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Abstract For a functor F whose codomain is a cocomplete, cowellpowered categoryKwith
a generator S we prove that a codensity monad exists iff for every object s in S all natural
transformations from K(X, F−) to K(s, F−) form a set. Moreover, the codensity monad
has an explicit description using the above natural transformations. Concrete examples are
presented, e.g., the codensity monad of the power-set functor P assigns to every set X the
set of all nonexpanding endofunctions of PX . Dually, a set-valued functor F is proved to
have a density comonad iff all natural transformations from XF to 2F form a set. Moreover,
that comonad assigns to X the set of all those transformations. For preimages-preserving
endofunctors F of Set we prove that F has a density comonad iff F is accessible.
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856 J. Adámek, L. Sousa

1 Introduction

The important concept of density of a functor F : A → K means that every object of K is
a canonical colimit of objects of the form FA. For general functors, the density comonad is
the left Kan extension along itself:

C = LanF F.

This endofunctor of K carries the structure of a comonad. We speak about the pointwise
density comonad if C is computed by the usual colimit formula: given an object X of K,

form the diagram DX : F/X → K assigning to each FA
a−→ X the value FA, and put

CX = colimDX .

This assumes that the above, possibly large, colimit exists in K. The density comonad is a
measure of how far away F is from being dense: a functor is dense iff its pointwise codensity
monad is trivial (i.e., IdK). Pointwise density comonads were introduced by Appelgate and
Tierney [4]where they are called standard constructions. For every left adjoint F the comonad
given by the adjoint situation is the density comonad of F . For functors F : A → Set
we prove that F has a density comonad iff for every set X there is only a set of natural
transformations from XF to 2F . Moreover, the density comonad C is always pointwise, and
is given by the formula

CX = Nat (XF , 2F ).

We also prove that every accessible functor between locally presentable categories has a
density comonad, and, in case of set functors, conversely: the existence of a density comonad
for F implies its accessibility, assuming that F preserves preimages (which is a very mild
condition). For FX = Xn the density comonad is Xnn . For general polynomial functors

FX =
∐

i∈I X
ni it is given by CX =

∐
i∈I

∏
j∈I X

n
n j
i , see Example 5.2.

The dual concept, introduced by Kock [7], is the codensity monad, i.e., the right Kan
extension of F over itself:

T = RanF F.

Linton proved in [8] that if K = Set, then F has a codensity monad iff for every set X
all natural transformations from FX to F form a set. We generalize this to K arbitrary as
follows. Given a functor F : A → K, denote by F (X) : A → Set the compositeK(X,−) ·F
for every X ∈ K. Assuming that K has a generator S which detects limits (see Definition
3.1), a functor F with codomain K has a codensity monad iff for every X ∈ K all natural
transformations from F (X) to F (s), s ∈ S, form a set. And the codensity monad is then
pointwise. All locally presentable categories possess a limit-detecting generator, and every
monadic category over a category with a limit-detecting generator possesses one, too. In fact,
in a cocomplete and cowellpowered category every generator detects limits. We also obtain
a formula for the codensity monad T : we can view K as a concrete category over S-sorted
sets. And for every object X the underlying set of T X has the following sorts:

Nat (F (X), F (s)) (s ∈ S).

Again, accessible functors always possess a pointwise codensity monad, that is, T is given by

the limit formula (assigning to X the limit of the diagram ((X
a−→ FA) �→ FA). However,

in contrast to the density comonad, many non-accessible set functors possess a codensity
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A Formula for Codensity Monads and Density Comonads 857

monad too—and, as we show below, codensity monads of set-valued functors are always
pointwise. Example: the power-set functor P has a codensity monad given by

T X = nonexpanding self-maps of PX.

The subfunctor P0 on all nonempty subsets is its own codensity monad. But the following
modification P of P is proven not to have a codensity monad: on objects X

PX = PX

and on morphism f : X → Y

P f (M) =
{
P f (M) if f/M is monic
∅ else.

For FX = Xn the codensity monad is obvious: this is a right adjoint, so T is the monad
induced by the adjoint situation, T X = n × Xn . For general polynomial functors FX =
∐

i∈I Xni the codensity monad is T X =
∏

(Xi )

∐
j∈I

(∐
i∈I ni × Xi

)n j
where the first

product ranges over all disjoint decompositions X =
⋃

i∈I Xi , see Example 5.7

2 Accessible Functors

Throughout the paper all categories are assumed to be locally small.
Recall from [6] that a category K is called locally presentable if it is cocomplete and for

some infinite regular cardinal λ it has a small subcategory Kλ of λ-presentable objects K
(i.e. such that the hom-functor K(K ,−) preserves λ-filtered colimits) whose closure under
λ-filtered colimits is all of K. And a functor is called accessible if it preserves, for some
infinite regular cardinal λ, λ-filtered colimits. Recall further that every locally presentable
category is complete and every object X has a presentation rank, i.e., the least regular cardinal
λ such that X is λ-presentable. Finally, locally presentable categories are locally small, and
Kλ can be chosen to represent all λ-presentable objects up to isomorphism.

