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Abstract Convergence approach spaces, defined by E. Lowen and R. Lowen, possess both
quantitative and topological properties. These spaces are equipped with a structure which
provides information as to whether or not a sequence or filter approximately converges. P.
Brock and D. Kent showed that the category of convergence approach spaces with contrac-
tions as morphisms is isomorphic to the category of limit tower spaces. It is shown below
that every limit tower space has a compactification. Moreover, a characterization of the
limit tower spaces which possess a strongly regular compactification is given here. Further,
a strongly regular S-compactification of a limit tower space is studied, where S is a limit
tower monoid acting on the limit tower space.

Keywords Limit tower space · Strong regularity · Compactification · Completely regular
topological reflection · S-compactification
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1 Introduction and Preliminaries

The category AP of “approach spaces” was defined by Lowen in 1989 [11]. The category AP
contains the categories TOP and MET as full subcategories and possesses both quantitative
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and topological-like properties. In particular, information as to whether a sequence or filter
approximately converges is provided by the approach structure. E. Lowen and R. Lowen
[10] embedded AP in the quasitopos CAP of “convergence approach spaces.” These and
other results and references can be found in the monograph by R. Lowen [12].

The framework of the present paper is the category of LTS of “limit tower spaces.” Brock
and Kent show in Theorem 9 [2] that CAP and LTS are isomorphic categories. The purpose
of our work here is to investigate compactification of objects in LTS. It is shown that each
object has a compactification and, moreover, objects which have a strongly regular compact-
ification are characterized. The characterization is given in terms of a “strongly completely
regular non-Archimedean approach space.”

Let X be a set, F(X) the set of all filters on X, 2X the power set of X, and let ẋ denote
the filter on X whose base is {{x}}.

Definition 1.1 The pair (X, q) is called a limit space and q a limit structure on X provided
q : F(X) → 2X satisfies:

(L1) x ∈ q(ẋ) for each x ∈ X

(L2) F ⊆ G implies q(F) ⊆ q(G)

(L3) q(F) ∩ q(G) ⊆ q(F ∩ G).

The more intuitive notation “F q−→ x” (F q-converges to x) is used in place of x ∈ q(F).

A map f : (X, q) → (Y, p) between two limit spaces is said to be continuous if f →F p−→
f (x) whenever F q−→ x, where f →F denotes the filter on Y whose base is {f (F ) : F ∈ F}.
Let LIM denote the category consisting of all the limit spaces and continuous maps. The
category LIM is a topological construct in the sense of Adámek et al. [1]. Define LS(X) to

be the set of all limit structures on X. If p, q ∈ LS(X), p ≤ q means that F p−→ x whenever

F q−→ x. Then (LS(X),≤) is a poset with largest (smallest) member the discrete(indiscrete)
topology, respectively. Given qj ∈ LS(X), j ∈ J , q =

∨

j∈J

qj exists, and is defined by

F q−→ x iff for each j ∈ J , F
qj−→ x. Hence (LS(X),≤) is a complete lattice.

Assume that (X, q) ∈ |LIM|; then q is called a pretopology if for each x ∈ X, the

neighborhood filter Uq(x) := ∩
{
F : F q−→ x

}
q−→ x. Further, A ⊆ X is said to be q-

open if for each x ∈ A, A ∈ Uq(x), and tq := {A ⊆ X : A is q-open} is a topology
on X. The category TOP is known to be concretely reflective in LIM and for a limit space
(X, q), the reflection morphism is idX : (X, q) → (X, tq). An object (X, q) ∈ |LIM| is
said to be Hausdorff if each filter on X has at most one limit. If A ⊆ X, define x ∈ clq A

provided there exists F q−→ x such that A ∈ F . The limit space (X, q) is said to be regular
[6] if clq F

q−→ x whenever F q−→ x, where clq F denotes the filter on X whose base is
{clq F : F ∈ F}.

Definition 1.2 The pair (X, q̄), where q̄ = (qα), 0 ≤ α ≤ ∞, is a family of limit structures
on X, is called a limit tower space and q̄ a limit tower on X provided:

(LT1) q∞ is the indiscrete topology
(LT2) 0 ≤ α ≤ β ≤ ∞ implies that qα ≥ qβ

(LT3)
∨

β>α

qβ = qα , for each 0 ≤ α < ∞ (right continuity).
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Let LTS denote the category of all limit tower spaces and contraction maps. The category
LTS is a topological construct in the sense of Adámek et al. [1]. Brock and Kent prove
in Theorem 9 [2] that there is an isomorphism σ : CAP → LT S. If (X, λ) ∈ |CAP|,
then σ(X, λ) = (X, λq̄), where F (λq̄)α−−−→ x iff λ(F)(x) ≤ α, α ∈ [0, ∞]. A morphism
f : (X, λ) → (X′, λ′) in CAP is called a contraction, and is defined as follows: for all
F ∈ F(X) and x ∈ X, λ′(f →F)(f (x)) ≤ λ(F)(x). The morphism σ(f ) in LTS is simply
the map f : (X, (λq̄)α) → (X′, (λ′q̄)α) that is continuous in LIM, for each 0 ≤ α ≤ ∞.
The morphisms in LTS are also referred to as contractions. Given limit towers p̄, q̄ on X,
define q̄ ≤ p̄ to mean that for each 0 ≤ α ≤ ∞, qα ≤ pα in LS(X).

Definition 1.3 The pair (X, q̄) where q̄ = (qα), 0 ≤ α ≤ ∞, is a family of limit structures
on X, is said to be a generalized limit tower space if it obeys (LT1) and (LT2).

A contraction between two generalized limit tower spaces is defined as in LTS. Let GLTS
denote the category consisting of all the generalized limit tower spaces and contraction
maps. The category GLTS is a topological construct in the sense of Adámek et al. [1].

Definition 1.4 An object (X, q̄) ∈ |GLTS|, where q̄ = (qα), 0 ≤ α ≤ ∞ is called Haus-
dorff whenever (X, q0) is a Hausdorff limit space, and strongly regular provided (X, qα)

is a regular limit space, for each 0 ≤ α ≤ ∞.

