

A Formula for Codensity Monads and Density Comonads

 J **iří Adámek**¹ **· Lurdes Sousa**^{2,3}

Received: 7 December 2017 / Accepted: 7 May 2018 / Published online: 29 May 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract For a functor F whose codomain is a cocomplete, cowell powered category K with a generator *S* we prove that a codensity monad exists iff for every object *s* in *S* all natural transformations from $\mathcal{K}(X, F-)$ to $\mathcal{K}(s, F-)$ form a set. Moreover, the codensity monad has an explicit description using the above natural transformations. Concrete examples are presented, e.g., the codensity monad of the power-set functor P assigns to every set *X* the set of all nonexpanding endofunctions of P*X*. Dually, a set-valued functor *F* is proved to have a density comonad iff all natural transformations from X^F to 2^F form a set. Moreover, that comonad assigns to *X* the set of all those transformations. For preimages-preserving endofunctors F of Set we prove that F has a density comonad iff F is accessible.

Keywords Codensity monad · Density comonad · Accessible functors

Dedicated to Bob Lowen on his seventieth birthday

Communicated by Walter Tholen.

This work was partially supported by the Centre for Mathematics of the University of Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

B Lurdes Sousa sousa@estv.ipv.pt

> Jiří Adámek J.Adamek@tu-bs.de

¹ Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

² CMUC, University of Coimbra, 3001-501 Coimbra, Portugal

³ ESTGV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal

1 Introduction

The important concept of density of a functor $F : A \to \mathcal{K}$ means that every object of $\mathcal K$ is a canonical colimit of objects of the form *F A*. For general functors, the *density comonad* is the left Kan extension along itself:

$$
C=\mathrm{Lan}_F F.
$$

This endofunctor of K carries the structure of a comonad. We speak about the *pointwise density comonad* if *C* is computed by the usual colimit formula: given an object *X* of K, form the diagram $D_X: F/X \to \mathcal{K}$ assigning to each $FA \xrightarrow{a} X$ the value FA , and put

$$
CX=\mathrm{colim}D_X.
$$

This assumes that the above, possibly large, colimit exists in K . The density comonad is a measure of how far away F is from being dense: a functor is dense iff its pointwise codensity monad is trivial (i.e., $\text{Id}_{\mathcal{K}}$). Pointwise density comonads were introduced by Appelgate and Tierney [\[4\]](#page-17-0) where they are called standard constructions. For every left adjoint *F* the comonad given by the adjoint situation is the density comonad of *F*. For functors $F : A \rightarrow$ Set we prove that *F* has a density comonad iff for every set *X* there is only a set of natural transformations from X^F to 2^F . Moreover, the density comonad *C* is always pointwise, and is given by the formula

$$
CX = Nat(X^F, 2^F).
$$

We also prove that every accessible functor between locally presentable categories has a density comonad, and, in case of set functors, conversely: the existence of a density comonad for *F* implies its accessibility, assuming that *F* preserves preimages (which is a very mild condition). For $FX = X^n$ the density comonad is X^n . For general polynomial functors $FX = \prod$ $\prod_{i \in I} X^{n_i}$ it is given by $CX = \coprod$ *i*∈*I* П $j \in I$ $X^{n_i^{n_j}}$, see Example [5.2.](#page-13-0)

The dual concept, introduced by Kock [\[7\]](#page-17-1), is the *codensity monad*, i.e., the right Kan extension of *F* over itself:

$$
T=\mathrm{Ran}_F F.
$$

Linton proved in [\[8](#page-17-2)] that if $K =$ Set, then *F* has a codensity monad iff for every set *X* all natural transformations from F^X to F form a set. We generalize this to $\mathcal K$ arbitrary as follows. Given a functor $F : A \to \mathcal{K}$, denote by $F^{(X)} : A \to \mathsf{Set}$ the composite $\mathcal{K}(X, -) \cdot F$ for every $X \in \mathcal{K}$. Assuming that \mathcal{K} has a generator *S* which detects limits (see Definition [3.1\)](#page-5-0), a functor *F* with codomain *K* has a codensity monad iff for every $X \in \mathcal{K}$ all natural transformations from $F^{(X)}$ to $F^{(s)}$, $s \in S$, form a set. And the codensity monad is then pointwise. All locally presentable categories possess a limit-detecting generator, and every monadic category over a category with a limit-detecting generator possesses one, too. In fact, in a cocomplete and cowellpowered category every generator detects limits. We also obtain a formula for the codensity monad *T* : we can view K as a concrete category over *S*-sorted sets. And for every object *X* the underlying set of *T X* has the following sorts:

$$
Nat(F^{(X)}, F^{(s)}) \quad (s \in S).
$$

Again, accessible functors always possess a pointwise codensity monad, that is, *T* is given by the limit formula (assigning to *X* the limit of the diagram (($X \stackrel{a}{\rightarrow} FA$) $\mapsto FA$). However, in contrast to the density comonad, many non-accessible set functors possess a codensity monad too—and, as we show below, codensity monads of set-valued functors are always pointwise. Example: the power-set functor P has a codensity monad given by

T X = nonexpanding self-maps of P*X*.

The subfunctor \mathcal{P}_0 on all nonempty subsets is its own codensity monad. But the following modification \overline{P} of P is proven not to have a codensity monad: on objects X

$$
\overline{\mathcal{P}}X=\mathcal{P}X
$$

and on morphism $f: X \rightarrow Y$

$$
\overline{\mathcal{P}}f(M) = \begin{cases} \mathcal{P}f(M) & \text{if } f/M \text{ is monic} \\ \emptyset & \text{else.} \end{cases}
$$

For $FX = X^n$ the codensity monad is obvious: this is a right adjoint, so T is the monad induced by the adjoint situation, $TX = n \times X^n$. For general polynomial functors $FX =$ $\prod_{i \in I} X^{n_i}$ the codensity monad is $TX = \prod_{(X_i)} \prod$ *j*∈*I* (11) $\sum_{i \in I} n_i \times X_i$ ^{n_j} where the first product ranges over all disjoint decompositions $X = \bigcup_{i \in I} X_i$, see Example [5.7](#page-16-0)

2 Accessible Functors

Throughout the paper all categories are assumed to be locally small.