Theorem 2.1 Every accessible functor between locally presentable categories has:

(a) a pointwise codensity monad
and

(b) a pointwise density comonad.

Proof Given an accessible functor F : A → K and an object X ofK, we can clearly choose
an infinite cardinal λ such that K and A are locally λ-presentable, F preserves λ-filtered
colimits, and X is a λ-presentable object. The domain restriction of F to Aλ is denoted by
Fλ.

(a) We are to prove that the diagram

BX : X/F → K, (X
a−→ FA) �→ FA

has a limit inK. Denote by E : X/Fλ ↪→ X/F the full embedding. SinceK is complete, the
small diagram BX ·E has a limit. Thus, it is sufficient to prove that E is final (the dual concept

of cofinal, see [10]): (i) every object X
a−→ FA is the codomain of some morphism departing

from an object of X/Fλ, and (ii) given a pair of such morphisms, they can be connected by
a zig-zag in X/Fλ.
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858 J. Adámek, L. Sousa

Indeed, given a : X → FA, express A as a λ-filtered colimit of λ-presentable objects
with the colimit cocone ci : Ci → A (i ∈ I ). Then Fci : FCi → FA, i ∈ I, is also a
colimit of a λ-filtered diagram. Since X is λ-presentable, K(X,−) preserves this colimit,
and this implies that (i) and (ii) hold.

(b) Now we prove that the diagram

DX : F/X → K, (FA
a−→ X) �→ FA

has a colimit in K. Denote the colimit of the small subdiagram Fλ/X → K by K with the
colimit cocone

a : FA → K for all a : FA → X in F/X, A ∈ Aλ.

We extend this cocone to one for DX as follows: Fix an object a : FA → X of F/X .
Express A as a colimit ci : Ci → A (i ∈ I ) of the canonical diagram HA : Aλ/A → A

assigning to each arrow the domain. Then Fci : FCi → FA (i ∈ I ) is a colimit cocone,
and all a · Fci : FCi → K form a compatible cocone of the diagram F · HA. Hence, there
exists a unique morphism

a : FA → K with a · Fci = a · Fci (i ∈ I ).

We claim that this yields a cocone of DX . That is, given a morphism f from (FA
a−→ X) to

(FB
b−→ X) in F/X , we prove a = b · F f .

FCi

Fci
��

Fg ��������� FC ′
j

Fc′
j

��
FA

F f ��

a
���

��
��

��
� FB

b����
��
��
��

X

Since (Fci ) is a colimit cocone, it is sufficient to prove

a · Fci = b · F( f · ci ) for a all i ∈ I.

Indeed, let c′
j : C ′

j → B ( j ∈ J ) be the canonical colimit cone of HB : Aλ/B → A. Since
Ci is λ-presentable, the morphism f · ci factorizes through some c′

j , j ∈ J , say

f · ci = c′
j · g.

Thismakes g amorphism from FCi
a·Fci−−−→ X to FC ′

j

b·Fc′
j−−−→ X in Fλ/X , hence the following

triangle

FCi
Fg ��

a·Fci ���
��

��
��

� FC j

b·Fc′
j����

��
��
��

K

commutes. That is, we have derived the required equality:

a · Fci = b · Fc′
j · Fg = b · F f · Fci .
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A Formula for Codensity Monads and Density Comonads 859

It is now easy to verify that the above cocone is a colimit of DX . Given another cocone
ã : FA → K̃ for all a : FA → X in F/X , the subcocone with domain Fλ/X yields a
unique morphism r : K → K̃ with

r · a = ã for all a : FA → X, A ∈ Aλ.

It remains to observe that given a : FA → X arbitrary, we also have r · a = ã:

FCi

a·Fci
���

��
��

��
�

Fci

����
��
��
��

FA
a ��

ã ���
��

��
��

��
K

r
����
��
��
��

K̃

Indeed, the cocone (Fci ) is collectively epic and for each i we know that r ·a · Fci = ˜a · Fci .
Now ˜a · Fci = ã · Fci since ci is a morphism from FCi

a·Fci−−−→ X to FA
a−→ X . We conclude

r · a · Fci = ã · Fci for all i , thus, ã = r · a. ��
Proposition 2.2 Let K be a category with a generator. Every functor F : A → K with a
codensity monad has only a set of natural transformations α : F → F.

