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Abstract Let k be a commutative Q-algebra. We study families of functors between cat-
egories of finitely generated modules which are defined for all commutative k-algebras
simultaneously and are compatible with base changes. These operations turn out to be Schur
functors associated to k-linear representations of symmetric groups. This result is closely
related to Macdonald’s classification of polynomial functors.
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1 Introduction

Let k be a commutative ring. We would like to understand functors between categories of
finitely generated modules

FR : Modfg(R) → Modfg(R)

which are defined for all commutative k-algebras R simultaneously and behave well with
respect to base changes. This means that there are isomorphisms of S-modules

FR(M) ⊗R S ∼−→ FS(M ⊗R S)

for k-homomorphisms R → S and finitely generated R-modules M , which are coherent
in a suitable sense; see Definition 2.1 for details. We will call them operations over k.
Typical examples include the n-th tensor power M �→ M⊗n , the n-th symmetric power
M �→ Symn(M) and the n-th exterior power M �→ �n(M). More generally, if Vn is any
finitely generated right k[�n]-module, then

M �→ Vn ⊗k[�n ] M⊗n
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is an operation; here the symmetric group �n acts from the left on M⊗n by permuting the
tensor factors. Under finiteness conditions any direct sum of such operations is again an
operation. We will call them Schur operations, because if k is a field and the k-algebra R
is fixed, or even R = k, these functors are called Schur functors in representation theory
[14, Section6.1] and operad theory [21, Section5.1]. In Joyal’s theory of linear species [19,
Chapitre 4] they are called analytic functors. Our main result states that, under suitable
assumptions on k, every operation is a Schur operation.

Theorem Let k be a commutativeQ-algebra. Then every operation Modfg → Modfg over k
is isomorphic to a Schur operation

M �→
⊕

n≥0

Vn ⊗k[�n ] M⊗n

for some sequence of finitely generated right k[�n]-modules Vn. A similar classification
holds for operations Modfp → Modfp between categories of finitely presented modules.

See Theorem 5.12 for a description of those sequences (Vn) which are allowed here. For
example, finite sequences are allowed. Examples 2.4–2.6 show why the theorem fails in
characteristic p > 0.

A similar result was obtained byMacdonald [24] (see also [23, Appendix A in Chapter I])
who considered polynomial functors between categories of finitely generated modules over
a fixed commutative Q-algebra R, and gave a full classification for polynomial functors on
finitely generated projective modules. A similar classification therefore also holds for strict
polynomial functors [7,15,20,28] over a commutativeQ-algebra k, which may be identified
with operations Modfg,proj → Modfg,proj over k between categories of finitely generated
projectivemodules. The classification in terms of Schur operations does not work for k = Z,
but in this case one can at least calculate the K0-ring of the category of strict polynomial
functors [18, Theorem 8.5].

We will adapt several techniques by Macdonald to our situation in order to reduce the
classification from arbitrary operations first to homogeneous and later to multilinear oper-
ations; the latter are functors Modfg(R)n → Modfg(R) which are R-linear in each variable,
are defined for all commutative k-algebras R simultaneously and behave well with respect
to base changes. Their classification is quite simple.

Theorem Let k be a commutative ring and n ∈ N. Then every multilinear operation
Modnfg → Modfg over k is isomorphic to the operation

(M1, . . . , Mn) �→ V ⊗k (M1 ⊗R . . . ⊗R Mn),

where V is some finitely generated k-module.

Although our proof uses finiteness assumptions in a crucial way, we conjecture that mul-
tilinear operations Modn → Mod have the same classification. For this it suffices to consider
the case n = 1, i.e. linear operations. The classification of all operationsMod → Mod would
be a consequence.

The mentioned description of operations is actually the “essential surjectivity” part of the
following equivalence of categories, which is our main result; here “bounded” refers to a
certain finiteness condition introduced in Sect. 4.

Theorem Let k be a commutative Q-algebra. Then the category of bounded operations
Modfg → Modfg over k is equivalent to the category of finite sequences (Vn)n∈N of finitely
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generated right k[�n]-modules. A similar classification is true for bounded operations
Modfp → Modfp.

See Theorem 5.12 for a description of the category of all operationsModfg → Modfg, and
see Remark 5.11 for a description of operations Modnfg → Modfg with n arguments.

Our result may be interpreted as follows: LetP = ∐
n≥0 �n be the permutation groupoid.

Then the category of bounded operationsModfp → Modfp over k is equivalent to the category

P̂
fp
k of finitely presented functorsPop → Modfp(k). This is actually an equivalence of k-linear

tensor (i.e. symmetric monoidal) categories, when P̂
fp
k is equipped with Day convolution.

Since the permutation groupoid P is the tensor category freely generated by a single object,
it follows that P̂fp

k is the finitely cocomplete k-linear tensor category freely generated by
an object X [3, Remark 5.1.14]; for this reason we denote it by Modfp(k)[X ]. It follows
rather formally from the 2-categorical Yoneda Lemma that the category of operations which
are defined on all finitely cocomplete k-linear tensor categories simultaneously and behave
well with respect to base changes is equivalent to Modfp(k)[X ] (cf. [8]). In this respect, our
result says that, if k is a Q-algebra, bounded operations on finitely presented modules over
commutative k-algebras are “universal enough” to be defined on arbitrary finitely cocomplete
k-linear tensor categories. This is quite surprising. It is also quite interesting that the study
of operations on modules is equivalent to the study of representations of symmetric groups.

The author’s motivation to study operations on modules originates from the contravariant
equivalence of 2-categories between tensorial stacks and stacky tensor categories (cf. [3,
Section3.4] and [6, Section3.5]). It has the following finitely presented analogue (which has
the advantage that some set-theoretic issues disappear): To every stack X over a commuta-
tive ring k, which we allow to be fibered in categories and also be possibly non-algebraic,
we may associate the finitely cocomplete k-linear tensor category Qcohfp(X ) of quasi-
coherent modules of finite presentation. These are precisely the operations X → Modfp
over k. Conversely, to every finitely cocomplete k-linear tensor category C we may asso-
ciate the stack Specfp(C) over k which maps a commutative k-algebra R to the category
Specfp(C)(R) := Hom f c⊗/k(C,Modfp(R)) of finitely cocontinuous k-linear tensor functors
from C into Modfp(R). This defines a 2-adjunction

{stacks over k}
{
finitely cocomplete k-linear
tensor categories

}op

.⊥
Qcohfp

Specfp

We call a stack X over k fp-tensorial if the canonical morphism X → Specfp(Qcohfp(X ))

is an equivalence, and a finitely cocomplete k-linear tensor category C is called fp-stacky
if the canonical morphism C → Qcohfp(Specfp(C)) is an equivalence. Thus, there is a
contravariant equivalence of 2-categories between fp-tensorial stacks over k and fp-stacky
finitely cocomplete k-linear tensor categories. Tensorial schemes and stacks have been
investigated in [3,6,17]. It is natural to ask if the tensor category Modfp(k)[X ], the “poly-
nomial 2-ring in one variable over k” (cf. [9]), is fp-stacky. Its universal property implies
Specfp(Modfp[X ]) 	 Modfp. Therefore,Qcohfp(Specfp(Modfp(k)[X ])) identifieswith the cat-
egory of operations Modfp → Modfp over k. The canonical tensor functor from Modfp(k)[X ]
associates to every finite sequence of finitely presented k[�n]-modules Vn the corresponding
Schur operation

M �→
⊕

n∈N
Vn ⊗k[�n ] M⊗n .
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Therefore, our result says that, if k is a Q-algebra, this functor is fully faithful and that its
essential image consists of bounded operations. In particular, Modfp(k)[X ] is not fp-stacky,
since for example

⊕
n∈N �n is an operation on Modfp which is not bounded. We may say

that Modfp(k)[X ] is approximately fp-stacky.
These issues might disappear in the setting of arbitrary, not necessarily finitely presented,

modules. However, we could not prove the classification of linear operations in this generality
so far. We conjecture that Mod(k)[X ] = P̂k is stacky (from which it would follow that the
stackMod is tensorial), i.e., that it is equivalent to the category of operationsMod → Mod over
k via Schur operations. More generally, Mod(k)[X1, . . . , Xn] should be stacky and hence be
equivalent to the category of operations Modn → Mod over k.