Recall from [\[6\]](#page-17-3) that a category K is called *locally presentable* if it is cocomplete and for some infinite regular cardinal λ it has a small subcategory \mathcal{K}_{λ} of λ -presentable objects *K* (i.e. such that the hom-functor $\mathcal{K}(K, -)$ preserves λ -filtered colimits) whose closure under λ-filtered colimits is all of K. And a functor is called *accessible* if it preserves, for some infinite regular cardinal λ , λ -filtered colimits. Recall further that every locally presentable category is complete and every object *X* has a presentation rank, i.e., the least regular cardinal $λ$ such that *X* is $λ$ -presentable. Finally, locally presentable categories are locally small, and \mathcal{K}_λ can be chosen to represent all λ-presentable objects up to isomorphism.

Theorem 2.1 *Every accessible functor between locally presentable categories has:*

- *(a) a pointwise codensity monad and*
- *(b) a pointwise density comonad.*

Proof Given an accessible functor $F : A \to \mathcal{K}$ and an object *X* of \mathcal{K} , we can clearly choose an infinite cardinal λ such that $\mathcal K$ and $\mathcal A$ are locally λ -presentable, F preserves λ -filtered colimits, and *X* is a λ -presentable object. The domain restriction of *F* to \mathcal{A}_{λ} is denoted by F_{λ} .

(a) We are to prove that the diagram

$$
B_X: X/F \to \mathcal{K}, (X \xrightarrow{a} FA) \mapsto FA
$$

has a limit in K. Denote by $E: X/F_{\lambda} \hookrightarrow X/F$ the full embedding. Since K is complete, the small diagram $B_X \cdot E$ has a limit. Thus, it is sufficient to prove that E is final (the dual concept of cofinal, see [\[10](#page-17-4)]): (i) every object $X \stackrel{a}{\rightarrow} FA$ is the codomain of some morphism departing from an object of X/F_{λ} , and (ii) given a pair of such morphisms, they can be connected by a zig-zag in X/F_{λ} .

Indeed, given $a: X \to FA$, express A as a λ -filtered colimit of λ -presentable objects with the colimit cocone $c_i : C_i \rightarrow A$ ($i \in I$). Then $Fc_i : FC_i \rightarrow FA$, $i \in I$, is also a colimit of a λ -filtered diagram. Since *X* is λ -presentable, $\mathcal{K}(X, -)$ preserves this colimit, and this implies that (i) and (ii) hold.

(b) Now we prove that the diagram

$$
D_X: F/X \to \mathcal{K}, \ (FA \xrightarrow{a} X) \mapsto FA
$$

has a colimit in *X*. Denote the colimit of the small subdiagram $F_{\lambda}/X \to \mathcal{K}$ by *K* with the colimit cocone

$$
\overline{a}:FA \to K \text{ for all } a:FA \to X \text{ in } F/X, A \in A_{\lambda}.
$$

We extend this cocone to one for D_X as follows: Fix an object $a : FA \to X$ of F/X . Express *A* as a colimit $c_i : C_i \to A$ ($i \in I$) of the canonical diagram $H_A : A_{\lambda}/A \to A$ assigning to each arrow the domain. Then $Fc_i : FC_i \rightarrow FA$ ($i \in I$) is a colimit cocone, and all $\overline{a \cdot Fc_i}$: $FC_i \rightarrow K$ form a compatible cocone of the diagram $F \cdot H_A$. Hence, there exists a unique morphism

$$
\overline{a}: FA \to K \text{ with } \overline{a} \cdot Fc_i = a \cdot Fc_i \ \ (i \in I).
$$

We claim that this yields a cocone of D_X . That is, given a morphism *f* from $(FA \xrightarrow{a} X)$ to $(FB \xrightarrow{b} X)$ in F/X , we prove $\overline{a} = \overline{b} \cdot Ff$.

Since (*Fc_i*) is a colimit cocone, it is sufficient to prove

$$
\overline{a} \cdot Fc_i = \overline{b} \cdot F(f \cdot c_i) \text{ for a all } i \in I.
$$

Indeed, let $c'_j : C'_j \to B$ $(j \in J)$ be the canonical colimit cone of $H_B : A_\lambda/B \to A$. Since *C_i* is λ -presentable, the morphism $f \cdot c_i$ factorizes through some c'_j , $j \in J$, say

$$
f \cdot c_i = c'_j \cdot g.
$$

This makes *g* a morphism from $FC_i \xrightarrow{a \cdot FC_i} X$ to FC'_j $\frac{b \cdot F c'_j}{\longrightarrow} X$ in F_λ / X , hence the following triangle

commutes. That is, we have derived the required equality:

$$
\overline{a} \cdot Fc_i = \overline{b} \cdot Fc'_j \cdot Fg = \overline{b} \cdot Ff \cdot Fc_i.
$$

 \circledcirc Springer

It is now easy to verify that the above cocone is a colimit of D_X . Given another cocone \tilde{a} : *FA* \rightarrow *K* for all *a* : *FA* \rightarrow *X* in *F*/*X*, the subcocone with domain *F*_λ/*X* yields a unique morphism $r : K \rightarrow \tilde{K}$ with unique morphism $r: K \to K$ with

$$
r \cdot \overline{a} = \widetilde{a} \text{ for all } a : FA \to X, \ A \in \mathcal{A}_{\lambda}.
$$

It remains to observe that given $a: FA \to X$ arbitrary, we also have $r \cdot \overline{a} = \widetilde{a}$.

Indeed, the cocone (*Fc_i*) is collectively epic and for each *i* we know that $r \cdot \overline{a \cdot Fc_i} = \overline{a \cdot Fc_i}$. Indeed, the cocone (*Fc_i*) is collectively epic and for each *i* we know that $r \cdot \overline{a \cdot Fc_i} = \overline{a \cdot Fc_i}$.
Now $\overline{a \cdot Fc_i} = \overline{a \cdot Fc_i}$ since c_i is a morphism from $FC_i \xrightarrow{a \cdot Fc_i} X$ to $FA \xrightarrow{a} X$. We conclude $r \cdot \over$ $r \cdot \overline{a} \cdot Fc_i = \widetilde{a} \cdot Fc_i$ for all *i*, thus, $\widetilde{a} = r \cdot \overline{a}$.

Proposition 2.2 Let K be a category with a generator. Every functor $F : A \rightarrow \mathcal{K}$ with a *codensity monad has only a set of natural transformations* $\alpha : F \to F$.

Proof By the universal property of $T = \text{Ran}_F F$, natural self-transformations of F bijectively correspond to natural transformations from Id_K to *T*. If $(K_i)_{i \in I}$ is a generator, we will prove that every natural transformation α : Id_K \rightarrow *T* is determined by its components α_{K_i} , $i \in I$, which proves our claim.