Proof By the universal property of T = RanF F , natural self-transformations of F bijectively
correspond to natural transformations from IdK to T . If (Ki )i∈I is a generator, we will prove
that every natural transformation α : IdK → T is determined by its components αKi , i ∈ I ,
which proves our claim.

Let β : IdK → T be a natural transformation with βKi = αKi for all i . Then for every
object X we haveβX = αX . Indeed, otherwise there exists i ∈ I and amorphism h : Ki → X
with αX · h 	= βX · h.

Ki
αKi =βKi ��

h
��

T Ki

Th
��

X
αX ��

βX

�� T X

This contradicts to the naturality squares for α and β. ��
Corollary 2.3 Let K be a category with a cogenerator. Every functor F : A → K with a
density comonad has only a set of natural transformations α : F → F.

Example 2.4 A set functor without a codensity monad or a density comonad. Recall the
modified power-set functor P in Introduction. By Proposition 2.2 it has no codensity monad
since for every cardinal λ we have a natural transformation

αλ : P → P.

It assigns to a subset M of power |M | ≥ λ itself, otherwise ∅. The naturality squares are easy
to verify. Thus, Nat(P,P) is a proper class.
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860 J. Adámek, L. Sousa

3 Codensity Monad Theorem

Let S be a generator of a category K. Then K can be viewed as a concrete category over
S-sorted sets: the forgetful functor

U : K → SetS

has components

Us = K(s,−) : K → Set (s ∈ S).

Recall that a functor U is said to detect limits if for every (possibly large) diagram D in
K for which limU · D has a limit, a limit exists in K.

In case of the functor U above the existence of limU · D says precisely that for every
s ∈ S the diagram D has only a set of cones with domain s. This leads us to the following

Definition 3.1 A generator S of K is called limit-detecting if

(a) Every (possibly large) diagram D inK which has only a set of cones with domains in S
has a limit,

and

(b) Copowers of every object of S exist.

Example 3.2 Every generator is limit-detecting in the following categories:

(1) Every total category K, i.e., such that the Yoneda embedding into [Kop,Set] has a left
adjoint, as introduced by Street and Walters [11]. They also proved that a total category
is cocomplete and hypercomplete, i.e., every diagram D such that for any object K ∈ K

there exists only a set of cones with domain K has a limit.
Suppose D has the property in Definition 3.1(a) above. Then given K we express it

as quotient of a coproduct of objects in S:

e :
∐

i∈I
si � K .

Every cone with domain K yields one with domain
∐

i∈I si which, since e is epic,
determines the original one. Since there is only a set of cones with domain

∐
i∈I si , it

follows that there is only a set of cones with domain K . Thus lim D exists.
(2) Every cocomplete and cowellpowered category. Indeed, K is total, see [5].
(3) Every locally presentable category. This follows from (2), see [6] or [3].
(4) Categories from general topology, e.g., Top, Top2 (Hausdorff spaces), Unif (uniform

spaces), approach spaces of Lowen [9], etc. These are concrete categories over Set
which are solid, thus total, see [12].

(5) Monadic categories over categories with a limit-detecting generator. Indeed, let S be a
limit-detecting generator ofK. For every monad T = (T, η, μ) the set of free algebras

S′ = {(T s, μs) ; s ∈ S}
is a limit-detecting generator of KT. In fact, it is clearly a generator, (a) above follows
since (large) limits are created by the forgetful functor UT ofKT, and (b) is clear since
the left adjoint of UT preserves copowers.
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A Formula for Codensity Monads and Density Comonads 861

Notation 3.3 For every functor F : A → K and every object X of K we denote by F (X)

the set-valued functor

F (X) ≡ A
F−→ K

K(X,−)−−−−→ Set

Thus in case K = Set this is just the power FX of F : A → Set to X . The following
theorem generalizes Linton’s result, see [8], that a set-valued functor F has a pointwise
codensity monad iff there is only a set of natural transformations from FX to F (for every
set X ):

Theorem 3.4 (CodensityMonadTheorem)Let S be a limit-detecting generator of a category
K. For every functor F with codomain K the following conditions are equivalent:

(i) F has a codensity monad,
(ii) F has a pointwise codensity monad, and
(iii) for every pair of objects s ∈ S and X ∈ K the collection

Nat (F (X), F (s))

of natural transformations from F (X) to F (s) is small.

Remark.We will see in the proof that the object CX assigned to X ∈ K by the codensity
monad C has the S-sorted underlying set given by

U (CX) ∼=
(
Nat (F (X), F (s))

)

s∈S .

