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Abstract This paper provides a unifying framework for a range of categorical construc-
tions characterised by universal mapping properties, within the realm of compactifications
of discrete structures. Some classic examples fit within this broad picture: the Bohr
compactification of an abelian group via Pontryagin duality, the zero-dimensional Bohr
compactification of a semilattice, and the Nachbin order-compactification of an ordered set.
The notion of a natural extension functor is extended to suitable categories of structures
and such a functor is shown to yield a reflection into an associated category of topologi-
cal structures. Our principal results address reconciliation of the natural extension with the
Bohr compactification or its zero-dimensional variant. In certain cases the natural extension
functor and a Bohr compactification functor are the same; in others the functors have dif-
ferent codomains but may agree on all objects. Coincidence in the stronger sense occurs in
the zero-dimensional setting precisely when the domain is a category of structures whose
associated topological prevariety is standard. It occurs, in the weaker sense only, for the
class of ordered sets and, as we show, also for infinitely many classes of ordered structures.
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Coincidence results aid understanding of Bohr-type compactifications, which are defined
abstractly. Ideas from natural duality theory lead to an explicit description of the natu-
ral extension which is particularly amenable for any prevariety of algebras with a finite,
dualisable, generator. Examples of such classes—often varieties—are plentiful and varied,
and in many cases the associated topological prevariety is standard.
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1 Introduction

Our purpose is to bring within a common framework a range of apparently rather disparate
universal constructions. In all cases the objects constructed are topological structures and
the construction is performed by applying the left adjoint to a functor which forgets the
topology. Constructions of this type arise widely in algebra and in topology, under various
guises. Specific examples include

• the Bohr compactification of an abelian group [34];
• the Bohr compactification of a unital meet semilattice [33];
• the Stone–Čech compactification of a set;
• the Nachbin order-compactification of an ordered set [7, 41].

Here the categories on which the left adjoint functors act have as objects a suitable class
either of algebras or of relational structures.

The Bohr compactification is best known, and first received attention, in the context of
topological abelian groups. Somewhat later, the ideas were extended to semigroups, semi-
lattices and rings by Holm [34], suggesting that a theory of Bohr compactifications could be
developed for algebraic structures more widely. This was taken forward by Hart and Kunen
[32]. However they work with an algebraic first-order language, so that the discrete struc-
tures of their title are less general than those we shall consider. (It is immaterial whether one
chooses overtly to include the discrete topology or, as we shall do, suppress it.) The Bohr
construction comes in two distinct flavours, depending on whether one seeks a reflection
into a category of topological structures which has objects which carry a compact Hausdorff
topology or one in which the objects are compact and zero-dimensional. These functors are
customarily denoted, respectively, by b and b0.

Bohr compactifications may be considered alongside other generic constructions one
may perform on suitable classes:

• Bohr compactifications and zero-dimensional Bohr compactifications, of algebraic
structures, as studied in [32];

• the natural extension of an algebra in any internally residually finite prevariety, abbre-
viated IRF-prevariety, that is, a class of the form ISP(M), where M is a set of finite
algebras of common signature [17];

• the profinite completion of an algebra in a residually finite variety or more generally
an IRF-prevariety, in general and in particular cases (see [5, 18, 24, 43] and references
therein);
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• the canonical extension of an algebra in a finitely generated variety of lattice-based
algebras (see [24] and references therein).

In each of these cases we start from a category A of algebras and consider a category B of
topological structures in which each object has a topology-free reduct in A and we have a
functor F : A → B which is left adjoint to the functor from B to A which forgets the topol-
ogy. The constructions differ in their scope (that is, in the conditions on the domain category
A on which they operate) and in the manner in which they are customarily formulated.
Where the same category A supports more than one of the constructions, the codomain cat-
egory B may vary. In some instances existence is initially established abstractly; in others,
and for the natural extension in particular, a concrete description is presented at the outset,
or can be derived. A recurrent theme however is that the constructions can be characterised
by an appropriate universal mapping property.

Our presentation of an overarching framework for compactifications of Bohr type relies
on widening the scope of the natural extension construction. We consider prevarieties of the
form A = ISP(M), where M is a set of structures such that, for each M ∈ M, there is
a fixed compact Hausdorff topology T = T(M) that is compatible with the structure; we
call such a class a compactly-topologisable prevariety, or CT-prevariety. We then define the
associated topological prevariety AT := IScP(MT), where MT = { MT | M ∈ M } and
MT denotes M endowed with the associated topology T. We make both A and AT into
categories in the obvious way (see Sections 2 and 3 for more details). Frequently we shall
present theoretical results only for the case |M| = 1; this simplifies the presentation and
covers the specific classes we target in this paper.

Given a CT-prevariety A, we construct a functor nA : A → AT , known as the natural
extension functor, which is left adjoint to the forgetful functor � : AT → A. This construc-
tion is available in particular on all four of the categories in our initial list: abelian groups,
unital meet semilattices, sets, and ordered sets. We demonstrate in Section 3 that many of
the good features of the natural extension revealed in [17] extend to the wider setting: most
notably we have a well-defined functor which is a reflection and so acts as the left adjoint
to the forgetful functor from AT into A. (We note, by contrast, that the profinite comple-
tion construction cannot be expected to extend beyond the setting of IRF-prevarieties of
algebras.) The natural extension construction has an important virtue. The formalism of tra-
ditional natural duality theory, as presented in the text of Clark and Davey [8], enables an
explicit description to be given in general of nA(A), for A in an IRF-prevariety A of alge-
bras, and in a more refined and amenable form, for classes which admit a natural duality
[17]. Drawing similarly on duality theory ideas that extend to IRF-prevarieties of struc-
tures [16] and to certain CT-prevarieties of structures [20], we are able explicitly to describe
natural extensions in the wider setting, though there are impediments: structures must not
contain partial operations and, for prevarieties with infinite generators, the results we obtain
are less complete than those for IRF-prevarieties.

The Bohr compactification functor b on a prevariety A of structures (as presented in
Section 2) maps A into the category Act of compact topological structures with non-
topological reduct in A and is left adjoint to the natural forgetful functor. The zero-
dimensional Bohr compactification functor b0 is defined similarly, with Act replaced by the
category ABt of Boolean topological structures with reduct in A. Thus a Bohr compactifi-
cation has an abstract characterisation, and so is hard to describe explicitly. It is therefore
advantageous to know when it coincides with the more readily accessible natural extension.
In Section 4 we elucidate the relationship between the natural extension functor nA on a
class A of structures and the functor b and, when the objects of AT are zero-dimensional,
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Fig. 1 The functors nA, b0 and b (in the case that AT ⊆ ABt)

the functor b0; see Proposition 4.1. The situation is illustrated in Fig. 1; each of the functors
is left adjoint to the corresponding forgetful functor.

The coincidence results we present are a core constituent of the paper. They are of two
types. Strong coincidence occurs when the functors under consideration can be shown to
have the same codomain, from which it follows that the functors are identical, having the
same domain, codomain and values. Weak coincidence arises when the codomain categories
are different but the image of the functor into the larger of the categories lies in the smaller
one: for example, if b0 maps A into AT , then b0(A) = nA(A), for all A ∈ A, and hence
b0 and nA coincide except for their codomains.

Given an IRF-prevariety A, strong coincidence of b0 and nA occurs exactly when the
associated topological prevariety AT is standard, that is, AT = IScP(MT) is exactly the
class of all Boolean topological models of the quasi-atomic theory of MT . The notion
of a standard topological prevariety has received considerable attention in its own right
[9–12, 25, 35]. This literature enables us to present an extensive list of IRF-prevarieties of
algebras (all of which are in fact varieties) for which the zero-dimensional Bohr compactifi-
cation coincides strongly with the natural extension and can thereby be explicitly described
with the aid of known dualities (see Theorems 5.2 and 5.3). We also consider briefly, with
examples, new notions of standardness appropriate to a CT-prevariety which has an infinite
generator.

We can draw on two famous examples from the literature to highlight instances of non-
coincidence which arise in different ways. The IRF-prevariety S of unital meet semilattices
is standard [33, Prop. I.2.5], so that strong coincidence occurs for nS and b0. However
weak coincidence of b0 and b fails; see Theorem 4.4. Now consider the IRF-prevariety P of
ordered sets. Here standardness fails (see Example 4.3) and strong coincidences are ruled
out. However weak coincidence of b (the Nachbin order compactification functor) and nP
does occur, and so, even though they have three different codomains, the functors b, b0
and nP take the same values on A: so b(Y) = b0(Y) = nA(Y), for each ordered set Y;
see Proposition 6.4. Building on this example, Theorem 6.8 supplies a countably infinite
family of IRF-prevarieties X of ordered structures exhibiting the same behaviours as does
P. Underpinning our discovery of these prevarieties is the method of topology-swapping,
originating in [19] and applied in Section 6 to the description of natural extensions in linked
pairs of categories; see Corollary 6.1.

We should issue a reassurance that readers of this paper are not assumed to have a work-
ing knowledge of natural duality theory. As we have indicated, our key tools for identifying
zero-dimensional Bohr compactifications are the natural extension construction and the
notion of a standard topological prevariety. These tools are an adjunct to, rather than a part
of, duality theory and our presentation of the theory we require is self-contained. We do
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however refer to the literature for results concerning dualisability or otherwise of particular
classes of structures, and for details of particular dualities, where these exist.

We conclude this introduction by stressing that our objective is to analyse in a uniform
manner compactifications in a range of specific categories. Our focus is very different from
that of the treatment of universal constructions within an abstract categorical framework, as
presented in such sources as [38] or [1]. Our account, by contrast, does have some affin-
ity with the free-wheeling introduction to universal constructions in algebra and topology
given, in textbook style, by Bergman [4], in particular Section 3.17.

