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Abstract Functional topology is concerned with developing topological concepts in a cat-
egory endowed with certain axiomatically defined classes of morphisms (Clementino et al.
2004). In this paper, we extend functional topology to a monoidal framework, replacing cat-
egorical pullbacks by pullbacks relative to the monoidal structure (which itself replaces the
product) or more generally relative to a relation on the category (Janelidze, Appl. Categ.
Structures, 17(4),351–371, 2009). Our main application is to the opposite Woronowicz
category of C∗-algebras. In this category a natural class of proper morphisms yields the
unital algebras as compact objects. When restricted to the commutative C∗-algebras, we
recover exactly the morphisms induced by proper continuous maps of locally compact Haus-
dorff spaces. We further endow this category with a factorization system and investigate
the precise relation with the proper maps, building on an approach which we previously
developed with the eye on the category of schemes (Lowen and Mestdagh, J. Pure Appl.
Algebra 217(11), 2180–2197, 2013). We also show how our results for C∗-algebras can nat-
urally be adapted to the opposite Woronowicz category of nondegenerate algebras over a
commutative ring.
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1 Introduction

By the famous Gelfand-Naimark theorem, the category of locally compact Hausdorff spaces
with proper maps is dual to the category of commutative C∗-algebras with C∗-morphisms.
This theorem forms the basis for the point of view of noncommutative geometry, where
noncommutative C∗-algebras are considered as “noncommutative spaces”. An obvious
shortcoming in the above result is the a priori restriction to proper maps between topologi-
cal spaces. This problem is remedied by turning to the Woronowicz category of C∗-algebras
Wor(C∗-Alg), of which the restriction to commutative C∗-algebras is equivalent to the cat-
egory of locally compact Hausdorff spaces with all continuous maps. The definition of the
Woronowicz category is somewhat involved, and makes essential use of the construction of
the multiplier algebra, which is the largest unitization of a C∗-algebra and constitutes the
noncommutative counterpart of the Čech-Stone compactification. This suggests that unital
C∗-algebras should somehow be considered as compact objects.

The main aim of this paper is to introduce and investigate notions of compactness and
properness for C∗-algebras in the context of so-called functional topology on the category
Wor(C∗-Alg)op. In very general terms, functional topology is an approach to developing
topological concepts in a category based upon certain (axiomatically defined) classes of
maps. This basic idea dates back at least to the seventies with the work of Herrlich [10],
Manes [18], Penon [20, 21], and in the presence of a factorization system it led to a richer
theory in the work of Herrlich, Salicrup and Strecker [12], applicable in topology, group
theory and order. In the 90’s, on categories endowed with closure operators, a close resem-
blance with the topological situation was obtained by Clementino, Giuli and Tholen [4],
applicable to Birkhoff closure spaces, uniform spaces, topological groups and locales. The
idea of using a class of closed morphisms in order to derive both proper and separated mor-
phisms from it was contained in Tholen’s [22], and gave rise to the theory of functional
topology as developed by Clementino, Giuli and Tholen in the presence of a factoriza-
tion system [5], which is applicable for instance to approach spaces as demonstrated by
Colebunders, Lowen and Wuyts [6]. An approach by Hofmann and Tholen later focussed
the attention on the proper maps as primary, and is applicable to general categories of lax
algebras [13].

In [16], after noticing the similarities between functional topology and the classes of
proper and separated morphisms of schemes introduced by Grothendieck, the authors
extended the framework from [5], making it somewhat more flexible without greatly dimin-
ishing its power, and in particular making it applicable to schemes [16]. Surprisingly, the
resulting framework turns out to be well-suited to incorporate the Woronowicz category.
The main new element we need is a shift from finitely complete categories to appropriate
monoidal categories. Indeed the category Wor(C∗-Alg)op has no (known) binary products
but is endowed with a monoidal structure given by the maximal tensor product. In the
classical functional topology setup, a proper class of morphisms is a class containing the
isomorphisms, which is closed under compositions and pullback-stable. This last property
does not seem quite natural in a monoidal context. To find the appropriate replacement, we
investigate generalized limits in a more general framework: that of categories endowed with
a relation R, that is a collection of compatible relations on the classes of morphisms with
common domain. The notion of a relation on a category is dual to the notion of a cover
relation in the sense of Janelidze [14], which we call a co-relation in the present paper. Asso-
ciated R-limits originate from considering cones in which some of the involved morphisms
are required to be in relation. For instance, we define the R-pullback of two morphisms
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f : A −→ C and g : B −→ C to consist of a universal object P with morphisms
p1 : P −→ A and p2 : P −→ B such that fp1 = gp2 and (p1, p2) ∈ R. Natural notions
of R-commutative objects and R-central morphisms relative to a relation can be defined and
expressed in terms of generalized limits. After establishing some basic results involving R-
limits in Section 4, in Section 5 we develop some approaches to functional topology in a
category with R-pullbacks and a final object. We will refer to these approaches as “tensor
functional topology”.

• The most basic approach takes an R-proper class F of proper morphisms as input. With
respect to F one defines compact objects as objects for which the unique morphism
to the final object is proper, separated morphisms as morphisms with a commutative
domain and proper diagonal, and Hausdorff objects as commutative objects with proper
diagonal. Starting the theory from an R-proper class rather than a closed class is prefer-
able as for general R, we cannot naturally associate an R-proper class to a closed class
due to the weaker composability properties of R-pullback diagrams.

• If C is endowed with a factorization system (E,M), one can obtain a closed class F

of closed morphisms from a so-called (E,M)-closed structure (P,F0) consisting of an
auxiliary R-proper class F0 of closed immersions and an auxiliary closed class P of
surjections, following [16]. I n general, F will not be R-proper. In case of general R,
we may additionally require F to be an R-proper class, in which case we speak of an
(E,M)-proper structure with proper morphisms F.

Many classical results from functional topology still hold true in tensor functional topol-
ogy, although sometimes additional centrality conditions need to be imposed. To understand
this, it is worth noting that if we restrict our category to the full subcategory of commutative
objects, the relation R restricts to the standard relation for which any two morphisms with
common domain are related.

In Section 6, we give an account of tensor functional topology in the opposite Woronow-
icz category Wor(C∗-Alg)op. The necessary background on this category is recalled in
Section 2. For a morphism f : A −→ B in Wor(C∗-Alg)op, we write F : B −→ M(A) for
the associated Woronowicz-morphism. Two morphisms f : A −→ B and f ′ : A −→ B ′
are R-related if the associated Woronowicz-morphisms F and F ′ : B ′ −→ M(A)

commute. We make the following definitions for f : A −→ B:

• f is in F if F(B) ⊆ A;
• f is in M if F(B) = A;
• f is in E if F is an isometry.

We show that F is an R-proper class, for which compact objects correspond precisely to uni-
tal algebras, and all commutative algebras are Hausdorff. Further, (E,M) is a factorization
system on Wor(C∗-Alg)op and (E ∩ F,M) is an (E,M)-proper structure with F as its class
of proper morphisms. Restricting Wor(C∗-Alg)op to the commutative objects yields a cat-
egory equivalent to locally compact Hausdorff spaces with continuous maps. We show that
the restriction of (E,M) to this category corresponds precisely to the factorization system
of dense maps and closed embeddings. Further, the class F restricts precisely to the proper
continuous maps.

The application of tensor functional topology to C∗-algebras raises the natural question
how much of this approach goes through for ordinary algebras. As we recall in Section 3,
a multiplier algebra is known to exist for nondegenerate k-algebras over a commutative
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ring k. We further introduce the nondegenerate tensor product between nondegenerate
k-algebras. We obtain a Woronowicz category Wor(k-Alg) of nondegenerate k-algebras
which closely resembles the category Wor(C∗-Alg). In particular, its opposite category
can be endowed with the commutation relation R and classes of morphisms F, M, E

analogous to the higher classes. All higher statements about the C∗-algebra case have pre-
cise parallels for nondegenerate k-algebras, as shown in Section 6. In fact, under mild
assumptions on a symmetric monoidal closed category C, a Woronowicz category of non-
degenerate semigroup objects in C can be defined, and Wor(k-Alg) can be obtained from
this general construction by taking C to be the category of k-modules [17]. The develop-
ment of tensor functional topology in these more general Woronowicz categories is work in
progress.

2 The Woronowicz Category of C∗-Algebras

The construction of the Woronowicz category for C∗-algebras originates with Woronowicz
[24]. We recall the details for convenience and to fix notation. More details and proofs can be
found in Wegge-Olsen [23] and Lance [15]. We further prove the existence and construction
of co-equalizers in the Woronowicz category (Theorem 2.14).

Definition 2.1 A C∗-algebra is a (possibly noncommutative, possibly nonunital) C-algebra
equipped with a norm ‖−‖ and an involution (−)∗ : A −→ A such that

(1) (λx + μy)∗ = λx∗ + μy∗ for each λ, μ ∈ C and x, y ∈ A.
(2) (xy)∗ = y∗x∗ for each x, y ∈ A.
(3) x∗∗ = x for each x ∈ A.
(4) A is complete with respect to the norm ‖ ‖.
(5) ‖xy‖ ≤ ‖x‖‖y‖ for each x, y ∈ A.
(6) ‖xx∗‖ = ‖x‖2 for each x ∈ A.

A C∗-algebra is called unital if it is unital as an algebra, i.e. if there is a unit element 1A ∈ A

such that 1Aa = a = a1A for each a ∈ A.

The C∗-morphisms are defined as follows:

Definition 2.2 Let A and B be C∗-algebras and let f : A −→ B be a function. We say that
f is a C∗-morphism if

(1) f is linear,
(2) f (xy) = f (x)f (y) for each x, y ∈ A,
(3) f (x∗) = f (x)∗ for each x ∈ A.

If A and B are unital, then we say that f is unital if f (1A) = 1B .

One can show that each C∗-morphism f is continuous and has norm ‖f ‖ ≤ 1. This
choice of morphisms makes the C∗-algebras into a category, which we will call C∗-Alg.
The theorem of Gelfand–Naimark classifies the commutative C∗-algebras. For a locally
compact Hausdorff space X, we obtain the commutative C∗-algebra C0(X,C) of continuous
functions from X to C which vanish at infinity. For a compact Hausdorff space X, we obtain
the unital commutative C∗-algebra C(X,C) of continuous functions from X to C. In this
case, we have C(X,C) = C0(X,C).
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Theorem 2.3 (Gelfand–Naimark) [23] The category of locally compact Hausdorff spaces
with proper maps as morphisms is equivalent to the category of commutative C∗-algebras
with C∗-morphisms as morphisms. The (contravariant) equivalence is given by associat-
ing to each locally compact Hausdorff space X, the commutative C∗-algebra C0(X,C).
Furthermore, under this equivalence, the category of compact Hausdorff spaces with con-
tinuous maps as morphisms is equivalent to the category of unital commutative C∗-algebras
with unital C∗-morphisms as morphisms.