Proof (i) → (iii). Since s ∈ S has all copowers, K(s,−) is left adjoint to φs : M �→ ∐
M s.

Let C be a codensity monad of F . We prove that the set K(s,CX) is isomorphic to
Nat (F (X), F (s)). Indeed, we have the following bijections:

K(s,CX)

K(X,−) → K(s,−) · C
φs · K(X,−) → C

φs · K(X,−) · F → F
K(X,−) · F → K(s,−) · F

F (X) → F (s)

Yoneda lemma
φs 
 K(s,−)

universal property of C
φs 
 K(s,−)

(iii)→(ii). For every object X ∈ K it is our task to prove that the diagram DX : X/F → K

given by

DX (X
a−→ FA) = FA

has a limit. Given s ∈ S, a cone of DX with domain s has the following form

X
a−→ FA

s
a′−→ FA

and we obtain a natural transformation

α : F (X) → F (s)
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862 J. Adámek, L. Sousa

assigning to every a ∈ F (X)A = K(X, FA) the value αA(a) = a′ ∈ F (s)A. Indeed, the
naturality square

F (X)A

F (X) f
��

αA �� F (s)A

F (s) f
��

F (X)B
αB

�� F (s)B

commutes for every f : A → B in A. This follows from the morphism

X
a

����
��
��
�� b

��	
		

		
		

	

FA
F f

�� FB

in X/F : Our cone (−)′ is compatible, thus

F f · a′ = b′ = (F f · a)′,

which proves that the above square commutes when applied to a.
Conversely, every natural transformation α : FX → F (s) has the above form. We obtain

a cone of evaluations at a:

a′ = αA(a) for every a : A → FX (i.e., a ∈ F (X)A)

Indeed the above triangle commutes since the naturality square does when applied to a.
It is easy to verify that we obtain a bijection between Nat (F (X), F (s)) and the collection

of all cones of DX with domain s. Consequently, the latter collection is small for every s ∈ S.
Since S is limit-detecting, DX has a limit in K.

(ii)→(i). This is trivial.
Finally, the claim in the remark above

Us(CX) ∼= Nat (F (X), F (s)) for s ∈ S

follows from the fact that Us = K(s,−) preserves limits. We have seen above that DX has
a limit, say, with the following cone

X
a−→ FA

CX
â−→ FA

for all a : X → FA with A ∈ A.

Then the cone of underlying functions U (CX)
Uâ−→ U (FA) is, up to isomorphism of the

domain, the cone of evaluations eva : Nat (F (X), F (s)) → Us(FA), s ∈ S. ��
Remark 3.5 (a) Suppose K is transportable, i.e., given an object K and an isomorphism

i : M → UK in SetS there exists an object K ′ ∈ K such that UK ′ = M and i carries

an isomorphism K ′ ∼=−→ K in K. (Up to equivalence, all categories concrete over SetS

have this property, see [1], Lemma 5.35.) Then the codensity monad C can be chosen so
that the underlying set of CX has components

Us(CX) = Nat (F (X), F (s)) s ∈ S.
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A Formula for Codensity Monads and Density Comonads 863

(b) Moreover, the evaluation maps with sorts

eva : Nat (F (X), F (s)) → Us(FA) (for s ∈ S)

given by

eva(α) = αA(a) (for all a : X → FA)

carry morphisms fromCX to FA. Indeed, the limit cone ( â ) ofCX was shown to fulfil
this in the above proof.

(c) To characterize the objectCX ofK, we use the concept of initial lifting, see [1]. Given a
(possibly large) collection of objects Ki ∈ K, i ∈ I , and a cone vi : V → UKi (i ∈ I )
in SetS , the initial lifting is an object K of K with UK = V such that

(i) each vi carries a morphism from K to Ki (i ∈ I )

and

(ii) given an object K ′ of K, then a function f : UK ′ → UK carries a morphism from K ′
to K iff all composites vi · f carry morphisms from K ′ to Ki (i ∈ I ).

Corollary 3.6 (Codensity Monad Formula) Let S be a limit-detecting generator making K

a transportable category over SetS. If a functor F : A → K has a codensity monad C, then
C assigns to every object X the initial lifting of the cone of evaluations

eva :
(
Nat (F (X), F (s))

)

s∈S → UFA

for A ∈ A and a : X → FA. Here (eva)s(α) = αA(a) for every natural transformation
α : F (X) → F (s).

