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Abstract Let k be a commutative Q-algebra. We study families of functors between cat-
egories of finitely generated modules which are defined for all commutative k-algebras
simultaneously and are compatible with base changes. These operations turn out to be Schur
functors associated to k-linear representations of symmetric groups. This result is closely
related to Macdonald’s classification of polynomial functors.
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1 Introduction

Let k be a commutative ring. We would like to understand functors between categories of
finitely generated modules

Fg : Modig(R) — Modsg(R)

which are defined for all commutative k-algebras R simultaneously and behave well with
respect to base changes. This means that there are isomorphisms of S-modules

Fr(M) ®r S = Fs(M ®g S)

for k-homomorphisms R — § and finitely generated R-modules M, which are coherent
in a suitable sense; see Definition 2.1 for details. We will call them operations over k.
Typical examples include the n-th tensor power M > M®", the n-th symmetric power
M +— Sym"(M) and the n-th exterior power M +— A"(M). More generally, if V,, is any
finitely generated right k[ X, ]-module, then

M — V, =, Me"
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is an operation; here the symmetric group %, acts from the left on M®" by permuting the
tensor factors. Under finiteness conditions any direct sum of such operations is again an
operation. We will call them Schur operations, because if k is a field and the k-algebra R
is fixed, or even R = k, these functors are called Schur functors in representation theory
[14, Section 6.1] and operad theory [21, Section5.1]. In Joyal’s theory of linear species [19,
Chapitre 4] they are called analytic functors. Our main result states that, under suitable
assumptions on k, every operation is a Schur operation.

Theorem Let k be a commutative Q-algebra. Then every operation Modig — Modig over k
is isomorphic to a Schur operation

M +— @ Vi Qk[za] Me"

n>0

for some sequence of finitely generated right k[ X,]-modules V,. A similar classification
holds for operations Modg, — Mods, between categories of finitely presented modules.

See Theorem 5.12 for a description of those sequences (V,,) which are allowed here. For
example, finite sequences are allowed. Examples 2.4-2.6 show why the theorem fails in
characteristic p > 0.

A similar result was obtained by Macdonald [24] (see also [23, Appendix A in Chapter I])
who considered polynomial functors between categories of finitely generated modules over
a fixed commutative QQ-algebra R, and gave a full classification for polynomial functors on
finitely generated projective modules. A similar classification therefore also holds for strict
polynomial functors [7,15,20,28] over a commutative Q-algebra k, which may be identified
with operations Modyg proj — Modig proj Over k between categories of finitely generated
projective modules. The classification in terms of Schur operations does not work for k = Z,
but in this case one can at least calculate the Ky-ring of the category of strict polynomial
functors [18, Theorem 8.5].

We will adapt several techniques by Macdonald to our situation in order to reduce the
classification from arbitrary operations first to homogeneous and later to multilinear oper-
ations; the latter are functors Modsg(R)" — Modig(R) which are R-linear in each variable,
are defined for all commutative k-algebras R simultaneously and behave well with respect
to base changes. Their classification is quite simple.

Theorem Let k be a commutative ring and n € IN. Then every multilinear operation
Mod?‘g — Modg over k is isomorphic to the operation

(M]5"'3MH)HV®]<(M1 ®R"'®RM}1)3

where V is some finitely generated k-module.

Although our proof uses finiteness assumptions in a crucial way, we conjecture that mul-
tilinear operations Mod” — Mod have the same classification. For this it suffices to consider
the case n = 1, i.e. linear operations. The classification of all operations Mod — Mod would
be a consequence.

The mentioned description of operations is actually the “essential surjectivity” part of the
following equivalence of categories, which is our main result; here “bounded” refers to a
certain finiteness condition introduced in Sect. 4.

Theorem Let k be a commutative Q-algebra. Then the category of bounded operations
Modtg — Modsg over k is equivalent to the category of finite sequences (V,)neN of finitely
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generated right k[X,]-modules. A similar classification is true for bounded operations
Modsp — Mod.

See Theorem 5.12 for a description of the category of all operations Modsg — Modtg, and
see Remark 5.11 for a description of operations Modf;, — Modsg with n arguments.

