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Abstract For a functor F whose codomain is a cocomplete, cowellpowered category K with
a generator S we prove that a codensity monad exists iff for every object s in S all natural
transformations from X (X, F—) to K(s, F—) form a set. Moreover, the codensity monad
has an explicit description using the above natural transformations. Concrete examples are
presented, e.g., the codensity monad of the power-set functor P assigns to every set X the
set of all nonexpanding endofunctions of PX. Dually, a set-valued functor F is proved to
have a density comonad iff all natural transformations from X F t0 2F form a set. Moreover,
that comonad assigns to X the set of all those transformations. For preimages-preserving
endofunctors F of Set we prove that F has a density comonad iff F is accessible.
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856 J. Adamek, L. Sousa

1 Introduction

The important concept of density of a functor F : A — X means that every object of K is
a canonical colimit of objects of the form FA. For general functors, the density comonad is
the left Kan extension along itself:

C = LanFF.

This endofunctor of X carries the structure of a comonad. We speak about the pointwise
density comonad if C is computed by the usual colimit formula: given an object X of X,

form the diagram Dy : F/X — X assigning to each FA % X the value FA, and put
CX = colimDy.

This assumes that the above, possibly large, colimit exists in K. The density comonad is a
measure of how far away F is from being dense: a functor is dense iff its pointwise codensity
monad is trivial (i.e., Idg). Pointwise density comonads were introduced by Appelgate and
Tierney [4] where they are called standard constructions. For every left adjoint F' the comonad
given by the adjoint situation is the density comonad of F. For functors F : A — Set
we prove that F has a density comonad iff for every set X there is only a set of natural
transformations from X to 2. Moreover, the density comonad C is always pointwise, and
is given by the formula

CX = Nat(XF,2F).

We also prove that every accessible functor between locally presentable categories has a
density comonad, and, in case of set functors, conversely: the existence of a density comonad
for F implies its accessibility, assuming that F preserves preimages (which is a very mild
condition). For FX = X" the density comonad is X"". For general polynomial functors
i it e o _ nt

FX = ]_L_E] X" itis givenby CX = ]_Lel jer X"i | see Example 5.2.

The dual concept, introduced by Kock [7], is the codensity monad, i.e., the right Kan
extension of F over itself:

T = RangpF.

Linton proved in [8] that if X = Set, then F has a codensity monad iff for every set X
all natural transformations from FX to F form a set. We generalize this to X arbitrary as
follows. Given a functor F : A — X, denote by FX) . A — Setthe composite K(X, —)- F
for every X € XK. Assuming that K has a generator S which detects limits (see Definition
3.1), a functor F' with codomain X has a codensity monad iff for every X € X all natural
transformations from FX) to F® s e S, form a set. And the codensity monad is then
pointwise. All locally presentable categories possess a limit-detecting generator, and every
monadic category over a category with a limit-detecting generator possesses one, too. In fact,
in a cocomplete and cowellpowered category every generator detects limits. We also obtain
a formula for the codensity monad 7: we can view X as a concrete category over S-sorted
sets. And for every object X the underlying set of 7 X has the following sorts:

Nat(FO,F®y (s € 8).

Again, accessible functors always possess a pointwise codensity monad, thatis, T is given by

the limit formula (assigning to X the limit of the diagram ((X 5 F A) — FA). However,
in contrast to the density comonad, many non-accessible set functors possess a codensity
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A Formula for Codensity Monads and Density Comonads 857

monad too—and, as we show below, codensity monads of set-valued functors are always
pointwise. Example: the power-set functor P has a codensity monad given by

T X = nonexpanding self-maps of PX.

The subfunctor Py on all nonempty subsets is its own codensity monad. But the following
modification P of P is proven not to have a codensity monad: on objects X

PX = PX
and on morphism f : X — Y
= | Pf(M) if f/M is monic
P = {@ else.

For FX = X" the codensity monad is obvious: this is a right adjoint, so T is the monad
induced by the adjoint situation, TX = n x X". For general polynomial functors FX =

. . . nj
[l;c; X" the codensity monad is TX = H(Xi) ]_[jel (]_[ n; x X,-) where the first

product ranges over all disjoint decompositions X = U‘e[ Xi, see Example 5.7
]

iel

2 Accessible Functors

Throughout the paper all categories are assumed to be locally small.