While the proper continuous functions between locally compact Hausdorff spaces corre-
spond to the C∗-morphisms under this equialence, the same is not true for all the continuous
functions. To be able to model all continuous functions, we need the concept of the
multiplier algebra.

Definition 2.4 Let A be a C∗-algebra. We say that an ideal J of A is an essential ideal if
every other nonzero ideal in A has nonzero intersection with A. Or equivalently, when the
annihilator J⊥ = {a ∈ A | aJ = 0} is zero.

Definition 2.5 A unitization of a C∗-algebra A is an embedding of A into a unital C∗-
algebra B such that A is an essential ideal of B.

Since unital C∗-algebras correspond to compact Hausdorff spaces in Theorem 2.3, we
see that the concept of unitization corresponds to compactification. The largest compact-
ification is of course the Čech-Stone compactification. Likewise, every C∗-algebra has a
largest unitization, which we will call the multiplier algebra.

Theorem 2.6 [23] Let A be a C∗-algebra. There exists a unique unitization M(A) of A

such that if A is embedded as an ideal in a C∗-algebra B, then there exists a unique mor-
phism μ : B −→ M(A) such that μ restricts to the identity on A. Moreover, μ is injective
if and only if A is essential in B.

We callM(A) the multiplier algebra of A.

If A = C0(X,C) for a locally compact Hausdorff space X, then the multiplier alge-
bra M(A) is exactly C(βX,C) ∼= Cb(X,C), the commutative C∗-algebra of bounded
continuous functions from X to C, where βX is the Čech-Stone compactification of X.

The multiplier algebra is not functorial. More precisely, if f : A −→ B is a
C∗-morphism, then this does not need to induce a morphism M(A) −→ M(B).

Definition 2.7 Let A be a C∗-algebra. Let H be a Hilbert space such that A is embedded
as a subspace of B(H). The strict topology on A is the locally convex topology generated
by the seminorms x −→ ‖xa‖ and x −→ ‖ax‖ for x ∈ B(H) and a ∈ A.

One can prove that the multiplier algebra M(A) is the strict completion of A.
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For C∗-algebras A and B, we call a C∗-morphism F : A −→ M(B) nondegenerate if
F(A)B is dense in B. We are now able to state the following extension theorem:

Theorem 2.8 [15] Let A and B be C∗-algebras and let F : A −→ M(B) be a C∗-
morphism. The following conditions are equivalent:

(1) F is nondegenerate.
(2) F(A)B = B.
(3) BF(A) = B.
(4) F is the restriction to A of a unique unital C∗-morphismM(A) −→ M(B) which is

strictly continuous on the unit ball.

A C∗-morphism F : A −→ M(B) that satisfies the conditions of the previous theorem
will be called a Woronowicz-morphism from A to B. The unique unital extension of F :
A −→ M(B) from (4) will be denoted by F : M(A) −→ M(B).

The continuous maps between locally compact Hausdorff spaces X and Y correspond
exactly to the Woronowicz-morphisms from C0(Y,C) to C0(X,C). With this in mind, we
define the category Wor(C∗-Alg) to be the category of all C∗-algebras with Woronowicz-
morphisms. Note that the above theorem says that we can compose such morphisms, thus
the Woronowicz-category is well defined. Naturally, we are more interested in the opposite
category Wor(C∗-Alg)op since this category can be seen as a category of “noncommutative
topological spaces.”

Recall that the multiplier algebra was not functorial with respect to the C∗-morphisms.
This is solved by the Woronowicz-morphisms: any Woronowicz-morphism from A to B

gives rise to a unique unital C∗-morphism M(A) −→ M(B).
We would like to form tensor products of C∗-algebras A and B. An obvious definition is

to form the algebraic tensor product A ⊗ B and to complete this with respect to a suitable
norm. A suitable norm should satisfy ‖x ⊗ y‖ ≤ ‖x‖‖y‖ (this is called a subcross norm).
The largest possible subcross norm is called the maximal norm:

Definition 2.9 Let A and B be C∗-algebras and define for each t ∈ A ⊗ B

μ(t) = sup{α(t) | α is a C∗-seminorm on A ⊗ B}.

This is called the maximal C∗-norm on A⊗B. The completion with respect to this norm
is denoted by A ⊗μ B.

Definition 2.10 Let A, B and C be (possibly noncommutative, possibly nonunital) rings
and let f : A −→ C and g : B −→ C be ring-morphisms. We say that f and g commute if
for each a ∈ A and b ∈ B we have that f (a)g(b) = g(b)f (a).

Tensor products do not form a coproduct for C∗-algebras, but we do have the following
theorem:

Theorem 2.11 [23] Let fk : Ak −→ Bk , k = 1, 2 be morphisms of C∗-algebras, then
f1 ⊗ f2 extends by continuity to a morphism f1 ⊗μ f2 : A1 ⊗μ A2 −→ B1 ⊗μ B2.

If gk : Ak −→ C, k = 1, 2 are commuting morphisms of C∗-algebras, then g1 ⊗ g2
extends by continuity to a morphism g1 ⊗μ g2 : A1 ⊗μ A2 −→ C.
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We collect some facts about the category Wor(C∗-Alg):

Proposition 2.12 If F : A −→ M(B) is a Woronowicz-morphism from A to B which
constitutes an isomorphism inWor(C∗-Alg), then F(A) = B.

Proof Let G : B −→ M(A) be the inverse of F . Take an a ∈ A, then we have by
nondegeneracy of G that there exist bi ∈ B and ai ∈ A such that a = ∑

G(bi)ai . But
then F(a) = ∑

biF (ai). But since B is an ideal of M(B), this implies that F(a) ∈ B.
This shows that F(A) ⊆ B. Likewise, we have that G(B) ⊆ A. Now take b ∈ B, then
b = F(G(b)), and thus b ∈ F(A).

Proposition 2.13 [23] Any surjection of C∗-algebras p : A −→ B induces a nondegener-
ate morphism P : A −→ M(B).

Theorem 2.14 The co-equalizer in the category Wor(C∗-Alg) exists. In particular, the co-
equalizer of two nondegenerate C∗-morphisms F,G : A −→ M(B) is given by B/J ,
where J is the two-sided ideal in B generated by F(a)b − G(a)b and bF(a) − bG(a) for
each a ∈ A and b ∈ B.

Proof Let p : B −→ B/J be the canonical surjection. This surjection extends to a non-
degerate morphism P : B −→ M(B/J ). We prove that PF = PG. Let (bi)i∈I be an
approximate unit in B, i.e. it is a net in B which converges strictly to the unit in M(B).
By strict continuity, we know that (P (bi))i∈I converges to the unit in M(B/J ) (see [23]).
Thus follows that F(a)bi converges strictly to F(a) and that G(a)bi converges strictly to
G(a). By definition of C as a quotient space, we have that P(F(a)bi) = P(G(a)bi) and
since P(F(a)bi) converges to P(F(a)) and P(G(a)bi) converges to P(G(a)), we have that
P (G(a)) = P(G(a)).

Let H : B −→ M(C) be a Woronowicz morphism from B to C such that HF = HG.
Then H(J ) = 0 and thus there is a unique morphism K : B/J −→ M(C) such that
H = KP . This is clearly nondegenerate since H is.

Proposition 2.15 Let G : A −→ M(C) and G : B −→ M(C) be two Woronowicz-
morphisms. If F and G commute, then so do their extensions F and G.

Proof Take x ∈ M(A) and y ∈ M(B). Then there exist nets (ai)i∈I in A and (bj )j∈J in B

such that ai −→ x strictly and bi −→ y strictly. But then F(ai) converges strictly to F(x)

and G(bj ) converges strictly to G(y). Then F(ai)G(bj ) converges strictly to F(x)G(y) and
G(bj )F (ai) converges strictly to G(y)F (x). Since F(ai)G(bj ) = G(bj )F (ai), it follows
that F(x)G(y) = G(y)F (x).

Proposition 2.16 [15] Let M : A −→ M(C) be an injective and nondegenerate C∗-
morphism. Then M extends uniquely to an isometric, unital C∗-morphism M : M(A) −→
M(C). Furthermore, the image of M is given by the idealizer of M(A), i.e.

M(M(A)) = {x ∈ M(C) | xM(A) ⊆ M(A) and M(A)x ⊆ M(A)}.
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3 The Woronowicz Category of Associative Algebras

In this section we generalize the Woronowicz category to nondegenerate associative alge-
bras over a commutative ground ring k with unit. The basic notions necessary for this
generalization can be found in De Commer, Van Daele [7]. In [17], we show that under mild
assumptions on a symmetric monoidal closed category C, a Woronowicz category of non-
degenerate semigroup objects in C can be defined. The Woronowicz category of this section
can be obtained from this general construction by taking C to be the category of k-modules.
However, the general categorical proofs turn out to be much more involved. In this section
we provide a self-contained treatment of the results for associative k-algebras.

Definition 3.1 A k-algebra A is nondegenerate if the following hold for all a ∈ A:

(1) If ab = 0 for each b ∈ A, then a = 0.
(2) If ba = 0 for each b ∈ A, then a = 0.
(3) We have that A = AA := {∑i aia

′
i | ai, a

′
i ∈ A}.

The category of all nondegenerate k-algebras with the usual k-algebra morphisms is
denoted by k − Alg.

Definition 3.2 The multiplier algebra of a nondegenerate k-algebra A is the algebra M(A)

consisting of couples (λ, ρ), where λ and ρ are maps A −→ A such that

ρ(a)b = aλ(b) for all a, b ∈ A.

This k-algebra is a k-unital algebra equipped with the following operations:

(1) For all (λ, ρ), (λ′, ρ′) ∈ M(A) and r, s ∈ A, we set

r(λ, ρ) + s(λ′, ρ′) = (rλ + sλ′, rρ + sρ′).

(2) For all (ρ, λ), (ρ′, λ′) ∈ M(A), we set

(λ, ρ) · (λ′, ρ′) = (λ ◦ λ′, ρ′ ◦ ρ).

(3) The unit is given by (IdA, IdA).

Lemma 3.3 If A is a nondegenerate k-algebra and if (λ, ρ) ∈ M(A), then both λ and ρ

are k-linear. Furthermore, it holds for each a, b ∈ A that

λ(ab) = λ(a)b and ρ(ab) = aρ(b).

Proof Let a, b, c ∈ A be arbitrary, and let r, s ∈ k, then

cλ(ra + sb) = ρ(c)(ra + sb)

= rρ(c)a + sρ(c)b

= c(rλ(a) + sλ(b))

Since c is arbitrary and A is nondegenerate, it follows that λ(ra + sb) = rλ(a) + sλ(b).
The other statements in the lemma have a similar proof.