Our result may be interpreted as follows: Let P = [ [, ., X, be the permutation groupoid.
Then the category of bounded operations Modg, — Modfp_over k is equivalent to the category

E{p of finitely presented functors IP°? — Mod, (k). This is actually an equivalence of k-linear

tensor (i.e. symmetric monoidal) categories, when fPSLp is equipped with Day convolution.
Since the permutation groupoid IP is the tensor category freely generated by a single object,
it follows that @;{p is the finitely cocomplete k-linear tensor category freely generated by
an object X [3, Remark 5.1.14]; for this reason we denote it by Mody, (k)[X]. It follows
rather formally from the 2-categorical Yoneda Lemma that the category of operations which
are defined on all finitely cocomplete k-linear tensor categories simultaneously and behave
well with respect to base changes is equivalent to Mods, (k)[X] (cf. [8]). In this respect, our
result says that, if k is a Q-algebra, bounded operations on finitely presented modules over
commutative k-algebras are “universal enough” to be defined on arbitrary finitely cocomplete
k-linear tensor categories. This is quite surprising. It is also quite interesting that the study
of operations on modules is equivalent to the study of representations of symmetric groups.

The author’s motivation to study operations on modules originates from the contravariant
equivalence of 2-categories between tensorial stacks and stacky tensor categories (cf. [3,
Section 3.4] and [6, Section 3.5]). It has the following finitely presented analogue (which has
the advantage that some set-theoretic issues disappear): To every stack X over a commuta-
tive ring k, which we allow to be fibered in categories and also be possibly non-algebraic,
we may associate the finitely cocomplete k-linear tensor category Qcohg(X) of quasi-
coherent modules of finite presentation. These are precisely the operations X — Modsp
over k. Conversely, to every finitely cocomplete k-linear tensor category C we may asso-
ciate the stack Specy,(C) over k which maps a commutative k-algebra R to the category
Speci, (C)(R) := Hom s,k (C, Modsp (R)) of finitely cocontinuous k-linear tensor functors
from C into Mods, (R). This defines a 2-adjunction

Qcohyp ) ] o
{stacks over k] n finitely cocomplete k-linear] °”
tensor categories ’
Spec,

We call a stack X' over k fp-tensorial if the canonical morphism X — Specy, (Qcohyy (X))
is an equivalence, and a finitely cocomplete k-linear tensor category C is called fp-stacky
if the canonical morphism C — Qcohiy(Spec,(C)) is an equivalence. Thus, there is a
contravariant equivalence of 2-categories between fp-tensorial stacks over k and fp-stacky
finitely cocomplete k-linear tensor categories. Tensorial schemes and stacks have been
investigated in [3,6,17]. It is natural to ask if the tensor category Mody, (k)[X], the “poly-
nomial 2-ring in one variable over k” (cf. [9]), is fp-stacky. Its universal property implies
Specy, (Modp [ X]) > Modsp. Therefore, Qcohip (Specy, (Modsp (k)[X1])) identifies with the cat-
egory of operations Mod, — Mods, over k. The canonical tensor functor from Mods, (k) [ X]
associates to every finite sequence of finitely presented k[ X, ]-modules V,, the corresponding
Schur operation

M = P Vi ®urz,) ME".
nelN
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Therefore, our result says that, if k is a Q-algebra, this functor is fully faithful and that its
essential image consists of bounded operations. In particular, Mods, (k)[X] is not fp-stacky,
since for example P, .y A" is an operation on Mods, which is not bounded. We may say
that Mods, (k)[ X] is approximately fp-stacky.

These issues might disappear in the setting of arbitrary, not necessarily finitely presented,
modules. However, we could not prove the classification of linear operations in this generality
so far. We conjecture that Mod(k)[X] = ﬁk is stacky (from which it would follow that the
stack Mod is tensorial), i.e., that it is equivalent to the category of operations Mod — Mod over
k via Schur operations. More generally, Mod(k)[ X1, ..., X,] should be stacky and hence be
equivalent to the category of operations Mod” — Mod over k.

Another interesting problem is to describe the category of operations CAlg — Mod from
commutative algebras to modules. Every functor V : FinSet®® — Mod(k), i.e. augmented
symmetric simplicial k-module, induces such an operation via the coend

X eFinSet
A f V(X) @ A®X.

