V \to U_a$$

we know that $\overline{M} = (Fh)^{-1}(M)$ is disjoint from the image of $F(u_a wv)$. Suppose there exists an element of $M \cap F(u_b v)[FV]$, say, $F(u_b v)(t)$ for some $t \in FV$. Put $t' = F(u_a wv)(t)$, then we derive a contradiction by showing that $t' \in \overline{M}$. Indeed

$$Fh(t') = F(hu_a wv)(t)$$

= $F(u_b ewv)(t)$
= $F(u_b v)(t) \in M$

Thus, $t' \in (Fh)^{-1}(M) = \overline{M}$. (b) Let (B, M, b) be λ_i -stable. Since $Fh(a) = b \in M$ we have

$$a \in (Fh)^{-1}(M) = M.$$

Deringer

Given the above subobject $u_b : U_b \to B$, we define $u_a : U_a \to A$ as the preimage under *h*:

We have $b' \in FU_b$ with $b = Fu_b(b') = Fh(a)$, and since F preserves preimages, there exists $a' \in FU_a$ with $Fu_a(a') = a$.

Given a subobject $v : V \to U_a$ with $V \lambda_i$ -presentable, we prove that $F(u_a v)([FV])$ is disjoint from \overline{M} . For that take the regular factorization of $\overline{h}v$ as in the diagram above. Since e is a split epimorphism, W is a λ_i -presentable object. Therefore, the image of $F(u_b w)$ is disjoint from M.

Assuming that we have $t \in FV$ with $F(u_a v)(t) \in \overline{M}$, we derive a contradiction by showing that for t' = Fe(t) we have $F(u_b w)(t') \in M$. Indeed, since $\overline{M} = (Fh)^{-1}(M)$, we see that $F(hu_a v)(t) \in Fh[\overline{M}] \subseteq M$ and we have

$$hu_a v = u_b \overline{h} v = u_b w e.$$

(3) We have established that each $i \in Ord$ yields a natural transformation $\alpha^i : 2^F \to 2^F$. We conclude the proof by verifying for all ordinals $i \neq j$ that $\alpha^i \neq \alpha^j$. Suppose i < j. In (1) we have presented an element $x_i \in FA_i$ which is λ_{i+1} -accessible (because A_i is λ_{i+1} -accessible) but not λ_i -accessible. Let $M_i \subseteq FA_i$ be the set of all elements that are not λ_i -accessible. Then

$$(A_i, M_i, x_i)$$

is clearly λ_i -stable. But it is not λ_j -stable because A_i is λ_j -presentable (since λ_{i+1} is a presentability rank of A_i and $\lambda_{i+1} \leq \lambda_j$). Indeed, no subobject $u_{x_i} : U_{x_i} \to A$ has the property that $x_i \in Fu_{x_i}[FU_{x_i}]$ but $M_i \cap F(u_{x_i}v)[FV] = \emptyset$ for all λ_j -presentable subobjects $v : V \to U_{x_i}$: since A_i is λ_j -presentable, so is U_{x_i} , because λ_j -presentable objects are closed under subobjects in \mathcal{A} . Put $v = \operatorname{id}_{U_{x_i}}$; then $x_i \in M \cap F(u_{x_i}v)[FV]$.

Consequently, we have

$$x_i \in \alpha_{A_i}^i(M_i)$$
 but $x_i \notin \alpha_{A_i}^j(M_i)$.

The following corollary works with set functors preserving preimages. This is a very weak assumption since all "everyday" set functors preserve them:

(1) The identity and constant functors preserve preimages.

- (2) Products, coproducts, and composites of functors preserving preimages preserve them.
- (3) Thus polynomial functors preserve images.
- (4) The power-set functor, the filter functor and the ultrafilter functor preserve preimages.

Corollary 4.9 A set functor preserving preimages has a density comonad iff it is accessible.

5 Examples of Set Functors

Example 5.1 The density comonad of $FX = X^n$ is

$$CX = X^{n^n}.$$

More detailed: we prove that the colimit of the diagram $D_X : (-)^n / X \to \text{Set}$ has the component at $a : A^n \to X$ defined as follows

$$\hat{a}: A^n \to X^{n^n}, t \mapsto a \cdot t^n \text{ (for all } t: n \to A)$$

It is easy to see that this is a cocone.