Let β : Id_K \rightarrow *T* be a natural transformation with $\beta_{K_i} = \alpha_{K_i}$ for all *i*. Then for every object *X* we have $\beta_X = \alpha_X$. Indeed, otherwise there exists $i \in I$ and a morphism $h : K_i \to X$ with $\alpha_X \cdot h \neq \beta_X \cdot h$.

This contradicts to the naturality squares for α and β .

Corollary 2.3 Let K be a category with a cogenerator. Every functor $F : A \rightarrow K$ with a *density comonad has only a set of natural transformations* $\alpha : F \to F$.

Example 2.4 A set functor without a codensity monad or a density comonad. Recall the modified power-set functor P in Introduction. By Proposition [2.2](#page-4-0) it has no codensity monad since for every cardinal λ we have a natural transformation

$$
\alpha^{\lambda}:\overline{\mathcal{P}}\to\overline{\mathcal{P}}.
$$

It assigns to a subset *M* of power $|M| \ge \lambda$ itself, otherwise Ø. The naturality squares are easy to verify. Thus, Nat $(\overline{P}, \overline{P})$ is a proper class.

3 Codensity Monad Theorem

Let *S* be a generator of a category K . Then K can be viewed as a concrete category over *S*-sorted sets: the forgetful functor

$$
U:\mathfrak{K}\to\mathsf{Set}^S
$$

has components

$$
U_s = \mathcal{K}(s, -) : \mathcal{K} \to \mathsf{Set} \quad (s \in S).
$$

Recall that a functor *U* is said to *detect limits* if for every (possibly large) diagram *D* in K for which lim $U \cdot D$ has a limit, a limit exists in K .

In case of the functor *U* above the existence of $\lim U \cdot D$ says precisely that for every $s \in S$ the diagram *D* has only a set of cones with domain *s*. This leads us to the following

Definition 3.1 A generator *S* of K is called *limit-detecting* if

(a) Every (possibly large) diagram *D* in K which has only a set of cones with domains in *S* has a limit,

and

(b) Copowers of every object of *S* exist.

Example 3.2 Every generator is limit-detecting in the following categories:

(1) Every *total* category K , i.e., such that the Yoneda embedding into $[\mathcal{K}^{op}, \mathsf{Set}]$ has a left adjoint, as introduced by Street and Walters [\[11](#page-17-5)]. They also proved that a total category is cocomplete and hypercomplete, i.e., every diagram *D* such that for any object $K \in \mathcal{K}$ there exists only a set of cones with domain *K* has a limit.

Suppose *D* has the property in Definition $3.1(a)$ $3.1(a)$ above. Then given *K* we express it as quotient of a coproduct of objects in *S*:

$$
e:\coprod_{i\in I} s_i \to K.
$$

Every cone with domain *K* yields one with domain $\prod_{i \in I} s_i$ which, since *e* is epic, determines the original one. Since there is only a set of cones with domain $\prod_{i \in I} s_i$, it follows that there is only a set of cones with domain *K*. Thus lim *D* exists.

- (2) Every cocomplete and cowellpowered category. Indeed, $\mathcal K$ is total, see [\[5](#page-17-6)].
- (3) Every locally presentable category. This follows from (2), see [\[6\]](#page-17-3) or [\[3](#page-17-7)].
- (4) Categories from general topology, e.g., Top , Top_2 (Hausdorff spaces), Unif (uniform spaces), approach spaces of Lowen [\[9\]](#page-17-8), etc. These are concrete categories over Set which are solid, thus total, see $[12]$ $[12]$.
- (5) Monadic categories over categories with a limit-detecting generator. Indeed, let *S* be a spaces), approach spaces of Lowen [9], etc. These are concrete categories over Se
which are solid, thus total, see [12].
Monadic categories over categories with a limit-detecting generator. Indeed, let S be i
limit-detect

$$
S' = \{(Ts, \mu_s); s \in S\}
$$

is a limit-detecting generator of \mathcal{K}^T . In fact, it is clearly a generator, (a) above follows since (large) limits are created by the forgetful functor U^T of \mathcal{K}^T , and (b) is clear since the left adjoint of $U^{\mathbb{T}}$ preserves copowers.

Notation 3.3 For every functor $F : A \to \mathcal{K}$ and every object *X* of \mathcal{K} we denote by $F^{(X)}$ the set-valued functor

$$
F^{(X)} \equiv \mathcal{A} \xrightarrow{F} \mathcal{K} \xrightarrow{\mathcal{K}(X, -)} \mathsf{Set}
$$

Thus in case $\mathcal{K} =$ Set this is just the power F^X of $F : \mathcal{A} \to$ Set to X. The following theorem generalizes Linton's result, see [\[8\]](#page-17-2), that a set-valued functor F has a pointwise codensity monad iff there is only a set of natural transformations from F^X to F (for every set *X*):

Theorem 3.4 (Codensity Monad Theorem) *Let S be a limit-detecting generator of a category* K*. For every functor F with codomain* K *the following conditions are equivalent:*

- *(i) F has a codensity monad,*
- *(ii) F has a pointwise codensity monad, and*
- *(iii) for every pair of objects s* \in *S and X* \in *K the collection*

$$
Nat(F^{(X)}, F^{(s)})
$$

of natural transformations from $F^{(X)}$ *to* $F^{(s)}$ *is small.*

Remark. We will see in the proof that the object *CX* assigned to $X \in \mathcal{K}$ by the codensity monad *C* has the *S*-sorted underlying set given by

$$
U(CX) \cong \left(Nat(F^{(X)}, F^{(s)})\right)_{s \in S}.
$$

Proof (i) \rightarrow (iii). Since *s* ∈ *S* has all copowers, $\mathcal{K}(s, -)$ is left adjoint to $\phi_s : M \mapsto \coprod_M s$.

Let *C* be a codensity monad of *F*. We prove that the set $\mathcal{K}(s, CX)$ is isomorphic to $Nat(F^{(X)}, F^{(s)})$. Indeed, we have the following bijections:

(iii) \rightarrow (ii). For every object *X* $\in \mathcal{K}$ it is our task to prove that the diagram $D_X : X/F \rightarrow \mathcal{K}$ given by

$$
D_X(X \xrightarrow{a} FA) = FA
$$

has a limit. Given $s \in S$, a cone of D_X with domain *s* has the following form

$$
\frac{X \xrightarrow{a} FA}{s \xrightarrow{a'} FA}
$$

and we obtain a natural transformation

$$
\alpha: F^{(X)} \to F^{(s)}
$$

 $\circled{2}$ Springer

assigning to every $a \in F^{(X)}A = \mathcal{K}(X, FA)$ the value $\alpha_A(a) = a' \in F^{(s)}A$. Indeed, the naturality square

commutes for every $f : A \rightarrow B$ in A. This follows from the morphism

in X/F : Our cone $(−)'$ is compatible, thus

$$
Ff \cdot a' = b' = (Ff \cdot a)',
$$

which proves that the above square commutes when applied to *a*.