We may ask if this defines an equivalence [FinSet®?, Mod(k)] —> [CAlg, Mod]. Since
[FinSet°P, Mod (k)] is the cocomplete k-linear tensor category freely generated by a com-
mutative algebra object [16], this question asks if [FinSet°P, Mod (k)] is stacky.

Organization of the Paper

The paper is organized as follows: In Sect.2 we give the basic definitions concerning opera-
tions. In Sect.3 we classify linear and multilinear operations. In Sect.4 we show that every
operation decomposes uniquely into homogeneous operations. In Sect.5 we discuss the lin-
earization of ahomogeneous operation and use it to prove our main theorems. In the Appendix
we give a constructive proof of the classification of linear operations.

2 Operations

If R is aring, we will denote by Mod(R) the category of right R-modules. The full subcate-
gories of finitely generated resp. finitely presented right R-modules are denoted by Modig(R)
resp. Mods, (R). As usually, when R is commutative, we will not always distinguish between
left and right modules.
Definition 2.1 Let k be a commutative ring. An operation Mod — Mod over k is a family
of functors

FR : Mod(R) — Mod(R),

defined for every commutative k-algebra R, equipped with isomorphisms of S-modules
Or(M): FR(M) Qg S — Fs(M ®g S),

for each k-homomorphism f : R — S, natural in M € Mod(R), such that the following two
coherence conditions are satisfied: the diagram

bia (M)
FR(M) @ g R——————— Fr(M Qg R)

~ ~

Fr(M)
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commutes, and for all k-homomorphisms f : R — S, g : S — T the diagram

0 (M)®sT 0, (M®RS)
(FRIM) ®r S) Qs T ————— > Fs(MQr S) s T ———— Fr (M ®r S) ®s T)

Ogor (M)
Fr(M)®@r T Fr(M@rT)

commutes.

A morphism of operations (F,0) — (F’,0’) is defined as a family of morphisms of
functors ag : Fp — F 1;, defined for every commutative k-algebra R, such that for all
k-homomorphisms f : R — S and all R-modules M the diagram

05 (M)
FrR(M)Q@r S——— Fs(M ®r S)
OtR(M)®Sl J/QS(M@)RS)
/ g/f(M) /
FR(M) R § —— FS(M ®r S)

commutes.

Usually we will suppress the isomorphisms 6 from the notation. Operations of the form
Modtg — Modsg and Mods, — Mods, over k are defined in a similar way. For fixed n € IN,
operations with n arguments F' : Mod" — Mod are defined in a similar way, including the
variants with Modtg and Mods,. Here, we require natural isomorphisms

FR(My,....M,) @ S — Fs(Mi ®g S, ..., M, ®r S).
Example 2.2 Let n € IN. The most basic example of an operation is the family of functors
M M®R" := M Qp ---®r M,
equipped with the canonical isomorphisms
M®R" @p S = (M ®g $)®5",
mapping (m; ®@ -+ - Qm,)@sto(m 1) ®---® (m, ®1) -s. For n = 0 this is the constant
operation M — R, and for n = 1 the identity operation M +— M. The most basic example

of an operation with two arguments is the tensor product (M, N) — M ®@g N equipped with
the canonical isomorphisms (M ®g N) ®r S — (M ®r S) ®s (N ®r S).

Example 2.3 If I is any set, then the direct sum M — M @I defines an operation over k, but
the direct product M +— M does not unless k is the zero ring or I is finite.

The next three examples illustrate why our classification result requires that k is a com-
mutative Q-algebra.

Example 2.4 1f k is any commutative ring, then the second exterior power

M A*(M)=M®*/(m@m :m e M)
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defines an operation over k. If 2 is invertible in k, then we have
A(M) =MD /im@n+n@m:m,neM)=V @z, M,

where V denotes the alternating representation of ¥, of rank 1. However, when £ is a field of
characteristic 2, we cannot find a representation V of ¥, such that there is an isomorphism
of operations A2(M) =V Q=) M ®2 This also reflects the observation that we cannot
define A? in arbitrary finitely cocomplete symmetric monoidal k-linear categories unless 2
is invertible in k [3, Remark 4.4.7].