2 The Bohr Compactification of a Structure

The Bohr compactification has a honourable place in the theory of topological groups, and
has important connections with harmonic analysis and almost periodic functions. For back-
ground on the construction in this context, and on its applications, see for example [26,
34]. The ideas were extended to certain other classes of algebras with compatible topol-
ogy; see for example [34], and the wide-ranging survey by Hart and Kunen [32]. We warn
once again, however, that the term ‘structure’ is used in a narrower sense in [32] than in the
present paper. In the former the setting is provided by a first-order language L with opera-
tion symbols and equality but without other relation symbols; the authors suggest that the
theory would be ‘a little messier’ if L were to include predicates (see [32, 2.1 and 2.3.13]).
This is in sharp contrast to our treatment. We work in a context that encompasses algebraic
structures, purely relational structures, and hybrid structures within a common framework.
We will consider the Bohr compactification of these more general structures and connect it,
where possible, to the natural extension. Hart and Kunen make no a priori assumption that
the classes of structures with which they deal are varieties or prevarieties, though this is the
case with their most significant examples.

Within the theory of compactifications of topological algebras, or of more general types
of topological structures, an important special case arises when one restricts to the situa-
tion in which the objects being compactified carry the discrete topology, or equivalently no
topology. This is the case on which we shall exclusively focus. In most of our examples, the
Bohr compactifications will be zero-dimensional.

We recall that a topological space X is said to be zero-dimensional if it has a basis of
clopen sets. This is a convenient point at which to draw attention to the alternative formu-
lations of the concept of zero-dimensionality in the context of compact spaces. A compact
Hausdorff space X is zero-dimensional if and only if it is a Boolean space in the sense that
the clopen sets separate the points. For brevity we shall usually adopt the term Boolean
space subsequently.

Our task in this section is to set up the definition of the Bohr compactification, in either
variant, in the context of structures. First we need to specify precisely what we mean by a
(topological) structure.

Definition 2.1 A structure A = 〈A; GA, HA, RA〉 is a set A equipped with a set GA of
finitary total operations, a set HA of finitary partial operations and a set RA of finitary rela-
tions. If HA is empty we refer to A as a total structure, if both GA and HA are empty
we refer to A as a purely relational structure and if both HA and RA are empty we refer
to A as an algebra. A structure with topology A = 〈A;GA, HA, RA,TA〉 is simply a



408 B. A. Davey et al.

structure equipped with a topology TA, and A� := 〈A;GA, HA, RA〉 will denote its under-
lying structure. We say that the topology is compatible with the underlying structure if the
relations in RA and the domains of the partial operations in HA are topologically closed
and the operations in GA and the partial operations in HA are continuous; when this holds
we refer to A = 〈A; GA, HA, RA,TA〉 as a topological structure (of signature (G,H,R)).
Given a structure M with a compatible topology T, we denote by MT the topological
structure obtained by endowing M with the topology T. We shall sometimes use a super-
script T rather than a subscript to avoid bracketing; for example, we write MT

1 rather than
(M1)T .

Our principal concern will be with total structures, but we do not disallow partial opera-
tions until this is necessary. A class of structures will always be converted into a category by
adding all homomorphisms as morphisms of the category, and similarly, for a class of struc-
tures with topology, the morphisms of the corresponding category will be the continuous
homomorphisms (see [8, pp. 21–22]).

Definition 2.2 Assume that A is a class of structures. Then we may consider both the
category Act of compact Hausdorff topological structures having A-reducts and its full
subcategory ABt consisting of those compact topological structures whose topology is zero-
dimensional. The Bohr compactification of A, denoted b(A), is a member of Act into which
A embeds as a structure, via an embedding we denote by ιA, with the property that the closed
substructure of b(A) generated by ιA(A) is b(A) itself. (If the signature of the structures
includes no partial operations, so H = ∅, then we simply require ιA(A) to be topologically
dense in b(A).) By definition, the compact topological structure b(A) is required to satisfy
and (up to an Act-isomorphism) is uniquely determined by the following universal mapping
property:

given any compact Hausdorff structure B ∈ Act and any A-morphism g : A → B�,
there exists a unique Act-morphism h : b(A) → B such that h ◦ ιA = g.

Replacing ‘Hausdorff’ by ‘zero-dimensional’ and b(A) by b0(A) throughout, so working
within the realm of Boolean-topological structures, we obtain the zero-dimensional Bohr
compactification b0(A) of A. (Henceforth all compact topological spaces will be assumed
to be Hausdorff.)

It is a very simple exercise to check that the (zero-dimensional) Bohr compactification
is uniquely determined and that the specification in terms of a universal mapping property
agrees with that given in [32]. If A is closed under forming substructures, then, in the
universal mapping property, the Act-morphism h is uniquely determined by g, for all A-
morphisms g, if and only if the closed substructure of b(A) generated by ιA(A) is b(A)

itself—the argument is completely standard, using only the universal mapping property and
the fact that an equaliser of two continuous homomorphisms forms a closed substructure.

Thus for A ∈ A both b(A) and b0(A) are indeed defined and are characterised by
their respective universal mapping properties. If it happens that b(A) is in fact a Boolean-
topological structure, then (up to isomorphism) b(A) = b0(A), since b(A) satisfies the
universal property characterising b0(A). Of course, the universal mapping properties defin-
ing b(A) and b0(A) say precisely that b : A → Act and b0 : A → ABt are reflections, that
is, they are left adjoint functors to the natural forgetful functors, provided b(A) and b0(A)

exist, for all A ∈ A.
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3 The Natural Extension of a Structure

In this section we introduce, in the context of CT-prevarieties of structures, the natural
extension which plays a central and unifying role in this paper. The theory we shall present
principally concerns categories of the two forms:

A = ISP(M) and AT = IScP(MT).

Here and below M is a set of structures of common signature; M is not required to be finite
(but in the examples we shall give M will contain only a single structure). The prevariety
A := ISP(M) generated by M is the class of isomorphic copies of non-empty substructures
of products of structures in M, where products are structured coordinatewise. Extending
the usage in [17, Section 2], if all of the structures in M are finite we shall refer to the
class A as an internally residually finite prevariety (of structures) or IRF-prevariety for
short. We shall assume that each M in M has a fixed associated compact topology T that
is compatible with M and we denote the corresponding topological structure by MT . Let
MT := { MT | M ∈ M }; then the topological prevariety AT := IScP(MT) generated
by MT consists of isomorphic copies of non-empty topologically closed substructures of
products of members of MT .

Remark 3.1 If we prefer we may replace the class operator P by P+, thereby excluding
the empty indexed product. Similarly, we can allow the possibility of including the empty
structures in both A and AT by replacing S and Sc with the operators S0 and S0

c that
include empty substructures (when the signature does not include nullary operations). We
have chosen one of the four possibilities as our primary setting, but will have need of several
of the others along the way. All of the theory presented below carries over to the other three
with trivial changes. To avoid a proliferation of names, we shall refer to each of IScP(MT),
IScP+(MT), IS0

cP(MT) and IS0
cP

+(MT) as the topological prevariety generated by MT

as it will always be clear from the context which is intended.

In the case of an IRF-prevariety ISP(M), each M ∈ M is finite and hence the topology
T associated with M is discrete and is the unique topology making MT compact Hausdorff
(in fact zero-dimensional). The objects in AT = IScP(MT) are then Boolean-topological
structures; hence AT ⊆ ABt.

Now let A be a CT-prevariety of structures, so A = ISP(M) for a set M of structures in
A each having an associated compatible compact topology. Let AT := IScP(MT) be the
associated topological prevariety. We are ready to extend to CT-prevarieties of structures
the concept of a natural extension which was introduced for IRF-prevarieties of algebras in
[17, Section 3]. Let A ∈ A and define

XA := ·⋃{A(A, M) | M ∈ M }.
Further, let Yx := MT , for each M ∈ M and x ∈ A(A, M), that is, Yx is the codomain M
of the map x with its associated topology T added. The homomorphism

eA: A →
∏{

Yx | x ∈ XA
}

given by evaluation, eA(a)(x) := x(a), for all a ∈ A and x ∈ XA, is an embedding of
structures since A ∈ ISP(M). We also observe that

∏{
Yx | x ∈ XA

} ∈ AT .
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Definition 3.2 Let A = ISP(M) be a CT-prevariety of structures generated by a set M of
structures each with a fixed associated compact topology and let A ∈ A. Then the topolog-
ically closed substructure generated by eA(A) in

∏{ Yx | x ∈ XA } is said to be the natural
extension nA(A) of A in AT (relative to MT).

We notice that, in the case of total structures, the natural extension nA(A) coincides with
the topological closure of eA(A) in

∏{ Yx | x ∈ XA }. For a CT-prevariety of structures,
A = ISP(M), we have constructed a map A �→ nA(A) from A into AT . Though this
seems to depend upon the choice of the generating set M of structures for the prevariety
A, we shall show later that nA(A) is independent of the choice of the generating set M
of the prevariety A in the case of an IRF-prevariety. More generally, the natural extension
on a CT-prevariety A = ISP(M) is independent of the chosen generating set MT of the
associated topological prevariety (Corollary 3.9).

The map nA is defined on morphisms just as in [17]. Let u : A → B be a morphism with
A, B ∈ A. For y ∈ XB we have y ◦ u ∈ XA, and for each y ∈ XB we have the map

uy :
∏

{ Yx | x ∈ XA } → Yy

defined by uy(f ) := f (y ◦ u). Further, Yy = Yy◦u and uy (as the projection at y ◦ u) is
continuous. The map

û :
∏

{ Yx | x ∈ XA } →
∏

{ Yy | y ∈ XB }
is then defined as the natural product map, that is,

(̂u(f ))(y) = f (y ◦ u), for f ∈
∏

{ Yx | x ∈ XA } and y ∈ XB.