Conversely, every natural transformation $\alpha : F^X \to F^{(s)}$ has the above form. We obtain a cone of evaluations at *a*:

$$
a' = \alpha_A(a)
$$
 for every $a : A \rightarrow FX$ (i.e., $a \in F^{(X)}A$)

Indeed the above triangle commutes since the naturality square does when applied to *a*.

It is easy to verify that we obtain a bijection between $Nat(F^{(X)}, F^{(s)})$ and the collection of all cones of D_X with domain *s*. Consequently, the latter collection is small for every $s \in S$. Since *S* is limit-detecting, D_X has a limit in \mathcal{K} .

 $(ii) \rightarrow (i)$. This is trivial.

Finally, the claim in the remark above

$$
U_s(CX) \cong Nat(F^{(X)}, F^{(s)}) \quad \text{for } s \in S
$$

follows from the fact that $U_s = \mathcal{K}(s, -)$ preserves limits. We have seen above that D_X has a limit, say, with the following cone

$$
\frac{X \stackrel{a}{\to} FA}{CX \stackrel{\widehat{a}}{\to} FA} \qquad \text{for all } a: X \to FA \text{ with } A \in \mathcal{A}.
$$

Then the cone of underlying functions $U(CX) \xrightarrow{U\widehat{a}} U(FA)$ is, up to isomorphism of the domain, the cone of evaluations $ev_a : Nat(F^{(X)}, F^{(s)}) \to U_s(FA), s \in S.$

Remark 3.5 (a) Suppose K is *transportable*, i.e., given an object K and an isomorphism $i : M \to UK$ in Set^S there exists an object $K' \in \mathcal{K}$ such that $UK' = M$ and *i* carries an isomorphism $K' \stackrel{\cong}{\to} K$ in K . (Up to equivalence, all categories concrete over Set⁵ have this property, see [\[1\]](#page-17-10), Lemma 5.35.) Then the codensity monad *C* can be chosen so that the underlying set of *C X* has components

$$
U_s(CX) = Nat(F^{(X)}, F^{(s)}) \quad s \in S.
$$

(b) Moreover, the evaluation maps with sorts

$$
ev_a: Nat(F^{(X)}, F^{(s)}) \to U_s(FA) \quad \text{(for } s \in S)
$$

given by

$$
ev_a(\alpha) = \alpha_A(a) \quad \text{(for all } a: X \to FA)
$$

carry morphisms from *CX* to *FA*. Indeed, the limit cone (\widehat{a}) of *CX* was shown to fulfil this in the above proof this in the above proof.

- (c) To characterize the object *CX* of K , we use the concept of *initial lifting*, see [\[1\]](#page-17-10). Given a (possibly large) collection of objects $K_i \in \mathcal{K}$, $i \in I$, and a cone $v_i : V \to UK_i$ ($i \in I$) in Set^S, the initial lifting is an object *K* of *K* with $UK = V$ such that
	- (i) each v_i carries a morphism from *K* to K_i ($i \in I$)

and

(ii) given an object K' of X, then a function $f: UK' \rightarrow UK$ carries a morphism from K' to *K* iff all composites $v_i \cdot f$ carry morphisms from K' to K_i ($i \in I$).

Corollary 3.6 (Codensity Monad Formula) *Let S be a limit-detecting generator making* K *a transportable category over* Set^S . If a functor $F : A \to \mathcal{K}$ has a codensity monad C, then *C assigns to every object X the initial lifting of the cone of evaluations*

$$
ev_a: \left(Nat(F^{(X)}, F^{(s)})\right)_{s \in S} \to UFA
$$

for $A \in \mathcal{A}$ *and* $a: X \to FA$ *. Here* $(ev_a)_s(\alpha) = \alpha_A(a)$ *for every natural transformation* $\alpha: F^{(X)} \to F^{(s)}$.

Indeed, the limit cone $\hat{a}: CX \to FA$ can (due to transportability) be chosen so that $\hat{a}: e_{2k}$ for all $a: X \to FA$ in X/F Given an object K' and a function $f: UK' \to$ $U\hat{a} = ev_a$ for all $a : X \to FA$ in X/F . Given an object K' and a function $f : UK' \to H$.
 $U(CX)$ such that each composite ev_a , f carries a morphism $\tilde{a} : K' \to FA$ in K the fact $U(CX)$ such that each composite $ev_a \cdot f$ carries a morphism $\tilde{a}: K' \to FA$ in \mathcal{K} , the fact that *U* is faithful implies that (\tilde{a}) forms a cone of D_X . Thus there exists $\overline{f}: K' \to CX$ with $\tilde{a} = \hat{a} \cdot f$ for every *a* in *X*/*F*. This is the desired morphism carrying *f* : we have *U f* = *f* hecause the limit cone (*eu*) is collectively monic and for each $a : X \to FA$ we have because the limit cone (ev_a) is collectively monic and for each $a: X \rightarrow FA$ we have

$$
ev_a \cdot U\overline{f} = U(\widehat{a} \cdot \overline{f}) = U\widetilde{a} = ev_a \cdot f.
$$

Remark 3.7 The definition of *C* on morphisms $f : X \to Y$ of $\mathcal K$ is canonical: *Cf* is carried by the *S*-sorted function from $Nat(F^{(X)}, F^{(s)})$ to $Nat(F^{(Y)}, F^{(s)})$ which takes a natural transformation α : $\mathcal{K}(X, -) \cdot F \to \mathcal{K}(s, -) \cdot F$ to the composite

$$
\mathcal{K}(Y, -) \cdot F \xrightarrow{\mathcal{K}(f, -) \cdot F} \mathcal{K}(X, -) \cdot F \xrightarrow{\alpha} \mathcal{K}(s, -) \cdot F.
$$

This follows easily from the fact that *C f* is the unique morphism such that the above limit morphisms $\hat{a}: CX \to FA$ make the following triangles

commutative.