Example 2.5 If k is any commutative ring, then the divided power algebra [27, Chapitre I1I]
M +— TI'(M) as well as its homogeneous parts M +— I'y(M) provide operations over k; the
base change isomorphisms are constructed in [27, Théoréme IIL.3]. If &k is a commutative
Q-algebra, then there is an isomorphism of operations I'y = Sym?, but this is false if k is a
field of characteristic p > 0.

Example 2.6 Assume that k is a commutative I ,-algebra. Then we can define an operation
over k by mapping an R-module M to M ®g o, R, where og : R — R is the Frobe-
nius homomorphism. For a fixed k-algebra R this is usually called the Frobenius twist [15,
Section 1]. The base change isomorphisms for f : R — § are given by

(M ®R,¢R R) ®R S =M ®R,f0(pR S=M ®R,(psof S = (M ®r S) ®S,¢S S.

Remark 2.7 If F : Mod — Mod is an operation over k and R is a commutative k-algebra,
then we have

Fr(R) = Fr(k ® R) = Fi(k) ® R.
If f € R and M is some R-module, then we have
FROMDLF ™ = Frpp-ny(MLF1).
If G is a commutative monoid, then we use the notation M[G] := M ®g R[G], and we have
Fr(M)[G] = Frig)(MIG]).
For the special case G = IN“ this becomes
FROM)[Ty, ..., T4l = Frpgy,..ty(MIT1, . .., T4]).

Remark 2.8 We may rephrase the definition of an operation using 2-categorical language [5]
as follows. There is a pseudofunctor

Mod : CAlg(k) — CAT

which associates to every commutative k-algebra R its category of R-modules Mod(R) and to
every k-homomorphism R — S the base change functor L1® g S equipped with the usual cohe-
rence isomorphisms; [] denotes a placeholder. Here, CAT denotes the “2-category” of cate-
gories; one may use Grothendieck universes in order to make this precise. Then an operation
Mod — Mod is just a pseudonatural transformation Mod — Mod, and a morphism of
operations is just a modification between them. A similar statement holds for operations
Mod" — Mod and the variants Modg and Modip.
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Remark 2.9 In algebraic geometry, pseudonatural transformations X — Mod are sometimes
called quasi-coherent modules on X', especially when X’ is a stack (say, in the étale topology
on the category of affine k-schemes). If the target is Modtg or Modyp, these quasi-coherent
modules are called of finite type resp. of finite presentation. The pseudofunctors Mod, Modg
and Mody, are stacks by descent theory [29], and operations on them are just quasi-coherent
modules (of finite type, resp. of finite presentation) on themselves.

Remark 2.10 Up to size issues, there is a “category” of operations over k, which we will
denote by [Mod, Mod]. As with every category of quasi-coherent modules, this is actually a
small-cocomplete symmetric monoidal k-linear category (which includes, by definition, that
® is cocontinuous and k-linear in each variable). Colimits and tensor products are computed
pointwise:

(colim; F;) (M) = colim; ((F)r(M)),
Ir(M) = R,
(F®G)r(M) = Fr(M) ® Fr(M).

Operations have an additional structure, given by composition:
(F o G)r(M) = FrR(GRr(M)).

This defines another monoidal structure on [Mod, Mod], which is however not symmetric
and not cocomplete. We remark that the corresponding monoidal structure on the category
of linear species [IP°P, Mod(k)] is the substitution product [19, Chapitre 4]. The “category”
[Mod”, Mod] of operations Mod” — Mod is also a small-cocomplete symmetric monoidal
k-linear category, but it has no composition when n > 1. The “categories” [Mod};, Modig]
and [Mod?p, Modyp | are defined similarly.

Remark 2.11 1f is not clear a priori if [Mod, Mod] is small-complete, and if so how the limits
are computed. It is even less clear if [Mod, Mod] is an abelian category.

Remark 2.12 1f Modyg proj : CAlg(k) — CAT denotes the pseudofunctor of finitely generated
projective modules, there is a restriction functor

[Modsg, Modsg] — [Modig, proj, Modig].