As each uy is continuous, û is continuous too. The following properties of û are similar to
those presented in [17, Lemma 3.1]. While the proof of the first one is analogous to the proof
in the case of algebras, the second one requires slightly more careful definition chasing.

Lemma 3.3 Let u : A → B be a morphism with A, B ∈ A.

(i) û ◦ eA = eB ◦ u, and consequently, û(eA(A)) ⊆ eB(B).
(ii) û(nA(A)) ⊆ nA(B).

Proof To prove (i) we proceed as follows. Let a ∈ A. Then, for all y ∈ XB,

(̂u ◦ eA)(a)(y) = û(eA(a))(y) = eA(a)(y ◦ u)

= y(u(a)) = eB(u(a))(y) = (eB ◦ u)(a)(y).

Hence û ◦ eA = eB ◦ u, and it follows at once that û(eA(A)) ⊆ eB(B).
For (ii), we first note that, by (i),

eA(A) ⊆ û−1(̂u(eA(A))) ⊆ û−1(eB(B)) ⊆ û−1(nA(B)).

Since û−1(nA(B)) is a closed substructure of
∏{ Yx | x ∈ XA }, it follows that nA(A) ⊆

û−1(nA(B)), and thus û(nA(A)) ⊆ û(̂u−1(nA(B))) ⊆ nA(B).

For structures A, B ∈ A and a morphism u : A → B, we define a continuous morphism
nA(u) : nA(A) → nA(B) by nA(u) := û�nA(A), and the first part of the following propo-
sition follows by a routine calculation. The second is a consequence of Lemma 3.3 where
� : AT → A denotes the natural forgetful functor.
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Proposition 3.4 (i) nA : A → AT is a well-defined functor.
(ii) e : idA → � ◦ nA is a natural transformation.

Lemma 3.5 below presents an alternative view of the natural extension of a structure in
the CT-prevariety A = ISP(M). We shall need this result shortly in order to prove that the
natural extension functor is a reflection. The lemma extends to the setting of CT-prevarieties
of structures an analogous result for IRF-prevarieties of algebras given in [17].

We adopt the same notation as above. The product
∏{

Yx

∣∣ x ∈ XA
}
, the codomain of

the map eA, may be viewed as an iterated product
∏{∏

{Yx

∣∣ x ∈ A(A, M) } ∣∣ M ∈ M
}

.

We then write eA(a)(M)(x) = x(a), for any fixed a ∈ A and for M ∈ M and x ∈ A(A, M),
and refer to each eA(a) as a multisorted evaluation map. We have

eA: A →
∏ {

MA(A,M)

T

∣∣ M ∈ M
}

.

The set A(A, M) can be regarded as a closed subspace of the topological product (MT)A,
in which case we denote it by A(A, M)T . (Notice we are not claiming that A(A, M)T ∈
AT ; in general it is not a substructure of MA

T .) It now makes sense to consider the set
C(A(A, M)T, MT) of continuous maps from A(A, M)T into MT . As the map

eA(a)(M) : A(A, M)T → MT

is continuous, for all M ∈ M, we can restrict the codomain of eA and write

eA: A →
∏{

C(A(A, M)T, MT)
∣∣ M ∈ M

}
.

Lemma 3.5 Let A = ISP(M) be a CT-prevariety of structures and let A ∈ A. Then the
natural extension nA(A) is the closed substructure generated by eA(A) within the product∏{

C(A(A, M)T, MT)
∣∣ M ∈ M

}
.

We can provide a quite explicit, if unwieldy, description of the elements of the natural
extension in the context of an IRF-prevariety of structures. This generalises the description
given by [17, Theorem 4.1] and is proved in the same way. We present this in the single-
sorted case (so that |M| = 1) since this covers our future needs in this paper and simplifies
the statement; a multi-sorted version could be obtained, as in [17].

Proposition 3.6 Let M = 〈M; G,R〉 be a finite total structure, let A := ISP(M), let
A belong to A, and let b : A(A, M) → M be a map. Then the following conditions are
equivalent:

(i) b belongs to nA(A), that is, b belongs to the topological closure of eA(A) in

MA(A,M)

T ;
(ii) b is locally an evaluation, that is, for every finite subset Y of A(A, M), there exists

a ∈ A such that b(y) = y(a), for all y ∈ Y ;
(iii) b preserves every finitary relation on M that forms a substructure of the appropriate

power of M;
(iv) b preserves every finitary relation on M of the form

rF := { (x1(a), . . . , xn(a)) | a ∈ A },
where F = {x1, . . . , xn} is a finite subset of A(A, M).
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We now revert to the assumption that A = ISP(M) is a CT-prevariety of structures. With
the construction of the natural extension in place we are ready to move on to establish its
key properties.

We wish to prove that the natural extension functor is a reflection. To do this we exploit
the alternative description of the natural extension given in Lemma 3.5. This theorem,
proved for the algebra case in [17, Proposition 3.4], was not exploited in that paper. Here,
extended to structures and slightly rephrased, it will play an important role (see Section 4).
We note that the statement in Theorem 3.7(i) is slightly stronger than asking for B� to be a
retract of nA(B�)� in A.

Theorem 3.7 Let A be a CT-prevariety of structures.

(i) For each B ∈ AT there exists a continuous homomorphism γ : nA(B�) → B with
γ ◦ eB� = idB .

(ii) The natural extension functor nA : A → AT is a reflection of A into the (non-full)
subcategory AT . Specifically, for each A ∈ A, each B ∈ AT and every homomor-
phism g : A → B�, there exists a unique continuous homomorphism h : nA(A) → B
with h ◦ eA = g.

Proof Consider (i). Let B ∈ AT and consider the map

c : B →
∏ {

MAT(B,MT)

T

∣∣ M ∈ M
}

given by c(b)(M)(x) := x(b),

for all b ∈ B and x ∈ AT(B, MT). Since B ∈ AT , the map c is a continuous embedding.
Because AT(B, MT) ⊆ A(B�, M), we can define a projection map

π :
∏ {

MA(B�,M)

T

∣∣ M ∈ M
}

→
∏ {

MAT(B,MT)

T

∣∣ M ∈ M
}

.

Note that π is continuous. A simple calculation shows that π ◦ eB� = c, and clearly π maps
eB�(B) bijectively to c(B). As the domain of c is compact, the codomain is Hausdorff, and
c is continuous, c(B) is a closed subset of the codomain. Moreover, since c is a continuous
embedding, c−1 is an AT-isomorphism from c(B) to B. Since eB�(B) ⊆ π−1(π(eB�(B))) =
π−1(c(B)), and since π−1(c(B)) is a closed substructure of

∏{
MA(B�,M)

T

∣∣ M ∈ M
}
, we

have nA(B�) ⊆ π−1(c(B)), whence π(nA(B�)) ⊆ c(B).
Hence we can restrict both the domain and the codomain of π and define a continuous

homomorphism

ρ := π�nA(B�) : nA(B�) → c(B).

Finally, define γ := c−1 ◦ ρ. Since c−1 and ρ are continuous, so is γ . Then we have

γ ◦ eB� = c−1 ◦ ρ ◦ eB� = c−1 ◦ c = idB,

completing the proof of (i).
Now consider (ii). We first prove the uniqueness of the continuous homomorphism h.

Assume that continuous homomorphisms h, h′ : nA(A) → B satisfy h ◦ eA = h′ ◦ eA = g.
Then the equaliser Y := eq(h, h′) is a closed substructure of

∏{
Yx

∣∣ x ∈ XA
}

containing
eA(A) and hence Y = nA(A); it follows at once that h = h′.

To prove the existence assertion, we apply (i) to find γ : nA(B�) → B with γ ◦eB� = idB .
Note that nA(g) : nA(A) → nA(B�) is a continuous homomorphism with nA(g) ◦ eA =
eB� ◦ g. Now take h = γ ◦ nA(g).
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It is very easy to check that the definition of nA(A) requires only that A be a structure
of the appropriate signature. Proposition 3.4 and Theorem 3.7 then show that nA provides
a reflection functor from the category of all structures of the appropriate type into AT .

The fact that Theorem 3.7 supplies a reflection has the following important corollary.

Corollary 3.8 For each CT-prevariety of structures A, the functor nA : A → AT is left
adjoint to the functor � : AT → A forgetting the topology.

Since the left adjoint to the forgetful functor is unique up to isomorphism and depends
only upon A and the subcategory AT , we obtain the following important consequence for
the natural-extension perspective we adopt in the remainder of the paper.

Corollary 3.9

(i) Let M and M′ be sets consisting of structures each of which has a fixed associated
compact topology. Define A = ISP(M) and assume that IScP(MT) = IScP(M′

T).
Then A = ISP(M′) and, for all A ∈ A, the natural extensions of A relative to M and
relative to M′ agree.

(ii) Let A be an IRF-prevariety of structures. Then, for each A ∈ A, the natural extension
nA(A) of A is independent of the set M of finite structures chosen to generate A.

Proof By Corollary 3.8, we only need to see that our assumptions guarantee that ISP(M) =
ISP(M′), so that the categories are not changed when we pass from M to M′. We have
IScP(MT) = IScP(M′

T) by assumption. It follows that MT ⊆ IScP(M′
T), whence M ⊆

ISP(M′) and so ISP(M) ⊆ ISP(M′). By symmetry we have the reverse inclusion and so
ISP(M) = ISP(M′). This proves (i).