4 Density Comonads

Notation 4.1 For every functor $F : A \to \mathcal{K}$ and every object *X* of \mathcal{K} we denote by X^F the set-valued functor

$$
X^F \equiv \mathcal{A}^{op} \xrightarrow{F^{op}} \mathcal{K}^{op} \xrightarrow{\mathcal{K}(-, X)} \mathsf{Set}
$$

Theorem 4.2 (Density Comonad Theorem) *Let S be a cogenerator of a complete and wellpowered category. For every functor F with codomain* K *the following conditions are equivalent:*

- *(i) F has a density comonad,*
- *(ii) F has a pointwise density comonad, and*
- *(iii) for every pair of objects s* \in *S and X* \in *K the collection*

$$
Nat(X^F, s^F)
$$

of natural transformations from X^F *to* S^F *is small.*

Indeed, since *S* detects colimits by the dual of Example $3.2(2)$ $3.2(2)$, this is just a dualization of Theorem [3.4.](#page-6-0)

Corollary 4.3 *A set-valued functor F has a density comonad iff for every set X there is only a set of natural transformations from* X^F *to* 2^F *. Moreover, the density comonad is then given by*

$$
CX = Nat(X^F, 2^F).
$$

For set-valued functors preserving preimages (i.e., pullbacks of monomorphisms along arbitrary morphisms) and with "set-like" domains, we intend to prove that

accessibility \Leftrightarrow existence of a density comonad.

For that we are going to use Theorem 4.6 below. The "set-like" flavour is given by the following:

Definition 4.4 A locally λ-presentable category is called *strictly locally* λ*-presentable* if for every morphism $b : B \to A$ with a λ -presentable domain there exists a commutative square

$$
B \xrightarrow{b} A
$$
\n
$$
b \qquad \qquad b \qquad \qquad b'
$$
\n
$$
A \xrightarrow{f} B'
$$

with B' also λ -presentable.

Example 4.5 (See [\[2\]](#page-17-11)) Let λ be an infinite regular cardinal.

- (1) Set is strictly locally λ -presentable.
- (2) Many-sorted sets, Set^{*S*}, are strictly locally λ-presentable iff card *S* < λ.
- (3) *K*-Vec, the category of vector spaces over a field *K*, is strictly locally λ -presentable.
- (4) The category of groups and homomorphisms is not strictly locally λ-presentable.
- (5) For every group *G* the category *G*-Set of sets with an action of *G* is strictly locally λ-presentable iff |*G*| < λ. The same holds for the category G -**Set** of sets with an action of G is strictly locally λ -presentable iff $|G| < \lambda$.
The same holds for the category **Set**^{G*op*} of presheaves on a small groupoid \mathbb{G} , i.e., a

 $λ$ -presentable iff $|G| < λ$.
The same holds for the category Set^{\mathbb{G}^{op}} of presheaves on a small groupoid \mathbb{G} , i.e., a category with invertible morphisms: it is strictly locally $λ$ -presentable iff \mathbb{G} ha morphisms.

We are going to use the following characterization of accessibility proved in [\[2\]](#page-17-11):

Theorem 4.6 *A functor* $F : A \rightarrow B$ *with A and B strictly locally* λ -presentable is λ *accessible iff for every object* $A \in \mathcal{A}$ *and every subobject* $m_0 : M_0 \to FA$ with M_0 λ*-presentable in* B *there exists a subobject m* : *M* → *A with M* λ*-presentable in* A *such that m*⁰ *factorizes through Fm:*

Example 4.7 (1) A set functor *F* is λ -accessible iff for every element of *FA* there exists a subset $m : M \hookrightarrow A$ with card $M < \lambda$ such that the element lies in $Fm[FM]$.

- (2) Analogously for endofunctors of *K*-Vec: just say dim $M < \lambda$ here.
- (3) For *^S* finite, an endofunctor of Set*^S* is finitary iff every element of *F A* lies in *Fm*[*F M*] for some finite subset $m : M \hookrightarrow FA$.

This does not generalize for *S* infinite. Consider the endofunctor F of $\mathsf{Set}^{\mathbb{N}}$ given as the identity function on objects (and morphisms) having all but finitely many components empty. And F is otherwise constant with value \mathbb{I} , the terminal object. This functor is not finitary: it does not preserve, for $2 = 1 + 1$, the canonical filtered colimit of all morphisms from finitely presentable objects to 2. But it satisfies the condition that every element of *F A* lies in $Fm[FM]$ for some finite subset $m: M \hookrightarrow A$.

Theorem 4.8 *Let* A *be a category where epimorphisms split and such that there is a cardinal* μ *for which* A *is strictly locally* λ*-presentable and* λ*-presentable objects are closed under subobjects, whenever* $\lambda \geq \mu$ *.*

Then a functor $F : A \rightarrow$ **Set** *preserving preimages has a density comonad iff it is accessible.*

Proof Since epimorphisms split, A has regular factorizations— indeed, locally presentable categories have (strong epi, mono)-factorizations, see [\[3](#page-17-7)]. In view of Theorem [2.1](#page-2-0) we only need to prove the non-existence of a density comonad in case *F* is not accessible. Let us call an element $x \in FA$ λ -accessible if there exists a λ -presentable subobject $m : M \rightarrow A$ with $x \in Fm[FM]$. From the preceding theorem we know that, for all $\lambda > \mu$, *F* possesses an element that is not λ -accessible. Without loss of generality, μ is an infinite regular cardinal.

(1) Define regular cardinals λ_i ($i \in \text{Ord}$) by transfinite recursion as follows:

$$
\lambda_0=\mu;
$$

Given λ_i choose an element $x_i \in FA_i$ for some $A_i \in A$ which is not λ_i -accessible and define λ_{i+1} as the least regular cardinal with $A_i \lambda_{i+1}$ -presentable;

Given a limit ordinal *j* define λ_j as the successor cardinal of $\bigvee_{i \leq j} \lambda_i$.

We thus see that for every ordinal *i* the element x_i is λ_{i+1} -accessible but not λ_i -accessible.

(2) To prove that *F* does not have a density comonad, we present pairwise distinct natural transformations

$$
\alpha^i: 2^F \to 2^F \ (i \in \text{Ord}).
$$

For every object $A \in \mathcal{A}$, a subset $M \subseteq FA$ (i.e., an element of 2^{FA}) and an element $a \in M$, we call the triple (A, M, a) λ_i -stable if there exists a subobject $u_a: U_a \rightarrowtail A$ in A with $a \in Fu_a[FU_a]$ such that for all subobjects $v: V \rightarrow U_a$ we have

if V is
$$
\lambda_i
$$
-presentable, then $M \cap F(u_a v)[F V] = \emptyset$.