Recall from [6] that a category X is called locally presentable if it is cocomplete and for
some infinite regular cardinal X it has a small subcategory X, of A-presentable objects K
(i.e. such that the hom-functor X (K, —) preserves A-filtered colimits) whose closure under
A-filtered colimits is all of K. And a functor is called accessible if it preserves, for some
infinite regular cardinal A, A-filtered colimits. Recall further that every locally presentable
category is complete and every object X has a presentation rank, i.e., the least regular cardinal
A such that X is A-presentable. Finally, locally presentable categories are locally small, and
XK, can be chosen to represent all A-presentable objects up to isomorphism.

Theorem 2.1 Every accessible functor between locally presentable categories has:

(a) a pointwise codensity monad
and
(b) a pointwise density comonad.

Proof Given an accessible functor F : A — X and an object X of K, we can clearly choose
an infinite cardinal A such that X and A are locally A-presentable, F' preserves A-filtered
colimits, and X is a A-presentable object. The domain restriction of F to A, is denoted by
F.

(a) We are to prove that the diagram

By : X/F > X, (X 5 FA) — FA

has a limit in XK. Denote by E : X/F) — X/F the full embedding. Since X is complete, the
small diagram By - E has a limit. Thus, it is sufficient to prove that E is final (the dual concept
of cofinal, see [10]): (i) every object X % FA is the codomain of some morphism departing
from an object of X/ F;, and (ii) given a pair of such morphisms, they can be connected by
azig-zagin X/F,.
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858 J. Adamek, L. Sousa

Indeed, given a : X — FA, express A as a A-filtered colimit of A-presentable objects
with the colimit cocone ¢; : C; — A (i € I). Then F¢; : FC; — FA, i € I, isalso a
colimit of a A-filtered diagram. Since X is A-presentable, (X, —) preserves this colimit,
and this implies that (i) and (ii) hold.

(b) Now we prove that the diagram

Dy :F/X > K, (FAS X)— FA

has a colimit in K. Denote the colimit of the small subdiagram F) /X — X by K with the
colimit cocone
a:FA— K forall a: FA— XinF/X, AeA,.

We extend this cocone to one for Dy as follows: Fix an objecta : FA — X of F/X.
Express A as a colimit ¢; : C; — A (i € I) of the canonical diagram Hy : A, /A — A
assigning to each arrow the domain. Then F¢; : FC; — FA (i € I) is a colimit cocone,
andalla - F¢; : FC; — K form a compatible cocone of the diagram F - H4. Hence, there
exists a unique morphism

a:FA— Kwitha-Fci=a-Fc¢; (iel).

We claim that this yields a cocone of Dy. That is, given a morphism f from (FA 5 X)to
(FB LA X)in F/X,weprovea =b - Ff.

FCi————-—— > FC|
Fc,l J{FC/
Fr
FA —f>FB

Since (F'c;) is a colimit cocone, it is sufficient to prove
a-Fci=b-F(f -c) foraall i e I.

Indeed, let c/j : C} — B (j € J) be the canonical colimit cone of Hp : A, /B — A. Since
C; is A-presentable, the morphism f - ¢; factorizes through some c;., j € J,say

fra=cj-g
. . -Fci b-Fc) . .
This makes g a morphism from FC; 2% Xto FC} — Xin F; / X, hence the following
triangle

FC; %—FC

N

commutes. That is, we have derived the required equality:

a-Fej=b-Fc; - Fg=b-Ff-Fc.
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A Formula for Codensity Monads and Density Comonads 859

It is now easy to verify that the above cocone is a colimit of Dx. Given another cocone
d:FA — Kforalla : FA — X in F/X, the subcocone with domain F, /X yields a
unique morphism r : K — K with

r-a=a foralla: FA — X, AcA,.

It remains to observe that given a : FA — X arbitrary, we also have r - @ = @:

FC;
N
a

FA—% oK
x /
K

Indeed, the cocone (F'c;) is collectively epic and for each i we know thatr-a - Fc; = a - Fc;.