Another interesting problem is to describe the category of operations CAlg → Mod from
commutative algebras to modules. Every functor V : FinSetop → Mod(k), i.e. augmented
symmetric simplicial k-module, induces such an operation via the coend

A �→
∫ X∈FinSet

V (X) ⊗k A⊗X .

We may ask if this defines an equivalence [FinSetop,Mod(k)] ∼−→ [CAlg,Mod]. Since
[FinSetop,Mod(k)] is the cocomplete k-linear tensor category freely generated by a com-
mutative algebra object [16], this question asks if [FinSetop,Mod(k)] is stacky.

Organization of the Paper

The paper is organized as follows: In Sect. 2 we give the basic definitions concerning opera-
tions. In Sect. 3 we classify linear and multilinear operations. In Sect. 4 we show that every
operation decomposes uniquely into homogeneous operations. In Sect. 5 we discuss the lin-
earization of a homogeneous operation and use it to prove ourmain theorems. In theAppendix
we give a constructive proof of the classification of linear operations.

2 Operations

If R is a ring, we will denote by Mod(R) the category of right R-modules. The full subcate-
gories of finitely generated resp. finitely presented right R-modules are denoted byModfg(R)

resp.Modfp(R). As usually, when R is commutative, we will not always distinguish between
left and right modules.
Definition 2.1 Let k be a commutative ring. An operation Mod → Mod over k is a family
of functors

FR : Mod(R) → Mod(R),

defined for every commutative k-algebra R, equipped with isomorphisms of S-modules

θ f (M) : FR(M) ⊗R S ∼−→ FS(M ⊗R S),

for each k-homomorphism f : R → S, natural in M ∈ Mod(R), such that the following two
coherence conditions are satisfied: the diagram

FR(M) ⊗R R FR(M ⊗R R)

FR(M)

θidR (M)

∼=∼=
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commutes, and for all k-homomorphisms f : R → S, g : S → T the diagram

(FR(M) ⊗R S) ⊗S T FS(M ⊗R S) ⊗S T FT ((M ⊗R S) ⊗S T )

FR(M) ⊗R T FT (M ⊗R T )

θ f (M)⊗ST

∼=

θg(M⊗R S)

∼=
θg◦ f (M)

commutes.
A morphism of operations (F, θ) → (F ′, θ ′) is defined as a family of morphisms of

functors αR : FR → F ′
R , defined for every commutative k-algebra R, such that for all

k-homomorphisms f : R → S and all R-modules M the diagram

FR(M) ⊗R S FS(M ⊗R S)

F ′
R(M) ⊗R S F ′

S(M ⊗R S)

θ f (M)

αR(M)⊗S αS(M⊗R S)

θ ′
f (M)

commutes.
Usually we will suppress the isomorphisms θ f from the notation. Operations of the form

Modfg → Modfg and Modfp → Modfp over k are defined in a similar way. For fixed n ∈ N,
operations with n arguments F : Modn → Mod are defined in a similar way, including the
variants with Modfg and Modfp. Here, we require natural isomorphisms

FR(M1, . . . , Mn) ⊗R S ∼−→ FS(M1 ⊗R S, . . . , Mn ⊗R S).

Example 2.2 Let n ∈ N. The most basic example of an operation is the family of functors

M �→ M⊗R n := M ⊗R · · · ⊗R M,

equipped with the canonical isomorphisms

M⊗R n ⊗R S ∼−→ (M ⊗R S)⊗S n,

mapping (m1 ⊗· · ·⊗mn)⊗ s to (m1 ⊗1)⊗· · ·⊗ (mn ⊗1) · s. For n = 0 this is the constant
operation M �→ R, and for n = 1 the identity operation M �→ M . The most basic example
of an operation with two arguments is the tensor product (M, N ) �→ M ⊗R N equipped with
the canonical isomorphisms (M ⊗R N ) ⊗R S ∼−→ (M ⊗R S) ⊗S (N ⊗R S).

Example 2.3 If I is any set, then the direct sum M �→ M⊕I defines an operation over k, but
the direct product M �→ MI does not unless k is the zero ring or I is finite.

The next three examples illustrate why our classification result requires that k is a com-
mutative Q-algebra.

Example 2.4 If k is any commutative ring, then the second exterior power

M �→ �2(M) = M⊗2/〈m ⊗ m : m ∈ M〉
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defines an operation over k. If 2 is invertible in k, then we have

�2(M) = M⊗2/〈m ⊗ n + n ⊗ m : m, n ∈ M〉 ∼= V ⊗k[�2] M⊗2,

where V denotes the alternating representation of�2 of rank 1. However, when k is a field of
characteristic 2, we cannot find a representation V of �2 such that there is an isomorphism
of operations �2(M) ∼= V ⊗k[�2] M⊗2. This also reflects the observation that we cannot
define �2 in arbitrary finitely cocomplete symmetric monoidal k-linear categories unless 2
is invertible in k [3, Remark 4.4.7].

Example 2.5 If k is any commutative ring, then the divided power algebra [27, Chapitre III]
M �→ �(M) as well as its homogeneous parts M �→ �d(M) provide operations over k; the
base change isomorphisms are constructed in [27, Théorème III.3]. If k is a commutative
Q-algebra, then there is an isomorphism of operations �d ∼= Symd , but this is false if k is a
field of characteristic p > 0.

Example 2.6 Assume that k is a commutative Fp-algebra. Then we can define an operation
over k by mapping an R-module M to M ⊗R,ϕR R, where ϕR : R → R is the Frobe-
nius homomorphism. For a fixed k-algebra R this is usually called the Frobenius twist [15,
Section1]. The base change isomorphisms for f : R → S are given by

(M ⊗R,ϕR R) ⊗R S ∼−→ M ⊗R, f ◦ϕR S = M ⊗R,ϕS◦ f S
∼−→ (M ⊗R S) ⊗S,ϕS S.

Remark 2.7 If F : Mod → Mod is an operation over k and R is a commutative k-algebra,
then we have

FR(R) ∼= FR(k ⊗k R) ∼= Fk(k) ⊗k R.

If f ∈ R and M is some R-module, then we have

FR(M)[ f −1] ∼= FR[ f −1]
(
M[ f −1]).

If G is a commutative monoid, then we use the notation M[G] := M ⊗R R[G], and we have
FR(M)[G] ∼= FR[G]

(
M[G]).

For the special case G = Nd this becomes

FR(M)[T1, . . . , Td ] ∼= FR[T1,...,Td ]
(
M[T1, . . . , Td ]

)
.

Remark 2.8 Wemay rephrase the definition of an operation using 2-categorical language [5]
as follows. There is a pseudofunctor

Mod : CAlg(k) → CAT

which associates to every commutative k-algebra R its category of R-modulesMod(R) and to
every k-homomorphism R→ S the base change functor�⊗R S equippedwith the usual cohe-
rence isomorphisms; � denotes a placeholder. Here, CAT denotes the “2-category” of cate-
gories; one may use Grothendieck universes in order to make this precise. Then an operation
Mod → Mod is just a pseudonatural transformation Mod → Mod, and a morphism of
operations is just a modification between them. A similar statement holds for operations
Modn → Mod and the variants Modfg and Modfp.
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Remark 2.9 In algebraic geometry, pseudonatural transformationsX → Mod are sometimes
called quasi-coherent modules on X , especially when X is a stack (say, in the étale topology
on the category of affine k-schemes). If the target is Modfg or Modfp, these quasi-coherent
modules are called of finite type resp. of finite presentation. The pseudofunctors Mod, Modfg
and Modfp are stacks by descent theory [29], and operations on them are just quasi-coherent
modules (of finite type, resp. of finite presentation) on themselves.