Indeed, the limit cone â : CX → FA can (due to transportability) be chosen so that
Uâ = eva for all a : X → FA in X/F . Given an object K ′ and a function f : UK ′ →
U (CX) such that each composite eva · f carries a morphism ã : K ′ → FA in K, the fact
thatU is faithful implies that ( ã ) forms a cone of DX . Thus there exists f : K ′ → CX with
ã = â · f for every a in X/F . This is the desired morphism carrying f : we have U f = f
because the limit cone (eva) is collectively monic and for each a : X → FA we have

eva ·U f = U (̂a · f ) = Uã = eva · f.

Remark 3.7 The definition of C on morphisms f : X → Y ofK is canonical: C f is carried
by the S-sorted function from Nat (F (X), F (s)) to Nat (F (Y ), F (s)) which takes a natural
transformation α : K(X,−) · F → K(s,−) · F to the composite

K(Y,−) · F K( f,−)·F−−−−−−→ K(X,−) · F α−→ K(s,−) · F.

This follows easily from the fact that C f is the unique morphism such that the above limit
morphisms â : CX → FA make the following triangles

CX
C f ��

â· f
��

CY

â����
��
��
��

FA

for all a : Y → FA

commutative.
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864 J. Adámek, L. Sousa

4 Density Comonads

Notation 4.1 For every functor F : A → K and every object X of K we denote by XF the
set-valued functor

XF ≡ Aop Fop−−−→ Kop K(−,X)−−−−−→ Set

Theorem 4.2 (Density Comonad Theorem) Let S be a cogenerator of a complete and
wellpowered category. For every functor F with codomain K the following conditions are
equivalent:

(i) F has a density comonad,
(ii) F has a pointwise density comonad, and
(iii) for every pair of objects s ∈ S and X ∈ K the collection

Nat (XF , sF )

of natural transformations from XF to sF is small.

Indeed, since S detects colimits by the dual of Example 3.2(2), this is just a dualization
of Theorem 3.4.

Corollary 4.3 A set-valued functor F has a density comonad iff for every set X there is only
a set of natural transformations from XF to 2F . Moreover, the density comonad is then given
by

CX = Nat (XF , 2F ).

For set-valued functors preserving preimages (i.e., pullbacks of monomorphisms along
arbitrary morphisms) and with “set-like” domains, we intend to prove that

accessibility ⇔ existence of a density comonad.
For that we are going to use Theorem 4.6 below. The “set-like” flavour is given by the
following:

Definition 4.4 A locally λ-presentable category is called strictly locally λ-presentable if for
every morphism b : B → A with a λ-presentable domain there exists a commutative square

B

b
��

b �� A

A
f

�� B ′
b′
��

with B ′ also λ-presentable.

Example 4.5 (See [2]) Let λ be an infinite regular cardinal.

(1) Set is strictly locally λ-presentable.
(2) Many-sorted sets, SetS , are strictly locally λ-presentable iff card S < λ.
(3) K -Vec, the category of vector spaces over a field K , is strictly locally λ-presentable.
(4) The category of groups and homomorphisms is not strictly locally λ-presentable.
(5) For every group G the category G-Set of sets with an action of G is strictly locally

λ-presentable iff |G| < λ.

The same holds for the category SetG
op

of presheaves on a small groupoid G, i.e., a
category with invertible morphisms: it is strictly locally λ-presentable iff G has less than λ

morphisms.
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A Formula for Codensity Monads and Density Comonads 865

We are going to use the following characterization of accessibility proved in [2]:

Theorem 4.6 A functor F : A → B with A and B strictly locally λ-presentable is λ-
accessible iff for every object A ∈ A and every subobject m0 : M0 → FA with M0

λ-presentable in B there exists a subobject m : M → A with M λ-presentable in A such
that m0 factorizes through Fm:

FM

Fm
��

M0

		�
�

�
�

m0
�� FA

Example 4.7 (1) A set functor F is λ-accessible iff for every element of FA there exists a
subset m : M ↪→ A with card M < λ such that the element lies in Fm[FM].

(2) Analogously for endofunctors of K -Vec: just say dimM < λ here.
(3) For S finite, an endofunctor of SetS is finitary iff every element of FA lies in Fm[FM]

for some finite subset m : M ↪→ FA.

This does not generalize for S infinite. Consider the endofunctor F of SetN given as the
identity function on objects (andmorphisms) having all but finitely many components empty.
And F is otherwise constant with value 1, the terminal object. This functor is not finitary:
it does not preserve, for 2 = 1 + 1, the canonical filtered colimit of all morphisms from
finitely presentable objects to 2. But it satisfies the condition that every element of FA lies
in Fm[FM] for some finite subset m : M ↪→ A.

Theorem 4.8 LetA be a category where epimorphisms split and such that there is a cardinal
μ for which A is strictly locally λ-presentable and λ-presentable objects are closed under
subobjects, whenever λ ≥ μ.