—~

~ . . . Fei
Now a - Fc; = a- Fc; since ¢; is a morphism from F C; L7% Xto FA S X. We conclude
r-a-Fci=d-Fc;foralli,thus,a =r-a. |

Proposition 2.2 Let X be a category with a generator. Every functor F : A — X with a
codensity monad has only a set of natural transformations o : F — F.

Proof By the universal property of T = Ranr F', natural self-transformations of F bijectively
correspond to natural transformations from Id to 7. If (K;);<; is a generator, we will prove
that every natural transformation « : Idyc — T is determined by its components o, , i € 1,
which proves our claim.

Let B : Idc — T be a natural transformation with Bk, = ag,; for all i. Then for every
object X we have Sx = ax.Indeed, otherwise there existsi € I andamorphism# : K; — X
with oy - h # Bx - h.

ak; =PBk;
Ki——TK;

S

X TX

Bx

This contradicts to the naturality squares for o and . O

Corollary 2.3 Let X be a category with a cogenerator. Every functor F : A — K with a
density comonad has only a set of natural transformations « : F — F.

Example 2.4 A set functor without a codensity monad or a density comonad. Recall the
modified power-set functor P in Introduction. By Proposition 2.2 it has no codensity monad
since for every cardinal A we have a natural transformation

ar P P
It assigns to a subset M of power |M| > X itself, otherwise {J. The naturality squares are easy

to verify. Thus, Nat(P, P) is a proper class.
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860 J. Adamek, L. Sousa

3 Codensity Monad Theorem

Let S be a generator of a category K. Then K can be viewed as a concrete category over
S-sorted sets: the forgetful functor

U:X — Set’
has components
Uy =X(s,—): X — Set (s eS).

Recall that a functor U is said to detect limits if for every (possibly large) diagram D in
X for which lim U - D has a limit, a limit exists in X.

In case of the functor U above the existence of lim U - D says precisely that for every
s € § the diagram D has only a set of cones with domain s. This leads us to the following

Definition 3.1 A generator S of X is called limit-detecting if

(a) Every (possibly large) diagram D in K which has only a set of cones with domains in S
has a limit,

and

(b) Copowers of every object of S exist.

Example 3.2 Every generator is limit-detecting in the following categories:

(1) Every total category X, i.e., such that the Yoneda embedding into [K°P, Set] has a left
adjoint, as introduced by Street and Walters [11]. They also proved that a total category
is cocomplete and hypercomplete, i.e., every diagram D such that for any object K € K
there exists only a set of cones with domain K has a limit.
Suppose D has the property in Definition 3.1(a) above. Then given K we express it
as quotient of a coproduct of objects in S:

e:]_[s,-—»K.

iel

Every cone with domain K yields one with domain ][;.; s; which, since e is epic,
determines the original one. Since there is only a set of cones with domain | [, s;, it
follows that there is only a set of cones with domain K. Thus lim D exists.

(2) Every cocomplete and cowellpowered category. Indeed, X is total, see [5].

(3) Every locally presentable category. This follows from (2), see [6] or [3].

(4) Categories from general topology, e.g., Top, Top, (Hausdorff spaces), Unif (uniform
spaces), approach spaces of Lowen [9], etc. These are concrete categories over Set
which are solid, thus total, see [12].

(5) Monadic categories over categories with a limit-detecting generator. Indeed, let S be a
limit-detecting generator of K. For every monad T = (7', n, ) the set of free algebras

iel

S"={(Ts, py); s €S}

is a limit-detecting generator of KT. In fact, it is clearly a generator, (a) above follows
since (large) limits are created by the forgetful functor U T of KT, and (b) is clear since
the left adjoint of UT preserves copowers.
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Notation 3.3 For every functor F : A — X and every object X of K we denote by FX)
the set-valued functor

FO = g4 £ g0 XX, gt

Thus in case K = Set this is just the power FX of F : A — Set to X. The following
theorem generalizes Linton’s result, see [8], that a set-valued functor F has a pointwise
codensity monad iff there is only a set of natural transformations from F¥X to F (for every
set X):

Theorem 3.4 (Codensity Monad Theorem) Let S be a limit-detecting generator of a category
XK. For every functor F with codomain X the following conditions are equivalent:

(i) F has a codensity monad,
(ii) F has a pointwise codensity monad, and
(iii) for every pair of objects s € S and X € X the collection

Nat (F®O, F&))

of natural transformations from FX) 1o F) is small.