Compactifications, including Hausdorff and strong regularity, are discussed in the
remaining sections. The notions of regular and strongly regular limit tower spaces are
defined and studied by Brock and Kent [3].

2 Compactification

A generalized limit tower space (X, q̄), where q̄ = (qα), 0 ≤ α ≤ ∞, is said
to be compact provided that each ultrafilter on X q0-converges; equivalently, it fol-
lows from axiom LT2 that (X, q̄) is compact iff each ultrafilter on X qα-converges, for
each 0 ≤ α ≤ ∞. As usual, ((Y, p̄), f ) is called a compactification of (X, q̄) in
GLTS(LTS) whenever (Y, p̄) is compact and f : (X, q̄) → (Y, p̄) is a dense embedding in
GLTS(LTS), respectively. An embedding f : (X, q̄) → (Y, p̄) is said to be dense whenever
clp0 f (X) = Y .

Definition 2.1 Assume that (X, q̄) ∈ |GLTS|, define the limit tower structure lq̄ = (lq̄)α ,
0 ≤ α ≤ ∞, of q̄ as follows:

(i) (lq̄)∞ is the indiscrete topology on X

(ii) for 0 ≤ α < ∞, F (lq̄)α−−−→ x iff for each β > α, F qβ−→ x.

A straightforward proof of the following lemma is omitted.

Lemma 2.1 (i) The category LTS is concretely reflective in GLTS, where (X, q̄) →
(X, lq̄) is the LTS-reflection of (X, q̄).

(ii) If f : (X, q̄) → (Y, p̄) is an embedding in GLTS, then f : (X, lq̄) → (Y, lp̄) is an
embedding in LTS.
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Given (X, q̄) ∈ |GLTS|, let η denote the set of all ultrafilters on X which fail to q0-
converge. Define 〈G〉 = {G}, for each G ∈ η, X∗ = X ∪{〈G〉 : G ∈ η}, and let j : X → X∗,
j (x) = x be the natural injection. For A,B ⊆ X, A∗ := A ∪ {〈G〉 : A ∈ G}, and note that
A∗ ∩ B∗ = (A ∩ B)∗ and (A ∪ B)∗ = A∗ ∪ B∗. Let F∗ denote the filter on X∗ whose base
is {F ∗ : F ∈ F}, where F ∈ F(X).

Definition 2.2 Given (X, q̄) ∈ |GLTS|, define p̄ = (pα), 0 ≤ α ≤ ∞, on X∗ as follows:

(i) p∞ is the indiscrete topology on X∗

(ii) H pα−→ j (x) iff H ≥ F∗ for some F qα−→ x, 0 ≤ α < ∞

(iii) H pα−→ 〈G〉 iff H ≥ G∗, 0 ≤ α < ∞

Theorem 2.1 Let (X, q̄) ∈ |GLTS|(|LT S|). Then ((X∗, p̄), j) defined above is a compact-
ification of (X, q̄) in GLTS(LTS), respectively. Moreover, (X∗, p̄) is Hausdorff whenever
(X, q̄) is Hausdorff.

Proof Assume that (X, q̄) ∈ |GLTS|. Note that if Hi
pα−→ j (x), for 1 ≤ i ≤ n; then

Hi ≥ F∗
i for some Fi

qα−→ x, and thus
n⋂

i=1

Hi ≥
n⋂

i=1

F∗
i =

(
n⋂

i=1

Fi

)∗
. Since

n⋂

i=1

Fi
qα−→ x,

n⋂

i=1

Hi
pα−→ j (x), and one easily shows that (X∗, pα) ∈ |LIM|. It follows from the defini-

tion of p̄ that pα ≥ pβ whenever α ≤ β, and thus (X∗, p̄) ∈ |GLTS|.
Clearly j : (X, q̄) → (X∗, p̄) is an embedding in GLTS. It is shown in [13] that
((X∗, pα), j) is a compactification of (X, qα) in LIM, and (X∗, pα) is Hausdorff whenever
(X, qα) is Hausdorff. It follows that (X∗, p̄), j) is a compactification of (X, q̄) in GLTS.

Finally, suppose that (X, q̄) ∈ |LTS|; it is shown that (X∗, p̄) ∈ |LTS|. Only right con-

tinuity remains to be verified. Assume that 0 ≤ α < ∞ and H pβ−→ j (x) for each β > α.

Then for each β > α, there exists Fβ

qβ−→ x such that H ≥ F∗
β . Clearly

⋃

β>α

Fβ has the finite

intersection property. It follows that H ≥
∨

β>α

F∗
β =

⎛

⎝
∨

β>α

Fβ

⎞

⎠
∗

and, since
∨

β>α

Fβ
qδ−→ x

for each δ > α,
∨

β>α

Fβ
qα−→ x. Hence H pα−→ j (x). Clearly if H pβ−→ 〈G〉 for each β > α,

then H pα−→ 〈G〉 and thus (X∗, p̄) ∈ |LTS| whenever (X, q̄) ∈ |LTS|. Then((X∗, p̄), j) is a
compactification of (X, q̄) in LTS.

An object (X, q̄) ∈ |GLTS| is said to be q0-regular if clq0 F
qα−→ x whenever F qα−→ x,

where q̄ = (qα), 0 ≤ α ≤ ∞. Note that this definition is weaker than strong regularity as
given in Definition 1.4.

Theorem 2.2 Assume that (X, q̄) ∈ |GLTS| and ((X∗, p̄), j) is the compactification given
in Theorem 2.1. Suppose that f : (X, q̄) → (Y, r̄) is contraction, where (Y, r̄) ∈ |GLTS|
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is compact and r0-regular. Then there exists a contraction f ∗ : (X∗, p̄) → (Y, r̄) such that
f ∗ ◦ j = f .