Let $\tilde{a} : A^n \to B$ (for all $a : A^n \to X$) be another cocone. Consider the following morphisms of $(-)^n/X$ for every $a : A^n \to X$ and every $t : n \to A$:

Thus the following triangle

commutes. Applied to id_n this yields

$$\widetilde{a}(t) = a \cdot t^n(\mathrm{id}_n).$$

Therefore we have a factorization $f: X^{n^n} \to B$ through the colimit cocone defined by

$$f(u) = \widetilde{u}(\mathrm{id}_n).$$

Indeed $\tilde{a} = f \cdot \hat{a}$ since for every t we have $\tilde{a}(t) = a \cdot t^n (id_n) = f(a \cdot t^n) = f \cdot \hat{a}(t)$. It is easy to see that f is unique.

Example 5.2 More generally, for a polynomial functor

$$FX = \coprod_{i \in I} X^{n_i}$$

the density comonad is

$$CX = \coprod_{i \in I} \prod_{j \in I} X^{n_i^{n_j}}$$

The colimit cocone for D_X has for $a : \coprod_{i \in I} A^{n_i} \to X$ the component $\hat{a} = \coprod_{i \in I} \hat{a}_i : \coprod_{i \in I} A^{n_i} \to CX$, where

$$\hat{a}_i : A^{n_i} \to \prod_{j \in I} X^{n_i^{n_j}}$$
 sends $t : n_i \to A$ to $a \cdot \prod_{j \in I} t^{n_j} : \prod_{j \in I} n_i^{n_j} \to X$.

(The last map is an element of $\prod_{j \in I} X^{n_i^{j}}$.) The proof is completely analogous to 5.1: for every $a : \prod_{i \in I} A^{n_i} \to X$ and $t : n_i \to A$ use the following triangle

Recall that \mathcal{P}_0 denotes the subfunctor of \mathcal{P} with $\mathcal{P}_0 X = \mathcal{P} X - \{\emptyset\}$.

Example 5.3 The power-set functor \mathcal{P} and its subfunctor \mathcal{P}_0 do not have a density comonad, since they are not accessible.

Proposition 5.4 *The codensity monad of* \mathcal{P}_0 *is itself.*

Proof (1) We first prove the equality on objects X by verifying that natural transformations $\alpha : \mathcal{P}_0^X \to \mathcal{P}_0$ bijectively correspond to nonempty subsets of X as follows: we assign to α the subset

$$\alpha_X(\eta_X) \subseteq X$$

where η is the unit of \mathcal{P}_0 . The inverse map takes a nonempty set $M \subseteq X$ to the natural transformation $\widehat{M} : \mathcal{P}_0^X \to \mathcal{P}_0$ assigning to each $u : X \to \mathcal{P}_0 A$ the value

$$\widehat{M}_A(u) = \bigcup_{x \in M} u(x).$$

(1a) The naturality squares for \widehat{M} are easy to verify.

(1b) Given α , put $M = \alpha_X(\eta_X)$. We prove that for all $u : X \to \mathcal{P}_0 A$ we have

$$\alpha_A(u) = \widehat{M}_A(u).$$

We first verify this for all u such that A has a disjoint decomposition $u(x), x \in X$. We then have the obvious projection $f : A \to X$ with

$$\mathcal{P}_0 f \cdot u = \eta_X.$$

Thus, the naturality square

$$\begin{array}{c|c} (\mathcal{P}_0 A)^X & \xrightarrow{\alpha_A} & \mathcal{P}_0 A \\ \mathcal{P}_0 f \cdot (-) & & & & \\ (\mathcal{P}_0 X)^X & & & \\ (\mathcal{P}_0 X)^X & \xrightarrow{\alpha_X} & \mathcal{P}_0 X \end{array}$$

yields

$$\mathcal{P}_0 f(\alpha_A(u)) = \alpha_X(\eta_X) = M.$$

This clearly implies $\alpha_A(u) = \bigcup_{x \in M} u(x)$.