Remark. We will see in the proof that the object C X assigned to X € X by the codensity
monad C has the S-sorted underlying set given by

U(Ex) = (Nar(FO, F©))

seSs

Proof (i) — (iii). Since s € S has all copowers, K(s, —) is left adjoint to ¢ : M > [ ], s.
Let C be a codensity monad of F. We prove that the set (s, CX) is isomorphic to
Nat (F® | F®), Indeed, we have the following bijections:

K(s,CX)
KX, =) = X(s,—)-C Yoneda lemma
¢s - KX, —) > C ¢s 74 K(s, —)
¢s - K(X,=)-F > F universal property of C
X(X,-)-F—>X(s,—)-F ¢s 1K (s, —)
FO 5 F®

(iii)— (ii). For every object X € K itis our task to prove that the diagram Dy : X/F — K
given by

Dx(X &> FA) = FA

has a limit. Given s € S, a cone of Dy with domain s has the following form

and we obtain a natural transformation

a: FX 5 F®)
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862 J. Adamek, L. Sousa

assigning to every a € F®A = K(X, FA) the value a4(a) = a’ € F® A. Indeed, the
naturality square

FX4 % g4

F(X)fl \LF(»&)]@

FXOB — > FOB
op

commutes for every f : A — B in A. This follows from the morphism

2N,

FA—>FB

in X/F: Our cone (—)’ is compatible, thus
Ff-d =b =(Ff-a),

which proves that the above square commutes when applied to a.
Conversely, every natural transformation « : FX — F® has the above form. We obtain
a cone of evaluations at a:

a =as(a) foreverya:A — FX (ie.,a e F®A)

Indeed the above triangle commutes since the naturality square does when applied to a.

It is easy to verify that we obtain a bijection between Nat (F™, F)) and the collection
of all cones of Dy with domain s. Consequently, the latter collection is small forevery s € S.
Since S is limit-detecting, Dx has a limit in X.

(ii)—> (i). This is trivial.

Finally, the claim in the remark above

Ug(CX) = Nat(FX,F®))  forse S

follows from the fact that U; = K (s, —) preserves limits. We have seen above that Dy has
a limit, say, with the following cone
X5 FA

= foralla : X — FA with A € A.
CX —> FA

Then the cone of underlying functions U (C X) ﬂ U(FA) is, up to isomorphism of the
domain, the cone of evaluations ev, : Nat(FX), F®) - U (FA), s € S. m]

Remark 3.5 (a) Suppose X is transportable, i.e., given an object K and an isomorphism
i © M — UK in Set’ there exists an object K’ € K such that UK’ = M and i carries

an isomorphism K’ S KinXk (Up to equivalence, all categories concrete over Set®
have this property, see [1], Lemma 5.35.) Then the codensity monad C can be chosen so
that the underlying set of C X has components

Uy (CX) = Nat(FX), F9) ses.
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(b) Moreover, the evaluation maps with sorts
evg : Nat(FX F®)) — U(FA)  (fors € S)
given by
evg(a) = aug(a) (foralla: X — FA)

carry morphisms from C X to FA. Indeed, the limit cone (@ ) of C X was shown to fulfil
this in the above proof.

(c) To characterize the object C X of K, we use the concept of initial lifting, see [1]. Given a
(possibly large) collection of objects K; € X,i € I,andaconev; : V — UK; (i € I)
in Set®, the initial lifting is an object K of K with UK = V such that

(i) each v; carries a morphism from K to K; (i € I)
and

(ii) given an object K’ of X, then a function f : UK’ — UK carries a morphism from K’
to K iff all composites v; - f carry morphisms from K’ to K; (i € I).