Remark 2.10 Up to size issues, there is a “category” of operations over k, which we will
denote by [Mod,Mod]. As with every category of quasi-coherent modules, this is actually a
small-cocomplete symmetric monoidal k-linear category (which includes, by definition, that
⊗ is cocontinuous and k-linear in each variable). Colimits and tensor products are computed
pointwise:

(colimi Fi )R(M) = colimi
(
(Fi )R(M)

)
,

1R(M) = R,

(F ⊗ G)R(M) = FR(M) ⊗ FR(M).

Operations have an additional structure, given by composition:

(F ◦ G)R(M) = FR(GR(M)).

This defines another monoidal structure on [Mod,Mod], which is however not symmetric
and not cocomplete. We remark that the corresponding monoidal structure on the category
of linear species [Pop,Mod(k)] is the substitution product [19, Chapitre 4]. The “category”
[Modn,Mod] of operations Modn → Mod is also a small-cocomplete symmetric monoidal
k-linear category, but it has no composition when n > 1. The “categories” [Modnfg,Modfg]
and [Modnfp,Modfp] are defined similarly.

Remark 2.11 If is not clear a priori if [Mod,Mod] is small-complete, and if so how the limits
are computed. It is even less clear if [Mod,Mod] is an abelian category.

Remark 2.12 IfModfg,proj : CAlg(k) → CAT denotes the pseudofunctor of finitely generated
projective modules, there is a restriction functor

[Modfg,Modfg] → [Modfg,proj,Modfg].
It has no a priori reason to be fully faithful, let alone to be an equivalence. The category of strict
polynomial functors by Friedlander and Suslin may be identified with [Modfg,proj,Modfg,proj]
by using [7, Proposition 2.5]. Some authors [20,28] allow the codomain to be Mod, but the
domain in the theory of strict polynomial functors has always been Modfg,proj. One can use
[2, Theorem 2.14] to define an extension functor

[Modproj,Mod] → [Mod,Mod],
which again has no a priori reason to be an equivalence. Therefore the category of operations
is a priori just a variant of the category of strict polynomial functors, and a description of one
category does not directly imply a description of the other one.

There is another difference between operations and strict polynomial functors.

Remark 2.13 The components FR : Mod(R) → Mod(R) of an operation F admit an enrich-
ment in the cartesian monoidal category of functors [CAlg(R),Set] as follows: We may view
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Mod(R) as a category enriched in [CAlg(R),Set] by defining, for every pair of R-modules
(M, N ), the functor HomR(M, N ) : CAlg(R) → Set on objects S by

HomR(M, N )(S) := HomS(M ⊗R S, N ⊗R S).

The map of sets FR : HomR(M, N ) → HomR(FR(M), FR(N )) extends to a natural
transformation HomR(M, N ) → HomR(FR(M), FR(N )) via mapping an S-linear map
f : M ⊗R S → N ⊗R S to the S-linear map

FR(M) ⊗R S ∼−→ FS(M ⊗R S)
FS( f )−−−→ FS(N ⊗R S)

∼−→ FR(N ) ⊗R S.

This extra structure of FR will be very useful in Sect. 4. It is similar, but not identical to the
enrichment in the definition of a strict polynomial functor [28]: Here one requires maps of
sets HomR(M, N ) ⊗R S → HomR(FR(M), FR(N )) ⊗R S which are natural in S, i.e. that
HomR(M, N ) → HomR(FR(M), FR(N )) is a polynomial rule (“lois polynomes”) in the
sense of Roby [27]. The canonical map

HomR(M, N ) ⊗R S → HomS(M ⊗R S, N ⊗R S)

is bijective if M is finitely generated projective, but in general it is neither injective nor
surjective.

3 Linear and Multilinear Operations

Linear and multilinear operations provide a basic class of operations which we are going to
classify first.

Definition 3.1 Let k be a commutative ring. An operation F : Modfg → Modfg over k is
called linear if for every commutative k-algebra R the functor

FR : Modfg(R) → Modfg(R)

is R-linear. This defines a full subcategory

[Modfg,Modfg]1 ⊆ [Modfg,Modfg].
It contains the identity operation and is closed under composition, therefore may be regarded
as a monoidal k-linear category. The category [Modfp,Modfp]1 is defined in a similar way.

Example 3.2 Let V be some finitely generated k-module. Then M �→ V ⊗k M becomes a
linear operation using the natural isomorphisms

(V ⊗k M) ⊗R S ∼−→ V ⊗k (M ⊗R S)

for k-homomorphisms R → S. In fact, this construction induces a k-linear functor

Modfg(k) → [Modfg,Modfg]1, V �→ V ⊗k �.

We may equip this functor with the structure of a monoidal functor by using the natural
isomorphisms k ⊗k � ∼−→ � and (V ⊗k W ) ⊗k � ∼−→ V ⊗k (W ⊗k �).

Theorem 3.3 The monoidal functor constructed above yields an equivalence of monoidal
k-linear categories

Modfg(k) 	 [Modfg,Modfg]1.
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The same construction yields

Modfp(k) 	 [Modfp,Modfp]1.

Proof We construct an explicit pseudo-inverse functor. Let F : Modfg → Modfg be a linear
operation over k. We associate to it the finitely generated k-module V := Fk(k). If M is
some finitely generated R-module, then there is a natural R-linear map

M ∼−→ HomR(R, M) −→ HomR(FR(R), FR(M))
∼−→ HomR(V ⊗k R, FR(M))

∼−→ Homk(V, FR(M)|k),
which corresponds to a natural R-linear map

αR(M) : V ⊗k M → FR(M).

This is, in fact, a morphism of linear operations α : V ⊗k � → F , as can be checked from
the coherence condition in Definition 2.1 applied to k → R → S. We have to show that it is
an isomorphism. By Remark 2.7, it is an isomorphism when M = R. Since linear operations
are additive, it is also an isomorphism when M is a finitely generated free R-module.

We first show that αR(M) is an epimorphism for every R-module M . By taking the
cokernel of α, which is a linear operation again, it suffices to prove the following: If G is a
linear operation which vanishes on finitely generated free modules, then G = 0. Take any
finitely generated R-module M . If p is any prime ideal of R, we have

GQ(R/p)(M ⊗R Q(R/ p)) = 0

since Q(R/ p) is a field and therefore M ⊗R Q(R/ p) is free. It follows that

0 = GR(M) ⊗R Q(R/ p) ∼= GR(M)p/ pGR(M)p.