Ithas no a priori reason to be fully faithful, let alone to be an equivalence. The category of strict
polynomial functors by Friedlander and Suslin may be identified with [Modsg, proj, Modig, proj]
by using [7, Proposition 2.5]. Some authors [20,28] allow the codomain to be Mod, but the
domain in the theory of strict polynomial functors has always been Modsg proj. One can use
[2, Theorem 2.14] to define an extension functor

[Modpyoj, Mod] — [Mod, Mod],

which again has no a priori reason to be an equivalence. Therefore the category of operations
is a priori just a variant of the category of strict polynomial functors, and a description of one
category does not directly imply a description of the other one.

There is another difference between operations and strict polynomial functors.

Remark 2.13 The components Fr : Mod(R) — Mod(R) of an operation F admit an enrich-
ment in the cartesian monoidal category of functors [CAIg(R), Set] as follows: We may view
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Mod(R) as a category enriched in [CAIg(R), Set] by defining, for every pair of R-modules
(M, N), the functor Hom, (M, N) : CAlg(R) — Set on objects S by

Homy (M, N)(S) := Homg(M ®r S, N ®r S).

The map of sets Fg : Homgr(M, N) — Hompg(Fr(M), Fr(N)) extends to a natural
transformation Homp (M, N) — Homg(Fr(M), Fr(N)) via mapping an S-linear map
f:MQ®rS— N®gS to the S-linear map

~ Fg ~
Fr(M) ®p S > Fs(M ®g S) 5 Fg(N @ §) => Fr(N) ®k 5.

This extra structure of Fg will be very useful in Sect.4. It is similar, but not identical to the
enrichment in the definition of a strict polynomial functor [28]: Here one requires maps of
sets Homg(M, N) Qg S — Hompg(Fr(M), Fr(N)) ®g S which are natural in S, i.e. that
Homg(M, N) — Hompg(Fr(M), Fr(N)) is a polynomial rule (“lois polynomes”) in the
sense of Roby [27]. The canonical map

Homg(M, N) ®g S — Homg(M ®r S, N Qg S)

is bijective if M is finitely generated projective, but in general it is neither injective nor
surjective.

3 Linear and Multilinear Operations

Linear and multilinear operations provide a basic class of operations which we are going to
classify first.

Definition 3.1 Let k be a commutative ring. An operation F' : Modyg — Modyg over k is
called linear if for every commutative k-algebra R the functor

F : Modig(R) — Modig(R)
is R-linear. This defines a full subcategory
[MOdfg, MOdfgh - [MOdfg, MOdfg].

It contains the identity operation and is closed under composition, therefore may be regarded
as a monoidal k-linear category. The category [Mods,, Modsp 11 is defined in a similar way.

Example 3.2 Let V be some finitely generated k-module. Then M +— V ®; M becomes a
linear operation using the natural isomorphisms

(V& M)®r S — V ® (M®gS)
for k-homomorphisms R — S. In fact, this construction induces a k-linear functor
Modig (k) — [Modig, Modigl;, V = V & .

We may equip this functor with the structure of a monoidal functor by using the natural
isomorphisms k ®; 0 —> O and (V @, W) @ 0 — V @ (W ® O).

Theorem 3.3 The monoidal functor constructed above yields an equivalence of monoidal
k-linear categories

MOdfg(k) ~ [Modfg, Modfg]l.

@ Springer



Operations on Categories of Modules... 295

The same construction yields
Modp (k) = [Modp, Modip];.

Proof We construct an explicit pseudo-inverse functor. Let F' : Modsg — Modyg be a linear
operation over k. We associate to it the finitely generated k-module V := Fy (k). If M is
some finitely generated R-module, then there is a natural R-linear map

M => Homg(R, M) — Homg(Fg(R), Fr(M))
— Homg(V @ R, Fr(M)) —> Hom(V, FR(M)]x),

which corresponds to a natural R-linear map
ar(M) :V Qr M — Fr(M).

This is, in fact, a morphism of linear operations « : V ®; L — F, as can be checked from
the coherence condition in Definition 2.1 applied to k — R — S. We have to show that it is
an isomorphism. By Remark 2.7, it is an isomorphism when M = R. Since linear operations
are additive, it is also an isomorphism when M is a finitely generated free R-module.

We first show that ag(M) is an epimorphism for every R-module M. By taking the
cokernel of «, which is a linear operation again, it suffices to prove the following: If G is a
linear operation which vanishes on finitely generated free modules, then G = 0. Take any
finitely generated R-module M. If p is any prime ideal of R, we have

Gowr/p(M g Q(R/p) =0
since Q(R/ p) is a field and therefore M @ Q(R/ p) is free. It follows that

0=Gr(M)®r Q(R/p) = Gr(M)p/pGr(M)y.