Our natural transformation α^i has the following components $\alpha^i_A : 2^{FA} \rightarrow 2^{FA}$:

$$
\alpha_A^i(M) = \{ a \in M \, ; \, (A, M, a) \text{ is } \lambda_i\text{-stable} \}.
$$

We must prove that for every morphism $h : A \rightarrow B$ the naturality square

$$
2^{FB} \xrightarrow{\alpha_B^i} 2^{FB}
$$

$$
(Fh)^{-1}(-)\begin{vmatrix} \downarrow & \downarrow \\ \downarrow & \downarrow \\ 2^{FA} & \downarrow \\ \frac{\alpha_A^i}{\alpha_A^j} & 2^{FA} \end{vmatrix}
$$

commutes. That is, given

$$
M \subseteq FB
$$
 and $\overline{M} = (Fh)^{-1}(M) \subseteq FA$

then for all elements

$$
a \in M
$$
 and $b = Fh(a) \in M$

we need to verify that

 (A, \overline{M}, a) is λ_i -stable $\Leftrightarrow (B, M, b)$ is λ_i -stable.

(a) Let (A, \overline{M}, a) be λ_i -stable. For the given subobject $u_a : U_a \rightarrow A$ form a regular factorization of *hua*:

$$
U_a \xrightarrow{e} U_b
$$

\n
$$
u_a \downarrow \qquad v
$$

\n
$$
A \xrightarrow{h} B
$$

We have $a' \in FU_a$ with $a = Fu_a(a')$, therefore *b* lies in the image of Fu_b :

$$
b = Fh(a) = Fu_b(Fe(a')).
$$

For every subobject $v : V \to U_b$ with *V* λ_i -presentable we need to prove that *M* ∩ $F(u_b v)[F V] = \emptyset$. Choose a splitting w of *e*, i.e., $e \cdot w = id_{U_b}$. Then for the subobject

$$
wv: V \to U_a
$$

we know that $\overline{M} = (Fh)^{-1}(M)$ is disjoint from the image of $F(u_a w v)$. Suppose there exists an element of $M \cap F(u_b v)[FV]$, say, $F(u_b v)(t)$ for some $t \in FV$. Put $t' = F(u_a wv)(t)$, then we derive a contradiction by showing that $t' \in \overline{M}$. Indeed

$$
Fh(t') = F(hu_a w v)(t)
$$

= $F(u_b e w v)(t)$
= $F(u_b v)(t) \in M$.

Thus, $t' \in (Fh)^{-1}(M) = \overline{M}$. (b) Let (B, M, b) be λ_i -stable. Since $Fh(a) = b \in M$ we have

$$
a \in (Fh)^{-1}(M) = \overline{M}.
$$

 \circledcirc Springer

Given the above subobject $u_b: U_b \to B$, we define $u_a: U_a \to A$ as the preimage under *h*:

We have $b' \in FU_b$ with $b = Fu_b(b') = Fh(a)$, and since *F* preserves preimages, there exists $a' \in FU_a$ with $Fu_a(a') = a$.

Given a subobject $v: V \to U_a$ with $V \lambda_i$ -presentable, we prove that $F(u_a v)([F V]$ is disjoint from \overline{M} . For that take the regular factorization of $\overline{h}v$ as in the diagram above. Since *e* is a split epimorphism, *W* is a λ_i -presentable object. Therefore, the image of $F(u_bw)$ is disjoint from *M*.

Assuming that we have $t \in FV$ with $F(u_a v)(t) \in \overline{M}$, we derive a contradiction by showing that for $t' = Fe(t)$ we have $F(u_b w)(t') \in M$. Indeed, since $\overline{M} = (Fh)^{-1}(M)$, we see that $F(hu_a v)(t) \in Fh[\overline{M}] \subseteq M$ and we have

$$
hu_a v = u_b \overline{h} v = u_b w e.
$$

(3) We have established that each $i \in$ Ord yields a natural transformation $\alpha^i : 2^F \rightarrow 2^F$. We conclude the proof by verifying for all ordinals $i \neq j$ that $\alpha^i \neq \alpha^j$. Suppose $i < j$. In (1) we have presented an element $x_i \in FA_i$ which is λ_{i+1} -accessible (because A_i is λ_{i+1} -accessible) but not λ_i -accessible. Let $M_i \subseteq FA_i$ be the set of all elements that are not λ*i*-accessible. Then

$$
(A_i,M_i,x_i)
$$

is clearly λ_i -stable. But it is not λ_i -stable because A_i is λ_i -presentable (since λ_{i+1} is a presentability rank of A_i and $\lambda_{i+1} \leq \lambda_i$). Indeed, no subobject $u_{x_i}: U_{x_i} \to A$ has the property that $x_i \in Fu_{x_i}[FU_{x_i}]$ but $M_i \cap F(u_{x_i}v)[FV] = \emptyset$ for all λ_j -presentable subobjects $v: V \to U_{x_i}$: since A_i is λ_j -presentable, so is U_{x_i} , because λ_j -presentable objects are closed under subobjects in A. Put $v = id_{U_{x_i}}$; then $x_i \in M \cap F(u_{x_i}v)[FV]$.

Consequently, we have

$$
x_i \in \alpha_{A_i}^i(M_i) \text{ but } x_i \notin \alpha_{A_i}^j(M_i).
$$

The following corollary works with set functors preserving preimages. This is a very weak assumption since all "everyday" set functors preserve them:

- (1) The identity and constant functors preserve preimages.
- (2) Products, coproducts, and composites of functors preserving preimages preserve them.
- (3) Thus polynomial functors preserve images.
- (4) The power-set functor, the filter functor and the ultrafilter functor preserve preimages.

Corollary 4.9 *A set functor preserving preimages has a density comonad iff it is accessible.*

5 Examples of Set Functors

Example 5.1 The density comonad of $FX = X^n$ is

$$
CX=X^{n^n}.
$$

More detailed: we prove that the colimit of the diagram $D_X: (-)^n/X \to \mathsf{Set}$ has the component at $a: A^n \to X$ defined as follows

$$
\hat{a}: A^n \to X^{n^n}, t \mapsto a \cdot t^n \text{ (for all } t : n \to A)
$$

It is easy to see that this is a cocone.