Proof Let 〈G〉 ∈ X∗; define f ∗(〈G〉) = y, for some y ∈ Y such that f →G r0−→ y, and
f ∗(j (x)) = f (x), x ∈ X. Then f ∗ ◦ j = f . Observe that if A ⊆ X, then f ∗(A∗) ⊆
clr0 f (A). Indeed, if 〈G〉 ∈ A∗, then A ∈ G, f →G r0−→ f ∗(〈G〉), and thus f ∗(〈G〉) ∈
clr0 f (A). Hence f ∗(A∗) ⊆ clr0 f (A). If H pα−→ j (x), then H ≥ F∗ for some F qα−→ x.

If follows that f ∗→(H) ≥ f ∗→(F∗) ≥ clr0 f →F rα−→ f (x) since (Y, r̄) is r0-regular.

Similarly, H pα−→ 〈G〉 implies that H ≥ G∗ and thus f ∗→(H) ≥ f ∗→(G∗) ≥ clr0f
→G rα−→

f ∗(〈G〉). Hence f ∗ : (X∗, p̄) → (Y, r̄) is a contraction.

3 Strongly Regular Compactification

Objects in LIM that possess a regular compactification are characterized in [8], and
these results are useful in determining which objects in GLTS(LTS) have a strongly
regular (Definition 1.4) compactification in GLTS(LTS), respectively. It should be
mentioned that a compact, Hausdorff limit space may fail to be regular; limit spaces
having a Hausdorff, regular compactification are analyzed in [14]. It is well-known that
the category consisting of all regular limit spaces and continuous maps is bireflective in
LIM. Given (X, q) ∈ |LIM|, let (X, rq) denote its regular reflection. More generally, if
(X, q̄) ∈ |GLTS|, define rq̄ := (rqα), 0 ≤ α ≤ ∞; then (X, rq̄) ∈ |GLTS| is strongly
regular. Let RGLTS(RLTS) denote the full subcategory of GLTS(LTS) consisting of all the
strongly regular objects in GLTS(LTS), respectively.

Lemma 3.1 (i) If (X, q̄) ∈ |RGLTS|, then (X, lq̄) ∈ |RLTS|.
(ii) The category RLTS is concretely reflective in GLTS.

Proof Suppose that (X, q̄) ∈ |RGLTS|, 0 ≤ α < ∞, and F (lq̄)α−−−→ x; then for each β > α,

F qβ−→ x. It is shown that cl(lq̄)α F
(lq̄)α−−−→ x. Fix β > α, A ⊆ X, and note that cl(lq̄)α A ⊆

clqβ A since A ∈ G (lq̄)α−−−→ x implies that G qβ−→ x. Hence cl(lq̄)α F ≥ clqβF
qβ−→ x and thus

cl(lq̄)α F
qβ−→ x for each β > α. Therefore cl(lq̄)α F

(lq̄)α−−−→ x and thus (X, lq̄) is strongly
regular. It follows from Lemma 2.1 (i) that (X, lq̄) ∈ |RLTS|.

(ii) Assume that (X, q̄) ∈ |GLTS|; then (X, rq̄) ∈ |RGLTS| and by (i) above, (X, lrq̄) ∈
|RLTS|. Note that idX : (X, q̄) → (X, lrq̄) is a contraction, and suppose that f : (X, q̄) →
(Y, p̄) ∈ |RLTS| is a contraction. Since RLIM is concretely reflective in LIM, it follows that
f : (X, rq̄) → (Y, p̄) is also a contraction in RGLTS. Applying (i) above and Lemma 2.1(i),
f : (X, lrq̄) → (Y, p̄) is a contraction in RLTS. Hence RLTS is concretely reflective in
GLTS.

Given (X, q) ∈ |LIM|; let Cb(X, q) denote the set of all bounded, continuous, real-
valued functions defined on (X, q), and let δq be the completely regular topology on X

determined by Cb(X, q). The subconstruct of all completely regular topological spaces is
concretely reflective in LIM and for a limit space (X, q), the reflection morphism is given
by idX : (X, q) → (X, δq). Further, (X, q) ∈ |LIM| is said to be δ-regular in LIM if

clδq F
q−→ x whenever F q−→ x.
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Definition 3.1 An object (X, q̄) ∈ |GLTS| is called strongly δ-regular if for each 0 ≤ α ≤
∞, (X, qα) ∈ |LIM| is δ-regular with respect to the family Cb(X, qα).

Let (X, q̄) ∈ |GLTS|, the following structure on X∗ is used to show the existence of a
strongly regular compactification of (X, q̄).

Definition 3.2 Given (X, q̄) ∈ |GLTS| and (X∗, p̄) of Definition 2.2, define s̄ = (sα),
0 ≤ α ≤ ∞, on X∗ as follows:

(i) s∞ is the indiscrete topology

(ii) H sα−→ j (x) iff H ≥ clδpα j→F for some F qα−→ x, 0 ≤ α < ∞
(iii) H sα−→ 〈G〉 iff H ≥ clδpα j→G, G ∈ η, 0 ≤ α < ∞.

Lemma 3.2 Assume that (X, q̄) ∈ |GLTS| and consider (X∗, p̄) ∈ |GLTS| and (X∗, s̄)
given in Definitions 2.2 and 3.2. Then pα ≥ sα ≥ δpα , 0 ≤ α ≤ ∞, and (X∗, s̄) ∈ |RGLTS|.

Proof It easily follows that (X∗, sα) ∈ |LIM|, 0 ≤ α < ∞. Suppose that 0 ≤ α ≤ β < ∞
and H sα−→ j (x); then H ≥ clδpα j→F for some F qα−→ x. Then F qβ−→ x and since

pα ≥ pβ , H ≥ clδpα j→F ≥ clδpβ j→F . Hence H sβ−→ j (x). Similarly, H sα−→ 〈G〉 implies

that H sβ−→ 〈G〉, and thus sα ≥ sβ . Then (X∗, s̄) ∈ |GLTS|. Observe that if F ∈ F(X) and
0 ≤ α < ∞, F∗ ≥ clpα j→F ≥ clδpα j→F , and it follows that pα ≥ sα ≥ δpα . Hence
(X∗, s̄) is strongly regular.