Then a functor F : A → Set preserving preimages has a density comonad iff it is
accessible.

Proof Since epimorphisms split, A has regular factorizations— indeed, locally presentable
categories have (strong epi, mono)-factorizations, see [3]. In view of Theorem 2.1 we only
need to prove the non-existence of a density comonad in case F is not accessible. Let us call
an element x ∈ FA λ-accessible if there exists a λ-presentable subobject m : M � A with
x ∈ Fm[FM]. From the preceding theorem we know that, for all λ ≥ μ, F possesses an
element that is not λ-accessible. Without loss of generality, μ is an infinite regular cardinal.

(1) Define regular cardinals λi (i ∈ Ord) by transfinite recursion as follows:
λ0 = μ;
Given λi choose an element xi ∈ FAi for some Ai ∈ A which is not λi -accessible and

define λi+1 as the least regular cardinal with Ai λi+1-presentable;
Given a limit ordinal j define λ j as the successor cardinal of

∨
i< j λi .

We thus see that for every ordinal i the element xi is λi+1-accessible but not λi -accessible.

(2) To prove that F does not have a density comonad, we present pairwise distinct natural
transformations

αi : 2F → 2F (i ∈ Ord).

For every object A ∈ A, a subset M ⊆ FA (i.e., an element of 2FA) and an element
a ∈ M , we call the triple (A, M, a) λi -stable if there exists a subobject ua : Ua � A in A

with a ∈ Fua[FUa] such that for all subobjects v : V � Ua we have
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if V is λi -presentable, then M ∩ F(uav)[FV ] = ∅.
Our natural transformation αi has the following components αi

A : 2FA → 2FA:

αi
A(M) = {a ∈ M ; (A, M, a) is λi -stable}.

We must prove that for every morphism h : A → B the naturality square

2FB

(Fh)−1(−)
��

αi
B �� 2FB

(Fh)−1(−)
��

2FA

αi
A

�� 2FA

commutes. That is, given

M ⊆ FB and M = (Fh)−1(M) ⊆ FA

then for all elements
a ∈ M and b = Fh(a) ∈ M

we need to verify that

(A, M, a) is λi -stable ⇔ (B, M, b) is λi -stable.

(a) Let (A, M, a) be λi -stable. For the given subobject ua : Ua � A form a regular
factorization of hua :

We have a′ ∈ FUa with a = Fua(a′), therefore b lies in the image of Fub:

b = Fh(a) = Fub(Fe(a
′)).

For every subobject v : V → Ub with V λi -presentable we need to prove that M ∩
F(ubv)[FV ] = ∅. Choose a splitting w of e, i.e., e · w = idUb . Then for the subobject

wv : V → Ua

we know that M = (Fh)−1(M) is disjoint from the image of F(uawv). Suppose there exists
an element of M ∩ F(ubv)[FV ], say, F(ubv)(t) for some t ∈ FV . Put t ′ = F(uawv)(t),
then we derive a contradiction by showing that t ′ ∈ M . Indeed

Fh(t ′) = F(huawv)(t)
= F(ubewv)(t)
= F(ubv)(t) ∈ M.

Thus, t ′ ∈ (Fh)−1(M) = M .
(b) Let (B, M, b) be λi -stable. Since Fh(a) = b ∈ M we have

a ∈ (Fh)−1(M) = M .
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Given the above subobject ub : Ub → B, we define ua : Ua → A as the preimage under
h:

V
e �� ��

��
v

��

W��
w

��
Ua

h ��
��

ua
��

Ub��
ub
��

A
h

�� B

We have b′ ∈ FUb with b = Fub(b′) = Fh(a), and since F preserves preimages, there
exists a′ ∈ FUa with Fua(a′) = a.

Given a subobject v : V → Ua with V λi -presentable, we prove that F(uav)([FV ] is
disjoint from M . For that take the regular factorization of hv as in the diagram above. Since
e is a split epimorphism, W is a λi -presentable object. Therefore, the image of F(ubw) is
disjoint from M .

Assuming that we have t ∈ FV with F(uav)(t) ∈ M , we derive a contradiction by
showing that for t ′ = Fe(t) we have F(ubw)(t ′) ∈ M . Indeed, since M = (Fh)−1(M), we
see that F(huav)(t) ∈ Fh[M] ⊆ M and we have

huav = ubhv = ubwe.