Nakayama’s Lemma implies GR(M)p = 0. Since p was arbitrary, this shows GR(M) = 0.
It remains to prove that αR(M) : V ⊗k M → FR(M) is injective. If this happens to be the

case, let us call M good. Since linear functors are additive, direct summands of goodmodules
are good. Since M is a direct summand of M ⊕ R, which has the structure of a commutative
R-algebra in which M squares to zero, we may assume that M is the underlying R-module
of a commutative R-algebra S. More generally, we assume that M = N |R is the underlying
R-module of some good S-module N , where S is a commutative R-algebra. Consider the
following commutative diagram:

V ⊗k M ((V ⊗k M) ⊗R S)|R (V ⊗k (M ⊗R S))|R (V ⊗k N )|R

FR(M) (FR(M) ⊗R S)|R FS(M ⊗R S)|R FS(N )|R

α

unit ∼

α

counit

α α

unit ∼ counit

Here unit and counit refer to the adjunction between extending and restricting scalars. The
composition V ⊗k M → (V ⊗k N )|R is the identity, and α : (V ⊗k N )|R → FS(N )|R is an
isomorphism since N is a good S-module. The diagram implies that α : V ⊗k M → FR(M)

is a split monomorphism. Therefore, M is a good R-module. ��

Remark 3.4 The usage of Nakayama’s Lemma in the proof above is the only reason why we
have restricted ourselves to finitely generated modules.
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Remark 3.5 One might wonder if there is a constructive proof of Theorem 3.3, which does
neither use the existence of prime ideals nor the law of the excluded middle. This is indeed
possible and will be shown in the Appendix.

Definition 3.6 Let k be a commutative ring and n ∈ N. An operation with n arguments
F : Modnfg → Modfg will be called multilinear if it is linear in each variable. This
means that for every index 1 ≤ i ≤ n and every family of finitely generated R-modules
M1, . . . , Mi−1, Mi+1, . . . , Mn the functor

FR(M1, . . . , Mi−1,�, Mi+1, . . . , Mn) : Modfg(R) → Modfg(R)

is R-linear. This defines a full subcategory

[Modnfg,Modfg]1,...,1 ⊆ [Modnfg,Modfg].
For n = 1 we recover [Modfg,Modfg]1.
Example 3.7 Let V be some finitely generated k-module. Then

Modfg(R)n → Modfg(R), (M1, . . . , Mn) �→ V ⊗k (M1 ⊗R · · · ⊗R Mn)

becomes a multilinear operation using the natural isomorphisms

(V ⊗k (M1 ⊗R · · · ⊗R Mn)) ⊗R S ∼−→ V ⊗k ((M1 ⊗R S) ⊗S · · · ⊗S (M1 ⊗R S)).

In fact, this induces a functor Modfg(k) → [Modnfg,Modfg]1,...,1.
Theorem 3.8 The functor constructed above yields an equivalence of categories

Modfg(k) 	 [Modnfg,Modfg]1,...,1.
The same construction yields

Modfp(k) 	 [Modnfp,Modfp]1,...,1.
Proof As in Theorem 3.3, we construct a pseudo-inverse functor by mapping a multilinear
operation F : Modnfg → Modfg to the finitely generated k-module V := Fk(k, . . . , k), and
the natural R-linear maps

M1 ⊗R · · · ⊗R Mn
∼−→ HomR(R, M1) ⊗R · · · ⊗R HomR(R, Mn)

−→ HomR
(
FR(R, . . . , R), FR(M1, . . . , Mn)

)

∼−→ Homk(V, FR(M1, . . . , Mn)|k
induce a morphism of multilinear operations

V ⊗k (M1 ⊗R · · · ⊗R Mn) → FR(M1, . . . , Mn).

It suffices to prove that it is an isomorphism. We will argue by induction on n, the case n = 0
being trivial. Now let us assume n ≥ 1 and that the theorem is true for n − 1. Let us fix
some commutative k-algebra R and some R-module M1. Then we may define a multilinear
operation Modn−1

fg → Modfg over R by

(M2, . . . , Mn) �→ FS(M1 ⊗R S, M2, . . . , Mn)

for S-modules M2, . . . , Mn , where S is a commutative R-algebra. By induction hypothesis,
the canonical homomorphism

FR(M1, R, . . . , R) ⊗R (M2 ⊗S · · · ⊗S Mn) → FS(M1 ⊗R S, M2, . . . , Mn)
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is an isomorphism. We will only need this for S = R. Varying R and M1, we observe that
M1 �→ FR(M1, R, . . . , R) defines a linear operation over k. Thus, by Theorem 3.3, the
canonical homomorphism

V ⊗k M1 → FR(M1, R, . . . , R)

is an isomorphism. We finish the proof by composing this isomorphism with the previous
one. ��
Remark 3.9 We have shown rather indirectly that multilinear operations are right exact in
each variable, andwe have found a characterization of tensor products which does not involve
right exactness in any way, but rather base change. Notice that the Eilenberg–Watts Theorem
[11] would immediately imply the classification of linear operations Mod → Mod (resp.
Modfp → Modfp) if we already knew that they consisted of cocontinuous (resp. right exact)
functors.

4 Homogeneous Operations

In this section we will show that every operation Mod → Mod over a commutative ring k
decomposes uniquely into homogeneous operations. This is analogous to the homogeneous
decomposition of strict polynomial functors [15, §2].

Lemma 4.1 Let R be a commutative k-algebra and let A be a commutative R-bialgebra.
Consider the category of A-comodules CoMod(A) with its forgetful functor to Mod(R). If
F : Mod → Mod is an operation over k, then the functor FR : Mod(R) → Mod(R) lifts to a
functor CoMod(A) → CoMod(A).

CoMod(A) CoMod(A)

Mod(R) Mod(R)
FR

Proof LetM be an R-module equippedwith an A-coaction h : M → M⊗R A. This coaction
corresponds 1:1 to a family of monoid homomorphisms

αB : HomCAlg(R)(A, B) → EndMod(B)(M ⊗R B)

for commutative R-algebras B which are natural in B [10, II, §2, no 2]. The monoid structure
on HomCAlg(R)(A, B) is induced by the commutative bialgebra structure of A. Specifically,
αB( f ) is defined from h by

M ⊗R B
h⊗B−−−→ M ⊗R A ⊗R B

M⊗ f ⊗B−−−−−→ M ⊗R B ⊗R B
M⊗μB−−−−→ M ⊗R B.

Conversely, a family (αB)B∈CAlg(R) is mapped to the coaction

M
ηA−−→ M ⊗R A

αA(idA)−−−−→ M ⊗R A.

Using this description of comodule structures, we obtain an A-coaction on FR(M) using the
natural monoid homomorphisms (cf. Remark 2.13)

EndMod(B)(M ⊗R B) → EndMod(B)(FB(M ⊗R B))
∼−→ EndMod(B)(FR(M) ⊗R B).

Specifically, the R-linear coactionM → M⊗R A corresponds by adjunction to some A-linear
map M ⊗R A → M ⊗R A, which induces an A-linear map FR(M) ⊗R A → FR(M) ⊗R A
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(using the identification FR(M)⊗R A ∼= FA(M⊗R A)), which corresponds to some R-linear
map FR(M) → FR(M) ⊗R A, which is the A-coaction on FR(M). If another A-comodule
h′ : M ′ → M ′ ⊗R A is given, one easily checks that for every homomorphism M → M ′ of
A-comodules the induced homomorphism FR(M) → FR(M ′) is also a homomorphism of
A-comodules. ��
Definition 4.2 If G is a commutative monoid, let us denote by grGMod(R) the category
of G-graded R-modules. If M = ⊕

g∈G Mg is a graded R-module and R → S is a k-
homomorphism, we endow M ⊗R S with the grading M ⊗R S = ⊕

g∈G Mg ⊗R S. This
defines a pseudofunctor grGMod : CAlg(k) → CAT together with a forgetful operation
grGMod → Mod.