There is a natural k-algebra morphism ι : A −→ M(A) : a −→ (λa, ρa) where

λa(b) = ab and ρa(b) = ba.
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Lemma 3.4 Let A be a nondegenerate k-algebra. Then the map ι : A −→ M(A) is
injective.

Proof Assume that for an a ∈ A, we have that ι(a) = 0. This means that λa = 0 and
ρa = 0. Hence for each b ∈ A, we have that ab = 0 and ba = 0. The nondegeneracy of A

then implies that a = 0. Thus ι is injective.

Lemma 3.5 Let A be a nondegenerate k-algebra, then we have for each (ρ, λ) ∈ M(A)

that

(λ, ρ) · ι(a) = ι(λ(a)) and ι(a) · (λ, ρ) = ι(ρ(a)).

Thus ι(A) is an ideal ofM(A). Hence if A is unital, then ι is an isomorphism.

Proof We have that

(λ, ρ) · ι(a) = (λλa, ρaρ).

For b ∈ A, we have that

(λλa)(b) = λ(ab) = λ(a)b.

Thus λλa = λλ(a). We also have

(ρaρ)(b) = ρ(b)a = aλ(b).

Thus ρaρ = ρλ(b). The rest of the lemma is similar.

Corollary 3.6 Let A be a nondegenerate k-algebra, and let (λ, ρ) ∈ M(A). If (λ, ρ) ·
ι(a) = 0 for each a ∈ A, then (λ, ρ) = 0.

In what follows, we will usually not explicitly write ι. Thus we view A as a subset of
M(A).

Definition 3.7 Let A and B be nondegenerate k-algebras. We say that an algebra morphism
F : A −→ M(B) is nondegenerate if B = F(A)B and B = BF(A). A Woronowicz-
morphism between A and B is then defined as a nondegenerate algebra morphism F :
A −→ M(B).

Proposition 3.8 A Woronowicz-morphism F : A −→ M(B) can be extended to a unique
unital algebra morphism F : M(A) −→ M(B).

Proof Let (λ, ρ) ∈ M(A). Every b ∈ B can be written as b = ∑
i F (ai)bi . Now we

define λ′(b) = ∑
F(λ(ai))bi . Using nondegeneracy of A and F , one easily checks that

this is well-defined. Similarly, one defines ρ′(b) = ∑
biF (ρ(ai)). The required extension

is F : M(A) −→ M(B) : (λ, ρ) −→ (λ′, ρ′).
Assume that F̂ : M(A) −→ M(B) is another extension of F . Then we have for each

x ∈ M(A) and b′F(a′) ∈ B that a′x ∈ A. Hence

b′F(a′)(F (x) − F̂ (x)) = 0

Thus for each b ∈ B we have that b(F (x) − F̂ (x)) = 0. It follows that F(x) = F̂ (x).
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This proposition has as a corollary that we can compose nondegenerate maps. Indeed, if
F : A −→ M(B) and G : B −→ M(C) are nondegenerate, then G extends to a morphism
G : M(B) −→ M(C), and the composition GF makes sense.

Lemma 3.9 The composition GF is nondegenerate.

Proof Take c ∈ C, then by nondegeneracy of G, we can write c = ∑
i G(bi)ci , where

bi ∈ B and ci ∈ C. Now, since F is nondegenerate, we can write bj = ∑
j F (ai,j )bi,j ,

where a ∈ A and b′ ∈ B. Thus c = ∑
i,j G(F (ai,j ))F (bi,j )ci and G(bi,j )ci ∈ C. Thus we

have shown that G(F(A))C = C. Similarly, it follows that CG(F(A)) = C.

We can now form the category of all k-algebras with Woronowicz morphisms. We will
denote this category as

Wor(k-Alg)

Proposition 3.10 Let F : A −→ M(B) be an injective, nondegenerate map, then its
extension F : M(A) −→ M(B) is injective too.

Proof Assume that x ∈ M(A) satisfies F(x) = 0. Then for each a ∈ A, we have that
F(ax) = F(a)F (x) = 0. Since f is injective on A and since ax ∈ A, it follows that
ax = 0. This holds for each a ∈ A; it follows that x = 0.

Proposition 3.11 For every surjective algebra morphism g : A −→ B, we have that G :=
ιg : A −→ M(B) is nondegenerate and that this extends to a morphism G : M(A) −→
M(B).

Proof Take b ∈ B, then there exists an a ∈ A such that g(a) = b. We can write a =∑
i a′

ia
′′
i . Hence b = ∑

i g(a′
i )g(a′′

i ). Since g(A) ⊆ B, it follows that g(a′
i ), g(a′′

i ) ∈ B.
Hence b ∈ g(A)B and b ∈ Bg(A).

Proposition 3.12 If F : A −→ M(B) is a Woronowicz-morphism which constitutes an
isomorphism inWor(k-Alg), then F(A) = B.

Proof Let G : B −→ M(A) be the inverse of f . Take an a ∈ A; then we have by
nondegeneracy of G that there exists bi ∈ B and an ai ∈ A such that a = ∑

G(bi)ai .
But then F(a) = biF (ai). But since B is an ideal of M(B), this implies that F(a) ∈ B.
This shows that F(A) ⊆ B. Likewise, we have that G(B) ⊆ A. Now take b ∈ B, then
b = F(G(b)), and thus b ∈ F(A).
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The quotients of nondegenerate algebras do not need to be nondegenerate. But we do
have the following

Proposition 3.13 Let A be a nondegenerate algebra and let I be an ideal of A. We let
Î = {a ∈ A | ab ∈ I and ba ∈ I for all b ∈ B}. Then
(1) Î is an ideal and A/Î is nondegenerate.
(2) If F : A −→ M(B) is a nondegenerate morphism between nondegenerate algebras

such that F(I) = 0. Then it follows that F(Î ) = 0 and F induces a nondegenerate
morphism A/Î −→ M(B).

Proof (1) That Î is an ideal is easily checked. Assume that p(x)p(y) = 0 for all y ∈ A.
Then holds that xy ∈ Î for all y ∈ A. It follows that for each y′ ∈ A that xyy′ ∈ I . But
since A is nondegenerate, we know that every element of A has the form

∑
i yiy

′
i . So for

every a ∈ A, we have that xa ∈ I . Thus follows that x ∈ Î and thus p(x) = 0.
Since A = AA, it follows at once that A/J = (A/J )(A/J ).

(2) Take x ∈ Î . Then holds for each a ∈ A that ax ∈ I and xa ∈ I . Take b ∈ B, then by
nondegeneracy, we can write b = ∑

i F (ai)bi . But then

F(x)b =
∑

i

F (x)F (ai)bi =
∑

i

F (xai)bi = 0.

It follows that F(x) = 0. The remainder of the proof is now clear.

Theorem 3.14 The co-equalizer in the category Wor(k-Alg) exists. In particular, the co-
equalizer of two nondegenerate morphisms F,G : A −→ M(B) is given by B/Î , where
I is the two-sided ideal in B generated by F(a)b − G(a)b and bF(a) − bG(a) for each
a ∈ A and b ∈ B.

Proof Since B is nondegenerate, it follows that B/Î is nondegenerate. Let p : B −→
B/Î be the canonical surjection. This surjection is nondegenerate and thus extends to a
nondegenerate surjection P : M(B) −→ M(B/Î ). We prove that PF = PG. Indeed,
take P(b) ∈ B/Î , then

[P(F(a)) − P(G(b))](P (b)) = P(F(a)b − G(a)b) = 0.

Hence P(F(a)) = P(G(a)) for each a ∈ A.
Let H : B −→ M(C) be a nondegenerate morphism such that HF = HG. Then

H(Î ) = 0 and thus there is a unique morphism K : B/Î −→ M(C) such that H = KP .
This is clearly nondegenerate since H is.

Proposition 3.15 Let F : A −→ M(C) and G : B −→ M(C) be two Woronowicz-
morphisms. If F and G commute, so do their extensions F and G.
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Proof Take x ∈ M(A) and y ∈ B. Take c ∈ C, then we can write c = ∑
i ciF (ai). Note

that aix ∈ A. Then

cF (x)G(y) =
∑

i

ciF (aix)G(y)

=
∑

i

ciG(y)F (aix)

=
∑

i

ciG(y)F (ai)F (x)

=
∑

i

ciF (ai)F (y)F (x)

= cG(y)F (x).

It follows that F(x)G(y) = G(y)F (x). Now let x ∈ M(A) and y ∈ M(B). Similarly, iIt
follows that F(x)G(y) = G(y)F (x).

Definition 3.16 For an associative k-algebra A and for an ideal I of A, we say that I is
nondegenerate if for each x ∈ A the following hold:

(1) If for each y ∈ A we have that yx ∈ I , then x ∈ I .
(2) If for each y ∈ A we have that xy ∈ I , then x ∈ I .

The ideal A is always nondegenerate in A. Furthermore, an algebra is nondegenerate if
and only if A = AA and {0} is a nondegenerate ideal of A.

Proposition 3.17 The intersection of nondegenerate ideals is nondegenerate.

In particular, every ideal I can be extended to a smallest nondegenerate ideal which
contains it. We will denote this ideal by Ĩ .

We give a more explicit description of {̃0}.

Proposition 3.18 Let A be an associative k-algebra. We have that a ∈ {̃0} if and only if
there exists n ≥ 0 such that for all b1, ..., bn ∈ A we have b1b2...bna = 0 and ab1b2...bn =
0.

Proposition 3.19 If A and B are nondegenerate k-algebras, then A ⊗ B/{̃0} is a
nondegenerate k-algebra.

For nondegenerate k-algebras A and B, we put A ⊗̃B = A ⊗ B/{̃0} and we call it the
nondegenerate tensor product.

Proposition 3.20 If k is a field, then A ⊗̃B = A ⊗ B.
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Proof Assume for a ⊗b we have that aa′ ⊗bb′ = 0 for all a′ ∈ A and b′ ∈ B. This implies
that there exists finitely supported maps λa′,b′ : B −→ R such that

bb′ =
∑

f ∈B

λa′,b′(f )f,

and
λa′,b′(f )aa′ = 0 for all f ∈ B

If λa′,b′(f ) = 0 for all f ∈ B, then follows that bb′ = 0. Otherwise, it follows by taking
inverses that aa′ = 0.

Thus if there exists some b′ such that bb′ �= 0, then it must hold that aa′ = 0 for all
a′ ∈ A. Thus by nondegeneracy of A, we have that a = 0 and thus a ⊗ b = 0.

Otherwise, it must hold that bb′ = 0 for all b′ ∈ B. But then b = 0 and hence a ⊗ b =
0.

Proposition 3.21 For nondegenerate algebras A and B, there exist commuting, nondegen-
erate maps

JA : A −→ M(A) −→ M(A⊗̃B)

and
JB : B −→ M(B) −→ M(A⊗̃B).