(3) We have established that each i ∈ Ord yields a natural transformation αi : 2F → 2F .
We conclude the proof by verifying for all ordinals i 	= j that αi 	= α j . Suppose i < j .
In (1) we have presented an element xi ∈ FAi which is λi+1-accessible (because Ai is
λi+1-accessible) but not λi -accessible. Let Mi ⊆ FAi be the set of all elements that are not
λi -accessible. Then

(Ai , Mi , xi )

is clearly λi -stable. But it is not λ j -stable because Ai is λ j -presentable (since λi+1 is a
presentability rank of Ai and λi+1 ≤ λ j ). Indeed, no subobject uxi : Uxi → A has the
property that xi ∈ Fuxi [FUxi ] but Mi ∩ F(uxi v)[FV ] = ∅ for all λ j -presentable subobjects
v : V → Uxi : since Ai is λ j -presentable, so isUxi , because λ j -presentable objects are closed
under subobjects in A. Put v = idUxi

; then xi ∈ M ∩ F(uxi v)[FV ].
Consequently, we have

xi ∈ αi
Ai

(Mi ) but xi /∈ α
j
Ai

(Mi ).

��

The following corollary works with set functors preserving preimages. This is a very weak
assumption since all “everyday” set functors preserve them:

(1) The identity and constant functors preserve preimages.
(2) Products, coproducts, and composites of functors preserving preimages preserve them.
(3) Thus polynomial functors preserve images.
(4) The power-set functor, the filter functor and the ultrafilter functor preserve preimages.

Corollary 4.9 A set functor preserving preimages has a density comonad iff it is accessible.
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5 Examples of Set Functors

Example 5.1 The density comonad of FX = Xn is

CX = Xnn .

More detailed: we prove that the colimit of the diagram DX : (−)n/X → Set has the
component at a : An → X defined as follows

â : An → Xnn , t �→ a · tn (for all t : n → A)

It is easy to see that this is a cocone.
Let ã : An → B (for all a : An → X) be another cocone. Consider the following mor-

phisms of (−)n/X for every a : An → X and every t : n → A:

nn
tn ��

a·tn 















 An

a
����
��
��
��

X

Thus the following triangle

nn
tn ��

ã·tn 

�
��

��
��

� An

ã����
��
��
��

B

commutes. Applied to idn this yields

ã(t) = ˜a · tn(idn).
Therefore we have a factorization f : Xnn → B through the colimit cocone defined by

f (u) = ũ(idn).

Indeed ã = f · â since for every t we have ã(t) = ˜a · tn(idn) = f (a · tn) = f · â(t). It
is easy to see that f is unique.

Example 5.2 More generally, for a polynomial functor

FX =
∐

i∈I
Xni

the density comonad is

CX =
∐

i∈I

∏

j∈I
Xn

n j
i .

The colimit cocone for DX has for a : ∐
i∈I Ani → X the component â = ∐

i∈I âi :∐
i∈I Ani → CX , where

âi : Ani → ∏
j∈I Xn

n j
i sends t : ni → A to a · ∐

j∈I tn j : ∐
j∈I n

n j
i → X .

(The last map is an element of
∏

j∈I Xn
n j
i .) The proof is completely analogous to 5.1: for

every a : ∐
i∈I Ani → X and t : ni → A use the following triangle
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∐
j∈I n

n j
i

∐
tn j ��

a·∐ tn j
��
















∐
j∈I An j

a


��
��
��
��
�

X

Recall that P0 denotes the subfunctor of P with P0X = PX − {∅}.
Example 5.3 The power-set functor P and its subfunctor P0 do not have a density comonad,
since they are not accessible.

Proposition 5.4 The codensity monad of P0 is itself.

Proof (1) We first prove the equality on objects X by verifying that natural transformations
α : PX

0 → P0 bijectively correspond to nonempty subsets of X as follows: we assign to α

the subset

αX (ηX ) ⊆ X

where η is the unit of P0. The inverse map takes a nonempty set M ⊆ X to the natural
transformation M̂ : PX

0 → P0 assigning to each u : X → P0A the value

M̂A(u) =
⋃

x∈M
u(x).

(1a) The naturality squares for M̂ are easy to verify.
(1b) Given α, put M = αX (ηX ). We prove that for all u : X → P0A we have

αA(u) = M̂A(u).

We first verify this for all u such that A has a disjoint decomposition u(x), x ∈ X . We
then have the obvious projection f : A → X with

P0 f · u = ηX .

Thus, the naturality square

(P0A)X

P0 f ·(−)

��

αA �� P0A

P0 f

��
(P0X)X

αX
�� P0X

yields

P0 f (αA(u)) = αX (ηX ) = M.

This clearly implies αA(u) =
⋃

x∈M
u(x).