Corollary 4.3 Let G be a commutative monoid. Every operation Mod → Mod lifts, along
the forgetful operation grGMod → Mod, to an operation grGMod → grGMod.

grGMod grGMod

Mod ModF

Proof This follows from Lemma 4.1 because grGMod(R) is isomorphic to the category of
R[G]-comodules [10, II, §2, 2.5] when the monoid algebra R[G] is equipped with the counit
g �→ 1 and the comultiplication g �→ g ⊗ g. Specifically, if M = ⊕

g∈G Mg is G-graded,
the corresponding coaction is the R-linear map

M → M[G], ∑
g∈G mg �→ ∑

g∈G mg · g.
By adjunction this corresponds to an R[G]-linear map M[G] → M[G], which induces an
R[G]-linear map

FR(M)[G] → FR(M)[G].
The homogeneous component FR(M)g ⊆ FR(M) of degree g ∈ G is the submodule
consisting of those elements u ∈ FR(M) such that u · 1 ∈ FR(M)[G] gets mapped to
u · g ∈ FR(M)[G]. If R → S is a k-homomorphism, one has to check that the isomorphism
θ : FR(M) ⊗R S → FS(M ⊗R S) preserves the gradings. This follows from the coherence
conditions in Definition 2.1 applied to R → R[G] → S[G] and R → S → S[G]. ��
Definition 4.4 Let F : Mod → Mod be an operation. By Corollary 4.3, F lifts to an
operation grNMod → grNMod. There is a canonical operation Mod → grNMod which
equips every module with the trivial grading concentrated in degree 1. The composition
Mod → grNMod → grNMod corresponds to a family of operations Fn : Mod → Mod with
an isomorphism of operations

⊕

n∈N
Fn

∼−→ F.

We call Fn the homogeneous component of degree n of F . Specifically, if M is some R-
module, then (Fn)R(M) consists of those elements u ∈ FR(M) such that FR[T ]

(
T · idM[T ]

)

maps u · 1 to u · T n ∈ FR(M)[T ] (using the identification FR[T ](M[T ]) ∼= FR(M)[T ]).
Definition 4.5 Let n ∈ N. An operation F : Mod → Mod is called homogeneous of degree
n if for every R-module M we have

FR[T ]
(
T · idM[T ]

) = T n · idFR[T ](M[T ]) .
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Let [Mod,Mod]n ⊆ [Mod,Mod] denote the full subcategory of operations which are homo-
geneous of degree n.

Corollary 4.6 There is an equivalence of categories
∏

n∈N
[Mod,Mod]n → [Mod,Mod], (Fn)n∈N �→

⊕

n∈N
Fn .

Proof We define a pseudo-inverse functor by F �→ (Fn)n∈N, where Fn is the homogeneous
component of degree n of F . Using flatness of R → R[T ], it follows easily that Fn is, in
fact, homogeneous of degree n. If F, F ′ are two operations, using the compatibility with the
base change R → R[T ], one checks that every morphism F → F ′ restricts to a morphism
Fn → F ′

n , where n ∈ N is arbitrary. Finally, notice that the homogeneous component of
degree n of

⊕
n∈N Fn is precisely Fn . ��

Using similar definitions for finitely generated modules, we obtain:

Corollary 4.7 There is a fully faithful functor

[Modfg,Modfg] →
∏

n∈N
[Modfg,Modfg]n, F �→ (Fn)n∈N.

Its essentially image consists of those families (Fn)n∈N of operations, homogeneous of degree
n, such that for every finitely generated R-module M almost all images (Fn)R(M) vanish;
in other words,

⊕
n∈N(Fn)R(M) is supposed to be finitely generated.

Example 4.8 The n-th exterior power�n is an operation which is homogeneous of degree n.
The direct sum

⊕
n∈N �n is an operation both onMod and onModfg. This is because if some

R-module M is generated by n elements, then �m
R (M) = 0 for all m > n. This shows that

there are operations on Modfg with infinitely many non-trivial homogeneous components.

Definition 4.9 Let us call an operation F : Modfg → Modfg bounded if there is some
n ∈ N such that Fm = 0 for all m > n. We get a full subcategory [Modfg,Modfg]bounded of
[Modfg,Modfg].
Remark 4.10 By Corollary 4.7, we have

[Modfg,Modfg]bounded 	
⊕

n∈N
[Modfg,Modfg]n .

Here, we use the notation
⊕

i∈I Ci for the full subcategory of
∏

i∈I Ci consisting of those
objects (Xi )i∈I such that almost all Xi are zero.

Corollaries 4.6 and 4.7 allow us to restrict our attention to the categories of homogeneous
operations [Mod,Mod]n resp. [Modfg,Modfg]n for some fixed value of n ∈ N.

In the remainder of this section, each time Mod may be replaced by Modfg.

Lemma 4.11 Let F : Mod → Mod be an operation. Then F is homogeneous of degree n if
and only if for every commutative k-algebra R, every R-module M and every element r ∈ R
we have FR

(
r · idM

) = rn · idFR(M).

Proof The direction⇐� follows by applying the assumption to the R[T ]-module M[T ] and
the element T ∈ R[T ]. The direction �⇒ follows by applying the base change R[T ] → R,
T �→ r to the assumption FR[T ]

(
T · idM[T ]

) = T n · idFR(M)[T ]. ��
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Our next result shows that homogeneous operations consist of polynomial functors in the
sense of [24, Sections1 and 2]. It also shows the connection to Roby’s polynomial rules (cf.
[27, Théorème I.1] and Remark 2.13).

Lemma 4.12 Let F : Mod → Mod be an operation which is homogeneous of degree n. If
M, N are R-modules, then the map

FR : HomR(M, N ) → HomR
(
FR(M), FR(N )

)

has the following property: Let d ∈ N and f1, . . . , fd ∈ HomR(M, N ). Then there is a
polynomial

P ∈ HomR
(
FR(M), FR(N )

)[
T1, . . . , Td

]

which is homogeneous of degree n, such that for all r1, . . . , rd ∈ R we have

FR(r1 · f1 + · · · + rd · fd) = P(r1, . . . , rd).

For example, in case of the homogeneous operation M �→ M⊗2 of degree n = 2 and
d = 2, we have

(r1 · f1 + r2 · f2)
⊗2 = r21 · f ⊗2

1 + r1r2 · ( f1 ⊗ f2) + r1r2 · ( f2 ⊗ f1) + r22 · f ⊗2
2 .

Proof Let 	 : M → M⊕d be the diagonal and ∇ : N⊕d → N be the codiagonal. Then we
may factor the morphism r1 · f1 + · · · + rd · fd as follows:

M M⊕d M⊕d N⊕d N	
⊕d

i=1 ri ·idM
⊕d

i=1 fi ∇

Thus, it suffices to write FR(⊕d
i=1ri · idM ) as a homogeneous polynomial in r1, . . . , rd with

coefficients in the ring S := EndR
(
FR(M⊕d)

)
. Using the base change R[T1, . . . , Td ] → R,

Ti �→ ri , we see that it suffices to consider the universal case: We have to prove that

α := FR[T1,...,Td ]
(⊕d

i=1Ti · idM[T1,...,Td ]
) : FR(M⊕d)

[
T1, . . . , Td

]

→ FR(M⊕d)
[
T1, . . . , Td

]

is induced by a homogeneous polynomial of degree n in S[T1, . . . , Td ]. We consider theNd -
grading on M⊕d for which, for every 1 ≤ i ≤ d , the i-th summand M is the homogeneous
component of degree ei = (0, . . . , 1, . . . , 0). ByCorollary 4.3, themodule FR(M⊕d) inherits
an Nd -grading. In fact, α|FR(M⊕d ) is the corresponding R[T1, . . . , Td ]-coaction. In general,
if we apply to anNd -graded module, i.e. an R[T1, . . . , Td ]-comodule, the base change along
the morphism of bialgebras R[T1, . . . , Td ] → R[T ], Ti �→ T , we obtain the N-grading of
total degrees. Applying this to M⊕d , we get the trivial N-grading concentrated in degree 1.
Since F is homogeneous of degree n, we deduce that theNd -grading on FR(M⊕d) has only
homogeneous components of total degree n, the other ones being zero. This means that the
homomorphism