Corollary 3.6 (Codensity Monad Formula) Let S be a limit-detecting generator making XK
a transportable category over Set. If a functor F : A — X has a codensity monad C, then
C assigns to every object X the initial lifting of the cone of evaluations

evg : (Nat(F(X), F(S))) — UFA
seS
for A € Aand a : X — FA. Here (ev,)s(a) = ap(a) for every natural transformation
a: F& 5 FO,

Indeed, the limit cone @ : CX — FA can (due to transportability) be chosen so that
Ua = ev, foralla : X — FA in X/F. Given an object K’ and a function f : UK’ —
U (CX) such that each composite ev, - f carries a morphism @ : K/ — FA in X, the fact
that U is faithful implies that (@ ) forms a cone of Dy. Thus there exists ? : K' — CX with
@ =a- f forevery a in X/F. This is the desired morphism carrying f: we have U f = f
because the limit cone (ev,) is collectively monic and for each a : X — FA we have

ev, - Uf=U@- f)=Ud =ev, - f.

Remark 3.7 The definition of C on morphisms f : X — Y of K is canonical: Cf is carried
by the S-sorted function from Nat(F™, F®) to Nat(F®), F®)) which takes a natural
transformation o : K(X, —) - F — XK(s, —) - F to the composite

K(f.—)F
_

K, —)-F KX, —) - F > K(s,—) - F.

This follows easily from the fact that Cf is the unique morphism such that the above limit
morphisms @ : CX — FA make the following triangles

cr
CXHf-CY foralla:Y — FA

commutative.
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4 Density Comonads

Notation 4.1 For every functor F : A — X and every object X of X we denote by X the

set-valued functor
xF = g0 i xepP XX

Set

Theorem 4.2 (Density Comonad Theorem) Let S be a cogenerator of a complete and
wellpowered category. For every functor F with codomain X the following conditions are
equivalent:

(i) F has a density comonad,
(ii) F has a pointwise density comonad, and
(iii) for every pair of objects s € S and X € XK the collection

Nat (X FogF )
of natural transformations from X* to st is small.

Indeed, since S detects colimits by the dual of Example 3.2(2), this is just a dualization
of Theorem 3.4.

Corollary 4.3 A set-valued functor F has a density comonad iff for every set X there is only
a set of natural transformations from X to 2F . Moreover, the density comonad is then given
by

CX = Nat(XF,2F).

For set-valued functors preserving preimages (i.e., pullbacks of monomorphisms along
arbitrary morphisms) and with “set-like” domains, we intend to prove that
accessibility < existence of a density comonad.
For that we are going to use Theorem 4.6 below. The “set-like” flavour is given by the
following:

Definition 4.4 A locally A-presentable category is called strictly locally L-presentable if for
every morphism b : B — A with a A-presentable domain there exists a commutative square
b
B——A
L b
A B

_ /

f
with B also A-presentable.

Example 4.5 (See [2]) Let X be an infinite regular cardinal.

(1) Set is strictly locally A-presentable.

(2) Many-sorted sets, SetS, are strictly locally A-presentable iff card S < A.

(3) K-Vec, the category of vector spaces over a field K, is strictly locally A-presentable.

(4) The category of groups and homomorphisms is not strictly locally A-presentable.

(5) For every group G the category G-Set of sets with an action of G is strictly locally
A-presentable iff |G| < A.

The same holds for the category Set® of presheaves on a small groupoid G, i.e., a
category with invertible morphisms: it is strictly locally A-presentable iff G has less than A
morphisms.
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A Formula for Codensity Monads and Density Comonads 865

We are going to use the following characterization of accessibility proved in [2]:

Theorem 4.6 A functor F : A — B with A and B strictly locally A-presentable is -
accessible iff for every object A € A and every subobject mg : My — FA with My
A-presentable in B there exists a subobject m : M — A with M \-presentable in A such
that my factorizes through Fm:

FM
1
s
/ iFm
-
My — FA

Example 4.7 (1) A set functor F is A-accessible iff for every element of F A there exists a
subset m : M < A with card M < A such that the element lies in Fm[F M].

(2) Analogously for endofunctors of K-Vec: just say dim M < X here.

(3) For S finite, an endofunctor of SetS is finitary iff every element of FA lies in Fm[F M]
for some finite subset m : M — FA.

This does not generalize for S infinite. Consider the endofunctor F of Set' given as the
identity function on objects (and morphisms) having all but finitely many components empty.
And F is otherwise constant with value 1, the terminal object. This functor is not finitary:
it does not preserve, for 2 = 1 + 1, the canonical filtered colimit of all morphisms from
finitely presentable objects to 2. But it satisfies the condition that every element of FA lies
in Fm[F M] for some finite subsetm : M — A.