Theorem 3.1 Let (X, q̄) ∈ |GLT S|(|LT S|); then (X, q̄) has a strongly regular compacti-
fication in GLTS(LTS) iff (X, q̄) is strongly δ-regular, respectively.

Proof Verification is given for the case whenever (X, q̄) ∈ |LTS|. According to Theorem
3.2 [8], (X, qα) has a regular compactification in LIM iff it is δ-regular. Hence a neces-
sary condition for (X, q̄) to possess a strongly regular compactification in LTS is that it be
strongly δ-regular.

Conversely, assume that (X, q̄) ∈ |LTS| is strongly δ-regular and let ((X∗, p̄), j) be
the compactification of (X, q̄) given in Theorem 2.1. It follows from Theorem 2.2 that
each bounded, continuous, real-valued function f : (X, qα) → R, 0 ≤ α < ∞, has a
unique continuous extension f ∗ : (X∗, pα) → R such that f ∗ ◦ j = f . This implies that
(X, δqα) is a subspace of (X∗, δpα). Since pα ≥ sα , j : (X, qα) → (X∗, sα) is continuous.

Conversely, assume that F ∈ F(X) such that j→F sα−→ j (x); then there exists K qα−→
x such that j→F ≥ clδpα j→K. Since (X, δqα) is a topological subspace of (X∗, δpα),

F ≥ j←(clδpα j→K) = clδqα K
qα−→ x because (X, qα) is δ-regular. Hence F qα−→ x and

j : (X, qα) → (X∗, sα) is a dense embedding in LIM. According to Lemma 3.2, (X∗, sα)

is regular, and hence j : (X, q̄) → (X∗, s̄) is a dense embedding in RGLTS. It follows from
Lemma 2.1 (ii) and Lemma 3.1(i) that j : (X, q̄) → (X∗, ls̄) is a dense embedding and
(X∗, ls̄) is strongly regular. Therefore ((X∗, ls̄), j) is a strongly regular compactification of
(X, q̄) in LTS.

Theorem 3.2 Suppose that (X, q̄) ∈ |GLT S| (|LT S|) is strongly δ-regular and
((X∗, s̄), j) (((X∗, ls̄), j)) is the strongly regular compactification of (X, q̄) given in The-
orem 3.1, respectively. If f : (X, q̄) → (Y, r̄) is a contraction in GLTS(LTS), where (Y, r̄)
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is compact and strongly regular, then there exists a contraction f ∗ : (X∗, s̄) → (Y, r̄)

(f ∗ : (X∗, ls̄) → (Y, r̄)) in GLTS(LTS), respectively.

Proof Assume that (X, q̄) ∈ |GLTS| is strongly δ-regular and let 0 ≤ α < ∞. According
to Theorem 2.2, f has a continuous extension f ∗ : (X∗, pα) → (Y, rα). Since the full sub-
category of all regular objects in LIM is bireflective in LIM, f ∗ : (X∗, rpα) → (Y, rα) is
also continuous, where rpα denotes the regular reflection of pα . Since (X∗, rpα) is compact
and regular, it follows from Proposition 3.1 [8] that for each B ⊆ X∗, clδpα B = cl2rpα

B.

If H sα−→ j (x), then there exists F qα−→ x such that H ≥ clδpα j→F = cl2rpα
j→F rpα−−→

j (x). Since f ∗ : (X∗, rpα) → (Y, rα) is continuous, f ∗→H rα−→ f ∗(j (x)). Like-

wise, if H sα−→ 〈G〉, then f ∗→H rα−→ f ∗(〈G〉), and thus f ∗ : (X, s̄) → (Y, r̄) is a
contraction in GLTS.

Next, suppose that (X, q̄) ∈ |LTS| and f : (X, q̄) → (Y, r̄) is a con-
traction in LTS. It follows from the preceding argument that f ∗ : (X∗, s̄) →
(Y, r̄) is a contraction, and thus by Lemma 2.1(i), f ∗ : (X∗, ls̄) → (Y, r̄) is a
contraction in LTS.

Given (X, q) ∈ |LIM| and A ⊆ X, qA denotes the subspace limit structure on A.
A limit tower space for which all its level components are topological is a non-

Archimedean approach space in the sense of [3]. Slightly generalizing this notion, define
(X, q̄) ∈ |GLTS| to be non-Archimedean provided that each of its level components
is topological. Further, (X, q̄) ∈ |GLTS| is called strongly completely regular non-
Archimedean whenever each of its level components is a completely regular topology.
In particular, if (X, q̄) ∈ |GLTS|, then (X, δq̄) ∈ |GLTS| is strongly completely regular
non-Archimedean, where δq̄ = (δqα), 0 ≤ α ≤ ∞.

Theorem 3.3 Assume that (X, q̄) ∈ |LTS| is a non-Archimedean approach space, and let
((X∗, p̄), j) be the compactification in LTS given in Theorem 2.1. Then ((X∗, ltp̄), j) is a
compactification of (X, q̄) in LTS which is non-Archimedean.

Proof Observe that for each 0 ≤ α < ∞, pα is a pretopology with neighborhood filters
of the form: Upα (j (x)) = (Uqα (x))∗ and Upα (〈G〉) = G∗, where x ∈ X and G ∈ η. Since
j : (X, qα) → (X∗, pα) is an embedding, it follows that j : (X, tqα) → (X∗, tpα) is
continuous. Further, if U ∈ tqα , it is shown that j (U) ∈ (tpα)j (X). Indeed, if j (x) ∈ U∗,
then U∗ ∈ (Uqα (x))∗ = Upα (j (x)) and 〈G〉 ∈ U∗ implies that U ∈ G and thus U∗ ∈
G∗ = Upα (〈G〉). Therefore U∗ ∈ tpα and hence j (U) = U∗ ∩ j (X) ∈ (tpα)j (X). It
follows that j : (X, qα) → (X∗, tpα) is an embedding and thus j : (X, q̄) → (X∗, tp̄) is
an embedding.