To prove (ii), it suffices to show that, if M and M′ consist of finite structures, then
ISP(M) = ISP(M′) implies that IScP(MT) = IScP(M′

T). Assume that ISP(M) =
ISP(M′). Since the topologies involved are discrete, it follows easily from this that MT ⊆
IScP(M′

T) and M′
T ⊆ IScP(MT), whence IScP(MT) = IScP(M′

T).

4 The Bohr Compactification Versus the Natural Extension:
the Role of Standardness

Our goal in this section is to compare Bohr compactifications to the natural extension in
situations where the latter is defined.

Consider until further notice the situation in which we have a CT-prevariety A =
ISP(M) of structures and its associated topological prevariety AT = IScP(MT). Note that
we always have AT ⊆ Act, and if the topologies on the members of M are Boolean, in par-
ticular if A is an IRF-prevariety, then we have AT ⊆ ABt. Observe that it is the category
AT that appears in Theorem 3.7, rather than either of the potentially larger categories ABt

and Act.
The Bohr compactification (in both zero-dimensional and compact Hausdorff versions)

and the natural extension of a structure are characterised by universal mapping proper-
ties; Definition 2.2 and Theorem 3.7. Thus we have reflection functors into three possibly
different categories (see Fig. 1):

• the natural extension functor, providing a reflection into AT ;
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• the zero-dimensional Bohr compactification functor b0, giving a reflection into the
category ABt;

• the Bohr compactification functor b, giving a reflection into the category Act.

In each case the functor is uniquely determined by its characteristic universal mapping prop-
erty. We recall from Section 1 that strong coincidence occurs when two of the functors nA,
b0 and b on A coincide because their codomains are the same, and that weak coincidence
arises when the codomain categories are different but the image of the functor into the larger
of the categories lies in the smaller one. The following proposition is immediate.

Proposition 4.1 Let A = ISP(M) be a CT-prevariety of structures and define AT :=
IScP(MT). Then the following statements hold.

(i) If AT = Act, then b(A) = nA(A) for each A ∈ A.
(ii) If AT = ABt, then b0(A) = nA(A) for each A ∈ A.

(iii) Let A ∈ A. Then

(a) b0(A) = nA(A) if and only if b0(A) ∈ AT;
(b) b(A) = b0(A) if and only if b(A) ∈ ABt.

Suppose that A is such that we have an explicit description of each nA(A). Then strong
or weak coincidence of b0 with nA allows us to describe b0, and likewise with b in place
of b0. To exploit the above observations we need to know more about AT . We are fortunate
that a wealth of information is already available, or is easy to obtain, in the special case that
most interests us: that in which M contains a single structure M.

In the case that M is finite, the assumption AT = ABt in Proposition 4.1(ii) is exactly
the condition that the topological prevariety AT is standard, in the sense that AT consists
precisely of the structures which are Boolean-topological models of the quasi-atomic for-
mulas defining A. We then have the following theorem concerning strong coincidence of
b0 and nA.

Theorem 4.2 Let M be a finite structure, define A := ISP(M) and assume that the asso-
ciated topological prevariety AT := IScP(MT) is standard. Then, for every A ∈ A, the
zero-dimensional Bohr compactification b0(A) of the structure A coincides with its natural
extension nA(A).

Our linkage of standardness to the coincidence of structures characterised by universal
mapping properties is new. However the notion of standardness has received a lot of atten-
tion in its own right, principally in the case that M is an algebra, but to a limited extent when
M is a structure (we consider the latter case later). The systematic study of standardness of a
topological prevariety IS0

cP
+(MT) was initiated in [9, 10]. In these papers M is taken to be

a finite structure (not necessarily an algebra and not necessarily total). While the theory of
standardness was developed for topological prevarieties of the form IS0

cP
+(MT), the results

apply with almost no change to all four settings described in Remark 3.1; in particular they
apply to the class IScP(MT) of interest here.

There are interesting and substantial results available ‘off-the-peg’ when M is a finite
algebra. Assume this, and assume moreover that ISP(M) = HSP(M) so that ISP(M)

is a variety. The principal general result of [9], the FDSC-HSP Theorem, reveals that
a rather natural algebraic condition ensures standardness of IScP(MT). This property—
having finitely determined syntactic congruences—holds in particular if HSP(M) has the
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more familiar property of having definable principal congruences (see [9, Section 2] for
the definitions and discussion, and [12, Theorem 2.13] for an extension of the FDSC-HSP
Theorem to total structures). In some cases the FDSC condition will hold for an entire
variety of algebras, and hence for its finitely generated subvarieties; in others, in particu-
lar lattices, restriction to finite generation is critical if FDSC is to hold. The FDSC-HSP
Theorem implies that the topological prevariety IScP(MT) is standard in each of the fol-
lowing cases: M is a finite Boolean algebra, distributive lattice or implication algebra, or
M is a finite group, semigroup, ring, lattice, Ockham algebra, or unary algebra such that
HSP(M) = ISP(M). This catalogue is not exhaustive. For additional examples, and verifi-
cations of the claims above, see [9, Section 6] and also [25]. We should however warn that
standardness is a subtle property in general, and can fail: there exist finite algebras M for
which IScP(MT) is not standard. An example is given in [12, Example 4.3] in which M is a
10-element modular lattice. Further insight into when and why standardness occurs is pro-
vided by [11, 12] and, for structures, [16, Section 3]. On the positive side, then, Theorem 4.2
is rather widely applicable. Moreover, in many cases when it is, we shall confirm below that
the natural extension has an appealingly simple description, so that the zero-dimensional
Bohr compactification does too.

We draw attention to a well-known instance of non-standardness in the context of
structures.

Example 4.3 Consider the category of ordered sets, P = IS0P(2), and the associated
topological prevariety PT = IS0

cP(2T) of Priestley spaces, where 2 = 〈{0, 1};�〉 is the
two-element chain. Stralka [48] exhibited two examples of Boolean spaces with a closed
order relation that fail to be Priestley spaces, whence PT is non-standard. (For further
analysis of this phenomenon, see [6].)

We shall show in Proposition 6.4 that b0(Y) and nP(Y) do coincide, for every ordered
set Y (in fact, b(Y) coincides with nP(Y) too). Here we have an instance of coincidence
occurring in the weak sense but not in the strong sense. We deduce that none of the exam-
ples witnessing non-standardness of PT belongs to the image of the class P under b0 (or
equivalently b).

It is not always the case that the Bohr compactification and its zero-dimensional variant
coincide in the weak sense. This was established for meet semilattices by Hart and Kunen
[32, Section 3.4], in particular [32, Corollary 3.4.13], drawing on pioneering work by Law-
son (see [32] and [28, Chapter VI] for references). We present a proof which takes full
advantage of the theory of continuous lattices, as presented in a mature form in [28], as
well as results we have to hand. Hart and Kunen work with meet semilattices which do not
include a unit 1 in their signature. However we elect to work with S, the variety of meet
semilattices with 1 since this choice aligns better with [28]. We thereby avoid the minor
technical distractions arising from the need otherwise to adjoin a unit (see the note in the
proof of [28, Theorem VI-3.4]).

We shall draw on the Fundamental Theorem on Compact Totally Disconnected Semi-
lattices [28, Theorem VI-3.13]. This supplies an isomorphism of categories between SBt

and the category of algebraic lattices equipped with the Lawson topology and with the
Lawson-continuous maps preserving 1 as morphisms; these morphisms can alternatively be
described as the maps which preserve arbitrary meets and directed joins.

Theorem 4.4 Let S be the class of unital meet semilattices. Then there exists A in S such
that b(A) 
= b0(A).
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Proof There exists a compact topological unital meet semilattice B which fails to have
small semilattices, meaning that there exists a neighbourhood basis of subsemilattices at
each point. See [28, VI-4.5] for the statement of this claim, and the definitions and lemmas
which precede it for the construction of the example. Let A = B� so that A ∈ S. Suppose
for a contradiction that b(A) = b0(A). Then b(A) is a compact zero-dimensional unital
meet semilattice and hence is an algebraic lattice. Moreover, b(A) = b0(A) = nS(A), by
the standardness of ST .

By Theorem 3.7(i) there exists a continuous homomorphism γ : nS(B�) → B such that
γ ◦ eA = idB . This implies that B is the image under a continuous homomorphism of a
compact zero-dimensional (alias totally disconnected) topological unital meet semilattice.
The domain of this map necessarily does have small semilattices. Hence the same is true of
the image, by [28, VI-3.5]. This provides the required contradiction.

We now turn to the case in which M is an infinite structure and MT is a compact
topological structure.

Standardness has been studied almost exclusively in the case where A is a universal Horn
class generated by its finite members. Nevertheless, by analogy, in the case that MT is an
infinite compact topological structure, it is natural to define A := ISP(M) and say that the
topological prevariety AT := IScP(MT) is compact-standard if AT = Act and is Boolean-
standard if AT = ABt. Since AT ⊆ Act always holds, it follows that AT is compact-
standard precisely when every compact topological structure whose non-topological reduct
is in A can be embedded as a topological structure into a power of MT . For example,
the (highly non-trivial) fact that every compact topological abelian group embeds into a
power of the circle group TT tells us that the topological prevariety IScP(TT) is the class
of compact topological abelian groups (see [45, C, p. 241]) and so is compact-standard.
Similarly, if T is a Boolean topology, then AT is Boolean-standard precisely when every
Boolean topological structure whose non-topological reduct is in A can be embedded as a
topological structure into a power of MT . We now give an example of a Boolean-standard
prevariety with infinite generator.