Next let u : X → P0A be arbitrary and consider its “disjoint modification” u : X → P0A
where

A =
⋃

x∈X
u(x) × {x} and u(x) = u(x) × {x}.
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We know already that αA(u) =
⋃

x∈M
u(x). The obvious projection g : A → A fulfils

u = P0g · u.

The naturality square thus gives

αA(u) = P0g(αA(u)) = P0g

(
⋃

x∈M
u(x)

)
=

⋃

x∈M
g [u(x)].

This concludes the proof, since g [u(x)] = u(x).
(1c) The map M �→ M̂ is inverse to α �→ αX (ηX ). Indeed, if we start with M ⊆ X and

form α = M̂ , we get

M̂X (ηX ) =
⋃

x∈M
ηX (x) = M .

Conversely, if we start with α and put M = αX (ηX ), then α = M̂ : see (1b).
(2) The definition of the pointwise codensity monad for P0 on morphisms f : X → Y is

as follows: a natural transformation α : PX
0 → P0 is taken to the following composite

PY
0

P
f
0 �� PX

0
α �� P0

If α corresponds to M(= αX (ηX )), it is our task to verify that α ·P f
0 corresponds toP0 f (M).

Indeed:
P0 f (M) = αY (ηY · f ), by naturality of α and η,

=
(
α · P f

0

)

Y
(ηY ).

Recall from [13] that a set functor is indecomposable, i.e., not a coproduct of proper
subfunctors, iff it preserves the terminal objects.

Proposition 5.5 Let F be an indecomposable set functor with a codensity monad T .
(1) The functor F + 1 has the codensity monad

T̂ X =
∏

Y⊆X

(TY + 1)

with projections πY . This monad assigns to a morphism f : X → X ′ the morphism T̂ f :
T̂ X → ∏

Z⊆X ′ T (Z + 1) with components

T̂ X
πY−→ TY + 1

T fZ+1−−−−→ T Z + 1 for all Z ⊆ X ′

where fZ : Y → Z is the restriction of f with Y = f −1[Z ].
(2) Every copower

∐
M F has the codensity monad

X �→ (M × T X)M
X

assigning to a morphism f the morphism (M × T f )M
f
.

Proof (1) Since F is indecomposable, so is FX for every set X , hence,

Nat(FX , F + 1) � Nat(FX , F) + 1 = T X + 1,
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consequently, from the natural isomorphism [F + 1]X � ∐
Y⊆X FY we get

Nat([F + 1]X , F + 1) � Nat(
∐

Y⊆X FY , F + 1)
� ∏

Y⊆X Nat(FY , F + 1)
= ∏

Y⊆X (TY + 1).

(2) We compute

Nat
(
(
∐

M F)X ,
∐

M F
) � Nat(MX × FX ,

∐
M F)

� ∏
MX Nat(FX ,

∐
M F).

Since FX is indecomposable, Nat(FX ,
∐

M F) � ∐
M Nat(FX , F) � M × T X . This

yields (M × T X)M
X
, as claimed. ��

Corollary 5.6 The codensity monad of P is given by

X �→
∏

Y⊆X

PY.

Indeed, P = P0 + 1 and P0 is indecomposable.
Another description of the codensitymonad ofP: it assigns to every set X all nonexpanding

selfmaps ψ of PX (i.e., self-maps with ψY ⊆ Y for all Y ∈ PX ).

Example 5.7 Polynomial functors.

(1) The functor FX = Xn has the codensity monad

TY = (n × Y )n .

Indeed, F is a right adjoint yielding the monad T = (−)n · (n × −) = (n × −)n .
(2) The polynomial functor

FX =
∐

i∈I X
ni (ni arbitrary cardinals)

has the following codensity monad

TY =
∏

(Yi )

∐

j∈I

(
∐

i∈I
ni × Yi

)n j

where the product ranges over disjoint decompositions

Y =
⋃

i∈I
Yi

indexed by I . (Here Yi is allowed to be empty.) This follows from the Codensity Monad
Theorem where we compute (FX)Y as follows: a mapping from Y to

∐
i∈I Xni is given by

specifying a decomposition (Yi ) and an I -tuple of mappings from Yi to Xni . The latter is an
element of

∏
i∈I Xni×Yi � X

∐
i∈I (ni×Yi ), therefore

FY ∼=
∐

(Yi )

Set(
∐

i∈I
ni × Yi ,−).

We conclude, using Yoneda lemma, that

TY = Nat(FY , F)

� ∏
(Yi ) F

(∐
i∈I ni × Yi

)

= ∏
(Yi )

∐
j∈I

(∐
i∈I ni × Yi

)n j

as stated.
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Open Problem 5.8 Which set functors possess a codensity monad?
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