Let $\tilde{a}: A^n \to B$ (for all $a: A^n \to X$) be another cocone. Consider the following morphisms of $(-)^n / X$ for every $a : A^n \to X$ and every $t : n \to A$:

Thus the following triangle

commutes. Applied to id*ⁿ* this yields

$$
\widetilde{a}(t)=\widetilde{a}\cdot\widetilde{t}^n(\mathrm{id}_n).
$$

Therefore we have a factorization $f: X^{n^n} \to B$ through the colimit cocone defined by

$$
f(u) = \widetilde{u}(\mathrm{id}_n).
$$

Indeed $\tilde{a} = f \cdot \hat{a}$ since for every *t* we have $\tilde{a}(t) = \tilde{a \cdot t^n}(\text{id}_n) = f(a \cdot t^n) = f \cdot \hat{a}(t)$. It has the set that *f* is unique is easy to see that *f* is unique.

Example 5.2 More generally, for a polynomial functor

$$
FX = \coprod_{i \in I} X^{n_i}
$$

the density comonad is

$$
CX = \coprod_{i \in I} \prod_{j \in I} X^{n_i^{n_j}}.
$$

The colimit cocone for *D_X* has for *a* : $\prod_{i \in I} A^{n_i} \to X$ the component $\hat{a} = \prod_{i \in I} \hat{a}_i$: $\prod_{i \in I} A^{n_i} \to CX$, where $\iint_{i \in I} A^{n_i} \to C X$, where

$$
\hat{a}_i: A^{n_i} \to \prod_{j \in I} X^{n_i^{n_j}} \text{ sends } t: n_i \to A \text{ to } a \cdot \coprod_{j \in I} t^{n_j} : \coprod_{j \in I} n_i^{n_j} \to X.
$$

(The last map is an element of $\prod_{j\in I} X^{n_j^{n_j}}$.) The proof is completely analogous to [5.1:](#page-13-1) for every *a* : $\prod_{i \in I} A^{n_i} \to X$ and $t : n_i \to A$ use the following triangle

Recall that \mathcal{P}_0 denotes the subfunctor of \mathcal{P} with $\mathcal{P}_0X = \mathcal{P}X - \{\emptyset\}.$

Example 5.3 The power-set functor \mathcal{P} and its subfunctor \mathcal{P}_0 do not have a density comonad, since they are not accessible.

Proposition 5.4 *The codensity monad of* \mathcal{P}_0 *is itself.*

Proof (1) We first prove the equality on objects *X* by verifying that natural transformations α : $\mathcal{P}_0^X \to \mathcal{P}_0$ bijectively correspond to nonempty subsets of *X* as follows: we assign to α the subset

$$
\alpha_X(\eta_X)\subseteq X
$$

where η is the unit of \mathcal{P}_0 . The inverse map takes a nonempty set $M \subseteq X$ to the natural transformation $\widehat{M}: \mathcal{P}_0^X \to \mathcal{P}_0$ assigning to each $u: X \to \mathcal{P}_0 A$ the value

$$
\widehat{M}_A(u) = \bigcup_{x \in M} u(x).
$$

(1a) The naturality squares for *M* are easy to verify.

(1b) G_{true} are not M_{true} (i) We grave that for a

(1b) Given α , put $M = \alpha_X(\eta_X)$. We prove that for all $u : X \to \mathcal{P}_0 A$ we have

$$
\alpha_A(u) = M_A(u).
$$

We first verify this for all *u* such that *A* has a disjoint decomposition $u(x)$, $x \in X$. We then have the obvious projection $f : A \rightarrow X$ with

$$
\mathcal{P}_0 f \cdot u = \eta_X.
$$

Thus, the naturality square

$$
(\mathcal{P}_0 A)^X \xrightarrow{\alpha_A} \mathcal{P}_0 A
$$

$$
\mathcal{P}_0 f \cdot (-\Big) \downarrow \qquad \qquad \downarrow \mathcal{P}_0 f
$$

$$
(\mathcal{P}_0 X)^X \xrightarrow{\alpha_X} \mathcal{P}_0 X
$$

yields

$$
\mathcal{P}_0 f(\alpha_A(u)) = \alpha_X(\eta_X) = M.
$$

This clearly implies $\alpha_A(u) = \bigcup$ *x*∈*M u*(*x*).

Next let $u: X \to \mathcal{P}_0 A$ be arbitrary and consider its "disjoint modification" $\overline{u}: X \to \mathcal{P}_0 \overline{A}$ where

$$
\overline{A} = \bigcup_{x \in X} u(x) \times \{x\} \text{ and } \overline{u}(x) = u(x) \times \{x\}.
$$

 $\hat{\mathfrak{D}}$ Springer

We know already that $\alpha_{\overline{A}}(\overline{u}) = \bigcup \overline{u}(x)$. The obvious projection $g : \overline{A} \to A$ fulfils *x*∈*M*

$$
u=\mathcal{P}_0 g\cdot \overline{u}.
$$

The naturality square thus gives

$$
\alpha_A(u) = \mathcal{P}_0 g(\alpha_A(\overline{u})) = \mathcal{P}_0 g\left(\bigcup_{x \in M} \overline{u}(x)\right) = \bigcup_{x \in M} g\left[\overline{u}(x)\right].
$$

This concludes the proof, since $g[\overline{u}(x)] = u(x)$.

(1c) The map $M \mapsto M$ is inverse to $\alpha \mapsto \alpha_X(\eta_X)$. Indeed, if we start with $M \subseteq X$ and form $\alpha = M$, we get

$$
\widehat{M}_X(\eta_X) = \bigcup_{x \in M} \eta_X(x) = M.
$$

Conversely, if we start with α and put $M = \alpha_X(\eta_X)$, then $\alpha = M$: see (1b).
(2) The definition of the nointwise exclusive mannel for \mathcal{D} , an mannhisms,

(2) The definition of the pointwise codensity monad for \mathcal{P}_0 on morphisms $f : X \to Y$ is as follows: a natural transformation α : $\mathcal{P}_0^X \to \mathcal{P}_0$ is taken to the following composite

$$
\mathcal{P}_0^Y \xrightarrow{\mathcal{P}_0^f} \mathcal{P}_0^X \xrightarrow{\alpha} \mathcal{P}_0
$$

If α corresponds to $M = \alpha_X(\eta_X)$, it is our task to verify that $\alpha \cdot \mathcal{P}_0^f$ corresponds to $\mathcal{P}_0 f(M)$. Indeed:

 $\mathcal{P}_0 f(M) = \alpha_Y(\eta_Y \cdot f)$, by naturality of α and η , $= \left(\alpha \cdot \mathcal{P}_0^f\right)_Y(\eta_Y).$

Recall from [\[13\]](#page-17-12) that a set functor is *indecomposable*, i.e., not a coproduct of proper subfunctors, iff it preserves the terminal objects.