Example 4.5 (Semilattices with automorphism) We consider the variety of semilattices with
automorphism, as introduced by Ježek [37]; see [21, Section 8] for further details. We let
P have universe 2Z, the set of all functions from the integers into the set 2 := {0, 1}. The
meet operation is defined pointwise, relative to the two-element semilattice 〈2; ∧〉. We let
s : Z → Z be the successor function given by s(i) := i + 1, for all i ∈ Z and let 0 be the
function on Z with constant value 0. We add the shift operations f and f −1 to the signature,
where f (a) = a ◦ s and f −1(a) = a ◦ s−1 for a ∈ 2Z. Thus P = 〈{0, 1}Z; ∧, f, f −1, 0〉.
Define A := ISP(P) and let PT denote P equipped with the product topology obtained from
the discrete topology on {0, 1}. We claim that AT := IScP(PT) is Boolean-standard.

Consider a Boolean-topological algebra A having algebraic reduct in A. We must show
that A embeds into a power of PT via a continuous A-homomorphism. The algebra A�,
which denotes A with a top element � adjoined as a topologically isolated point, has a semi-
lattice reduct which is a unital meet semilattice. The Fundamental Theorem for Compact
Totally Disconnected Semilattices [28, Theorem VI-3.13] tells us that A� is an algebraic
lattice and that its topology is the Lawson topology. Extend f to A� by letting f (�) = �.
Then f , so extended, is a semilattice homomorphism of A� preserving �. We define a fam-
ily of maps from A� into P indexed by the compact elements k (excluding �) of A� as
follows:

hk(x)(i) = 1 ⇐⇒ f i(k) � x.
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Then, for each fixed j ∈ Z, the set { x | hk(x)(j) = 1 } is equal to ↑f j (k). Now note that
because the extended maps f , f −1 and their iterates are semilattice automorphisms, and
hence order-isomorphisms, of A�, the element f j (k) is compact whenever k is. It follows
from properties of the Lawson topology on an algebraic lattice that { x | hk(x)(j) = 1 }
is clopen in A� (see for example [28, Exercise III-1.4]). This proves that the inverse image
under hk of each member of a clopen subbasis in P is clopen in A�. Since � is an isolated
point with h−1

k (�) = {�}, the restriction hk�A is a continuous map of A into P. As shown
in [37, Proposition 1.1], each hk is an A-homomorphism.

To show that A embeds into a power of PT , it suffices to show that the maps hk separate
the points of A. Take a � b in A. Since A� is an algebraic lattice, there exists a compact
element k 
= � of A� with k � a and k � b. Then hk separates a and b.

It follows that IScP(PT) is Boolean-standard, as claimed.

We now present the infinite-generator version of Theorem 4.2.

Theorem 4.6 Let M be an infinite structure and let T be a compact topology on M that is
compatible with M. Define A = ISP(M) and AT := IScP(MT).

(i) If the topological prevariety AT is compact-standard, then, for every A ∈ A, the Bohr
compactification b(A) of the structure A coincides with its natural extension nA(A).

(ii) If the topology T is Boolean, and the topological prevariety AT is Boolean-standard,
then, for every A ∈ A, the zero-dimensional Bohr compactification b0(A) of the
structure A coincides with its natural extension nA(A).

This is an opportune point at which to make some background comments on topological
prevarieties and their generating sets and to relate our exposition to an aspect of that of Hart
and Kunen [32, Section 2.6]. Our presentation of the natural extension construction works
with CT-prevarieties A = ISP(M), where usually M has a single element though this is
not essential. The ‘home’ of nA(A), for each A ∈ A, is then the topological prevariety
IScP(MT). Our first comment is that nA(A) is uniquely determined by MT . On the other
hand, the universal property characterising a Bohr compactification for a general class of
algebras, C say, involves all members of CBt or of Cct, as appropriate. This—and knowledge
of Pontryagin duality and of the duality for semilattices—encourages Hart and Kunen to
introduce the notion of adequacy of a subclass K of a class CT (of topological algebras):
this amounts to saying that the continuous homomorphisms from any element of CT into
structures in K separate points. They do not, however, pursue this idea much further. We
draw parallels here with the Boolean-topological version given by Jackson [35, Lemma 2.2]
of the classic Separation Theorem for quasivarieties as recalled in [35, Lemma 2.1]. This
separation result is elementary, but more significantly [35] throws light on the standardness
problem from the perspective of topological residual bounds as compared to non-topological
residual bounds and presents some interesting examples in the context of IRF-prevarieties
of finite type.

5 Describing the Natural Extension and Bohr Compactifications:
the Role of Duality

Our principal objective in this section is to demonstrate that Bohr compactifications can
be concretely described for many classes A = ISP(M) of algebras and, potentially, of
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structures. To this end we shall bring together two strands of theory. The first of these
strands comes from Section 4. There we revealed that, when A is an IRF-prevariety, strong
coincidence of b0 and nA is equivalent to standardness of the associated topological preva-
riety AT (Theorem 4.2), and we gave an analogous result when A is an infinitely generated
CT-prevariety (Theorem 4.6). Our second strand of theory concentrates on the description
of the natural extension. We shall exploit duality theory to refine the ‘brute force’ descrip-
tion supplied by Proposition 3.6: Theorem 5.2, drawing on Theorem 5.1, gives an amenable
description of the natural extension in case M is a finite total structure which is dualisable.
Theorem 5.3 presents a catalogue of classes of algebras to which Theorems 4.2 and 5.2 both
apply, and for which thereby b0 can be explicitly described. The case when M is infinite
is more challenging, but Proposition 5.4 is noteworthy. It embraces all cases in which M,
finite or infinite, is self-dualising and, in combination with existing standardness results,
sets in context known descriptions of the Bohr compactification b for abelian groups (via
Pontryagin duality) and of b0 for semilatices (via Hofmann–Mislove–Stralka duality). In
this section we are concerned with strong coincidence; in Section 6 our examples will focus
on weak coincidence.

We preface our new results with a very brief introduction to natural dualities for
structures, as developed in [16], and follow this with a broad brush summary of known
dualisability results for algebras.

We shall have two structures on the same set M in play at the same time and it is
convenient to adapt our notation to reflect this. Let M1 = 〈M; G1, H1, R1〉 and M2 =
〈M; G2, H2, R2〉 be structures on M . Let M2 be compatible with M1, meaning that each
(partial) operation in G2 (H2) is a homomorphism (where defined) and each relation r ∈ R2
as well as the domain of each partial operation h ∈ H2 form substructures of appropri-
ate powers of M1, and let T be a compact topology on M that is compatible with M1.
Let MT

2 be the corresponding alter ego of M1, that is, MT
2 is the structure with topol-

ogy (M2)T obtained by adding the topology T to M2. Finally, let A := ISP(M1) and
XT := IS0

cP
+(MT

2 ) be respectively the prevariety of structures generated by M1 and the
topological prevariety of structures with topology generated by MT

2 . In almost every case
below, M is finite, in which case XT consists of Boolean-topological structures.

Note that we have switched here from IScP(MT
2 ) to IS0

cP
+(MT

2 ). This is necessary as
in general the dual of a one-element structure can be empty, for example when M1 is the
two-element lattice with both bounds as nullary operations, and there might be no structure
with a one-element dual, for example when M1 is the two-element lattice without nullary
operations. If M2 has a total one-element substructure, then the + has no effect and we will
use IS0

cP(MT
2 ) instead.

There are well-defined contravariant hom-functors D : A → XT and E : XT → A given
on objects by

D(A) := A(A, M1) ≤ (MT
2 )A and E(X) := XT(X, MT

2 ) ≤ MX
1 ,

for all A ∈ A and all X ∈ XT . The construction of A and XT guarantees that the maps
given by evaluation

eA : A → ED(A) and εX : X → DE(X)

are embeddings. Then 〈D, E, e, ε〉 is a dual adjunction between A and XT . If, for all A ∈ A,
the map eA is an isomorphism, then MT

2 is said to yield a duality on A or we say that MT
2
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yields a duality between A and XT . Alternatively, we may say that MT
2 dualises M1. Also

MT
2 yields a full duality between A and XT if, in addition, for all X ∈ XT , the map εX is

an isomorphism; then the functors D and E give a dual equivalence between the categories
A and XT .

The following theorem, as it applies to an IRF-prevariety of algebras, appears in [17,
Theorem 4.3]. The proof given in [17] extends immediately to total structures but not to
structures in general.

Theorem 5.1 Let M1 be a finite total structure. Assume that M2 is a structure compatible
with M1 and that the topological structure MT

2 acts as a dualising alter ego for M1. Let
A := ISP(M1), let A belong to A, and let b : A(A, M1) → M be a map. Then b belongs
to nA(A) if and only if b preserves the structure on M2.

When a duality for A is known, Theorem 5.1 describes the elements of nA(A), which
is defined topologically, in a way which is not overtly topological. But this description is
defective: nA(A) is a topological structure and not merely a set. Hence we seek a more
categorical answer to the description problem.

Suppose we have compatible structures M1 and M2 on the same finite set M and define
A = ISP(M1), XT = IS0

cP
+(MT

2 ) and hom-functors D : A → XT and E : XT → A as
above. We do not yet assume that we have a duality. The compatibility relation between two
structures is symmetric, so that M2 compatible with M1 implies that M1 is compatible with
M2, see [16, Lemma 2.1]. Thus we may swap the discrete topology to the other side and
repeat the construction using the alter ego MT

1 of the structure M2 to obtain new categories
AT := IScP(MT

1 ) of Boolean-topological structures and X := IS0P+(M2) of structures.
Now the contravariant hom-functors F : AT → X and G : X → AT are given by

F(A) := AT(A, MT
1 ) ≤ MA

2 and G(X) := X(X, M2) ≤ (MT
1 )X.