Proof Take (λ, ρ) ∈ M(A), let p : A ⊗ B −→ A⊗̃B be the canonical quotient. Take
p(a⊗b) ∈ A⊗̃B, then we set λ′(p(a⊗b)) = p(λ(a)⊗b) and ρ′(p(a⊗b)) = p(ρ(a)⊗b).
This is well-defined: if a ⊗ b ∈ {̃0} and if I is any nondegenerate ideal of A ⊗ B, then
a ⊗ b ∈ I . Thus (x ⊗ y)(λ(a) ⊗ b) = (xλ(a)) ⊗ (yb) = (ρ(x)a) ⊗ (yb) ∈ I . By
nondegeneracy of I follows that λ(a)⊗b ∈ I . Since this is true for all nondegenerate ideals
of A ⊗ B, it follows that λ(a) ⊗ b ∈ {̃0}. Similarly, we have that ρ′ is well-defined.

So we have an element (λ′, ρ′) ∈ M(A⊗̃B). This shows that we have a morphism

M(A) −→ M(A ⊗ B) : (λ, ρ) −→ (λ′, ρ′).
Similarly, we also have a morphism M(B) −→ M(A ⊗ B). These morphisms are clearly
commuting. Note that for (λa, ρa) ∈ M(A), we have λ′

a(p(a′ ⊗ b′)) = p(aa′ ⊗ b′) and
λ′

a(p(a′ ⊗ b′)) = p(a′a ⊗ b′). We check nondegeneracy. Take p(a ⊗ b) ∈ A⊗̃B. Then we
can write a = ∑

i aia
′
i . But then

p(a ⊗ b) =
∑

i

p(aia
′
i ⊗ b) =

∑

i

λ′
ai

(p(a′
i ⊗ b) ∈ JA(A)(A⊗̃B).

4 Generalized Colimits

It is well known that in categories without (useful) coproducts, a monoidal structure may
sometimes serve as an alternative. More generally, if a category is endowed with compatible
relations RC on the sets of morphisms with common domain C, there results a natural
notion of R-coproduct. The link between such relations on the one hand, and monoidal
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structures on the other hand, is studied by Janelidze [14]. In Section 4.1, we describe R-
coproducts in the Woronowicz categories from the previous sections. In Section 4.2, we
introduce more general R-colimits. Under an additional assumption on R, we prove some
properties involving combinations of R-colimits. For instance, we show that in general R-
pushouts cannot be composed, but they can be composed under an additional centrality
requirement for one of the involved morphisms. In the sequel, we will make fundamental
use of the dual notions, which are discussed in Section 4.3.

4.1 Co-Relations and Generalized Coproducts

Recall that for a category C and an object C ∈ C, the slice category C/C is the category of
all morphisms with codomain C.

Definition 4.1 [14] A co-relation R on a category C consists of the datum of a relation RC

on Ob(C/C) for every object C ∈ C, such that the following properties are satisfied:

(1) If f : A −→ C and g : B −→ C are RC-related and if h : D −→ A is an arbitrary
morphism, then f h and g are RC-related.

(2) If f : A −→ C and g : B −→ C are RC-related and if h : C −→ D is an arbitrary
morphism, then hf and hg are RD-related.

For simplicity, we usually denote RC simply by R for all objects C. In [14], a co-relation
R on a category is called a cover relation and the author investigates cover relations associ-
ated to the natural order on subobjects (whence the terminology), as well as cover relations
associated to monoidal structures. In this paper we are mainly interested in (generalizations
of) the latter type, where in particular R is symmetric. Note that in general, for a co-relation
R on C, the opposite relations R

op
C for C ∈ C do not define a co-relation due to the asym-

metric nature of condition (1). If they do define a co-relation, we denote it by Rop and we
call R a bi-co-relation (bicover relation in [14]).

Example 4.2 (1) If C is an arbitrary category, then we can say that f : A −→ C and
g : B −→ C are always R-related. We will call this co-relation standard.

(2) Let F : A −→ M(C) and G : B −→ M(C) be morphisms in Wor(C∗-Alg). We
say that F and G are R-related if they commute.

(3) Let Ring be the category of all (possibly noncommutative) unital rings with as mor-
phisms the usual ring homomorphisms. Two morphisms f and g are R-related if they
commute.

(4) Let G : A −→ M(C) and G : B −→ M(C) be in Wor(k-Alg). We say that F and
G are R-related if they commute.

With these examples in mind, we make the following definition:

Definition 4.3 Let C be a category with a co-relation R on C.

(1) A morphism f : B −→ A in C is R-central if (f, 1A) ∈ R and R-op-central if
(1A, f ) ∈ R.

(2) An object A ∈ C is R-commutative if (1A, 1A) ∈ R.

The central morphisms in C constitute a left ideal in C, that is if f : A −→ B is central
and h : A′ −→ A is arbitrary, then f h is central. The commutative objects in C form a
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full subcategory Com(C) ⊆ C. The co-relation R on C gives rise to an obvious restricted
co-relation on any subcategory. In particular, the restricted co-relation on Com(C) is the
standard relation on Com(C).

A co-relation R on a category can be used to generalize the notions of coproduct and
pushout:

Definition 4.4 Let A and B be objects of a category C. The R-coproduct of A and B is an
object Q together with R-related morphisms qA : A −→ Q and qB : B −→ Q such that
for every two R-related morphisms fA : A −→ C and fB : B −→ C, there is a unique
morphism f : Q −→ C such that fA = f qA and fB = f qB .

We denote the R-coproduct of A and B by A
∐R

B. Clearly, if it exists, an R-coproduct is
unique up to isomorphism. In [14], Janelidze characterizes the co-relations R for which the
associated R-coproduct defines a monoidal structure on C. Note that unless R is symmetric,
we do not necessarily have A

∐R
B ∼= B

∐R
A.

We can give a similar definition for the R-pushout:

Definition 4.5 Let f : C −→ A and g : C −→ B be morphisms in a category C. The R-
pushout of f and g is an object Q together with R-related morphisms qA : A −→ Q and
qB : B −→ Q such that qAf = qBg and such that for every two R-related morphisms fA :
A −→ C and fB : B −→ C with fAf = fBg, there is a unique morphism h : Q −→ C

such that fA = hqA and fB = hqB .

We denote the R-pushout of f and g as above by A
∐R

CB. Again, if it exists, an R-
pushout is unique up to isomorphism. We call qB the R-pushout of f by g, and by a pushout
of f we mean a pushout qB of f by some morphism g.

If R is the standard co-relation, then the R-coproduct and R-pushout are simply the usual
coproduct and pushout.

Theorem 4.6 In the category Wor(C∗-Alg), R-coproducts exist and are given by the
maximal tensor product.

Proof Let A and B be C∗-algebras. We can form the maximal tensor product A ⊗μ B. It is
shown in [23] that

A ⊗μ B ⊆ M(A) ⊗μ M(B) ⊆ M(A ⊗μ B).

Thus the canonical maps qA : A −→ M(A) ⊗μ M(B) : a −→ a ⊗μ 1 and qB : B −→
M(A) ⊗μ M(B) : b −→ 1 ⊗μ b extend to maps QA : A −→ M(A ⊗μ B) and QB :
B −→ M(A ⊗μ B). These maps are clearly commuting. Furthermore, they are strictly
continuous since

‖qA(a)(a′ ⊗μ b′)‖ = ‖(aa′) ⊗μ b′‖ ≤ ‖aa′‖‖b′‖.
Now let FA : A −→ M(C) and FB : B −→ M(C) be commuting nondegenerate mor-
phisms. Then we define F : A⊗B −→ M(C) by f (a ⊗ b) = fA(a)fB(b). This is clearly
the unique map for which FA = FQA and FB = FQB . We must prove that F is non-
degenerate. For this, take c ∈ C. Then we can write c = ∑

i FA(ai)ci and we can write
ci = ∑

j FB(bi,j )ci,j . Thus ci = ∑
i,j FA(ai)FB(bi,j )ci,j ∈ f (A ⊗ B)C.
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Corollary 4.7 The category Wor(C∗-Alg) is naturally a monoidal category with as
monoidal product the R-coproduct and with C as unit.

Proof It is well-known that the category of C∗-algebras with usual C∗-morphisms is
monoidal with as monoidal product the maximal tensor product. Thus for each three C∗-
algebras A, B and C we have a suitable isomorphism ψ : A ⊗μ (B ⊗μ C) → (A ⊗μ

B)⊗μ C. This induces a nondegenerate morphism since ψ is surjective. Hence, we have an
isomorphism in Wor(C∗-Alg).

Theorem 4.8 In the category Wor(k-Alg), R-coproducts exist and are given by the
nondegenerate tensor product ⊗̃.

Proof Let A and B be k-algebras. We can form the tensor product A⊗̃B. We have shown
that we have maps

JA : A −→ M(A) −→ M(A ⊗ B)

and
JB : B −→ M(B) −→ M(A ⊗ B)

which are nondegenerate and commuting.
Now let FA : A −→ M(C) and FB : B −→ M(C) be commuting nondegenerate

morphisms. Then we define H : A ⊗ B −→ M(C) by H(a ⊗ b) = FA(a)FB(b). We
show that H(Ĩ ) = 0, which proves that h descends to a map F : A⊗̃B −→ M(C). So
take a ⊗ b ∈ Ĩ . Then there is some k ≥ 0 such that for each y1, ..., yk ∈ A ⊗ B holds that
y1...yk(a ⊗ b) = 0. Now take c ∈ C, by nondegeneracy of FA and FB and by using that FA

and FB are commuting, we can write c as

c =
∑

i1,...,ik

cFA(ai1)FB(bi1)...FA(aik )FB(bik ).

Thus

cFA(a)FB(b) = c
∑

i1,...,ik

FA(ai1 ...aik a)FB(bi1 ...bik b)

= c
∑

i1,...,ik

H((ai1 ⊗ bi1)...H(aik ⊗ bik )(a ⊗ b))

= 0.

Since c is arbitrary, it follows that FA(a)FB(b) = 0, as desired.
The map F is clearly the unique map for which FA = FQA and FB = FQB . We must

prove that F is nondegenerate. For this, take c ∈ C. Then we can write c = ∑
i FA(ai)ci and

we can write ci = ∑
j FB(bi,j )ci,j . Thus ci = ∑

i,j FA(ai)FB(bi,j )ci,j ∈ H(A⊗B)C.

Corollary 4.9 The categoryWor(k-Alg) is naturally a monoidal category with as monoidal
product ⊗̃ and with as unit k.