α|FR(M⊕d ) : FR(M⊕d) → FR(M⊕d)[T1, . . . , Td ]
lands inside the R-submodule of polynomials which are homogeneous of degree n over
FR(M⊕d). Since there are only finitely many (i1, . . . , id) ∈ Nd with i1 + · · · + id = n, we
conclude that α|FR(M⊕d ) is given by a polynomial over S which is homogeneous of degree
n. ��
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Corollary 4.13 An operation F : Mod → Mod is homogeneous of degree 1 if and only if it
is linear. In particular, the two definitions of [Mod,Mod]1 in Definitions 3.1 and 4.5 coincide.
Proof (Cf. [24, Remark (2.3)]) The direction ⇐� is trivial. In order to prove �⇒, we apply
Lemma 4.12. If f1, f2 : M → N are two R-linear maps, there are two R-linear maps
g1, g2 : FR(M) → FR(N ) such that FR(r1 · f1 + r2 · f2) = r1 · g1 + r2 · g2 holds for all
r1, r2 ∈ R. For r1 = 1, r2 = 0 this shows g1 = FR( f1). Likewise, we have g2 = FR( f2).
Thus, FR(r1 · f1 + r2 · f2) = r1 · FR( f1) + r2 · FR( f2) holds for all r1, r2 ∈ R. This means
that FR is R-linear. ��

Homogeneous operations of degree 0 are easy to classify.

Lemma 4.14 There is an equivalence of categories [Mod,Mod]0 	 Mod(k) which maps F
to Fk(k).

Proof (Cf. [24, Remark (2.3)]) Any k-module V induces the “constant” operation

M �→ V ⊗k R

which is homogeneous of degree 0. It maps k �→ V . Conversely, if F : Mod → Mod
is an operation which is homogeneous of degree 0, then for all R-modules M we have
FR(0 · idM ) = 00 · idFR(M) = idFR(M). It follows from this that FR(0 : N → M) is inverse
to FR(0 : M → N ). In particular, we have

FR(M) ∼= FR(0) ∼= FR(0 ⊗k R) ∼= Fk(k) ⊗k R.

This isomorphism is natural inM . Besides, the coherence conditions in Definition 2.1 applied
to k → R → S show that this defines an isomorphism of operations. ��

5 Linearization of Operations

In this section, we will closely follow [24, Sections3 and 4]. The method may be seen as a
categorification of the well-known polarization or linearization procedure for homogeneous
polynomials [26, Section3.2].

Remark 5.1 Let n ∈ N. Let F ′ : Modn → Mod be an operation with n arguments.
If G is any commutative monoid, then F ′ lifts to an operation grGModn → grGMod.
This is done exactly as in Corollary 4.3. Namely, if (M1, . . . , Mn) ∈ Mod(R)n , then G-
gradings on the Mi correspond to morphisms Mi [G] → Mi [G] satisfying certain properties,
i.e. to a morphism (M1, . . . , Mn)[G] → (M1, . . . , Mn)[G], which induces a morphism
F ′
R(M1, . . . , Mn)[G] → F ′

R(M1, . . . , Mn)[G], which in turn corresponds to some G-
grading on F ′

R(M1, . . . , Mn).
In particular, if G = Nn and we endow each Mi with the trivialNn-grading concentrated

in degree ei = (0, . . . , 1, . . . , 0), we obtain an Nn-grading on F ′
R(M1, . . . , Mn) whose

homogeneous components define operations

F ′
i1,...,in : Modn → Mod

which are homogeneous of degree (i1, . . . , in) and satisfy
⊕

(i1,...,in)∈Nn

F ′
i1,...,in

∼= F ′.
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As in Lemma 4.11, homogeneity means that for all commutative k-algebras R, all R-modules
M1, . . . , Mn and all elements r1, . . . , rn ∈ R we have

(F ′
i1,...,in )R

(
r1 · idM1 , . . . , rn · idMn

) = r i11 · · · r inn · id(F ′
i1,...,in

)R(M1,...,Mn)
.

Using the base change R[T1, . . . , Tn] → R[T ], Ti �→ T , we see that the associated N-
grading on F ′

R(M1, . . . , Mn) given by total degrees is induced by the trivial N-grading on
(M1, . . . , Mn) where each Mi has degree 1. Analogous remarks hold for Modfg.

Definition 5.2 Let n ∈ N. Let F : Mod → Mod be an operation which is homogeneous of
degree n. We define the operation F ′ : Modn → Mod by

F ′
R(M1, . . . , Mn) := FR(M1 ⊕ · · · ⊕ Mn),

equipped with the evident base change isomorphisms. We now apply Remark 5.1 and con-
struct a decomposition F ′ ∼= ⊕

i1,...,in F
′
i1,...,in

into homogeneous operations. Here, the only
non-trivial operations are those with i1 + · · · + in = n; this is because the associated N-
grading on F ′

R(M1, . . . , Mn) = FR(M1 ⊕ · · · ⊕ Mn) is induced by the trivialN-grading on
M1 ⊕ · · · ⊕ Mn concentrated in degree 1 and F is assumed to be homogeneous of degree n.
In particular, we define the operation

LF := F ′
1,...,1 : Modn → Mod

and call LF the linearization of F . Explicitly, an element u ∈ FR(M1 ⊕ · · · ⊕ Mn) belongs
to (LF )R(M1, . . . , Mn) if and only if the endomorphism

FR(M1 ⊕ · · · ⊕ Mn)
[
T1, . . . , Tn

] → FR(M1 ⊕ · · · ⊕ Mn)
[
T1, . . . , Tn

]

which is induced by the endomorphism
⊕n

i=1 Ti · idMi [T1,...,Tn ] maps u · 1 to u · T1 · · · Tn .
We make similar definitions for operations F : Modfg → Modfg.

Example 5.3 For the operation F = �2, which is homogeneous of degree 2, the homo-
geneous components of F ′(M, N ) = �2(M ⊕ N ) are given by F ′(M, N )2,0 = �2(M),
F ′(M, N )1,1 = LF (M, N ) = M ⊗ N and F ′

0,2(M, N ) = �2(N ). More generally, the
linearization of �n is the n-fold tensor product.

Definition 5.4 Let F : Modfg → Modfg be an operation which is homogeneous of degree
n. Let F ′ and LF be defined as in Definition 5.2. Let σ ∈ �n be a permutation and let
M1, . . . , Mn be a sequence of R-modules. There is an isomorphism

σ̃ : M1 ⊕ · · · ⊕ Mn → Mσ(1) ⊕ · · · ⊕ Mσ(n)

characterized by σ̃ ◦ ισ (i) = ιi , and therefore an isomorphism (denoted by the same symbol)

σ̃ : F ′
R(M1, . . . , Mn) → F ′

R(Mσ(1), . . . , Mσ(n)).

It is easily checked that this restricts to an isomorphism

σ̃ : (LF )R(M1, . . . , Mn) → (LF )R(Mσ(1), . . . , Mσ(n)).

Basically, this is because T1 · · · · · Tn is a symmetric polynomial. In particular, for every R-
module M , the symmetric group�n acts from the right on the R-module (LF )R(M, . . . , M).
In particular, we obtain a right k[�n]-module structure on the k-module (LF )k(k, . . . , k).
This right k[�n]-module will be denoted by VF . Every morphism of operations F → G
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restricts to a morphism of operations LF → LG and then to a morphism of right k[�n]-
modules VF → VG . This defines a functor

[Modfg,Modfg]n → Modfg
(
k[�n]

)
, F �→ VF .

Definition 5.5 Conversely, let V be a finitely generated right k[�n]-module. We define the
corresponding Schur operation by

SV : Modfg → Modfg, M �→ V ⊗k[�n ] M⊗n,

equipped with the evident base change isomorphisms. Here, �n acts from the left on M⊗n

by

σ · (m1 ⊗ · · · ⊗ mn) := mσ−1(1) ⊗ · · · ⊗ mσ−1(n).