Note that if 0 ≤ α ≤ β, then pα ≥ pβ and thus tpα ≥ tpβ ; consequently, (X∗, tp̄) ∈
|GLTS| and it follows from Lemma 2.1(ii) that j : (X, q̄) → (X∗, ltp̄) is an embedding in

LTS. Recall that H (ltp̄)α−−−→ z iff for each β > α, H tpβ−−→ z; equivalently, (ltp̄)α =
∨

β>α

tpβ ,

and thus (ltp̄)α is a topology on X∗. Hence ((X∗, ltp̄), j) is non-Archimedean and is a
compactification of (X, q̄) in LTS.

Theorem 3.4 Suppose that (X, q̄) ∈ |LTS|. Then (X, q̄) has a strongly regular compactifi-
cation in LTS which is non-Archimedean iff q̄ = δq̄.
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Proof Assume that δq̄ = q̄ and since (X, δq̄) is a subspace of (X∗, δp̄), ((X∗, δp̄), j)

is a strongly regular compactification of (X, q̄) in GLTS. It follows from Lemma 2.1(ii)
that ((X∗, lδp̄), j) is a strongly regular compactification of (X, q̄) in LTS which is non-
Archimedean.

4 Strongly Regular S-Compactification

An “S-compactification” of a limit tower space is investigated in this section, where
S is a limit tower monoid acting on the limit tower space. Basic properties of
“S-spaces” in the context of convergence approach spaces can be found in [4];
moreover, a study of S-compactifications in the realm of convergence spaces is
given in [9].

Definition 4.1 The pair (S, γ̄ ) is called a limit tower monoid provided:

(LTM1) S = (S, ·) is a monoid
(LTM2) (S, γ̄ ) ∈ |LTS|
(LTM3) The binary operation (x, y) → x · y is continuous.

Let LTM denote the category whose objects consist of all the limit tower monoids
and whose morphisms are all the maps between objects which are both contractions and
homomorphisms.

Definition 4.2 Let X ∈ |LTS|, S ∈ |LTM| with identity e, λ : X × S → X a map, and
consider the following axioms:

(A1) λ(x, e) = x for all x ∈ X

(A2) λ(λ(x, s), t) = λ(x, s · t) for all x ∈ X and all s, t ∈ S

(A3) λ is a contraction.

Then λ is called an action provided (A1) and (A2) are satisfied. If in addition, λ obeys
(A3), then λ is said to be a c-action.

Definition 4.3 Denote C to be the category consisting of all triples (X, S, λ), where X ∈
|LTS|, S ∈ |LTM|, λ : X×S → X is a c-action, and whose morphisms are all pairs of maps
(f, k) : (X, S, λ) → (Y, T , μ) satisfying:

(C1) f : X → Y is a morphism in LTS
(C2) k : S → T is a morphism in LTM
(C3) μ ◦ (f × k) = f ◦ λ.

A compactification ((Y, r̄), f ) of (X, q̄) in GLTS is called strict if for each H rα−→ y

there exists an F ∈ F(X) such that H ≥ clrα f →F and f →F rα−→ y. Let CHY denote
the category of all Cauchy spaces and Cauchy-continuous maps. Keller [7] proved that a

limit space (X, q) is induced by a Cauchy space iff F q−→ x, y implies that all the q-
convergent filters to x coincide with all the q-convergent filters to y. Here these limit spaces
are called reciprocal since they are isomorphic to the category of all complete Cauchy
spaces. Further, (X, q̄) ∈ |GLTS| is called strongly reciprocal provided each (X, qα) is
reciprocal, 0 ≤ α ≤ ∞.
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Definition 4.4 ((Y, S, μ), f ) is said to be an S-compactification of (X, S, λ) in C
whenever:

(COM1) (Y, f ) is a compactification of X in LTS
(COM2) (f, idS) : (X, S, λ) → (Y, S, μ) is a morphism in C.

Lemma 4.1 Assume the following:

(i) ((Y, r̄), f ) is a strict, strongly regular compactification of (X, q̄) in GLTS, with
(Y, r0) Hausdorff

(ii) (S, γ̄ ) ∈ |LTM| and λ : X × S → X is an action

(iii) for each f →F r0−→ y and s ∈ S, (f ◦ λ)→(F × ṡ)
r0−→ z ≡ μ(y, s)

(iv) for each f →F rα−→ y, G γα−→ s, (f ◦ λ)→(F × G)
rα−→ μ(y, s), 0 ≤ α ≤ ∞.

Then μ : (Y, r̄) × (S, γ̄ ) → (Y, r̄) is a contraction.

Proof Since (Y, r0) is Hausdorff, it is straightforward to show that μ defined in (iii) is well-
defined. Also, observe that μ(f (x), s) = f (λ(x, s)), for each x ∈ X and s ∈ S. Next,
it is shown that if A ⊆ X and B ⊆ S, then μ(clrα f (A) × B) ⊆ clrα (f ◦ λ)(A × B).

Indeed, assume that y ∈ clrα f (A) and s ∈ B; then there exists f →F rα−→ y such

that A ∈ F . Using (iv), (f ◦ λ)(A × B) ∈ (f ◦ λ)→(F × ṡ)
rα−→ μ(y, s), and thus

μ(y, s) ∈ clrα (f ◦ λ)(A × B). Therefore μ(clrα f (A) × B) ⊆ clrα (f ◦ λ)(A × B).

Next, suppose that H rα−→ y and G γα−→ s. Since (Y, f ) is a strict compactification

of X, there exists an F ∈ F(X) such that H ≥ clrα f →F and f →F rα−→ y. Then
μ→(H × G) ≥ μ→(clrα f →F × G) ≥ clrα (f ◦ λ)→(F × G), and by (iv) and the regular-

ity of (Y, rα), clrα (f ◦ λ)→(F × G)
rα−→ μ(y, s). Hence μ→(H × G)

rα−→ μ(y, s) and μ is
a contraction.