Proof We show that the tensor product is associative as the rest of the statement is obvious.
Let A,B, C be nondegenerate k-algebras and let ψ : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C

be the canonical isomorphism such that ψ(a ⊗ (b ⊗ c)) = (a ⊗ b) ⊗ c. This induces a
canonical isomorphism ψ̃ : A⊗̃(B⊗̃C) → (A⊗̃B)⊗̃C. Since ψ̃ is an isomorphism, it is
nondegenerate and thus it implements an isomorphism in Wor(k-Alg).
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4.2 Generalized Colimits

The following notion generalizes R-coproducts and R-pushouts:

Definition 4.10 Let F : I −→ C be a functor, let R be a co-relation on C as before, and let r
be a relation on Ob(I ). An (r, R)-cocone on F consists of a cocone (C, (ϕi : F(i) −→ C)i)

such that irj implies ϕiRϕj . An (r, R)-colimit on F is a universal cocone on F .

Obviously, if it exists, an (r, R)-colimit of F is unique.

Example 4.11 (1) If r = ∅ and R is the standard co-relation on C, then (r, R)-colimits
are categorical colimits in C.

(2) Let I = 〈a b〉 be the “coproduct category”. If r = {(a, b)}, then an (r, R)-colimit
is an R-coproduct. If r = {(a, b), (b, a)}, we call an (r, R)-colimit a two-sided R-
coproduct. If R is symmetric, an R-coproduct is automatically two-sided.

(3) Let I = 〈a ← c −→ b〉 be the “pushout category”. If r = {(a, b)}, then
an (r, R)-colimit is an R-pushout. If r = {(a, b), (b, a)}, we call an (r, R)-
colimit a two-sided R-pushout. If R is symmetric, an R-pushout is automatically
two-sided.

(4) Let I = 〈a〉 be the “object category” with ara. The diagram determined by the object
A has (r, R)-colimit (A, 1A : A −→ A) if and only if A is commutative with respect
to R. For C = Ring the category of unital rings with the commutation co-relation R

from Example 4.2 (3), the (r, R)-colimit of the diagram determined by the ring A is
the canonical morphism A −→ A/[A,A] where [A, A] is the ideal generated by the
commutators aa′ − a′a for a, a′ ∈ A.

(5) Let I = 〈b −→ a〉 be the “morphism category” with r = {(b, a)} (resp. r =
{(a, b)}). The diagram determined by the morphism f : B −→ A has (r, R)-colimit
(A, 1A : A −→ A, f : B −→ A) if and only if f is central (resp. op-central)
with respect to R. For C = Ring the category of unital rings with the commutation
co-relation R from Example 4.2 (3), the (r, R)-colimit of the diagram determined by
the ring map f : B −→ A is the canonical morphism A −→ A/[f (B), A] where
[f (B), A] is the ideal generated by the commutators f (b)a − af (b) for a ∈ A and
b ∈ B.

Proposition 4.12 Suppose C has R-coproducts as well as categorical coequalizers. Then C
has R-pushouts.

Proof For morphisms f : C −→ A and g : C −→ B, consider the R-coproduct (Q, sA :
A −→ Q, sB : B −→ Q) and the categorical equalizer q : Q −→ E of sAf and sBg.
By Definition 4.1 (2), qsA and qsB are R-related. It is easily seen that they make E into an
R-pushout of f and g.

In order to proceed, it is useful to consider how a co-relation R interacts with certain
classes of morphisms. Consider the following weakening of the notion of a pretopology
on a category C: a cover system T on C consists of the datum, for every object C ∈ C,
of a collection T (C) of families of morphisms (fi : Ci −→ C)i . Dually, an co-cover
system S on C consists of the datum, for every object C ∈ C, of a collection S(C) of
families of morphisms (gi : C −→ Ci)i . A class of morphisms T in C gives rise to a
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cover system T with T(C) = {f : D −→ C | f ∈ T} and a co-cover system T with
T(C) = {f : C −→ D | f ∈ T}.

Definition 4.13 Let R be a co-relation on a category C.

(1) Let T be a cover system on C. We say that R is T -generated if the following condition
holds for morphisms f : A −→ C and g : B −→ C in C and a collection of
morphisms (fi : Ai −→ A)i in T (A): if for all i we have ffiRg, then we have f Rg.

If R is a bi-co-relation, we call R bi-T -generated if both R and R
op

are
T -generated.

(2) Let S be an co-cover system on C. We say that R is T -cogenerated if the following
condition holds for morphisms f : A −→ C and g : B −→ C in C and a collection
of morphisms (gi : C −→ Ci)i in T (A): if for all i we have gif Rgig, then we have
f Rg.

Consider the classes Epi of epimorphisms and Mono of monomorphisms in C, the
cover system Epi of jointly epimorphic families and the co-cover system Mono of
jointly monomorphic families. Note that the co-relations listed in Example 4.2 are bi-
Epi-generated and Mono-op-generated (and hence in particular bi-Epi-generated and

Mono-co-generated).

Lemma 4.14 Suppose C is endowed with a bi-co-relation R.

(1) Suppose Rop is Epi-generated. Suppose f : B −→ A has an (r, R)-colimit q : A −→
A′ as in Example 4.11 (5). Then q is an epimorphism and qf : B −→ A′ is central.

(2) Suppose R is bi-Epi-generated. Suppose A has an (r, R)-colimit q : A −→ A′ as in
Example 4.11 (4). Then q is an epimorphism and A′ is commutative.

Under the assumptions of Lemma 4.14, we call q : A −→ A′ in (1) the centralizator of
f : B −→ A and q : A −→ A′ the commutativizator of A.

Proof That q is an epimorphism immediately follows from the universal property of the
colimits. In case (1), we consider the epimorphism q. By the assumption on Rop, from
qf Rq we deduce qf R1A′ . In case (2), we twice consider the epimorphism q : A −→ A′.
By the assumptions upon R and Rop, from qRq we deduce 1A′R1A′ .

Proposition 4.15 Suppose C is endowed with a bi-Epi-generated bi-co-relationR. Consider
morphisms f : C −→ A and g : C −→ B with two-sided R-coproduct (Q, sA : A −→
Q, sB : B −→ Q) as in Example 4.11 (2).

(1) sAf = sBg is central and op-central.
(2) If A and B are commutative, then so is Q.

Proof (1) We show centrality, that is sAf R1Q. Since {sA, sB} is jointly epimorphic, it suf-
fices that sAf RsA and sAf RsB . The second relation follows from sARsB , and the first one
can be rewritten as sBgRsA which follows from sBRsA.
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(2) Using twice the family {sA, sB}, 1QR1Q is equivalent to the following four relations:
sARsA, sBRsB , sARsB , sBRsA. The first two follow from commutativity of A and of B, the
last two follow from the definition of twosided R-pushout.

The following example shows that it is not always true that the composition of R-pushout
diagrams is an R-pushout diagram, or that the R-pushout of an isomorphism remains an
isomorphism.

Example 4.16 Take the category of unital algebras over R in which f : A −→ C and
g : B −→ C are R-related if and only if they commute. For central morphisms A −→ B

and A −→ C, it is easily checked that the R-pushout is given by B ⊗A C. Now consider
the following diagram, where H is the quaternion algebra:

The left diagram is clearly an R-pushout diagram. The right diagram is by definition an
R-pushout diagram, where I is the ideal generated by h⊗1−1⊗h. The composite diagram
would only be a pushout diagram if (H ⊗ H)/I ∼= H. This is not the case since otherwise
we would have p = q = 1H, but the map 1H : H −→ H is not central.

In general, we have the following:

Proposition 4.17 Suppose R is a bi-Epi-generated bi-co-relation on C. Consider the
following composition of diagrams in which γ is R-central:

(1) If both squares are two-sided R-pushouts, then so is the composed diagram.
(2) If the left square and the composed diagram are two-sided R-pushouts, then so is the

right square.

Proof (1) Obviously, we have γ ′β ′Rα′′ since γ ′Rα′′. Consider morphisms f : A −→ E

and g : D −→ E with f Rg. It follows that f Rgγ , so from the left R-pushout we obtain a
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unique morphism x : P −→ E with f = xβ ′ and gγ = xα. If we can show that xRg, then
we obtain the required unique morphism x′ : Q −→ E. Since {β ′, α′} is jointly epimorphic,
it suffices that xβ ′Rg and xαRg. The first relation is f Rg which is given. For the second
relation, centrality of γ gives γR1D , whence gγRg which can be rewritten as xαRg as
desired.

(2) If we can show that γ ′Rα′′, we can finish the proof in the usual fashion. Along the
lines of part (1), we use the jointly epimorphic {β ′, α′} to show this.

Example 4.18 In the category of unital k-algebras over a commutative ground ring, if in the
notations of Proposition 4.17 α, β and γ are central, part (1) of the result corresponds to the
familiar change of rings formula (A ⊗C B) ⊗B D ∼= A ⊗C D.

Next we give a construction of R-pushouts using centralizations and R-pushouts of
central morphisms.

Proposition 4.19 Suppose R is a bi-Epi-generated bi-co-relation on C. Consider mor-
phisms α : C −→ A and β : C −→ B. Suppose the centralizators qA : A −→ A′ of α and
qB : B −→ B ′ of β exist. Suppose further that (Q, sA′ : A′ −→ Q, sB ′ : B ′ −→ Q) is the
two-sided R-pushout of qAα and qBβ. Then (Q, sA′qA, sB ′qB) is the two-sided R-pushout
of α and β.

Proof It suffices to check the universal property. Consider f : A −→ D and g : B −→ D

with f Rg, gRf and f α = gβ. This implies f αRg, in other words gβRg, and gβRf ,
in other words f αRf . From the universal properties of the centralizators, we thus obtain
f ′ : A′ −→ D with f ′qA = f and g′ : B ′ −→ D with g′qB = g. If we can show f ′Rg′
and g′Rf ′, we obtain the required morphism Q −→ D. But since both qA and qB are
epimorphisms, it suffices that f ′qARg′qB and g′qBRf ′qA which is part of our assumption
of f and g.

4.3 Relations and Generalized Pullbacks

We can easily dualize the notions of co-relation R, R-coproduct and R-pushout. Since we
will make frequent use of these dual notions, we state them explicitely to fix terminol-
ogy. For a category C and an object C ∈ C, the slice category C/C is the category of all
morphisms with domain C.

Definition 4.20 A relation R on a category C consists of the datum of a relation RC on
Ob(C/C) for every object C ∈ C, such that the following properties are satisfied:

(1) If f : C −→ A and g : C −→ B are RC-related and if h : A −→ D is an arbitrary
morphism, then hf and g are RC-related.
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(2) If f : C −→ A and g : C −→ B are RC-related and if h : B −→ C is an arbitrary
morphism, then f h and gh are RB -related.

The relation on C for which every two morphisms with the same codomain are related is
called the standard relation.

Definition 4.21 Let C be a category with a relation R on C.

(1) A morphism f : A −→ B in C is R-central if (f, 1A) is in R and R-op-central if
(1A, f ) is in R.