Observe that SV is homogeneous of degree n, and that every homomorphism of right k[�n]-
modules V → W induces a morphism SV → SW of operations. This defines a functor

Modfg
(
k[�n]

) → [Modfg,Modfg]n, V �→ SV .

Theorem 5.6 Let k be a commutative Q-algebra. Then for every finitely generated right
k[�n]-module V there is an isomorphism of right k[�n]-modules

V ∼−→ VSV .

Moreover, it is natural in V .

Proof Let v ∈ V and consider the element

α(v) := v ⊗ (e1 ⊗ · · · ⊗ en) ∈ V ⊗k[�n ] (k ⊕ · · · ⊕ k)⊗n = (S ′
V )k(k, . . . , k).

We claim that it is contained in the linearization (LSV )k(k, . . . , k). In fact, the image under
the k[T1, . . . , Tn]-coaction is equal to

v ⊗ (e1 · T1 ⊗ · · · ⊗ en · Tn) = α(v) · T1 · · · Tn .
Clearly, α(v) depends linearly on v. If σ ∈ �n is a permutation, then

α(vσ) = vσ ⊗ (e1 ⊗ · · · ⊗ en) = v ⊗ σ(e1 ⊗ · · · ⊗ en) = v ⊗ (eσ−1(1) ⊗ · · · ⊗ eσ−1(n))

= v ⊗ (σ̃ (e1) ⊗ · · · ⊗ σ̃ (en)) = α(v)σ̃ .

Thus, we obtain a homomorphism of right k[�n]-modules

α : V → VSV ,

which is clearly natural in V . We will show that α is an isomorphism in the case V = k[�n]
first. In this case, SV identifies with the operation M �→ M⊗n , and hence S ′

V identifies with
the operation

(M1, . . . , Mn) �→
⊕

1≤i1,...,in≤n

Mi1 ⊗ · · · ⊗ Min .

The R[T1, . . . , Tn]-coaction maps u ∈ Mi1 ⊗· · ·⊗Min to u ·Ti1 · · · Tin . Thus, LSV identifies
with the operation

(M1, . . . , Mn) �→
⊕

σ∈�n

Mσ(1) ⊗ · · · ⊗ Mσ(n).
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In particular, there is an isomorphism k[�n] ∼−→ (LSV )k(k, . . . , k). One checks that it coin-
cides with α. A similar calculation works for the case V = k[�n] ⊗k N for some finitely
generated k-module N .

To treat the general case, we use the fact that Q is a splitting field for �n [22, Corollary
4.16], which implies that there is an isomorphism of Q-algebras Q[�n] ∼−→ ∏r

i=1 Mni (Q)

for some sequence of natural numbers n1, . . . , nr . Here, Mni (Q), as a submodule ofQ[�n],
is the isotypical component of an irreducible Q[�n]-module Vi . The isomorphism induces
an isomorphism k[�n] ∼−→ ∏r

i=1 Mni (k). From this it follows that every (finitely generated)
k[�n]-module is isomorphic to

⊕r
i=1 Vi ⊗k Ni for some sequence of (finitely generated) k-

modules N1, . . . , Nr . Each Vi is a direct summand ofQ[�n], so that each Vi ⊗k Ni is a direct
summand of k[�n]⊗k Ni . Since we already know that α is an isomorphism for k[�n]⊗k Ni ,
and both functors V �→ SV and F �→ VF are additive, the general case follows. ��
Theorem 5.7 Let k be a commutative Q-algebra. Then for every homogeneous operation
F : Modfg → Modfg over k of degree n there is an isomorphism of operations

SVF
∼−→ F.

Moreover, it is natural in F.

Proof Let R be a commutative k-algebra. In Lemma 4.12 we have proven that the functor
FR : Modfg(R) → Modfg(R) is a polynomial functor which is homogeneous of degree n in
the sense of [24, Sections1 and 2]. It follows from [24, Theorem 4.10] that there is a natural
isomorphism

(LF )R(M, . . . , M)�n ∼−→ FR(M).

Specifically, it is given by the composition

(LF )R(M, . . . , M)�n ↪→ (LF )R(M, . . . , M) ↪→ FR(M ⊕ · · · ⊕ M)
FR(∇)−−−→ FR(M),

where ∇ : M⊕n → M is the codiagonal. The inverse has a similar description. Since LF is
homogeneous of degree (1, . . . , 1), we may apply Corollary 4.13 to each variable to deduce
that LF is multilinear in the sense of Definition 3.6. Thus, Theorem 3.8 shows that for all
R-modules M1, . . . , Mn the canonical homomorphism

(LF )k(k, . . . , k) ⊗k (M1 ⊗R · · · ⊗R Mn) → (LF )R(M1, . . . , Mn)

is an isomorphism. In particular, there is an isomorphism

(LF )k(k, . . . , k) ⊗k M⊗n ∼−→ (LF )R(M, . . . , M).

This is an isomorphism of right k[�n]-modules when we use the right action of �n on
(LF )R(M, . . . , M) (resp. (LF )k(k, . . . , k)) from Definition 5.4 and the right action of �n

on M⊗n which is induced by the left action from Definition 5.5 via pullback with σ �→ σ−1.
Since n!, the order of �n , is invertible in k, it follows that

(LF )R(M, . . . , M)�n ∼= (LF )R(M, . . . , M)�n
∼= (

(LF )k(k, . . . , k) ⊗k M⊗n)
�n

∼= (LF )k(k, . . . , k) ⊗k[�n ] M⊗n,

where in the last tensor product we use the left action of �n on M⊗n again. Composing all
these isomorphisms yields a natural isomorphism

VF ⊗k[�n ] M⊗n ∼−→ FR(M).

One checks that this is, in fact, a morphism of operations. ��
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Theorem 5.8 Let n ∈ N. Let k be a commutative Q-algebra. Then V �→ SV defines an
equivalence of categories

Modfg
(
k[�n]

) 	 [Modfg,Modfg]n .
Proof This follows from Theorems 5.7 and 5.6. ��
Remark 5.9 One can use the classification of representations of �n in order to make the
classification of homogeneous operations even more explicit [13, Chapter 8]. For example,
the three irreducible Schur operations which are homogeneous of degree 3 are Sym3, �3

and

M �→ (�2(M) ⊗ M)/
〈
(a ∧ b) ⊗ c + (b ∧ c) ⊗ a + (c ∧ a) ⊗ b : a, b, c ∈ M

〉
.

Every other homogeneous operation of degree 3 on Modfg is a linear combination of such
operations.

Theorem 5.10 Let k be a commutative Q-algebra. Then (Vn)n∈N �→ ⊕
n∈N SVn induces

an equivalence of categories
⊕

n∈N
Modfg

(
k[�n]

) 	 [Modfg,Modfg]bounded.

Proof This follows from Theorem 5.8 and Remark 4.10. ��
Remark 5.11 Theorem 5.10 remains true for Modfp using the same proof. Besides, a very
similar proof can be used to show, for every m ∈ N,

⊕

n∈Nm

Modfg
(
k[�n1 × · · · × �nm ]) 	 [Modmfg,Modfg]bounded.

The equivalence maps (Vn)n∈Nm to the Schur operation with m arguments

(M1, . . . , Mm) �→
⊕

n∈Nm

Vn ⊗k[�n1×···×�nm ] M⊗n1
1 ⊗ · · · ⊗ M⊗nm

m .

We can also describe the full category of operations over a field k of characteristic zero.
If V is a finitely generated right k[�n]-module, then V is isomorphic to a finite direct sum
of copies of Specht modules Vλ associated to partitions λ of n [14, Lecture 4]. We will say
that λ appears in V if the multiplicity mλ(V ) of Vλ in V is positive.