Theorem 4.1 Suppose that (X, S, λ) ∈ |C|, ((Y, r̄), f ) is a strict, strongly regular
compactification of (X, q̄) in LTS, and (Y, r̄) is strongly reciprocal with (Y, r0) Haus-
dorff. For each 0 ≤ α ≤ ∞, denote Cα = {F ∈ F(X) : f →F rα-converges}.
Assume that (S, γ̄ ) ∈ |LTM| is strongly reciprocal and (S, γα) is induced by the
complete Cauchy space (S,Dα), 0 ≤ α ≤ ∞. Then there exists a c-action μ :
Y × S → Y such that ((Y, S, μ), f ) is a strongly regular S-compactification of
(X, S, λ) in C iff for each 0 ≤ α ≤ ∞, λ : (X,Cα) × (S,Dα) → (X,Cα) is
Cauchy-continuous.

Proof First, observe that for each 0 ≤ α ≤ ∞, (X,Cα) ∈ |CHY|. Clearly, ẋ ∈ Cα and
G ≥ F ∈ Cα implies that G ∈ Cα , 0 ≤ α ≤ ∞. Suppose that Fi ∈ Cα such that F1 ∨ F2

exists, and f →Fi
rα−→ yi , i = 1, 2. Then f →F1 ∨ f →F2 exists and f →F1 ∨ f →F2

rα−→
y1, y2. Since (Y, rα) is reciprocal, f →(F1 ∩F2)

rα−→ y1, y2 and thus F1 ∩F2 ∈ Cα . Hence
(X,Cα) ∈ |CHY|.
Assume that ((Y, S, μ), f ) is an S-compactification of (X, S, λ) ∈ C. Suppose that F ∈ Cα

and G ∈ Dα; then f →F rα−→ y and G γα−→ s, for some y ∈ Y and s ∈ S. Since μ is a c-

action, f →(λ→(F ×G)) = (μ ◦ (f × idS))→(F ×G) = μ→(f →F ×G)
rα−→ μ(y, s), and

thus λ→(F × G) ∈ Cα . Hence λ : (X,Cα) × (S,Dα) → (X,Cα) is Cauchy-continuous,
for each 0 ≤ α ≤ ∞.
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Conversely, suppose that λ : (X,Cα) × (S,Dα) → (X,Cα) is Cauchy-continuous, for
each 0 ≤ α ≤ ∞. Define μ : Y × S → Y by μ(y, s) = lim

r0
(f ◦ λ)→(F × ṡ), where

f →F r0−→ y. Observe that μ is well-defined. Indeed, if f →F1
r0−→ y and G1

γ0−→ s, then

f →(F ∩F1) = f →F ∩f →F1
r0−→ y and ṡ ∩G1

γ0−→ s. Recall that λ is Cauchy-continuous,
F∩F1 ∈ C0, ṡ∩G1 ∈ D0, and thus λ→((F∩F1)×(ṡ∩G1)) ∈ C0. Therefore, f →(λ→((F∩
F1) × (ṡ ∩ G1))) r0-converges. Since (Y, r0) is Hausdorff, (f ◦ λ)→(F × ṡ) and (f ◦
λ)→(F1 × G1) r0-converge to μ(y, s), and hence μ is well-defined.

Lemma 4.1 is used to verify that μ : Y × S → Y is a contraction; it remains to

verify (iv). Assume that f →F rα−→ y and G γα−→ s. There exist an f →F1
r0−→ y and

G1
γ0−→ s, and thus r0 ≥ rα implies that f →(F ∩ F1)

rα−→ y and G ∩ G1
γα−→ s. Since

λ : (X,Cα) × (S,Dα) → (X,Cα) is Cauchy-continuous, (f ◦ λ)→((F ∩F1) × (G ∩ G1))

rα-converges. However, (f ◦ λ)→(F1 × G1)
rα−→ μ(y, s), and since (Y, rα) is recipro-

cal, (f ◦ λ)→(F × G)
rα−→ μ(y, s). Therefore, by Lemma 4.1, μ is a contraction. Since

(Y, r0) is Hausdorff, the proof given in Theorem 3.5[9] for the convergence space setting
shows that μ is also an action. Hence ((Y, r̄), S, μ) is a strongly regular S-compactification
of (X, S, λ) in C.

The following assumptions and notations are used in Lemma 4.2 below: (X, q̄) ∈ |LTS|,
(X, q0) is Hausdorff, (S, ·) is a monoid, and λ : X × S → X is an action. Let ((X∗, p̄), j))

denote the compactification of (X, q̄) in LTS as defined in Section 2. Recall that X∗ =
X ∪ {〈G〉 : G ∈ η} and j : X → X∗ is the natural injection j (x) = x, x ∈ X. Define
λ∗ : X∗ × S → X∗ as follows:

λ∗(j (x), s) = j (λ(x, s)), x ∈ X, s ∈ S

λ∗(〈G〉, s) = lim
p0

(j ◦ λ)→(G × ṡ),G ∈ η. (4.1)

It is shown in Theorem 2.1 that (X∗, p0) is Hausdorff whenever (X, q0) is Hausdorff.
Also δpα denotes the completely regular topological reflection associated with (X∗, pα),
0 ≤ α ≤ ∞.

Lemma 4.2 Using the notations and assumptions given above, suppose that for each 0 ≤
α ≤ ∞, λ : (X, qα) × {s} → (X, qα) is continuous, for each fixed s ∈ S. Let A ⊆ X and
B ⊆ S; then

(i) λ∗(A∗ × {s}) ⊆ clp0(j ◦ λ)(A × {s}), for each fixed s ∈ S

(ii) λ∗ : (X∗, δpα) × {s} → (X∗, δpα) is continuous
(iii) λ∗(clδpα j (A) × B) ⊆ clδpα (j ◦ λ)(A × B).