(2) An object A ∈ C is R-commutative if (1A, 1A) ∈ R.

The R-central morphisms in C constitute a right ideal in C. The R-commutative objects
in C form a full subcategory Com(C) ⊆ C. The relation R on C gives rise to an obvious
restricted relation on any subcategory. In particular, the restricted relation on Com(C) is the
standard relation on Com(C).

Definition 4.22 Let A and B be elements of a category C with relation R. The R-product
of A and B is an object P together with R-related morphisms pA : P −→ A and pB :
P −→ B such that for every two R-related morphisms qA : Q −→ A and qB : Q −→ B,
there is a unique morphism f : Q −→ B such that qA = pAf and qB = pBf .

We denote the R-product of A and B by A ×R B.

Definition 4.23 Let f : A −→ C and g : B −→ C be morphisms in a category C with
relation R. The R-pullback of f and g is an object P together with R-related morphisms
pA : P −→ A and pB : P −→ B such that fpA = gpB and such that for every two R-
related morphisms qA : D −→ A and qB : D −→ B with f qA = gqB we have that there
is a unique morphism h such that qA = pAh and qB = pBh.

We denote the R-pullback of f and g as above by A×R
CB. We call pB the R-pullback

of f along g, and by an R-pullback of f we mean an R-pullback pB of f along some
morphism g.

Just like R-pushouts, in general R-pullbacks do not behave well with respect to
compositions and isomorphisms.

The following observation will be useful later on:

Lemma 4.24 Consider a monomorphism m : Y −→ Z and an R-central morphism g :
X −→ Y . The following is the R-pullback of m along mg:
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The following terminology may be somewhat confusing, but we prefer to use the
words “generated” and “cogenerated” in analogy with the classical meaning of an object
C being generated by morphisms landing in C resp. cogenerated by morphisms starting
in C.

Definition 4.25 Let R be a relation on a category C.

(1) Let T be a cover system on C. We say that R is T -generated if the following condition
holds for morphisms f : C −→ A and g : C −→ B in C and a collection of
morphisms (fi : Ci −→ C)i in T (C): if for all i we have ffiRgfi , then we have
f Rg.

(2) Let S be an co-cover system on C. We say that R is T -cogenerated if the following
condition holds for morphisms f : C −→ A and g : C −→ B in C and a collection of
morphisms (gi : A −→ Ai)i in T (A): if for all i we have gif Rg, then we have f Rg.

If R is a bi-relation, then R is called bi-S-cogenerated if both R and Rop are
S-cogenerated.

The following result generalizes well-known stability properties for categorical pull-
backs:

Proposition 4.26 Consider the commutative diagram

and suppose it is either the R-pullback of f and m, or the R-pullback of m and f , or the
two-sided R-pullback of f and m.

(1) If m is a monomorphism, then so is m′.
(2) Suppose (E,M) is a factorization system on C and R is E-generated. If m ∈ M, then

m′ ∈ M.

Proof Consider the following commutative diagram

in which the right square is the R-pullback of f and m, m ∈ M and e ∈ E. Since e ⊥ m

there is a unique morphism h : X′ −→ Y with mh = f v and he = gu. In order to apply
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the R-pullback property, we need vRh. We have he = gu and ve = m′u, from m′Rg we
deduce m′uRgu in other words veRhe. Since R is E-generated, we have vRh so we get
a unique map h′ : X′ −→ P with m′h′ = v and gh′ = h. Now m′h′e = ve = m′u is
equivalent to h′e = u since M ⊆ Mono. This finishes the proof of the first statement. The
proofs of the other statements are similar.

5 Tensor Functional Topology

The basic idea of functional topology is that a certain amount of “topology” can be devel-
oped in a category based upon axiomatically defined classes of morphisms. After this idea
originated in the seventies in work of Herrlich, Manes and Penon [10], [18], [21] [20],
since the nineties the subject received a lot of attention in work of Herrlich, Salicrup,
Strecker, Clementino, Giuli, Tholen, Hofmann and others with applications to Birkhoff clo-
sure spaces, uniform spaces, topological groups, locales, approach spaces, lax algebras and
schemes [12], [4], [22] [5], [6], [13], [16]. In this section, we adapt some of these approaches
to a monoidal context, or, more generally, to the context of a category endowed with a rela-
tion R in the sense of Definition 4.20. We mainly focuss our attention on the following two
approaches:

• a minimal approach inspired by [13], taking an R-proper class of so-called proper
morphisms as primary (Section 5.1). This allows for the definition of compact
objects (Section 5.4), of commutative Hausdorff objects (Section 5.4) and of sep-
arated morphisms with commutative domain (Section 5.2). Many familiar relations
between these notions hold true, sometimes under suitable centrality conditions. This
approach can be refined by adding a second class F0 of closed immersions to the data
(Section 5.3).

• an approach building on [5], [16], in the presence of a factorization system (E,M). This
involves the definition of a closed class F of closed morphisms based upon an auxiliary
R-proper class F0 of closed immersions and an auxiliary closed class P of surjections,
together constituting a co-called (E,M)-closed structure (P,F0). If F is moreover an
R-proper class, we call (P,F0) an (E,M)-proper structure with proper morphisms F
(Section 5.5).

If R is such that R-pullback diagrams can naturally be composed, and R-pullbacks
of identity morphims remain identity morphisms, then the results from [16] integrally go
through. In this section however, we concentrate on the results which still hold true more
generally. Unlike in the classical case, there is no standard way of associating an R-proper
class to a closed class, so the most natural thing to do in this setup is start at once with the
class of morphisms one would like to view as “proper”, and show by hand that it is an R-
proper class. Even in the second approach, there is no general way of checking whether the
closed class F we obtain from (E,M) and (P,F0) is actually R-proper (that is we have an
(E,M)-proper structure). On the other hand, if we start from a closed class F and we have
a factorization system (E,M) with M ⊆ F, then under the additional conditions that R is
E-generated and F is stable under cancellation of post-composed M-morphisms, there is a
canonical way of associating the closed structure (E ∩ F,M) to it (see Propositions 5.18
and 5.19), which is at the other extreme from the case P = E corresponding to the setup
in [5].

From now on, we will always work in a category C with a fixed relation R.
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5.1 Proper Morphisms

Let C be a category with R-pullbacks. We make use of the standard classes Mor of all
morphisms, Iso of isomorphisms, Mono of monomorphisms and Epi of epimorphisms.

In general, one is interested in classes F of morphisms satisfying some of the following
stability properties:

(1) Iso ⊆ F;
(2) F is closed under composition;
(3) F is R-pullback stable, that is every R-pullback of f ∈ F along an arbitrary morphism

is again in F.

If F satisfies (1) and (2), we call F a closed class. If F satisfies (1), (2) and (3), it is called
an R-proper class.

Definition 5.1 Let F be a class of morphisms. We say that a morphism g is F-proper if
every R-pullback of g exists and is in F.

We thus obtain the class F − Prop of F-proper morphisms.

Lemma 5.2 Let F be a class of morphisms.

(1) If F ⊆ G then F − Prop ⊆ G − Prop.
(2) If F0 ⊆ F with F0 R-pullback-stable, then each morphism in F0 is F-proper.

Unlike in the familiar situation for the standard relation, in general F−Prop fails to be a
proper class. We have:

Lemma 5.3 Suppose R is symmetric and Mono-cogenerated. Let F be a class of mor-
phisms. Consider morphisms f : X −→ Y and g : Y −→ Z. If f, g ∈ F − Prop and f is
central, then gf ∈ F − Prop (and gf is central).

Due to the failure of F − Prop to be proper in general, it is more natural to start at once
from a proper class F considered as “proper morphisms”, as is done in [13]. Obviously, a
proper class F satisfies F = F − Prop.

5.2 Separated Morphisms

Let C be a category with R-pullbacks. For a morphism g : X −→ Y , we consider the
following R-pullback diagram:

If X is R-commutative, we obtain a unique diagonal morphism


g = (1X, 1X) : X −→ X×R
Y X
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from the universal property of an R-pullback.
We can now introduce separated morphisms:

Definition 5.4 Let F be a class of morphisms. Let g : X −→ Y be a morphism such that X

is a commutative object.

(1) We say that g is F-separated if the diagonal 
g ∈ F.
(2) We say that g is F-perfect if it is F-proper and F-separated.

We thus obtain the corresponding classes F−Sep of F-separated morphisms and F−Perf
of F-perfect morphisms. A class F is called separating if every F-separated morphism g

satisfies 
g ∈ F − Prop. Obviously, every proper class is separating.

Lemma 5.5 Let F be a class of morphisms.

1. If F ⊆ G then F − Sep ⊆ G − Sep.
2. Suppose Iso ⊆ F. Every monomorphism m : X −→ Y with X commutative is F-

separated.

Proof (2) For a monomorphism m : X −→ Y with X commutative, the diagram

is an R-pullback by Lemma 4.24, whence 
m = 1X : X −→ X is in F.

The following generalizes [16, Lemma 2.6]:

Lemma 5.6 Suppose R is symmetric and Mono-cogenerated. Let F be a proper class
of morphisms. Consider morphisms f : X −→ Y and g : Y −→ Z. If f is central,
g ∈ F − Sep and gf ∈ F, then f ∈ F.

Proof Since f and 
g are central, the proof from [16, Lemma 2.6] goes through.

5.3 Closed and Proper Pairs

Definition 5.7 Consider a proper class of monomorphisms F0 ⊆ Mono and a closed class
F with F0 ⊆ F. The pair (F0,F) is called a closed pair, the morphisms in F are called
closed morphisms and the morphisms in F0 are called closed immersions. Is F is moreover
a proper class, then (F0,F) is called a proper pair and the morphisms in F are called proper
morphisms.

A closed pair is called separating if for every F-separated morphism g : X −→ Y , we
have 
g ∈ F0.
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Proposition 5.8 Assume that C is a category with R-pullbacks. If H is a proper class, then
(H ∩ Mono,H) is a separating proper pair.

Proof By Proposition 4.26 (1), Mono is a proper class and H ∩ Mono is a proper class of
monomorphisms. The resulting proper pair is separating since the diagonal of any morphism
is a monomorphism.

5.4 Compact and Hausdorff Objects

Suppose C has a final object 1. The unique morphism from an object X to 1 is denoted by
!X : X −→ 1.

We will define compact and separated objects at once with respect to a proper class, thus
avoiding some of the problems that arise if one starts from a closed class.

Definition 5.9 Let H be a proper class, morphisms of which are called proper morphisms.

(1) An object X ∈ C is H-compact if the morphism !X : X −→ 1 is proper.
(2) A commutative object X ∈ C is H-Hausdorff if !X : X −→ 1 is H-separated.

Proposition 5.10 Suppose F is a closed class for which H = F − Prop is a proper class.

(1) An object X ∈ C is H-compact if and only if for every Y ∈ C we have that the second
projection p2 : X ×R Y −→ Y is in F.