We have maps given by evaluation e′
A : A → GF(A) and ε′

X : X → FG(X), for all A ∈ AT

and all X ∈ X, and we obtain a new dual adjunction 〈F, G, e′, ε′〉 between AT and X.
Then we refer to 〈D, E, e, ε〉 and 〈F, G, e′, ε′〉 as paired adjunctions (see [19, p. 587]). If
e′

A : A → GF(A) is an isomorphism, for all A ∈ AT , then we say that M2 yields a duality
between AT and X. If, in addition, ε′

X : X → FG(X) is an isomorphism, for all X ∈ X,
then we say that M2 yields a full duality between AT and X.

The following theorem extracts from [19, Theorem 2.3] only the assertions we shall need.
The generalisation from algebras to total structures is completely straightforward.

Theorem 5.2 Let M1 be a finite total structure, let M2 be a structure compatible with M1
and define A and XT as above. Of the following conditions, (2) and (3) are equivalent and
implied by (1).

(1) MT
2 yields a duality between A and XT;

(2) the outer square of Fig. 2 commutes, that is, nA(A) = G(D(A)�), for all A ∈ A;
(3) nA(A) consists of all maps α : A(A, M1) → M that preserve the structure on M2,

for all A ∈ A.

We now give our promised summary of dualisability results, concentrating on algebras
rather than total structures more widely. We have to acknowledge that a number of impor-
tant varieties of algebras are not CT-prevarieties and cannot be brought within the scope of
natural duality theory. As Hart and Kunen show, Bohr compactifications, abstractly defined,



420 B. A. Davey et al.

Fig. 2 Paired adjunctions

will exist for such varieties, but neither they, nor we, have machinery to access such com-
pactifications concretely. The classes of lattices, semigroups, and rings, in particular, fall
under this heading. However all these classes have interesting subvarieties which we may
profitably consider.

We can draw on a very extensive literature for examples of finitely generated prevarieties
for which explicit dualities are known and for confirmation that others fail to have a natural
duality (see [8, 44] and the references therein). For the benefit of those unfamiliar with
this literature we give the briefest possible summary. We initially consider a quasivariety
A = ISP(M), where M is a finite algebra.

Two-element algebras Taking M to be the 2-element algebra in the following varieties
(where HSP(M) = ISP(M)), we encompass important classic dualities:

• Stone duality for Boolean algebras;
• Priestley duality for distributive lattices, with or without bounds, depending on

whether bounds of M are included in the signature as nullary operations;
• Hofmann–Mislove–Stralka duality for (meet) semilattices, with or without bounds.

Not all 2-element algebras are dualisable; the implication algebra 〈{0, 1};→〉 provides a
classic example. The case |M| = 2 is fully analysed in [8, Section 10.7].

Lattices and lattice-based algebras Assume that M is a lattice or has a lattice reduct.
Then M is dualisable and the alter ego can be taken to be purely relational, with relations of
arity no greater than 2, see [8, Theorem 2.3.4]. The situation in which M has a (bounded)
distributive lattice reduct has been thoroughly researched: very amenable dualities have
been found for many familiar varieties, assisted by the theory of optimal dualities and by
the piggyback method.

Semilattice-based algebras In contrast to the lattice-based case, a semilattice-based
algebra may or may not be dualisable (see [13, 21]).

Groups and semigroups Modulo an unpublished proof, the dualisable groups have been
classified. There is only fragmentary information on dualisability of semigroups, which
form a large and diverse class, with only certain subclasses (for example bands) analysed in
depth. (See [36] for a detailed discussion of dualisability for both groups and semigroups.)
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Commutative rings Here we note the characterisation by Clark et al. [14] of those finite
commutative rings which are dualisable and of the amenable dualities available in some
particular cases.

Unary algebras Such algebras exhibit very varied behaviour. Particularly for small |M|,
they have been comprehensively studied, most notably in [44], as pathfinder examples for
general theory.

A miscellany of sporadic examples of dualisable finite algebras could be added to the
above list. Examples of dualisable finite structures which are not algebras can be found in
[16, 19, 20, 39]. Our focus in this section is on the finitely generated case, but for com-
pleteness we draw attention to our recent paper [20] which provides theory embracing the
possibility of an infinite generator.

Let us now pull together threads from this section and the previous one to present a
theorem on zero-dimensional Bohr compactifications.

Theorem 5.3 Let A = ISP(M1), where M1 is a finite algebra, with associated topological
prevariety AT = IScP(MT

1 ). Assume that M1 is a lattice, or a dualisable semigroup, group,
ring, or unary algebra, or any other dualisable algebra, and assume that AT is standard.
Let MT

2 be a dualising alter ego of M1. Then

(i) b0(A) = nA(A) for each A ∈ A, and hence
(ii) b0(A) is given by Theorem 5.2.

A small number of familiar examples fit into the scheme envisaged in Theorem 5.2 in a
rather special way. Assume that we have a finite self-dualising structure M, that is, MT acts
as a dualising alter ego for the prevariety A = ISP(M). In this situation we have a natural
extension which has a particularly simple, indeed perhaps deceptively simple, description.
By Theorem 5.2, the natural extension nA(A) is then just D(D(A)�). Significantly, this
description of the natural extension via the iterated duality functor applies even if the self-
dualising algebra is infinite; but this requires a different argument (cf. [34, p. 36]).

Proposition 5.4 Let M be a structure (finite or infinite) and define A := ISP(M). Assume
that T is a compatible compact topology on M such that MT fully dualises M. Then, for
each A ∈ A, the natural extension nA(A) of A is isomorphic to D(D(A)�).

Proof Let A ∈ A. The universal property (cf. Theorem 3.7) implies that every homomor-
phism g : A → M has a unique lifting to a continuous homomorphism h : nA(A) → MT

such that h ◦ eA = g. Since M is self dualising, it follows easily that D(A)� and E(nA(A))

are isomorphic as structures. As M is fully self-dualising, we conclude that nA(A) ∼=
DE(nA(A)) ∼= D(D(A)�).

The following varieties are covered by Proposition 5.4.

• Meet semilattices with 1. In this case, Hofmann–Mislove–Stralka duality [33] (or see
[8, 4.4.7]) applies: here we have dual equivalences between

S = ISP(2) [∧-semilattices with 1],

ST = IScP(2T) [compact zero-dimensional ∧-semilattices with 1],
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where 2 = 〈{0, 1}; ∧, 1〉. It is easy to see that, for S ∈ S, the natural extension nS(S)

can be identified with the repeated filter lattice Filt(Filt(S)), equipped with the unique
topology making it a member of ST , viz. the Lawson topology. Discussion of the natural
extension from this perspective is given in [31].

• Abelian groups of exponent n [8, Theorem 4.4.2]. Here we have a full duality between
the categories An = ISP(Zn) of abelian groups of exponent n and An

T = IScP(ZT
n ) of

Boolean topological abelian groups of exponent n.
• Abelian groups. Pontryagin’s famous dual equivalence between the categories A =

ISP(T) of abelian groups and AT = IScP(TT) of compact topological abelian groups
was brought within the scope of natural duality theory from the beginning [15, Theorem
4.1.1]. Here T is the circle group and T is the Euclidean topology.

• Semilattices with automorphism. The variety we considered in Example 4.5 is self-
dualising [21, Theorem 8.2(3)].

In each of these examples, the dual category IScP(MT) is standard, or compact-standard
(in the case of abelian groups), or Boolean standard (in the case of semilattices with auto-
morphism). Thus, in each case we can combine Theorem 4.2 with Proposition 5.4 to
conclude that the Bohr compactification or zero-dimensional Bohr compactification of A
is isomorphic to D(D(A)�). This description is well known in the case of abelian groups
(see [34]) and the case of meet semilattices with 1 (see [33, Theorem I-3.10 and Definition
I-3.11]).

Further examples of the same type are: Boolean groups; meet semilattices with 0 and
join-semilattices with 0 or with 1 (see [8, Table 10.2]); certain semilattice-based alge-
bras (see the Semilattice-Based Self-Duality Theorem 7.4 in [21]); and other self-dualising
situations in which the machinery of [20, Section 2] applies.

In traditional duality theory, one often encounters dual equivalences between categories
A and XT where one of A and X is a category of algebras and the other is a category
of structures which are often purely relational. We shall focus on Bohr compactifications
of purely relational structures in the next section. Here we wish to highlight with some
examples the way in which both operations and relations can arise on each side in a dual-
ity. We shall consider ordered (but not lattice-ordered) algebras M1 such that the dualising
structure MT

2 is not an algebra. The theorem below providing examples of such dualities
comes, as usual, by observing that a known theorem for algebras extends to total struc-
tures. The only proof that is required is an instruction to read the old proof and note that it
still works. (One needs to know that the Preservation Lemma [44, 1.4.4] still holds, which
it does provided M1 has no partial operations.) The result for algebras can be found in
[44, 2.1.1].

Theorem 5.5 Let M1 = 〈M; F, R〉 be a finite total structure that has binary homomor-
phisms ∨ and ∧ such that 〈M; ∨,∧〉 is a lattice. Then MT

2 := 〈M; ∨,∧, R2|M|,T〉 yields a
duality on ISP(M1), where R2|M| is the set of 2|M|-ary relations compatible with M1.

As an immediate corollary we get the following nice result.

