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Abstract Let G be a finite group. There is a standard theorem on the classification of
G-equivariant finite dimensional simple commutative, associative, and Lie algebras (i.e.,
simple algebras of these types in the category of representations of G). Namely, such an
algebra is of the form A = FunH (G,B), where H is a subgroup of G, and B is a simple
algebra of the corresponding type with an H -action. We explain that such a result holds in
the generality of algebras over a linear operad. This allows one to extend Theorem 5.5 of
Sciarappa (arXiv:1506.07565) on the classification of simple commutative algebras in the
Deligne category Rep(St ) to algebras over any finitely generated linear operad.
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1 Semisimple Algebras Over Operads

1.1 Algebras

Let C be a linear operad over a field F [1]. E.g., C can be the operad of commutative
associative unital algebras, associative unital algebras, or Lie algebras (the latter if 1/2 ∈
F ).

Recall [1] that a C-algebra is a vector space A over F with a collection of linear maps
αn : C(n) → HomF (A⊗n, A) compatible with the operadic structure. Clearly, a direct
product of finitely many C-algebras is a C-algebra.

Given a C-algebra A, we can define the space EA ⊂ EndF (A) spanned over F by
operators of the form αn(c)(a1, ..., aj−1, ?, aj , ..., an−1) for various n ≥ 2, c ∈ C(n), and
ai ∈ A. By the definition of an operad, EA is a (possibly non-unital) subalgebra of EndF (A).
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We also denote by LA the image of C(1) in EndF (A). Clearly, LA is a unital subalgebra
and LAEA = EALA = EA. Thus RA := LA + EA is a unital subalgebra of EndF (A), and
EA is an ideal in RA.

Lemma 1.1 One has1 EA1⊕...⊕Am = EA1 ⊕ ... ⊕ EAm .

Proof It is clear that EA1⊕...⊕Am ⊂ EA1 ⊕ ... ⊕ EAm . Let ai ∈ Ar , c ∈ C(n), and b =
αn(c)(a1, ..., aj−1, ?, aj , ..., an−1) ∈ EAr . Let b′ := (0, ..., b, ..., 0) (where b is at the r-th
place). Then we have b′ = αn(c)(a

′
1, ..., a

′
j−1, ?, a′

j , ..., a
′
n−1), where a′

i = (0, ..., ai , ..., 0).
Hence b′ ∈ EA1⊕...⊕Am . Thus EA1⊕...⊕Am ⊃ EA1 ⊕ ... ⊕ EAm .

1.2 Ideals

By an ideal in a C-algebra A we mean a subspace I ⊂ A such that for any n ≥ 1, c ∈ C(n),
j ∈ [1, n], and T ∈ A⊗j−1 ⊗ I ⊗ A⊗n−j one has αn(c)T ∈ I .

Lemma 1.2 (i) I ⊂ A is an ideal if and only if it is an RA-submodule of A.
(ii) A = A1 ⊕ ... ⊕ Am as an RA-module if and only if it is so as a C-algebra.

Proof (i) This follows directly from the definition.
(ii) The “if” direction is clear. To prove the “only if” direction, note that by (i) Ai are

ideals in A, hence αn(..., x, ..., y, ...) = 0 once x ∈ Ai and y ∈ Aj with j 
= i, which
implies the statement.

It is clear that if I ⊂ A is an ideal then A/I is a C-algebra, and EA/I , LA/I , RA/I are
homomorphic images of EA, LA,RA in EndF (A/I).

1.3 Simple and Semisimple Algebras

From now on we assume that A is a finite dimensional C-algebra. We say that A is simple
if any ideal in A is either 0 or A (i.e., A is a simple RA-module), and EA 
= 0.2

Lemma 1.3 If A is a simple C-algebra then EA = RA, and it is a central simple algebra
(over some finite field extension of F ).

Proof Since A is a faithful simple RA-module, RA is central simple. Since EA 
= 0 and EA

is an ideal in RA, we have EA = RA.