(2) If F is separating, then a commutative object X ∈ C is H-Hausdorff if and only if
!X : X −→ 1 is F-separated.

In the category Top with F the usual closed maps and H = F − Prop the usual
proper maps, the H-compact and H-Hausdorff objects are the usual compact and Hausdorff
spaces.

We now give some stability properties of compact objects.

Proposition 5.11 Let H be a proper class.

(1) If f : X −→ Y is proper and Y is H-compact, then X is H-compact too.
(2) If X and Y are H-compact, then so is X ×R Y .

Proof (1) is clear. (2) For X and Y are compact, consider p1 : X ×R Y −→ X and p2 :
X ×R Y −→ Y . Since !X : X −→ 1 is in H, so is its pullback p2. Now also !Y : Y −→ 1
is in H, hence so is the composition !X×RY =!Y p2 : X ×R Y −→ 1.

The following corollary expresses the well-known topological statement that a closed
subspace of a compact space is again compact:

Proposition 5.12 Suppose (F0,F) is a closed pair for which H = F − Prop is a proper
class. If f : X −→ Y is in F0 and Y is H-compact, then X is H-compact too.
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Finally, we can recover the famous topological statement that a continuous morphism
from a compact to a Hausdorff space is proper.

Proposition 5.13 Let H be a proper class. Consider a central morphism f : X −→ Y with
Y commutative. If X is H-compact and Y is H-Hausdorff, then f is proper.

Proof This follows from Lemma 5.6 by taking g =!Y .

5.5 (E,M)-Closed Structures

Let C be a category with R-pullbacks endowed with a factorization system (E,M) with
M ⊆ Mono. From now on, we denote the (E,M)-factorization of a morphism f : X −→ Y

by

Definition 5.14 An (E,M)-closed structure (P,F0) (or simply closed structure if (E,M)

is understood) consists of:

(a) An R-proper class F0 ⊆ M of closed immersions.
(b) A closed class P of surjections.

With respect to a closed structure, a morphism f : X −→ Y is called closed if and only
if for every m : X′ −→ X in F0, we have ε(f m) ∈ P and μ(f m) ∈ F0. The class of
closed morphisms is denoted by F. The closed structure is called separating if the following
condition is satisfied.

(c) For any morphism f : A −→ B with A commutative, it holds that if the diagonal 
f

of f is in F, then it is in F0.

The closed structure is called a proper structure if the class F is R-proper, and in this case
the closed morphisms are also called proper morphisms.

The following is an adaptation of [16, Proposition 3.13]:

Proposition 5.15 Let (P,F0) be an (E,M)-closed structure. We have:

(1) F is closed under compositions, thus (F0,F) is a closed pair.
(2) F0 = F ∩ M.
(3) If we have mg ∈ F for a monomorphism m and an R-central morphism g, then also

g ∈ F.

If (P,F0) is a separating (E,M)-closed structure, then (F,F0) is a separating closed pair.

Remarks 5.16 (1) Suppose we take P = E. Then a morphism f : X −→ Y is closed if and
only if for m : X′ −→ X in F0 we have μ(f m) ∈ F0. Thus, this is precisely the situation
of [5].
(2) Suppose we take F0 = M. Then a morphisms f : X −→ Y is closed if and only if for
m : X′ −→ X in F0 we have ε(f m) ∈ P.
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The following is an adaptation of [16, Proposition 3.15]:

Proposition 5.17 Let (E,F0) be an (E,M)-closed structure. Suppose in an R-pullback

of m ∈ F0 and f ∈ E, we have f ′ ∈ E. If gf ∈ F and f ∈ E, then g ∈ F.

Proof Take f : X −→ Y and g : Y −→ Z morphisms. Let gf ∈ F with f ∈ E. Let
m : M −→ Y be an arbitrary morphism in F0. We need to show that μ(gm) ∈ F0. For this,
we take the R-pullback of m and f . We have the following diagram:

Since F0 is stable under R-pullbacks, we get that m′ ∈ F0. Since f ∈ E, the assumptions
of the proposition ensure that f ′ ∈ E. Thus μ(gf m′) = μ(gm). But since gf is closed, this
is an element of F0.

In some situations we have M = F0. The following two propositions deal with this case:

Proposition 5.18 Let (P,M) be an (E,M)-closed structure and let F be the class of closed
morphisms with respect to this closed structure.

(1) If we have mg ∈ F for m ∈ M, then also g ∈ F.
(2) F is closed under R-pullbacks along morphisms inM.

Proof (1) Consider m : Y −→ Z in M and f : X −→ Y with mg ∈ F. Consider
m′ : X′ −→ X in M. We have μ(mgm′) = mμ(gm′) and ε(mgm′) = ε(gm′). Since
mg ∈ F, the latter is in P.

(2) Consider the pullback square
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with f ∈ F, m ∈ M. Then mf ′ = f m′ ∈ F, whence by (1), f ′ ∈ F.

Conversely, we have:

Proposition 5.19 Let (E,M) be a factorization system and suppose R is E-generated. Let
F be a closed class with M ⊆ F and assume that mg ∈ F for m ∈ M implies g ∈ F. Then
(E ∩ F,M) is an (E,M)-closed pair, and F is its class of closed morphisms.

Proof Obviously E∩F is a closed class, and by Proposition 4.26, M is R-proper. It remains
to show that F is the associated class of closed morphisms. Assume that f ∈ F and m ∈ M,
then it obviously holds that μ(f m) ∈ M and ε(f m) ∈ E. But since μ(f m)ε(f m) = f m ∈
F, it follows by the hypothesis that ε(f m) ∈ F.

Conversely, assume that f : A −→ B is closed with respect to the (E,M)-closed struc-
ture (E ∩ F,M). Since 1A ∈ M, it follows that f = f 1A = ε(f 1A) ∈ F. We also have
μ(f 1A) ∈ M ⊆ F. Thus it follows that f ∈ F by composition.

6 Tensor Functional Topology in Woronowicz Categories

In this section, we show that the opposite Woronowicz categories of both associative alge-
bras (Section 6.2) and C∗-algebras (Section 6.3) can naturally be endowed with proper
structures. In each case, this entails three main steps:

(1) The definition of an R-proper class F of proper morphisms;
(2) The definition of a factorization system (E,M);
(3) The verification that the conditions of Proposition 5.19 are fulfilled and thus (E ∩

F,M) is an (E,M)-closed structure.

In each case, compact objects correspond precisely to unital algebras, and all commutative
algebras are Hausdorff.

In the C∗-algebra case, restricting the opposite Woronowicz category to the commutative
objects yields a category equivalent to locally compact Hausdorff spaces with continuous
maps. We show that the restriction of (E,M) to this category coincides precisely with the
factorization system of dense maps and closed embeddings. Further, the class F restricts
precisely to the proper continuous maps.

6.1 Topological Situations

In the category Top of topological spaces and continuous maps, let F be the class of the
usual closed maps. The standard factorization system (E0,M0) has E0 given by the surjec-
tions and M

0 given by the embeddings. It is well known that taking F0 to be the closed
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embeddings and putting P
0 = E yields a separating closed structure describing the closed

maps F [5].
In [16], we alternatively consider the factorization system (E,M) with E given by the

dense maps and M given by the closed immersions. Put F0 = M. Clearly, we are in the
situation of Proposition 5.19 and P = E ∩ F corresponds to the usual class of surjections.
We thus obtain a separating closed structure (P,M) describing the closed maps F.

Let CHd ⊆ Top be the full subcategory of compact Hausdorff spaces. The factor-
ization systems (E0,M0) and (E,M) both restrict to CHd and coincide on this category,
corresponding to the fact that every morphism is closed.

Let LcHd ⊆ Top be the full subcategory of locally compact Hausdorff spaces. In this
case only the factorization system (E,M) restricts to LcHd, and taking F0 = M and P the
surjections again yields a separating closed structure describing the closed maps in LcHd.

6.2 Associative Algebras

Let k be a commutative ring. In this section we develop functional topology on the opposite
Woronowicz category Wor(k-Alg)op from Section 3. For a morphism f : A −→ B in
Wor(k-Alg)op, we write F : B −→ M(A) for the associated Woronowicz-morphism. We
make the following definitions for f : A −→ B:

• f is in F if F(B) ⊆ A;
• f is in M if F(B) = A;
• f is in E if F is injective.

Lemma 6.1 F is an R-proper class.

Proof It suffices to check that F is stable under R-pullbacks. Consider F : B −→ M(A)

and G : B −→ M(C) arbitrary such that F(B) ⊆ A. Let us introduce some notation:

• We let q : A ⊗ C −→ A⊗̃C be the canonical quotient map.
• We let Î be the ideal of A⊗̃C generated by F(b)a⊗c−a⊗G(b)c and aF(b)⊗c−a⊗

cG(b), for arbitrary elements a ∈ A, b ∈ B and c ∈ C. We let p : A⊗̃C −→ (A⊗̃C)/Î

be the quotient map.
• We let F ′ : C −→ M(C) −→ M(A⊗̃C/Î ) be defined as F ′(c) = (λ′, ρ′), where

λ′(p(q(a′ ⊗ c′))) = p(q(a′ ⊗ cc′)) and ρ′(p(q(a′ ⊗ c′))) = p(q(a′ ⊗ c′c)).
• We let G′ : A −→ M(C) −→ M(A⊗̃C/Î ) be defined G′(a) = (λ′, ρ′), where

λ′(p(q(a′ ⊗ c′))) = p(q(aa′ ⊗ c′)) and ρ′(p(q(a′ ⊗ c′))) = p(q(a′a ⊗ c′)).

The following is then the R-pullback diagram:
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We need to prove that F ′(c) is in (C ⊗A)/J . But since G is nondegenerate, we have that
G(B)C = C. Hence we can write c = ∑

n G(bn)cn. Thus

F ′(c) =
∑

n

F ′(G(bn)cn).

Note that F(bn) ∈ A by hypothesis on F . Thus by definition of F ′, we have

F ′(G(bn)cn) = (λ′, ρ′)
where

λ′(p(q(b′ ⊗ c′))) = p(q(b′ ⊗ G(bn)cnc
′))

= p(q(F (bn)b
′ ⊗ cnc

′))
= λF(bn)⊗cn

(p(q(b′ ⊗ c′))).
Hence λ′ = λF(bn)⊗cn

, and similarly ρ′ = ρF(bn)⊗cn
. This is thus in (B⊗̃C)/Î .

Lemma 6.2 The classes (E,M) form a factorization system.

Proof (1) E andM are closed under composition with isomorphisms.
This is obvious.

(2) Every morphism f decomposes as f = me, with m ∈ M and e ∈ E.
In Wor(k-Alg), for every morphism f : A −→ M(B), we can decompose it

as A
e−→ A/Ker(f )

m−→ M(B). This induces a suitable factorization on the dual
category.