Nakayama’s Lemma implies G g(M), = 0. Since p was arbitrary, this shows Gz (M) = 0.

It remains to prove that ag (M) : V Qr M — Fgr(M) is injective. If this happens to be the
case, let us call M good. Since linear functors are additive, direct summands of good modules
are good. Since M is a direct summand of M @ R, which has the structure of a commutative
R-algebra in which M squares to zero, we may assume that M is the underlying R-module
of a commutative R-algebra S. More generally, we assume that M = N | is the underlying
R-module of some good S-module N, where S is a commutative R-algebra. Consider the
following commutative diagram:

counit

V@ M (V@ M) ®g S)|g —— (V & (M ®g S))|r —20% (V @ N)|g

Fr(M) —"— (FR(M) @ S)|g ——— Fs(M ®g S)|g — 22— Fs(N)|r
Here unit and counit refer to the adjunction between extending and restricting scalars. The
composition V ®; M — (V ®; N)|g is the identity, and « : (V & N)|r — Fs(N)|r is an
isomorphism since N is a good S-module. The diagram implies thato : V @ M — Fr(M)
is a split monomorphism. Therefore, M is a good R-module. O

Remark 3.4 The usage of Nakayama’s Lemma in the proof above is the only reason why we
have restricted ourselves to finitely generated modules.
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Remark 3.5 One might wonder if there is a constructive proof of Theorem 3.3, which does
neither use the existence of prime ideals nor the law of the excluded middle. This is indeed
possible and will be shown in the Appendix.

Definition 3.6 Let k be a commutative ring and n € IN. An operation with n arguments
F Mod;’g — Modig will be called multilinear if it is linear in each variable. This
means that for every index 1 < i < n and every family of finitely generated R-modules
Miy,...,Mi_1, M+, ..., M, the functor

Fr(My, ..., M;—,00, Miyy, ..., My) : Modig(R) — Modig(R)
is R-linear. This defines a full subcategory

[Mod?’g, Modyglr,...1 C [Mod{‘g, Modig].

,,,,,

For n = 1 we recover [Modsg, Modig];.

Example 3.7 Let V be some finitely generated k-module. Then
Modig(R)" — Modig(R), (Mi, ..., My) > V ® (M) ®g -+ ®r My)
becomes a multilinear operation using the natural isomorphisms
(V ®k (M ®r -+ ®r M) ®r S — V @ (M1 ®r ) ®s - -+ ®s (M1 ®r S)).
In fact, this induces a functor Modyg (k) — [Mod?g, Modggl,....1-
Theorem 3.8 The functor constructed above yields an equivalence of categories
Modig (k) >~ [Mod?g, Modigli,...1-
The same construction yields
Modip (k) >~ [Mod{’p, Modip]

1,...,1-

Proof As in Theorem 3.3, we construct a pseudo-inverse functor by mapping a multilinear
operation F : Modf”g — Modyg to the finitely generated k-module V := Fi(k, ..., k), and
the natural R-linear maps

M, ®g --- ®r M, — Hompg(R, M1) ®g - -- @ Homg (R, M)
— Homg(Fr(R, ..., R), Fr(M, ..., My))
— Homy(V, Fr(M, ..., Myl
induce a morphism of multilinear operations
V@i (M ®R - ®Qr My) = FR(My, ..., My).

It suffices to prove that it is an isomorphism. We will argue by induction on n, the case n = 0
being trivial. Now let us assume n > 1 and that the theorem is true for n — 1. Let us fix
some commutative k-algebra R and some R-module M. Then we may define a multilinear
operation Mod;'g_1 — Modig over R by

My, ..., My)—~ Fs(M{ ®r S, M>, ..., M)

for S-modules M, ..., M,, where S is a commutative R-algebra. By induction hypothesis,
the canonical homomorphism

FR(M1,R,...,R)®r (M2 ®s5 -+ ®s M) > Fs(M1 Qr S, M>, ..., My)
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is an isomorphism. We will only need this for § = R. Varying R and M|, we observe that
M) — Fr(Mi, R, ..., R) defines a linear operation over k. Thus, by Theorem 3.3, the
canonical homomorphism