Proof (i): Let 〈G〉 ∈ A∗; then A ∈ G. If λ→(G × ṡ)
q0−→ x, then (j ◦ λ)→(G ×

ṡ)
p0−→ j (x) and thus λ∗(〈G〉, s) = j (x) ∈ clp0(j ◦ λ)(A × {s}). Moreover if

λ→(G × ṡ) ∈ η, then λ∗(〈G〉, s) = 〈λ→(G × ṡ)〉 ∈ clp0(j ◦ λ)(A × {s}) and the result
follows.

(ii) First, it is shown that λ∗ : (X∗, pα) × {s} → (X∗, δpα) is continuous. Assume that

H pα−→ j (x); then H ≥ F∗ for some F qα−→ x. Since λ→(F× ṡ)
qα−→ λ(x, s), it follows from

(i) that λ∗→(H× ṡ) ≥ λ∗(F∗ × ṡ) ≥ clpα (j ◦ λ)→(F × ṡ)
δpα−−→ j (λ(x, s)) = λ∗(j (x), s).

Suppose that H pα−→ 〈G〉; then H ≥ G∗ and from (i), λ∗→(H × ṡ) ≥ λ∗→(G∗ × ṡ) ≥
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clp0(j ◦λ)→(G × ṡ)
δp0−−→ λ∗(〈G〉, s). Then λ∗ : (X∗, pα)×{s} → (X∗, δpα) is continuous,

and it follows that for each 0 ≤ α ≤ ∞, λ∗ : (X∗, δpα) × {s} → (X∗, δpα) is continuous.
(iii) Employing (ii),

λ∗(clδpα j (A) × B) =
⋃

s∈B

λ∗(clδpα j (A) × {s})

⊆
⋃

s∈B

clδpα λ∗(j (A) × {s})

⊆ clδpα λ∗(j (A) × B)

= clδpα (j ◦ λ)(A × B).

Lemma 4.3 Given the assumptions and the notations listed in Lemma 4.2, let ((X∗, p̄), j)

and ((X∗, s̄), j) be the compactifications of (X, q̄) defined in Sections 2 and 3. Define
γ̄ = (γα), 0 ≤ α ≤ ∞ as follows:

(a) γ∞ is the indiscrete structure on S (4.2)

(b) for 0 ≤ α < ∞,K γα−→ s iff for each β > α and j→F sβ−→ y,

(j ◦ λ)→(F × K)
(ls̄)β−−→ λ∗(y, s).

Then

(i) λ∗ : X∗ × S → X∗ defined in (4.1) is an action
(ii) (S, ·, γ̄ ) ∈ |LTM|

Proof The straightforward proof of (i) is omitted.

(ii) First, it is shown that (S, γ̄ ) ∈ |LTS|. Fix 0 ≤ α < ∞. Observe that ṡ
γα−→ s; indeed, if

β > α and j→F sβ−→ j (x), then F qβ−→ x. Since λ : (X, qβ)×{s} → (X, qβ) is continuous,

(j ◦ λ)→(F × ṡ)
sβ−→ j (λ(x, s)) = λ∗(j (x), s). Moreover, if j→F sβ−→ 〈G〉, then j→F ≥

clδpβ j→G and, since (X, δqβ) is a subspace of (X∗, δpβ), F ≥ clδqβ G. Then (j ◦λ)→(F×
ṡ) ≥ (j ◦ λ)→(clδqβ G × ṡ) = (λ∗ ◦ (j × idS))→(clδqβ G × ṡ) = λ∗→(j→(clδqβ G) × ṡ).
According to Lemma 4.2 (iii), λ∗→(j→(clδqβ G) × ṡ) ≥ λ∗→(clδpβ j→G × ṡ) ≥ clδpβ (j ◦
λ)→(G × ṡ)

sβ−→ λ∗(〈G〉, s). Then ṡ
γα−→ s.

Suppose that Ki
γα−→ s, i = 1, 2, β > α, and j→F sβ−→ y. Then (j ◦ λ)→(F ×K1 ∩K2) =

(j ◦ λ)→(F × K1) ∩ (j ◦ λ)→(F × K2)
(ls̄)β−−→ λ∗(y, s) since (X∗, (ls̄)β) ∈ |LIM|. Hence

K1 ∩K2
γα−→ s. It easily follows that if α ≤ β then γα ≥ γβ . Next, it is shown that (S, γ̄ ) is

right-continuous. Assume that for each δ > α, K γδ−→ s. Given β > α, choose α < α1 < β

and since K
γα1−−→ s, it follows from the definition of γα1 that (j ◦λ)→(F×K)

(ls̄)β−−→ λ∗(y, s)

whenever j→F sβ−→ y. Then K γα−→ s and thus (S, γ̄ ) ∈ |LTS|.
Finally, it is shown that the operation on (S, ·, γ̄ ) is a contraction. Fix 0 ≤ α < ∞ and

suppose that Ki
γα−→ si , i = 1, 2. It is shown that K1 · K2

γα−→ s1 · s2. Let β > α and

j→F sβ−→ y. Then (j ◦ λ)→(F ×K1 ·K2) = j→(λ→(λ→(F ×K1) ×K2)). Since K1
γα−→

s1, (j ◦ λ)→(F × K1)
(ls̄)β−−→ λ∗(y, s1), and thus (j ◦ λ)→(F × K1)

sδ−→ λ∗(y, s1), for
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each δ > β. However, δ > β > α, K2
γα−→ s2, and j→(λ→(F × K1))

sδ−→ λ∗(y, s1)

implies that (j ◦ λ)→(λ→(F × K1) × K2)
(ls̄)δ−−→ λ∗(λ∗(y, s1), s2) = λ∗(y, s1 · s2), for

each δ > β. Since (S, ls̄) ∈ |LTS|, (j ◦ λ)→(λ→(F × K1) × K2)
(ls̄)β−−→ λ∗(y, s1 · s2); that

is, (j ◦ λ)→(F × K1 · K2)
(ls̄)β−−→ λ∗(y, s1 · s2), and thus K1 · K2

γα−→ s1 · s2. Therefore
(S, γ̄ ) ∈ |LTM|.