Next let $u: X \to \mathcal{P}_0 A$ be arbitrary and consider its "disjoint modification" $\overline{u}: X \to \mathcal{P}_0 \overline{A}$ where

$$\overline{A} = \bigcup_{x \in X} u(x) \times \{x\}$$
 and $\overline{u}(x) = u(x) \times \{x\}.$

Deringer

We know already that $\alpha_{\overline{A}}(\overline{u}) = \bigcup_{x \in M} \overline{u}(x)$. The obvious projection $g : \overline{A} \to A$ fulfils

$$u = \mathcal{P}_0 g \cdot \overline{u}.$$

The naturality square thus gives

$$\alpha_A(u) = \mathcal{P}_0 g(\alpha_A(\overline{u})) = \mathcal{P}_0 g\left(\bigcup_{x \in M} \overline{u}(x)\right) = \bigcup_{x \in M} g\left[\overline{u}(x)\right].$$

This concludes the proof, since $g[\overline{u}(x)] = u(x)$.

(1c) The map $M \mapsto \widehat{M}$ is inverse to $\alpha \mapsto \alpha_X(\eta_X)$. Indeed, if we start with $M \subseteq X$ and form $\alpha = \widehat{M}$, we get

$$\widehat{M}_X(\eta_X) = \bigcup_{x \in M} \eta_X(x) = M.$$

Conversely, if we start with α and put $M = \alpha_X(\eta_X)$, then $\alpha = \widehat{M}$: see (1b).

(2) The definition of the pointwise codensity monad for \mathcal{P}_0 on morphisms $f: X \to Y$ is as follows: a natural transformation $\alpha : \mathcal{P}_0^X \to \mathcal{P}_0$ is taken to the following composite

$$\mathcal{P}_0^Y \xrightarrow{\mathcal{P}_0^f} \mathcal{P}_0^X \xrightarrow{\alpha} \mathcal{P}_0$$

If α corresponds to $M(=\alpha_X(\eta_X))$, it is our task to verify that $\alpha \cdot \mathcal{P}_0^f$ corresponds to $\mathcal{P}_0 f(M)$. Indeed:

 $\mathcal{P}_0 f(M) = \alpha_Y(\eta_Y \cdot f), \quad \text{by naturality of } \alpha \text{ and } \eta, \\ = \left(\alpha \cdot \mathcal{P}_0^f\right)_Y(\eta_Y).$

Recall from [13] that a set functor is *indecomposable*, i.e., not a coproduct of proper subfunctors, iff it preserves the terminal objects.

Proposition 5.5 Let F be an indecomposable set functor with a codensity monad T. (1) The functor F + 1 has the codensity monad

$$\widehat{T}X = \prod_{Y \subseteq X} (TY + 1)$$

with projections π_Y . This monad assigns to a morphism $f : X \to X'$ the morphism $\widehat{T}f : \widehat{T}X \to \prod_{Z \subset X'} T(Z+1)$ with components

$$\widehat{T}X \xrightarrow{\pi_Y} TY + 1 \xrightarrow{Tf_Z+1} TZ + 1 \quad for all \ Z \subseteq X'$$

where $f_Z: Y \to Z$ is the restriction of f with $Y = f^{-1}[Z]$.

(2) Every copower $\coprod_M F$ has the codensity monad

 $X \mapsto (M \times TX)^{M^X}$

assigning to a morphism f the morphism $(M \times Tf)^{M^f}$.

Proof (1) Since F is indecomposable, so is F^X for every set X, hence,

$$Nat(F^X, F + 1) \simeq Nat(F^X, F) + 1 = TX + 1,$$

🖉 Springer

consequently, from the natural isomorphism $[F + 1]^X \simeq \coprod_{V \subset X} F^Y$ we get

$$\operatorname{Nat}([F+1]^X, F+1) \simeq \operatorname{Nat}(\coprod_{Y \subseteq X} F^Y, F+1)$$
$$\simeq \prod_{Y \subseteq X} \operatorname{Nat}(F^Y, F+1)$$
$$= \prod_{Y \subset X} (TY+1).$$

(2) We compute

Nat
$$\left((\coprod_M F)^X, \coprod_M F\right) \simeq \operatorname{Nat}(M^X \times F^X, \coprod_M F)$$

 $\simeq \prod_{M^X} \operatorname{Nat}(F^X, \coprod_M F).$

Since F^X is indecomposable, $\operatorname{Nat}(F^X, \coprod_M F) \simeq \coprod_M \operatorname{Nat}(F^X, F) \simeq M \times TX$. This yields $(M \times TX)^{M^X}$, as claimed.