(3) Every e ∈ E is orthogonal to every m ∈ M.
Consider a commutative diagram in Wor(k-Alg):

Since e(D) = C, we find for each x ∈ C that there exists an y ∈ D such that m(y) = x.
Then we define d(x) = v(y). This is a well-defined morphism since e is injective. It is
obvious that d is nondegenerate since v is nondegenerate.

Proposition 6.3 (E∩F,M) is a separating (E,M)-proper structure onWor(k-Alg)op with
F as proper maps. With respect to the proper class F:

(1) An object A is compact if and only if it is a unital k-algebra.
(2) An object A is Hausdorff if and only if it is a commutative k-algebra.
(3) All morphisms with commutative domain are separated.

Proof By Lemma 6.2, (E,M) is a factorization system and by Lemma 6.1, F is a proper
class. We verify that we can apply Proposition 5.19. For this, we must first verify that R is
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E-generated. For this we take nondegenerate morphisms F : A → M(C) and G : B →
M(C), and we take a nondegenerate injection F ′ : C → M(D). Assume that F ′FRF ′G
for each i, this means that for each a ∈ A and b ∈ B, we have F

′
(F (a)) commutes with

F
′
(G(b)). Since F ′ is an injection, this implies directly that F(a) commutes with G(b) and

thus that FRG.
Next, we must verify the other condition of Proposition 5.19 that mg ∈ F and m ∈ M

implies that g ∈ F. Dually, this comes down to taking nondegenerate morphisms M : A →
M(B) and G : B → M(C) such that GM(A) ⊆ C and M(A) = B. To verify that
G(B) ⊆ C, take some b ∈ B. Then there is some a ∈ A such that M(a) = b. Then
G(b) = G(b) = G(M(a)) ∈ C. This verifies the conditions of Proposition 5.19.

(1) The initial object of the category Wor(k-Alg)op is k. A Woronowicz-morphism from
k to A is then a nondegenerate morphism F : k −→ M(A). Demanding that this
morphism is proper is exactly asking that F(k) ⊆ A. This is true if and only if A

contains a unit.
(2) Let A be a commutative object, that is a commutative k-algebra. The diagonal mor-

phism is represented by D : A⊗̃A −→ M(A) such that D(a ⊗ b) = ab. Since the
algebra is nondegenerate, we obtain that D(A ⊗ A) = A.

(3) Let A be a commutative object, that is a commutative k-algebra and let G : B →
M(A) be the dual of a morphism in Wor(k-Alg)op. The diagonal is given by D :
A⊗̃BA → M(A) such that D(a ⊗ b) = ab ∈ A. This diagonal thus obviously
satisfies the condition D(A⊗̃BA) ⊆ A. And thus the dual of the diagonal lies in F.

6.3 C∗-Algebras

In this section we develop functional topology on the opposite Woronowicz category
Wor(C∗-Alg)op from Section 3, and we discuss the relation with the situation in LcHd. For
a morphism f : A −→ B in Wor(C∗-Alg)op, we write F : B −→ M(A) for the associated
Woronowicz-morphism. We make the following definitions for f : A −→ B:

• f is in F if F(B) ⊆ A;
• f is in M = F0 if F(B) = A;
• f is in E if F is an isometry.

The following is proven along the lines of Proposition 6.3 (see also [19]):

Proposition 6.4 (E ∩ F,M) is a separating (E,M)-proper structure on Wor(C∗-Alg)op

with F as proper maps. With respect to the proper class F:

(1) An object A is compact if and only if it is a unital C∗-algebra.
(2) An object A is Hausdorff if and only if it is a commutative C∗-algebra.
(3) All morphisms with commutative domain are separated.

To end this section, we investigate the natural fully faithful functor

 : LcHd −→ Wor(C∗-Alg)op : X �−→ C0(X)

which sends a continuous map f : X −→ Y to the Woronowicz-morphism

(f ) = F : C0(Y ) −→ Cb(X) : g −→ g ◦ f.
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The image of this functor is equivalent to the category Com(Wor(C∗-Alg)op) of R-
commutative objects. Recall from Section 6.1 that LcHd is endowed with the factorization
system of dense maps and closed embeddings, and taking the closed immersions equal to
the closed embeddings yields a closed structure describing the usual closed maps.

Theorem 6.5 [9] Let f : X −→ Y be a continuous map between locally compact
Hausdorff spaces with associated Woronowicz-morphism F = (f ).

(1) f is proper if and only if F ∈ F, that is F(C0(Y )) ⊆ C0(X).
(2) f is a closed embedding if and only if F ∈ M, that is F(C0(Y )) = C0(X).
(3) f is dense if and only if F ∈ E.

Proof (1) Assume that f is proper and let g ∈ C0(Y ). For each ε > 0, there exists a compact
set K ⊆ Y such that ‖g|Y\K‖∞ < ε. Since f is proper, we have that K ′ = f −1(K) is a
compact set such that ‖(g ◦ f )|X\K ′ ‖∞ < ε. Thus g ◦ f vanishes at infinity.
For the converse implication, assume for each g ∈ C0(Y ) that g ◦ f ∈ C0(X). Let K be a
compact subset of Y . By local compactness of Y , we know that there exists some compact
set K ′ such that K lies in the interior of K ′. Furthermore, K is the intersection of such sets.
Now let g be a continuous function such that g is supported in K ′ and such that gK ′(K) = 1.
Since g is compactly supported and thus lies in C0(Y ), we see that g ◦f lies in C0(X). Thus
there exists a compact set S ⊆ X such that |g ◦ f | ≥ 1/2 only on S. If x ∈ f −1(K), then
gK ′(f (x)) ∈ K and thus gK ′(f (x)) = 1. Thus x ∈ S. Hence we see that f −1(K) ⊆ S.
Thus f −1(K) is a closed subset of a compact set and is thus closed.

(2) Assume that f is a closed embedding, then f is certainly proper and thus it follows
that F(C0(Y )) ⊆ C0(X). To prove the other inclusion, assume that g ∈ C0(X). Then
by the Tietze extension theorem (applied on the Alexandroff compactification of X),
we see that g extends to a function g′ ∈ C0(Y ). For this function, we clearly have
F(g′) = g.
For the converse implication, we already know by the previous point that f is proper.
It suffices to show that f is injective. So let x �= y in X such that f (x) = f (y) in Y .
We can exhibit a function g ∈ C0(X) such that g(x) �= g(y). There exists a function
g′ ∈ C0(Y ) such that g′ ◦ f = g. But then g(x) = g′(f (x)) = g′(f (y)) = g(y), a
contradiction.

(3) Assume that f is dense. It suffices to prove that F is injective. Thus take g, g′ ∈ C0(Y )

such that g ◦ f = g′ ◦ f . By density of f , it follows that g = g′.
Conversely, assume that F is an isometry. Assume that X is not dense. By local com-
pactness, there then exists a compact subset K of Y with nonempty interior. Let g be a
nonzero function supported in K . Then F(g) = 0; while by injectivity of F it follows
that g = 0, a contradiction.

Remark 6.6 From (2) and (3) of the above theorem, it formally follows that F ∈ F implies
that f is closed (see for instance [16, Proposition 3.48]). In (1), a much more precise result is
obtained, namely that F captures precisely the usual proper maps between locally compact
Hausdorff spaces when restricted to the commutative objects.

One could remark that our system of functional topology for C∗-algebras has M the
closed embeddings and not general embeddings. We now describe more general classes



602 W. Lowen, J. Mestdagh

which would also encompass usual embeddings. Sadly, we do not yet know whether these
classes give rise to a factorization system.

For a morphism f : A → B in the category Wor(C∗-Alg)op, we write F : B → M(A)

for the associated Woronowicz-morphism. We make the following definitions for f : A →
B:

• f is in E
′ if f ∈ E and if for each pure state τ : B → C there exists a pure state

τ ′ : M(A) → C such that τ ′ ◦ F = τ .
• We define the following equivalence relation: we say for x, y ∈ B that x ∼f y if for

each pure state τ : B → C for which there does not exist a pure state τ ′ : M(A) → C

with τ ′ ◦ F = τ , we have that τ(x) = τ(y).
• We define f ∈ O if for each a ∈ A, there exists some b ∈ B such that F(b) = a and

such that b ∼f 0.
• Finally, we define f ∈ M

′ if its (E,M) factorization f = me satisfies e ∈ O.

This does yield the appropriate notions in the commutative case. So let f : X → Y

be a continuous map between locally compact Hausdorff spaces, then we get the following
Woronowicz-morphism F : C0(Y ) → Cb(X) : g → g ◦ f . In this case, we get

Theorem 6.7 Under these conditions, we have:

(1) f is surjective if and only if f is in E
′;

(2) f is a open embedding if and only if f is in O;
(3) f is an embedding if and only if f is in M

′.

Proof (1) This follows since by Gelfand duality we have that any pure state τ : C0(Y ) → C

has the form evy , the evaluation in y.

(2) By Gelfand duality the pure state τ ′ : C0(X) → C corresponds to evaluations evx

with x ∈ X. Thus τ ′ ◦ F corresponds to the evaluation evf (x). Thus the pure states
τ : C0(Y ) → C which are not of the form τ ′ ◦ F correspond to evaluations evy with
y /∈ f (X). Hence, we see that for g, g′ ∈ C0(Y ), we have that g ∼f g′ if and only
if g(y) = g′(y) for each y /∈ f (X). Thus g ∼f 0 if and only if g vanishes outside
f (X).
Now let f be an open embedding and let g ∈ C0(X). We can extend g by 0 on entire
Y . Assume that this is not continuous, then there exists some y ∈ ∂X and some open
subset U around y such that |g| ≥ 1/2 on U ∩ X. But since g vanishes at infinity in
X, we see that U ∩ X must be contained in a compact subset K of X. This is also a
compact subset of Y , and thus y ∈ K . This means that some boundary point of U lies
in K ⊆ X, this is a contradiction since X was assumed open.
Conversely, let y be a boundary point of f (X) and assume that y ∈ f (X). Then there
exists some g ∈ C0(X) such that g(y) = 1. By hypothesis, for g there exists some
g′ ∈ C0(Y ) such that g′ = g ◦ f and such that g′ vanishes outside f (X). This is
in contradiction with demanding that g(y) = 1 for the boundary point y. We finally
prove that f is injective. To show this, assume that x �= y in X such that f (x) = f (y).
Take g ∈ C0(X) such that g(x) �= g(y). There exists a g′ ∈ C0(Y ) such that g = g′f
and then g(x) = g′(f (x)) = g′(f (y)) = g(y), a contradiction. Thus f must have
been injective.



Tensor Functional Topology 603

(3) This follows since any locally compact subspace of a locally compact space is an open
subspace of a closed subspace.
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