Theorem 4.2 Assume that (X, q̄) ∈ |LTS|, (X, q0) is Hausdorff, (S, ·) is a monoid, and
λ : X × S → X is an action such that λ : (X, qα) × {s} → (X, qα) is continuous, for each
fixed s ∈ S and 0 ≤ α ≤ ∞. Let ((X∗, p̄), j) and ((X∗, s̄), j) be the compactifications
defined in Sections 2 and 3. Then γ̄ , defined in (4.2), is the coarsest structure on S such that
((X∗, ls̄), (S, γ̄ ), λ∗) is a strongly regular S-compactification of ((X, q̄), (S, γ̄ ), λ) in C.

Proof Fix 0 ≤ α < ∞ and suppose that H (ls̄)α−−→ j (x) and K γα−→ s; it is shown

that λ∗→(H × K)
(ls̄)α−−→ λ∗(j (x), s). Let β > α; then H sβ−→ j (x) and thus there

exists F qβ−→ x such that H ≥ clδpβ j→F . Using the definition of γα , since j→F sβ−→
j (x), (j ◦ λ)→(F × K)

(ls̄)β−−→ λ∗(j (x), s), and by Lemma 4.2(iii), λ∗→(H × K) ≥
λ∗→(clδpβ j→F × K) ≥ clδpβ (j ◦ λ)→(F × K). Since (j ◦ λ)→(F × K)

sδ−→ λ∗(j (x), s)

for each δ > β, clδpβ (j ◦ λ)→(F × K)
sδ−→ λ∗(j (x), s) for each δ > β. Hence

clδpβ (j ◦λ)→(F ×K)
(ls̄)β−−→ λ∗(j (x), s), and thus λ∗→(H×K)

(ls̄)β−−→ λ∗(j (x), s) for each

β > α. Therefore λ∗→(H × K)
(ls̄)α−−→ λ∗(j (x), s). Next, if H (ls̄)α−−→ 〈G〉 and β > α, then

H sβ−→ 〈G〉 and thus H ≥ clδpβ j→G. An argument similar to the previous case shows that

λ∗→(H ×K)
(ls̄)α−−→ λ∗(〈G〉, s), and thus λ∗ : (X, lq̄) × (S, γ̄ ) → (X∗, ls̄) is a contraction.

Since λ∗ ◦ (j × idS) = j ◦ λ, ((X∗, ls̄), (S, γ̄ ), λ∗) is a strongly regular S-compactification
of ((X, q̄), (S, γ̄ ), λ) in C.

Next, assume that (S, σ̄ ) ∈ |LTM| such that λ∗ : (X∗, ls̄) × (S, σ̄ ) → (X∗, ls̄) is a

contraction. Fix 0 ≤ α < ∞ and suppose that K σα−→ s. Let β > α and j→F sβ−→ y; then

j→F (ls̄)β−−→ y. Since K σβ−→ s, the continuity of λ∗ : (X∗, (ls̄)β) × (S, σβ) → (X∗, (ls̄)β)

implies that λ∗→(j→F × K)
(ls̄)β−−→ λ∗(y, s). However, (j ◦ λ)→(F × K) = (λ∗ ◦ (j ×

idS))→(F × K) = λ∗→(j→F × K)
(ls̄)β−−→ λ∗(y, s), and thus K γα−→ s. Therefore σα ≥ γα

and thus σ̄ ≥ γ̄ .

Remark 4.1 Under the assumptions made in Theorem 4.2, if σ̄ denotes the discrete
structure on S, then ((X∗, ls̄), (S, σ̄ ), λ∗) is a strongly regular S-compactification of
((X, q̄), (S, σ̄ ), λ) in C.

5 Conclusion

Some comments pertaining to strict compactifications are made. The compactification
((X∗, p̄), j) given in Theorem 2.1 is easily shown to be strict. Strictness of ((X∗, s̄), j)

listed in Theorem 3.1 seems to fail. However, H sα−→ y implies that there exists F ∈ F(X)
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such that H ≥ clδpα j→F = clδsα j→F = cl2sα j→F and j→F sα−→ y. If each (X∗, sα),

0 ≤ α ≤ ∞, is symmetric (regular and reciprocal), then cl2sα j→F = clsα j→F and, in
this case, ((X∗, s̄), j) is strict. Strictness does not seem to carry over to the l-modification
((X∗, ls̄), j) ∈ |LTS|. Further, a general definition of strictness has been defined by Cole-
bunders et al. [5]. Assume that ((Y, r), f ) is a compactification of (X, q̄) in LTS. In
particular, clr0 f (X) = Y . Suppose that f (X) is an α = 0 strict subspace of Y in the sense of

[5]. It follows from this definition that if H rβ−→ y, β ∈ [0,∞], then there exists F ∈ F(X)

such that clr0 f →F ≤ H and f →F rβ−→ y. Then clrβ f →F ≤ H and thus ((Y, r), f ) is a
strict compactification of (X, q̄) in our sense.

Two open questions are listed below; the second question was raised by the referee:

(i) Characterize the limit tower spaces possessing a regular (as defined in [3]) compacti-
fication.

(ii) When does a limit tower space have a strict, regular (strongly regular) compactifica-
tion, respectively?

Acknowledgments The authors are grateful to the referee for making suggestions leading to significant
improvements in the original manuscript.
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8. Kent, D., Richardson, G.: Completely regular and ω-regular spaces. Proc. Amer. Math. Soc. 82, 649–652

(1981)
9. Losert, B., Richardson, G.: Convergence S-spaces. Appl. Gen. Topol. 15, 121–136 (2014)

10. Lowen, E., Lowen, R.: A quasi topos containing CONV and MET as full subcategories. Intl. J. Math.
and Math. Sci. 11, 417–438 (1988)

11. Lowen, R.: Approach spaces: a common supercategory of TOP and MET. Math. Nachr. 141, 183–226
(1989)

12. Lowen, R.: Approach spaces, Oxford Mathematical Monographs. Oxford University Press (1996)
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