1Categorically, it is more natural to regard the direct sum A1 ⊕ ... ⊕ Am as a direct product, but there is no
difference since it is finite. So, we will call it a direct product, but use the sign ⊕ instead of × to emphasize
that our constructions are linear over a field.
2Note that this recovers the standard definition for commutative, associative, and Lie algebras. Moreover,
while in the commutative and associative case, the condition EA 
= 0 is automatic for A 
= 0 because of the
unit axiom, in the Lie case it is needed (as an abelian Lie algebra is not simple). Note also that if C(n) = 0 for
n 
= 1 (i.e., when C is an ordinary algebra), then EA = 0 automatically, so there are no simple C-algebras,
even though there may exist simple C-modules.
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We say that A is semisimple if A is a direct product of a finite (possibly empty) collection
of simple C-algebras: A = A1 ⊕ ... ⊕ Am.

Lemma 1.4 Let A = A1 ⊕ ... ⊕ Am be a semisimple C-algebra with simple constituents
Ai . Then the only ideals in A are ⊕i∈SAi ⊂ A, where S ⊂ [1,m].

Proof Clearly, the subspaces in the lemma are ideals. Conversely, let I ⊂ A be an ideal.
Let a = (a1, ..., am) ∈ I . By Lemmas 1.1 and 1.3, the projection operator Pi : A → A to
Ai along ⊕j 
=iAj is contained in EA. Thus, Pia = (0, ..., ai , ..., 0) ∈ I . This implies the
statement.

1.4 The Radical

Let A′ be the maximal semisimple quotient of A as an RA-module (it exists by the standard
theory of finite dimensional algebras). Let A be the quotient of A′ by the kernel of the action
of EA (which is an RA-submodule of A). Define the radical Rad(A) of A to be the kernel
of the projection of A onto A. So the radical of A/Rad(A) = A is zero. In particular, if A is
a semisimple C-algebra, then Rad(A) = 0.

Theorem 1.5 (i) A is a semisimple C-algebra. In particular, Rad(A) = 0 if and only if
A is semisimple.

(ii) If I ⊂ A is an ideal, then A/I is a semisimple C-algebra if and only if I contains
Rad(A).

Proof (i) By the definition, A is a semisimple RA-module, such that EA acts by nonzero
on all its simple summands. Hence by Lemma 1.2(ii), A is a semisimple C-algebra.

(ii) The “if” direction holds by (i) and Lemma 1.4. To prove the “only if” direction, let
I ⊂ A be an ideal such that A/I is a semisimple C-algebra: A/I = A1 ⊕ ... ⊕ Am.
Then by Lemma 1.2(ii) A/I is a semisimple RA/I -module and hence RA-module,
with simple constituents Ai , and the action of EA on Ai is nonzero. Thus I ⊃ Rad(A).

2 G-Equivariant Simple Algebras Over Operads

Now let G be a finite group, and A be a C-algebra with an action of G. Let us say that A

is a simple G-equivariant C-algebra if the only G-invariant ideals in A are 0 and A, and
EA 
= 0.

Lemma 2.1 (i) If B is a simple C-algebra then we have Aut(B⊕n) = Sn � Aut(B)n.
(ii) If A is a simple G-equivariant C-algebra then A is semisimple as a usual C-algebra.

Moreover, G acts transitively on the simple constituents of A, and in particular they
are all isomorphic.

Proof (i) Clearly, Sn�Aut(B)n acts on B⊕n, so we need to show that any automorphism
g of B⊕n belongs to this group. By Lemma 1.4, the minimal (nonzero) ideals of B⊕n

are the n copies of B. So they must be permuted by g, inducing an element s ∈ Sn.
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Thus gs−1 is an automorphism preserving all the copies of B. So gs−1 ∈ Aut(B)n, as
desired.