Theorem 4.8 Let A be a category where epimorphisms split and such that there is a cardinal
w for which A is strictly locally A-presentable and \-presentable objects are closed under
subobjects, whenever A > L.

Then a functor F : A — Set preserving preimages has a density comonad iff it is
accessible.

Proof Since epimorphisms split, A has regular factorizations— indeed, locally presentable
categories have (strong epi, mono)-factorizations, see [3]. In view of Theorem 2.1 we only
need to prove the non-existence of a density comonad in case F is not accessible. Let us call
an element x € FA A-accessible if there exists a A-presentable subobject m : M — A with
x € Fm[F M]. From the preceding theorem we know that, for all A > u, F possesses an
element that is not A-accessible. Without loss of generality, 1 is an infinite regular cardinal.

(1) Define regular cardinals A; (i € Ord) by transfinite recursion as follows:

A0 = W

Given A; choose an element x; € FA; for some A; € A which is not A;-accessible and
define A;41 as the least regular cardinal with A; A;-presentable;

Given a limit ordinal j define A; as the successor cardinal of \/; _; A;.
We thus see that for every ordinal i the element x; is A;41-accessible but not A;-accessible.

(2) To prove that F does not have a density comonad, we present pairwise distinct natural
transformations
a' 128 — 2% (i € Ord).
For every object A € A, a subset M C FA (i.e., an element of 2F4y and an element

a € M, we call the triple (A, M, a) A;-stable if there exists a subobject u, : U, — Ain A
witha € Fu,[FU,] such that for all subobjects v : V »— U, we have
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866 J. Adamek, L. Sousa

if V is A;-presentable, then M N F (u,v)[FV] = .

Our natural transformation o' has the following components ag :2FA 5 oFA:

o\(M)=1{a e M; (A, M,a) is i;-stable}.
We must prove that for every morphism /2 : A — B the naturality square

i
2FB _“B_ »FB

(Fh)'(—)l l(Fh)'(—)

2FA s 2FA
@y

commutes. That is, given
M C FB and M = (Fh)"'(M) C FA

then for all elements o
aeM and b= Fh(a) e M

we need to verify that
(A, M, a)is Arj-stable < (B, M, b)is A;-stable.

(a) Let (A, M, a) be A;-stable. For the given subobject u, : U, ~— A form a regular
factorization of hu,:

e
U, — U
w
Uy l I Up
A B
h

We have @’ € FU, with a = Fu,(a’), therefore b lies in the image of Fuy:
b = Fh(a) = Fup(Fe(a))).

For every subobject v : V — Up with V A;-presentable we need to prove that M N
F(upv)[FV] = . Choose a splitting w of e, i.e., e - w = idy, . Then for the subobject

wv:V — U,

we know that M = (Fh)~ (M) is disjoint from the image of F (1, wv). Suppose there exists
an element of M N F(upv)[F V], say, F(upv)(t) foLsome t € FV.Putt' = F(uawv)(1),
then we derive a contradiction by showing that /' € M. Indeed

Fh(t") = F(huawv)(t)
= F(upewv)(t)
= F(upv)(t) e M.

Thus, ' € (Fh)"'(M) = M.
(b) Let (B, M, b) be A;-stable. Since Fh(a) = b € M we have

ae (Fhy '\(M) =M.
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Given the above subobject up, : Uy, — B, we define u, : U, — A as the preimage under
h:

<

v w

<

=

<<

Uq up

ca<—<$<—<€

e
—
h
—
_
—_—
h

We have b’ € FUp, with b = Fu,(b') = Fh(a), and since F preserves preimages, there
exists a’ € FU, with Fu,(a') = a.

Given a subobject v : V — U, with V A;-presentable, we prove that F (u,v)([FV] is
disjoint from M. For that take the regular factorization of /v as in the diagram above. Since
e is a split epimorphism, W is a X;-presentable object. Therefore, the image of F(upw) is
disjoint from M.