V®kM1—>FR(M1,R,...,R)

is an isomorphism. We finish the proof by composing this isomorphism with the previous
one. O

Remark 3.9 We have shown rather indirectly that multilinear operations are right exact in
each variable, and we have found a characterization of tensor products which does not involve
right exactness in any way, but rather base change. Notice that the Eilenberg—Watts Theorem
[11] would immediately imply the classification of linear operations Mod — Mod (resp.
Modf, — Modp) if we already knew that they consisted of cocontinuous (resp. right exact)
functors.

4 Homogeneous Operations

In this section we will show that every operation Mod — Mod over a commutative ring k
decomposes uniquely into homogeneous operations. This is analogous to the homogeneous
decomposition of strict polynomial functors [15, §2].

Lemma 4.1 Let R be a commutative k-algebra and let A be a commutative R-bialgebra.
Consider the category of A-comodules CoMod(A) with its forgetful functor to Mod(R). If
F : Mod — Mod is an operation over k, then the functor Fg : Mod(R) — Mod(R) lifts to a
functor CoMod(A) — CoMod(A).

CoMod(A) ---> CoMod(A)

! 1

Mod(R) —% s Mod(R)

Proof Let M be an R-module equipped with an A-coactions : M — M ®pg A. This coaction
corresponds 1:1 to a family of monoid homomorphisms

ap : Homcagr) (A, B) — Endmods)(M ®r B)

for commutative R-algebras B which are natural in B [10, II, §2, n® 2]. The monoid structure
on Homgaig(r) (A, B) is induced by the commutative bialgebra structure of A. Specifically,
ap(f) is defined from & by

M M
Mg B h®B M@z A®g B ®f ®up

O5 M or Bor B 22 M @ B.
Conversely, a family (ap) pecaig(r) is mapped to the coaction

aa(ida)

M2 Mer A2 Mo A

Using this description of comodule structures, we obtain an A-coaction on Fg (M) using the
natural monoid homomorphisms (cf. Remark 2.13)

Endwiod() (M ®& B) — Endwod(s) (Fs(M Qg B)) — Endwmods) (Fr(M) Qg B).
Specifically, the R-linear coaction M — M ® g A corresponds by adjunction to some A-linear

map M ®g A — M ®g A, which induces an A-linear map Fr(M) Qg A — Fr(M) Qg A
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(using the identification Fr(M)®r A = F4(M ®p A)), which corresponds to some R-linear
map Fr(M) — Fr(M) ®g A, which is the A-coaction on Fr(M). If another A-comodule
h : M — M' ®g A is given, one easily checks that for every homomorphism M — M’ of
A-comodules the induced homomorphism Fgr(M) — Fgr(M’) is also a homomorphism of
A-comodules. m}

Definition 4.2 If G is a commutative monoid, let us denote by gr;Mod(R) the category
of G-graded R-modules. If M = @gea M, is a graded R-module and R — S is a k-
homomorphism, we endow M ®pg S with the grading M Qg S = EBgeG M, ®g S. This
defines a pseudofunctor gr;Mod : CAlg(k) — CAT together with a forgetful operation
grgMod — Mod.

Corollary 4.3 Let G be a commutative monoid. Every operation Mod — Mod lifts, along
the forgetful operation gr;Mod — Mod, to an operation grgMod — gr;Mod.

grgMod ---> grsMod

!

Mod — s Mod

Proof This follows from Lemma 4.1 because gr;Mod(R) is isomorphic to the category of
R[G]-comodules [10, II, §2, 2.5] when the monoid algebra R[G] is equipped with the counit
g — 1 and the comultiplication g — g ® g. Specifically, if M = P ge My is G-graded,
the corresponding coaction is the R-linear map

M — MI[G], ZgEG mg = ZgEG meg-§.

By adjunction this corresponds to an R[G]-linear map M[G] — M|[G], which induces an
R[G]-linear map

FR(M)[G] — Fr(M)[G].