Theorem 5.6 (Lattice Endomorphism Theorem [44, 2.1.2]) Endomorphisms and compat-
ible orders of finite lattices yield dualisable ordered unary algebras. More precisely, let
M = 〈M; ∨,∧〉 be a finite lattice, let F ⊆ End(M) and let � be an order on M that is
preserved by both ∨ and ∧. Then MT

2 := 〈M; ∨,∧, R2|M|,T〉 dualises M1 := 〈M; F,�〉,
where R2|M| is the set of 2|M|-ary relations compatible with M1.
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Example 5.7 Let M1 = 〈{0, 1, 2}; u, d,�〉 be a unary algebra with u(0) = 1, u(1) =
u(2) = 2 and d(2) = 1, d(1) = d(0) = 0, enriched with either the usual order 0 < 1 < 2,
the uncertainty order 0 < 1 > 2 of Kleene algebra duality fame or the order whose
only proper comparability is 1 < 2 of Stone algebra duality fame. Since each of these
orders is compatible with the ∨ and ∧ of the three-element lattice, the Lattice Endomor-
phism Theorem 5.6 tells us that the alter ego MT

2 := 〈M; ∨, ∧, R6,T〉 yields a duality
on A = ISP(M1). By Theorem 5.1, the natural extension nA(A) of an ordered algebra
A ∈ A is simply described as the algebra consisting of all {∨,∧} ∪ R6-preserving maps
from A(A, M1) to M2. We have not investigated whether the natural extension will provide
a concrete realisation of the zero-dimensional Bohr compactification in this case.

6 Natural Extensions and Bohr Compactifications:
Making Use of Topology-Swapping

We consider once again the scenario presented in Fig. 2, retaining the notation from
Section 5. So assume that M1 = 〈M; G1, R1〉 and M2 = 〈M; G2, H2, R2〉 are compatible
structures on the finite set M , with M1 total. We define

A = ISP(M1), XT = IS0
cP

+(MT
2 ),

AT = IScP(MT
1 ), X = IS0P(M2).

We set up the hom-functors D, E, F and G as before. Thus we envisage trying to swap the
topology from M2 to M1. We seek conditions under which we can upgrade the statement of
Theorem 5.2 so as to assert that both adjunctions are dual equivalences. When this occurs
we shall say we have paired full dualities.

We shall highlight two theorems which yield paired full dualities. The first is the Top-
Swap Theorem for (total) structures. This was obtained for algebras in [19, Theorem 2.4].
We preface its statement with a technical observation. We follow [19] in indicating that it is
only necessary that we have a duality, or full duality, at the finite level (that is, on the full
subcategory of A consisting of the finite objects). For the theorem as we shall apply it, we do
not make use of the weakened assumptions. But it would be disingenuous to exclude them:
the core of the proof in [19], which applies equally well to total structures, concerns what
happens at the finite level, with the lifting to the whole class relying solely on categorical
generalities.

TopSwap Theorem for Structures 6.1 Let M1 be a finite total structure of finite type, let
M2 be a structure compatible with M1 and define the categories A, AT , X and XT as
above.

(1) If MT
2 yields a finite-level duality between A and XT , then M2 yields a duality

between AT and X.
(2) If MT

2 yields a finite-level full duality between A and XT , then the adjunction
〈F, G, e′, ε′〉 is a dual equivalence between the categories AT and X.

Combining the TopSwap Theorem for Structures with Theorem 5.2 we obtain natural
extensions in partnership in the manner described in the next result.

Corollary 6.2 Let M1 be a finite total structure of finite type, let M2 be a total structure
compatible with M1 and define the categories A, AT , X and XT as above. Assume that
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MT
2 yields a full duality between A and XT . Then M2 yields a full duality between AT and

X and

(1) nA(A) = G(D(A)�), for all A ∈ A and

nX(X) = D(G(X)�), for all X ∈ X,

so that Fig. 2 combines two commuting squares;
(2) nA(A) consists of all maps A(A, M1) → M that preserve the structure on M2, for

all A ∈ A;
(3) nX(X) consists of all maps X(X, M2) → M that preserve the structure on M1, for all

X ∈ X.

We warn that the requirement that M2 be a total structure means that topology-swapping
cannot be applied to obtain paired natural extensions in circumstances where partial opera-
tions have to be included in a dualising alter ego MT

2 for M1 in order to upgrade a duality to
a full (in fact, a strong) duality (see [8, Chapter 3]), or where partial operations are present
in a dualising alter ego (as happens, for example for dualisable commutative rings [14] and
for dualisable non-abelian groups [46]).

We have seen that the natural extension provides a common framework for a range of
universal constructions on algebras and purely relational structures, so indicating that these
do not relate to quite different worlds. But Corollary 6.1 gives us more. Not only does M2
yield a description of natural extensions in A, but it also yields a duality on the category
AT within which these natural extensions live. Moreover a corresponding statement also
holds for M1 and X.

We now present two examples of paired full dualities between categories of total struc-
tures. These examples show that certain famous compactifications arise as paired natural
extensions and that useful information stems from the linkage. Here the natural extension
functor is, or generalises, a Stone–Čech compactification functor. In this setting, the functor
is, or may be, defined as in Definition 3.2 above.

Example 6.3 (Boolean algebras and the Stone–Čech compactification) Here we have a well-
known classic. It arises from Stone duality between Boolean algebras and Boolean spaces
and its topology-swapped counterpart, the duality between sets and Boolean-topological
Boolean algebras. The categories involved are

B = ISP(2) [Boolean algebras], ZT = IS0
cP(2T) [Boolean spaces],

BT = ISP(2T) [Boolean topological BAs], Z = IS0
cP(2) [Sets],

where the generating objects are the unique two-element structures, with or without topol-
ogy as appropriate, in the categories concerned. Theorem 5.2 asserts that the functor nB
sends a Boolean algebra to the powerset of its dual space. For any set Z, the Stone-Čech
compactification βZ is well known to be zero-dimensional, and so is a member of ZT .
Therefore by Proposition 4.1 the Stone-Čech compactification alias the (zero-dimensional)
Bohr compactification coincides with the natural extension. Thus, we have

βZ = b(Z) = b0(Z) = nZ(Z).

Corollary 6.2 now tells us that βZ is the dual space of the powerset Boolean algebra
℘(Z). Thus we may, should we so choose, regard our construction here as a way to obtain
the dual space of a powerset algebra. The relationship between the dual of a powerset alge-
bra and the Stone–Čech compactification is of course very well known and can be obtained
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by a variety of methods different from ours; see for example [40, Section 8.3], [27, pp.
230–232] or [47, 16.2.5].

We now consider the natural extension on the category P of ordered sets. We may regard
nP as a compactification functor on P, paralleling that of the Stone–Čech compactification
functor on sets. Compactifications of ordered sets, and more generally of ordered topo-
logical spaces, has been extensively studied, following the introduction by Nachbin of the
order-compactification which now bears his name [41]. This construction provides a reflec-
tion of P into the category of compact ordered spaces. Let Y = 〈Y ;�〉 belong to P.
Then the topological structure 〈Y ;�,T〉 is a compact ordered space (an alternative term
is compact order-Hausdorff space or compact pospace) if T is compact and � is closed in
Y × Y , from which it follows that the topology is Hausdorff. Thus the Bohr compactifica-
tion b(Y) coincides with the Nachbin order-compactification of Y, which we shall denote
by β�(Y). But more is true. In [7], Bezhanishvili and Morandi study what they call Priest-
ley order-compactifications for a suitable class of ordered spaces, which includes those that
are discretely topologised. Crucially for our purposes they demonstrate that β�(Y) is a
Priestley space for any Y ∈ P [7, Corollary 4.7]; this result was also proved, by a differ-
ent method, by Nailana [42]. As a consequence, Proposition 4.1 now provides the following
noteworthy result. The topological prevariety IScP+(2) of Priestley spaces is non-standard;
recall Example 4.3. Nevertheless weak coincidence does occur.

Proposition 6.4 For any ordered set Y,

β�(Y) = b(Y) = b0(Y) = nP(Y).

We now discuss the paired full dualities between PT (Priestley spaces) and D (bounded
distributive lattices) and the ramifications of this partnership.

Example 6.5 (Bounded distributive lattices and the Nachbin order-compactification) Here
we build on the partnership between Priestley duality for bounded distributive lattices
and the duality, due to Banaschewski [2], between ordered sets and Boolean-topological
bounded distributive lattices. Accounts of this partnership are given in [19, Example 4.1]
and [20, Section 4].

The categories involved are

D = ISP(2) [bounded DLs], PT = IS0
cP(2T) [Priestley spaces],

DT = IScP(2T) [Bt bounded DLs], P = IS0P(2) [ordered sets];
once again the generators in the four cases are given by two-element objects in the categories
concerned. Corollary 6.2 tells us that the natural extension nD(L) of a bounded distributive
lattice L is the Boolean-topological lattice consisting of all order-preserving maps from
D(L, 2) to 2. Moreover, for any Y ∈ P the set of elements of nP(Y) consists of all lattice
homomorphisms from P(Y,2) to 2.

There is more to be said about the Nachbin order-compactification, alias Bohr compact-
ification, in relation to duality. Drawing on Corollary 6.1, we see that for any Y ∈ P we
have nP(Y) = D(G(Y)�) and for any L ∈ D we have nD(L) = G(D(L)�). Since, for every
ordered set Y, the lattice G(Y)� is isomorphic to the up-set lattice U(Y) (via u �→ u−1(1)),
the first of these equalities gives immediately that the Priestley dual space of U(Y) is the
Nachbin order compactification β�(Y).
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It is well known, and has been proved in various ways (see [5, 17, 24]), that for a bounded
distributive lattice L we have nD(L) ∼= proD(L) ∼= Lδ , where proD(L) and Lδ denote
respectively the profinite completion and the canonical extension of L. It follows that the
Priestley dual space of Lδ is β�(D(L)�). This recaptures [7, Corollary 5.4] (see also [5,
Proposition 3.4]). Our proof is different from that in [7] and separates the component parts
of the argument in a transparent way.