Assuming that we have t € FV with F(u,v)(t) € M, we derive a contradiction by
showing that for 1’ = Fe(r) we have F(upw)(t') € M. Indeed, since M = (Fh)~' (M), we
see that F (hu,v)(t) € Fh[M] € M and we have

hugv = uphv = upwe.

(3) We have established that each i € Ord yields a natural transformation o 1 2F 5 oF,
We conclude the proof by verifying for all ordinals i # j that &' # «/. Suppose i < j.
In (1) we have presented an element x; € FA; which is A;4-accessible (because A; is
Ait1-accessible) but not A;-accessible. Let M; € FA; be the set of all elements that are not
Mi-accessible. Then

(Ai, M, x;)

is clearly A;-stable. But it is not A j-stable because A; is A j-presentable (since A;1; is a
presentability rank of A; and A; | < A;). Indeed, no subobject uy, : U,, — A has the
property that x; € Fuy, [FU,,]but M; N F(u,,v)[FV] = @ for all A j-presentable subobjects
v:V — Uy, :since A; is A j-presentable, so is Uy, because A j-presentable objects are closed
under subobjects in A. Put v = idU-n- ;thenx; € M N F(uy,v)[FV].

Consequently, we have

Xj € afAi (M;) but x; ¢ O‘,{l,- (M;).
O

The following corollary works with set functors preserving preimages. This is a very weak
assumption since all “everyday” set functors preserve them:

(1) The identity and constant functors preserve preimages.

(2) Products, coproducts, and composites of functors preserving preimages preserve them.
(3) Thus polynomial functors preserve images.

(4) The power-set functor, the filter functor and the ultrafilter functor preserve preimages.

Corollary 4.9 A set functor preserving preimages has a density comonad iff it is accessible.
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S Examples of Set Functors

Example 5.1 The density comonad of FX = X" is
cx=x".

More detailed: we prove that the colimit of the diagram Dy : (—)"/X — Set has the
component at a : A" — X defined as follows

a: A" > X" trsa-t" (forallt:n — A)

It is easy to see that this is a cocone.
Leta : A" — B (foralla : A" — X) be another cocone. Consider the following mor-
phisms of (—)"/X foreverya : A* — X andeveryt:n — A:

"
nn S An

Thus the following triangle

commutes. Applied to id,, this yields
() =a-1"(idy).
Therefore we have a factorization f : X " 5 B through the colimit cocone defined by
f(u) = u(idy).
Indeed @ = f - a since for every ¢ we have a(r) = m(id,,) = fla-t")=f-a@). It

is easy to see that f is unique.

Example 5.2 More generally, for a polynomial functor
FX=]]x"
iel
the density comonad is
cx=][]Tx""
iel jel
The colimit cocone for Dx has for a : [[;.; A" — X the component a = [[;c; a; :
[l;je; A" — CX, where

ai A" = [e X" sends t:n; —> Ato a- [jer t" :]_[jeln:.lj - X.
(The last map is an element of ] jer X n;! .) The proof is completely analogous to 5.1: for

everya :|];c; A" — X andt : n; — A use the following triangle

@ Springer



A Formula for Codensity Monads and Density Comonads 869

ﬂj ]_[t”j A"/
]_[jeI n; ]_[jel

a.]_[x /
X

Recall that Py denotes the subfunctor of P with PoX = PX — {#}.

Example 5.3 The power-set functor P and its subfunctor Py do not have a density comonad,
since they are not accessible.

Proposition 5.4 The codensity monad of Py is itself.

Proof (1) We first prove the equality on objects X by verifying that natural transformations
o fP(’)( — Py bijectively correspond to nonempty subsets of X as follows: we assign to «
the subset

ax(nx) € X

where 7 is the unit of Py. The inverse map takes a nonempty set M < X to the natural
transformation M : iP())( — Py assigning to each u : X — PpA the value

Maw) = | u(x).

xeM

(1a) The naturality squares for M are easy to verify.
(1b) Given «, put M = ax (nx). We prove that for all u : X — PyA we have

aa(u) = Ma(u).

We first verify this for all # such that A has a disjoint decomposition u(x), x € X. We
then have the obvious projection f : A — X with

Pof -u=nx.

Thus, the naturality square

(PoA)X 24~ PoA

Tof~(—)l \L%f

(fPOX)X ax PoX
yields
Poflaam)) =ax(ny) =M.