The homogeneous component Fr(M), C Fr(M) of degree g € G is the submodule
consisting of those elements u € Fgr(M) such that u - 1 € Fr(M)[G] gets mapped to
u-g e FrR(M)[G].If R — S is a k-homomorphism, one has to check that the isomorphism
0: FrR(M)®r S — Fs(M ®pg S) preserves the gradings. This follows from the coherence

conditions in Definition 2.1 applied to R — R[G] — S[G]and R — S — S[G]. O

Definition 4.4 Let F : Mod — Mod be an operation. By Corollary 4.3, F lifts to an
operation gryMod — gryMod. There is a canonical operation Mod — gryMod which
equips every module with the trivial grading concentrated in degree 1. The composition
Mod — gryMod — gryyMod corresponds to a family of operations F;, : Mod — Mod with

an isomorphism of operations
@ r = F

nelN

We call F, the homogeneous component of degree n of F. Specifically, if M is some R-
module, then (F,) g (M) consists of those elements u € Fg(M) such that Fg71(T - idpry)
maps u - 1tou - T" € Fr(M)[T] (using the identification Frir|(M[T]) = Fr(M)[T]).

Definition 4.5 Let n € IN. An operation F : Mod — Mod is called homogeneous of degree
n if for every R-module M we have

Frir)(T - idumpry) = T" - id Fgypymi7)) -
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Let [Mod, Mod],, € [Mod, Mod] denote the full subcategory of operations which are homo-
geneous of degree n.

Corollary 4.6 There is an equivalence of categories

[ [ (Mod. Mod], — [Mod. Mod].  (Fy)new > € Fi-
nelN nelN

Proof We define a pseudo-inverse functor by F — (F,),cN, where F), is the homogeneous
component of degree n of F. Using flatness of R — R[T], it follows easily that F, is, in
fact, homogeneous of degree n. If F, F’ are two operations, using the compatibility with the
base change R — R[T], one checks that every morphism F — F’ restricts to a morphism
F, — F,, where n € N is arbitrary. Finally, notice that the homogeneous component of
degree n of @,y Fy is precisely Fj,. O

Using similar definitions for finitely generated modules, we obtain:
Corollary 4.7 There is a fully faithful functor

[MOdfg: MOdfg] - H[MOdfgv MOdfg]na F +— (Fy)nen.
nelN

Its essentially image consists of those families (Fy,),cN of operations, homogeneous of degree
n, such that for every finitely generated R-module M almost all images (Fy,) gr (M) vanish;
in other words, @, ey (Fn) r (M) is supposed to be finitely generated.

Example 4.8 The n-th exterior power A" is an operation which is homogeneous of degree .
The direct sum €,y A" is an operation both on Mod and on Modig. This is because if some
R-module M is generated by n elements, then AR (M) = 0 for all m > n. This shows that
there are operations on Modsg with infinitely many non-trivial homogeneous components.

Definition 4.9 Let us call an operation F : Modig — Modig bounded if there is some
n € IN such that F,,, = 0 for all m > n. We get a full subcategory [Modsg, Modtglbounded Of
[Modg, Modig].

Remark 4.10 By Corollary 4.7, we have

[Modsg, Modiglhounded =~ ) [Modsg, Modigl,.-
nelN

Here, we use the notation @, ; C; for the full subcategory of ||
objects (X;);er such that almost all X; are zero.

ic7 Ci consisting of those

Corollaries 4.6 and 4.7 allow us to restrict our attention to the categories of homogeneous
operations [Mod, Mod],, resp. [Modsg, Modg],, for some fixed value of n € IN.
In the remainder of this section, each time Mod may be replaced by Modg.

Lemma 4.11 Let F : Mod — Mod be an operation. Then F is homogeneous of degree n if
and only if for every commutative k-algebra R, every R-module M and every elementr € R
we have FR(r . idM) =r" - idFy ).

Proof The direction <= follows by applying the assumption to the R[7 ]-module M[T] and
the element 7 € R[T]. The direction =—> follows by applying the base change R[T] — R,
T + r to the assumption FR[T](T . idM[T]) =T". idFR(M)[T]~ O
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Our next result shows that homogeneous operations consist of polynomial functors in the
sense of [24, Sections 1 and 2]. It also shows the connection to Roby’s polynomial rules (cf.
[27, Théoréme I.1] and Remark 2.13).

Lemma 4.12 Let F : Mod