(ii) Let I be kernel of the projection from A to its maximal semisimple quotient A′ as an
RA-module. Then by Lemma 1.2(i), I is a G-invariant ideal in A, and I 
= A. Hence
I = 0, and A is a semisimple RA-module. So by Lemma 1.2(ii), A = A1 ⊕ ...⊕Am is
a semisimple C-algebra. Thus by Lemma 1.4, the minimal ideals of A are the Ai . So
they are permuted by G. Moreover, the action of G on these ideals must be transitive,
as every orbit gives a nonzero G-invariant ideal.

Now let B be a simple C-algebra, H a subgroup of G, and φ : H → Aut(B) a homo-
morphism. Let A = FunH (G,B) be the space of H -invariant functions on G with values in
B. Then it is clear that A has a natural structure of a simple G-equivariant C-algebra, iso-
morphic to B⊕|G/H | as a usual C-algebra. Note that the stabilizer of any minimal ideal of A

is a subgroup of G conjugate to H .

Theorem 2.2 Any simple G-equivariant C-algebra A is of the form A = FunH (G,B).
Moreover, the subgroup H is defined by A uniquely up to conjugation in G, and φ is defined
uniquely up to conjugation in Aut(B).

Proof By Lemma 2.1(ii), G acts transitively on the set of minimal ideals in A, and they are
all isomorphic to some simple C-algebra B. Thus, the result follows from Lemma 2.1(i) and
the standard classification of transitive homomorphisms G → Sn�Aut(B)n. Namely, let H

be the stabilizer of one of the copies of B. Then H acts on B through some homomorphism
φ : H → Aut(B). Moreover, we have a canonical G-equivariant linear map ψ : A →
FunH (G,B) corresponding via Frobenius reciprocity to the H -stable projection A → B to
the chosen copy of B along the direct product of all the other copies. It is easy to check using
Lemma 2.1 that ψ is an isomorphism of G-equivariant C-algebras. The rest is easy.

Remark 2.3 1. Note that in the examples of commutative, associative, and Lie algebras
we obtain the classical theorems about classification of simple G-equivariant algebras
of these types.

2. Lemma 2.1 and Theorem 2.2 don’t hold without the assumption EA 
= 0. E.g., one may
take A to be any irreducible representation of G equipped with the zero Lie bracket.

3. The results of this section extend verbatim to the case when G is any group (not nec-
essarily finite), or is an affine algebraic group over F . Namely, as in the finite group
case, the classification of simple G-equivariant algebras reduces to classification of
transitive homomorphisms G → Sn �Aut(B)n, which are paramertized by finite index
subgroups H of G and homomorphisms φ : H → Aut(B) up to conjugation.

Remark 2.4 While the question of classification of G-equivariant simple algebras over oper-
ads is natural in its own right, the motivation for writing this note was to provide a more
general context for the results of [2]. Namely, Lemma 2.1 and Theorem 2.2 allow one to
extend the main result of [2] (Theorem 5.5 on the classification of simple commutative alge-
bras in the Deligne category Rep(St )) to algebras over a finitely generated linear operad C

over C. Informally speaking, this generalization says that for transcendental t any such alge-
bra is obtained by induction from Rep(G)� Rep(St−k) of an interpolation B of a family of
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G × Sn−k-equivariant simple algebras Bn, defined for some strictly increasing sequence of
positive integers n and depending algebraically on n.

This gives a classification of simple C-algebras in Rep(St ) whenever a classification of
ordinary simple C-algebras (and their automorphisms) is available. For instance, in the case
of associative unital algebras, B = End(V ), where V is an object of Rep(St ), and in the case
of Lie algebras B = sl(V ), o(V ), or sp(V ), where in the second case V is equipped with a
nondegenerate symmetric form and in the third case with a nondegenerate skew-symmetric
form.

The proof of this generalization is similar to the proof of Theorem 5.5 of [2], which
covers the case of commutative unital algebras (in which case B = C), but is somewhat
more complicated since in general Aut(B) 
= 1. The finite generation assumption for C is
needed to validate the constructibility arguments of [2], Section 4. This will be discussed in
more detail elsewhere.
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