Corollary 5.6 The codensity monad of \mathcal{P} is given by

$$X \mapsto \prod_{Y \subseteq X} \mathcal{P}Y$$

Indeed, $\mathcal{P} = \mathcal{P}_0 + 1$ and \mathcal{P}_0 is indecomposable.

Another description of the codensity monad of \mathcal{P} : it assigns to every set *X* all nonexpanding selfmaps ψ of $\mathcal{P}X$ (i.e., self-maps with $\psi Y \subseteq Y$ for all $Y \in \mathcal{P}X$).

Example 5.7 Polynomial functors.

(1) The functor $FX = X^n$ has the codensity monad

$$TY = (n \times Y)^n$$
.

Indeed, *F* is a right adjoint yielding the monad $T = (-)^n \cdot (n \times -) = (n \times -)^n$. (2) The polynomial functor

$$FX = \coprod_{i \in I} X^{n_i} \qquad (n_i \text{ arbitrary cardinals})$$

has the following codensity monad

$$TY = \prod_{(Y_i)} \prod_{j \in I} \left(\bigsqcup_{i \in I} n_i \times Y_i \right)^{n_j}$$

where the product ranges over disjoint decompositions

$$Y = \bigcup_{i \in I} Y_i$$

indexed by *I*. (Here Y_i is allowed to be empty.) This follows from the Codensity Monad Theorem where we compute $(FX)^Y$ as follows: a mapping from *Y* to $\coprod_{i \in I} X^{n_i}$ is given by specifying a decomposition (Y_i) and an *I*-tuple of mappings from Y_i to X^{n_i} . The latter is an element of $\prod_{i \in I} X^{n_i \times Y_i} \simeq X \coprod_{i \in I} (n_i \times Y_i)$, therefore

$$F^Y \cong \coprod_{(Y_i)} \operatorname{Set}(\coprod_{i \in I} n_i \times Y_i, -).$$

We conclude, using Yoneda lemma, that

$$TY = \operatorname{Nat}(F^{T}, F)$$

$$\simeq \prod_{(Y_{i})} F\left(\coprod_{i \in I} n_{i} \times Y_{i}\right)$$

$$= \prod_{(Y_{i})} \coprod_{j \in I} \left(\coprod_{i \in I} n_{i} \times Y_{i}\right)^{n_{j}}$$

as stated.

Open Problem 5.8 Which set functors possess a codensity monad?

References

- Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York. Freely available at http://www.math.uni-bremen.de/~dmb/acc.pdf (1990)
- 2. Adámek, J., Milius, S., Sousa, L.: On finitary functors and finitely presentable algebras (in preparation)
- Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)
- Appelgate, H., Tierney, M.: Categories with Models. Lecture Notes on Mathematics, vol. 80. Springer, Berlin (1969). (See also Reprints in Theory and Applications of Categories, 18 (2008), 122–185)
- Day, B.: Further criteria for totality. Cahiers de Topologie et Géométrie Différentielle Catégoriques 28, 77–78 (1987)
- Gabriel, P., Ulmer, F.: Local Präsentierbare Kategorien. Lecture Notes on Mathematics, vol. 221. Springer, Berlin (1971)
- Kock, A.: Continuous Yoneda Representations of a Small Category. Aarhus University (1966) (preprint at http://home.math.au.dk/kock/CYRSC.pdf)
- Linton, F.E.J.: An Outline of Functorial Semantics. Lecture Notes on Mathematics, vol. 80. Springer, Berlin (1969). (See also Reprints in Theory and Applications of Categories, 18 (2008), 11–43)
- Lowen, R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Trial. Oxford Mathematical Publications, Oxford (1997)
- 10. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)
- 11. Street, R., Walters, B.: Yoneda structures on 2-category. J. Algebra 50, 350–379 (1978)
- 12. Tholen, W.: Note on total categories. Bull. Aust. Math. Soc. 21, 169-173 (1980)
- 13. Trnková, V.: Some properties of set functors. Comment. Math. Univ. Carolin. 10, 323-352 (1969)