Proposition 5.5 *Let F be an indecomposable set functor with a codensity monad T . (1) The functor* $F + 1$ *has the codensity monad*

$$
\widehat{T}X = \prod_{Y \subseteq X} (TY + 1)
$$

with projections π_Y *. This monad assigns to a morphism* $f: X \to X'$ *the morphism* $\overline{T}f: \widehat{T} \times \pi \times \Pi$ $TX \to \prod_{Z \subseteq X'} T(Z+1)$ *with components*

$$
\widehat{T}X \xrightarrow{\pi_Y} T Y + 1 \xrightarrow{Tf_Z+1} T Z + 1 \text{ for all } Z \subseteq X'
$$

where $f_Z: Y \to Z$ *is the restriction of* f *with* $Y = f^{-1}[Z]$ *.*

(2) Every copower $\coprod_M F$ has the codensity monad

$$
X \mapsto (M \times TX)^{M^X}
$$

assigning to a morphism f the morphism $(M \times Tf)^{M^f}$.

Proof (1) Since *F* is indecomposable, so is F^X for every set *X*, hence,

$$
Nat(F^X, F + 1) \simeq Nat(F^X, F) + 1 = TX + 1,
$$

 \circledcirc Springer

consequently, from the natural isomorphism $[F + 1]^X \simeq \coprod_{Y \subseteq X} F^Y$ we get

$$
\begin{aligned} \text{Nat}([F+1]^X, F+1) &\simeq \text{Nat}(\coprod_{Y \subseteq X} F^Y, F+1) \\ &\simeq \prod_{Y \subseteq X} \text{Nat}(F^Y, F+1) \\ &= \prod_{Y \subseteq X} (TY+1). \end{aligned}
$$

(2) We compute

$$
\operatorname{Nat}((\coprod_{M} F)^{X}, \coprod_{M} F) \simeq \operatorname{Nat}(M^{X} \times F^{X}, \coprod_{M} F)
$$

\n
$$
\simeq \prod_{M} \operatorname{Nat}(F^{X}, \coprod_{M} F).
$$

Since F^X is indecomposable, Nat $(F^X, \coprod_M F) \simeq \coprod_M \text{Nat}(F^X, F) \simeq M \times TX$. This yields $(M \times TX)^{M^X}$, as claimed.

Corollary 5.6 *The codensity monad of* P *is given by*

$$
X \mapsto \prod_{Y \subseteq X} \mathcal{P}Y.
$$

Indeed, $\mathcal{P} = \mathcal{P}_0 + 1$ and \mathcal{P}_0 is indecomposable.

Another description of the codensity monad of P : it assigns to every set X all nonexpanding selfmaps ψ of $\mathcal{P}X$ (i.e., self-maps with $\psi Y \subseteq Y$ for all $Y \in \mathcal{P}X$).

Example 5.7 Polynomial functors.

(1) The functor $FX = X^n$ has the codensity monad

$$
TY = (n \times Y)^n.
$$

Indeed, *F* is a right adjoint yielding the monad $T = (-)^n \cdot (n \times -) = (n \times -)^n$. (2) The polynomial functor

$$
FX = \coprod_{i \in I} X^{n_i} \qquad (n_i \text{ arbitrary cardinals})
$$

has the following codensity monad

$$
TY = \prod_{(Y_i)} \coprod_{j \in I} \left(\coprod_{i \in I} n_i \times Y_i \right)^{n_j}
$$

where the product ranges over disjoint decompositions

$$
Y = \bigcup_{i \in I} Y_i
$$

indexed by I . (Here Y_i is allowed to be empty.) This follows from the Codensity Monad Theorem where we compute $(FX)^Y$ as follows: a mapping from *Y* to $\prod_{i \in I} X^{n_i}$ is given by specifying a decomposition (Y_i) and an *I*-tuple of mappings from Y_i to \overline{X}^{n_i} . The latter is an element of $\prod_{i \in I} X^{n_i \times Y_i} \simeq X^{\prod_{i \in I} (n_i \times Y_i)}$, therefore

$$
F^Y \cong \coprod_{(Y_i)} \text{Set}(\coprod_{i \in I} n_i \times Y_i, -).
$$

We conclude, using Yoneda lemma, that

$$
TY = \text{Nat}(F^Y, F)
$$

\n
$$
\simeq \prod_{(Y_i)} F\left(\coprod_{i \in I} n_i \times Y_i\right)
$$

\n
$$
= \prod_{(Y_i)} \coprod_{j \in I} \left(\coprod_{i \in I} n_i \times Y_i\right)^{n_j}
$$

as stated.

Open Problem 5.8 Which set functors possess a codensity monad?

References

- 1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York. Freely available at <http://www.math.uni-bremen.de/~dmb/acc.pdf> (1990)
- 2. Adámek, J., Milius, S., Sousa, L.: On finitary functors and finitely presentable algebras (**in preparation**)
- 3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)
- 4. Appelgate, H., Tierney, M.: Categories with Models. Lecture Notes on Mathematics, vol. 80. Springer, Berlin (1969). (See also Reprints in Theory and Applications of Categories, 18 (2008), 122–185)
- 5. Day, B.: Further criteria for totality. Cahiers de Topologie et Géométrie Différentielle Catégoriques **28**, 77–78 (1987)
- 6. Gabriel, P., Ulmer, F.: Local Präsentierbare Kategorien. Lecture Notes on Mathematics, vol. 221. Springer, Berlin (1971)
- 7. Kock, A.: Continuous Yoneda Representations of a Small Category. Aarhus University (1966) (preprint at [http://home.math.au.dk/kock/CYRSC.pdf\)](http://home.math.au.dk/kock/CYRSC.pdf)
- 8. Linton, F.E.J.: An Outline of Functorial Semantics. Lecture Notes on Mathematics, vol. 80. Springer, Berlin (1969). (See also Reprints in Theory and Applications of Categories, 18 (2008), 11–43)
- 9. Lowen, R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Trial. Oxford Mathematical Publications, Oxford (1997)
- 10. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)
- 11. Street, R., Walters, B.: Yoneda structures on 2-category. J. Algebra **50**, 350–379 (1978)
- 12. Tholen, W.: Note on total categories. Bull. Aust. Math. Soc. **21**, 169–173 (1980)
- 13. Trnková, V.: Some properties of set functors. Comment. Math. Univ. Carolin. **10**, 323–352 (1969)