Theorem 5.12 Let k be a field of characteristic zero. Then F �→ (VFn )n∈N induces an
equivalence of categories between [Modfg,Modfg] and the category of sequences of finitely
generated right k[�n]-modules Vn such that, for every d ∈ N, there are only finitely many
partitions of length ≤ d that appear in one of the Vn.

Proof By Corollary 4.7 and Theorem 5.7, the category [Modfg,Modfg] is equivalent to the
category of sequences of finitely generated right k[�n]-modules Vn such that for every finitely
generated R-module M almost all of the R-modules Vn ⊗k[�n ] M⊗n vanish. Since Schur
functors preserve epimorphisms, and free R-modules are base changes of free k-modules, it
suffices to consider the case R = k and M = k⊕d for some d ∈ N. We have

Vn ⊗k[�n ] M⊗n ∼=
⊕

λ partition of n

(
Vλ ⊗k[�n ] M⊗n)⊕mλ(Vn).
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This vanishes if and only if for all λ appearing in Vn we have Vλ ⊗k[�n ] M⊗n = 0. By [14,
Theorem 6.3 (1)], this happens if and only if the length of λ is > d . Thus, for fixed d ∈ N,
the condition is that almost all n have the property that all partitions appearing in Vn are of
length > d . This is logically equivalent to the condition that there are only finitely many
partitions of length ≤ d that appear in one of the Vn . ��
Example 5.13 The partitions ( ), (1), (2), . . . of length 1 do not induce an operation onModfg.
In fact, they correspond to the symmetric algebra on Mod. In contrast, the partitions ( ), (1),
(1, 1), (1, 1, 1), . . . have exactly one partition of length d , for each d ∈ N, and therefore
do induce an operation on Modfg, namely the exterior algebra. We could also allow that, for
instance, the n-th partition has multiplicity n. Another positive example is the sequence of
partitions (sorted by length, not degree) ( ), (1), (2), (1, 1), (2, 1), (2, 2), (1, 1, 1), (2, 1, 1),
(2, 2, 1), (2, 2, 2), . . . .

Appendix on Constructive Algebra

In our proof of Theorem 3.3 we implicitly used both the axiom of choice and the law of the
excluded middle. In this section we will give a proof of Theorem 3.3 and hence of Theorem
3.8 which works in constructive algebra. This means that we will not use the law of the
excluded middle. In particular, by Diaconescu’s Theorem, the axiom of choice will not be
available.

Our first result is a constructive version of Grothendieck’s Generic Freeness Lemma [12,
Theorem 14.4]. Actually, it is only the special case for R-modules; the general statement also
involves R-algebras. We will include the proof because we could not find a proper reference
for precisely this version.

Lemma 5.14 Let R be a commutative reduced ring. Let M be a finitely generated R-module.
Assume that f ∈ R has the following property: every g ∈ 〈 f 〉 such that M[g−1] is free over
R[g−1] satisfies g = 0. Then we have f = 0. In particular, for f := 1, if every g ∈ R such
that M[g−1] is free over R[g−1] satisfies g = 0, then R = 0.

Proof By considering the R[ f −1]-module M[ f −1] and using R[ f −1] = 0 ⇔ f = 0, it
suffices to consider the case f = 1. Thus, every g ∈ R such that M[g−1] is free over R[g−1]
satisfies g = 0, and our goal is to prove R = 0. Let m1, . . . ,mn be a generating system of
M . We will argue by induction on n ∈ N. The case n = 0 is trivial. Let n ≥ 1. We will prove
that m1, . . . ,mn is a basis. So let us assume g1m1 + · · · + gnmn = 0 with g1, . . . , gn ∈ R.
Then for every 1 ≤ i ≤ n, the localization M[g−1

i ] is generated by m1, . . . , m̂i , . . . ,mn ,
and it satisfies the same assumptions as M . Therefore, by induction hypothesis, we conclude
R[g−1

i ] = 0 and hence gi = 0. This proves that M is free over R. Hence, 1 = 0 by
assumption. ��
Remark 5.15 In the presence of the law of the excluded middle, i.e. in classical mathematics,
the special case f = 1 in Lemma 5.14 says that for R �= 0 there is some element g ∈ R \ {0}
such that M[g−1] is free over R[g−1]. This is the more common formulation of generic
freeness. However, this statement is not valid in constructive mathematics. Geometrically,
Lemma 5.14 says that there is a dense open subset U ⊆ Spec(R) such that M∼|U is locally
free. In the internal language of the topos of sheaves on Spec(R) [25], this simply says that
M∼ is not not free. This property may be deduced from the fact that the structure sheaf R∼ is
a field from the internal perspective and the observation that finitely generated vector spaces
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are not not free by the usual argument in linear algebra [4, Lemma 5.9]. In fact, this argument
has just been repeated in our proof of Lemma 5.14 using the external language.

Lemma 5.16 Let R be a commutative ring. Let M and N be two finitely generated R-modules
with the following property: If S is a commutative R-algebra such that M ⊗R S is free over
S, then N ⊗R S = 0. Then we may conclude N = 0.

Proof Consider the reduced commutative ring R′ := R/
√
Ann(N ). Observe that the R′-

modules M ′ := M ⊗R R′ and N ′ := N ⊗R R′ satisfy the same assumption as the R-modules
M and N . Assume that f ′ ∈ R′ has the property that M ′[ f ′−1] is free over R′[ f ′−1].
We will prove f ′ = 0. By assumption, we have N ′[ f ′−1] = 0. Because N ′ is finitely
generated, there is some k ∈ N such that f ′k N ′ = 0. Choose a preimage f ∈ R. Then
we have f k N ⊆ √

Ann(N )N . Since f ′ = 0 is equivalent to f ′k = 0, we might as well
assume that f N ⊆ √

Ann(N )N holds. By [1, Proposition 2.4], applied to the endomorphism
f · idN : N → N , there are elements r0, . . . , rn−1 ∈ √

Ann(N ) such that

f n + rn−1 f
n−1 + · · · + r1 f + r0 ∈ Ann(N ).

This implies f n ∈ √
Ann(N ) and therefore f ′ = 0. We have proven that every f ′ ∈ R′ such

that M ′[ f ′−1] is free over R′[ f ′−1] satisfies f ′ = 0. By Lemma 5.14, we conclude R′ = 0.
This means 1 ∈ Ann(N ), i.e. N = 0. ��
Example 5.17 Lemma 5.16 remains true if just N is assumed to be finitely generated, but in
general it does not hold. Let f ∈ R be a regular element, M := R/ f R and

N := colimn>0 R/ f n R.

The transition maps are [x] �→ [ f x]. If M ⊗R S = S/ f S is free over S, this means that
f ∈ ker(R → S) or f ∈ S× holds. Thus, S is an R/ f R-algebra or an R[ f −1]-algebra. In
the first case, we have N ⊗R R/ f R = N/ f N = 0 and hence N ⊗R S = 0. In the second
case, we have N ⊗R R[ f −1] = N [ f −1] = 0 and hence N ⊗R S = 0. But N = 0 holds if
only if f is a unit. So we may take R := Z and f := 2.

Constructive proof of Theorem 3.3 Weonly have to give a constructive proof of the statement
that a linear operation G : Modfg → Modfg vanishes when it vanishes on free modules,
because the rest of the proof was constructive anyway. Let M be a finitely generated R-
module. If S is a commutative R-algebra such that M ⊗R S is free over S, then we have

GR(M) ⊗R S ∼= GS(M ⊗R S) = 0.

Thus, Lemma 5.16 applies and yields GR(M) = 0. ��
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