We remark that the canonical extension should be seen as different in nature from the
universal constructions on which this paper focuses. It is an order-theoretic completion
which, for a semilattice or lattice, depends only on the underlying order. By contrast, the
Bohr compactification, or where available, the profinite completion, can be expected to
depend on the signature of the algebras or structures in the ISP-class under consideration.
See [31, Section 3] for an example of non-coincidence of canonical extension and natural
extension (alias profinite completion) in the context of S: the canonical extension may fail
to be an algebraic lattice, and this cannot happen for any nS(S). Moreover, characterisa-
tions are given in [30, Section 4] of those members of D whose canonical extension does
coincide with the natural extension of one or both of their unital semilattice reducts. In this
setting, coincidences are the exception rather than the rule.

The piggyback technique is a time-honoured way to find amenable natural dualities for
prevarieties of algebras having reducts in dualisable prevarieties, in particular, in D or S
(see [8, Chapter 7]). This technique has been extended and refined in [20] so as to apply
to CT-prevarieties. Moreover under a variety of conditions, albeit stringent, the piggyback
technique can be used directly to yield paired full dualities: see the Two-for-one Piggy-
back Strong Duality Theorem, [20, Theorem 3.8]. This result differs from Theorem 6.1
in several respects. As the name implies, it produces paired dualities both of which are
strong (strongness, as opposed to fullness, is not relevant in this paper but is important in
other contexts). The theorem is not a priori restricted to the finitely generated case, and
even there it bypasses the finite type restriction of the TopSwap Theorem. When applica-
ble, the specialisation to D-based prevarieties, [20, Theorem 4.5], yields paired dualities
very tightly tied to the paired dualities for the base categories D and P discussed in
Example 6.5. We mention one particular application, to the variety O of Ockham alge-
bras [20, Theorem 4.6]. Here there are mutually compatible structures on the infinite set
M = {0, 1}N0 , with M1 generating O and M2 carrying an order and an order-reversing unary
operation.

Over more than 30 years the variety of Ockham algebras and its finitely generated sub-
varieties have provided a rich source of examples which have been influential in driving
forward the general theory of natural dualities. Below we consider paired full dualities
for certain very special prevarieties of O (in fact they are varieties, as we confirm in
Remark 6.9). Moving to the dual side we shall identify an infinite family of classes X

which exhibit the same behaviour for compactifications as does our hitherto isolated exam-
ple P: weak coincidence of nX, b0 and b, with, Stralka-fashion, the associated topological
prevariety non-standard. Our purpose is to demonstrate that such behaviour is not a rare
phenomenon rather than to investigate Ockham algebra varieties per se and we shall accord-
ingly not attempt to make our account self-contained, referring any interested reader to [8,
22], and references therein, for background. In particular we shall make use of the well-
known restricted Priestley duality for Ockham algebras and its subvarieties; see for example
[29] and [8, Section 7.4]. The varieties we shall consider are covered by [20, Theorem 4.6]
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but we shall sidestep this. The dualities can be found in [23, Section 3] or in [22]; the latter
provides the axiomatisations of the dual categories which we shall crucially need.

In preparation for Theorem 6.8 we present some facts about prevarieties and topological
prevarieties whose objects have reducts in P and PT , respectively.

Lemma 6.6 (i) Let Y be an ordered set. Then β�(Y∂ ) = β�(Y)∂ , where Y∂ denotes the
order-theoretic dual of Y.

(ii) Let Y1, Y2 be ordered sets and f : Y1 → Y2 be a map which is order-preserving
(respectively, order-reversing). Then f has an extension f : β�(Y1) → β�(Y2)

which is continuous and order-preserving (respectively, order-reversing).

Proof Consider (i). Let Y be an ordered set. From above, β�(Y) is the Priestley dual
space of the up-set lattice U(Y). Likewise, β�(Y∂ ) is the dual space of U(Y∂ ), which is
order anti-isomorphic to U(Y), via the complementation map. Now use the well-known
fact about Priestley duality that, for any L ∈ D, we have D(L∂ ) homeomorphic and
order anti-isomorphic to D(L). Putting all this together we obtain (β�(Y∂ ))∂ = β�(Y)

(up to order homeomorphism in PT). Since ∂ is self-inverse, we deduce that β�(Y∂ ) =
(β�(Y))∂ .

The proof of (ii) is an almost immediate consequence of the fact that β� is a functor,
with use being made of (i) when f is order-reversing.

In the proof of the following lemma the claim concerning the lifting of atomic formulas
holds quite generally for total structures. For the application we shall make of the lemma,
the proof of the claim is entirely elementary as the atomic formulas have a very simple form:
g(x1) � h(x2) or g(x1) = h(x2), where x1, x2 ∈ {x, y} with g and h in the monoid of self
maps of M generated by F .

Lemma 6.7 Let M = 〈M; F,�〉 where 〈M;�〉 is a finite ordered set that is not an
antichain and F is a set of unary operations on M each of which is order-preserving or
order-reversing, and define X := IS0P(M) and XT := IS0

cP(MT). Assume that there
is a set  of atomic formulas in the language of M such that a structure with topology
X = 〈X; F,�,T〉, with the same signature as M, belongs to XT if and only if

(i) 〈X;�,T〉 is a Priestley space,
(ii) for all f ∈ F , if f is order-preserving (respectively, order-reversing) on M, then f

is continuous and order-preserving (respectively, order-reversing) on X,
(iii) X satisfies σ , for all σ ∈ .

Then b(X) = b0(X) = nX(X), for all X ∈ X.

Proof Let X ∈ X and form the Nachbin order compactification Y := β�(X�), where �
forgets the maps in F . This is a Priestley space. In addition, by Lemma 6.7, each order-
preserving (respectively, order-reversing) map f ∈ F on X has a unique lifting to a
continuous order-preserving (respectively, order-reversing) map, which we also denote by
f , on Y. It is an easy exercise to show that any atomic formula holding on X also holds
on Y (since ιX�(X�) is dense in Y, each g ∈ F is continuous and � is closed). We have
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shown that Y enriched with f , for each f ∈ F , satisfies (i)–(iii) and so belongs to XT , by
our assumptions. We claim that this topological structure serves as b(X).

Let Z ∈ Xct and take a homomorphism g : X → Z�. Then g� : X� → (Z�)� lifts
uniquely to a Priestley space morphism h from β�(X�) = b(X�) to Z�. Since h commutes
with each f ∈ F when restricted to a dense subset, continuity guarantees that h commutes
with each f ∈ F on β�(X�). This yields the universal property demanded of b(X). By
Proposition 4.1(ii), since b(X) ∈ XT and XT ⊆ XBt, we conclude that b(X) = b0(X) =
nX(X).

The topological prevarieties XT we shall consider in Theorem 6.8 are non-standard. This
follows from a very general, but unpublished, result concerning ordered unary algebras [3].
Therefore Theorem 4.2 does not apply and hence we need instead to exploit Lemma 6.7 in
order to prove our theorem.

Theorem 6.8 There exists a countably infinite family M of finite pairwise non-isomorphic
subdirectly irreducible Ockham algebras such that each M1 ∈ M has the following
properties:

(1) there exists a total structure M2 = 〈M; u,�〉, with � an order on M and u : M → M

an order-reversing map, such that M2 is compatible with M1 and MT
2 yields a full

duality between A := ISP(M1) and IS0
cP(MT

2 );
(2) b(X) = b0(X) = nX(X), for all X in X := IS0P(M2).

Proof (Outline) We use, without further detail, the restricted Priestley duality for Ockham
algebras under which each finite Ockham algebra corresponds to a finite Ockham space,
that is, a finite ordered set equipped with an order-reversing self-map g. For all odd m ∈ N,
let Dm be the Ockham space shown in Fig. 3 and let Sm be the corresponding Ockham
algebra. Define M := { Sm | m odd }.

Consider a fixed M1 in our chosen family M. We take the alter ego M2 = 〈M; u,�,T〉
supplied by [23, Theorem 3.7] in the simplified form described in [22, Theorem 5.4]. By
[22, Theorem 5.7], if M1 = Sm, then a structure X = 〈X; u,�〉 belongs to IS0

cP(MT
2 ) if

and only if

(i) 〈X;�,T〉 is a Priestley space,
(ii) X satisfies x � y =⇒ u(x) = u(y), and

(iii) X satisfies x � um(x).

Since (ii) says that u is both order-preserving and order-reversing and (iii) is an atomic
formula, it follows immediately from Lemma 6.7 that (2) holds.

Remark 6.9 We may also ask whether coincidence occurs for the classes ISP(M1), with M1
in our chosen family M. Each M1 ∈ M has the property that A := ISP(M1) is a variety

Fig. 3 The Ockham space Dm
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(see [19, Example 4.6]) or [23, p. 183]). As A satisfies FDSC, the corresponding topolog-
ical prevariety IScP(MT

1 ) is standard by [9, Example 5.9]—see the discussion following
Theorem 4.2 above. Consequently, b0(A) = nA(A), for all A ∈ A, by Theorem 4.2.

We note that the first element, S1, in our sequence of varieties is the much-studied variety
of Stone algebras.
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11. Clark, D.M., Davey, B.A., Jackson, M., Maróti, M., McKenzie, R.N.: Principal and syntactic congru-

ences in congruence-distributive and congruence-permutable varieties. J. Aust. Math. Soc. 85, 59–74
(2008)

12. Clark, D.M., Davey, B.A., Jackson, M., Pitkethly, J.G.: The axiomatizability of topological prevarieties.
Adv. Math. 218, 1604–1653 (2008)

13. Clark, D.M., Davey, B.A., Pitkethly, J.G., Rifqui, D.L.: Flat unars: the primal, the semi-primal and the
dualisable. Algebra Universalis 63, 303–329 (2010)
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