This clearly implies o4 (1) = U u(x).
xeM o
Nextletu : X — PoA be arbitrary and consider its “disjoint modification” u : X — PoA
where

A= U u(x) x {x} and u(x) =u(x) x {x}.

xeX
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We know already that a7 () = U 1 (x). The obvious projection g : A — A fulfils
xeM

<|

u="Pog -

The naturality square thus gives

aa(u) = Poglaa@) = Pog (U u(x)) = |J glun.

xeM xeM

This concludes the proof, since g [ (x)] = u(x).
(1¢) TheAmap M +— M is inverse to o — ax(ny). Indeed, if we start with M C X and
form o = M, we get

My (nx) = U nx(x) =M.
xeM

Conversely, if we start with « and put M = ax(nx), then o = M: see (1b).
(2) The definition of the pointwise codensity monad for Py on morphisms f : X — Y is
as follows: a natural transformation « : TP())( — Py is taken to the following composite

Py
fP())l —_— f])())( LN Po

If & corresponds to M (= ax (nx)), itis our task to verify that « - fP‘(); corresponds to Pg f (M).

Indeed:
Pof(M) =ay(y - f), by naturality of & and 7,

= («-20), ().

Recall from [13] that a set functor is indecomposable, i.e., not a coproduct of proper
subfunctors, iff it preserves the terminal objects.

Proposition 5.5 Let F be an indecomposable set functor with a codensity monad T .
(1) The functor F + 1 has the codensity monad

Tx=[[ay+n
YCcX

with projections wy. This monad assigns to a morphism f : X — X' the morphism Tf .
TX — [lzcx T(Z + 1) with components

~ T 1
X2y 1225 772401 foraiz < X/

where f7 1Y — Z is the restriction of f withY = f~1[Z].
(2) Every copower | [, F has the codensity monad

X > (M x TX)M"
assigning to a morphism f the morphism (M x Tf)Mf.

Proof (1) Since F is indecomposable, so is F' X for every set X, hence,

Nat(FX, F+ 1) ~Nat(FX, F)+ 1 =TX + 1,
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consequently, from the natural isomorphism [F + 1]¥ ~ [ [, cx F¥ we get
Nat([F + 11%, F + 1) ~ Nat([[ycx F¥, F + 1)
~ [Tycx Nat(F¥, F + 1)
= HYQX(TY +1).
(2) We compute
Nat (11, F)*. Ly F) =~ Nat(M* x FX,[],, F)
>~ [1yx Nat(FX, 1], F).

Since FX is indecomposable, Nat(F¥, [y F) ~ 11y Nat(FX, F) ~ M x TX. This
yields (M x TX)MX, as claimed. m]
Corollary 5.6 The codensity monad of P is given by

X — ]_[ PY.
Ycx

Indeed, P = Py + 1 and Py is indecomposable.
Another description of the codensity monad of P: it assigns to every set X all nonexpanding
selfmaps ¥ of PX (i.e., self-maps with Y C Y forall Y € PX).

Example 5.7 Polynomial functors.
(1) The functor FX = X" has the codensity monad
TY =(nxY)".
Indeed, F is a right adjoint yielding the monad T = (—)" - (n x —) = (n x —)".
(2) The polynomial functor

FX=|1_,% i (n; arbitrary cardinals)
1

has the following codensity monad

Ty =[]]] (L[n, x Yi)nj

(v;) jel \iel
where the product ranges over disjoint decompositions
Yy =¥
iel
indexed by I. (Here Y; is allowed to be empty.) This follows from the Codensity Monad
Theorem where we compute (FX)¥ as follows: a mapping from Y to [1;c; X" is given by

specifying a decomposition (¥;) and an /-tuple of mappings from ¥; to X"i. The latter is an
element of [, X" *¥i o XLlier®ixYD) therefore

FY =] [set( [ni x i, -).
(Yi) i€l
We conclude, using Yoneda lemma, that

TY = Nat(FY, F)
> [l F (Uics ni x Yi) N
=iy, Ujer (Lies mi x i)™

as stated.
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Open Problem 5.8 Which set functors possess a codensity monad?
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