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1 Introduction

Starting with the work of Gabriel and Zisman [12], categories with weak equivalences have
been used to study homotopy theories. Later, thanks to the results of Dwyer and Kan [7–9],
it became clear that the content of a homotopy theory is entirely captured by the notion a cat-
egory with weak equivalences and a precise formulation of this observation was eventually
given by Barwick and Kan [3].

More precisely, they showed that the homotopy theory of categories with weak equiv-
alences is equivalent to the homotopy theory of (∞, 1)-categories (presented as quasicat-
egories or complete Segal spaces). The latter are often more convenient in practice and
hence it is important to understand simplicial localization functors, i.e. functors associating
to a category with weak equivalences the corresponding higher category. (Examples of such
constructions include the classification diagram of Rezk [20] and the hammock localization
[7] followed by the derived homotopy coherent nerve.)
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A common problem arising while working with these constructions is the necessity
of using inexplicit fibrant replacements. These problems can be avoided if the category
with weak equivalences is known to possess more structure, namely, when it is a cofi-
bration category (or a fibration category). Indeed, given a cofibration category C, one can
associate to it its quasicategory of frames NfC, introduced by the second-named author
[22].

The main goal of this paper is a proof that the quasicategory of frames and other con-
structions of simplicial localization are equivalent. Specifically, we define an enhancement
of the quasicategory of frames to a complete Segal space and show that it is equivalent to
the classification diagram. From this, using the results of Toën [23], we deduce equivalence
with other notions.

In the recent work of the first-named author [15], our results are used to show that the
simplicial localization of any categorical model of Homotopy Type Theory is necessarily a
locally cartesian closed quasicategory. Every categorical model of type theory is known to
carry the structure of a fibration category [1] and, by our results, its simplicial localization
can be realized as the quasicategory of frames. This realization proved convenient for the
purpose of solving the problem in question.

The paper is organized as follows. In Section 2, we review the relevant background on
models of homotopy theories (or, equivalently, (∞, 1)-categories). In Section 3, we collect
the necessary facts about cofibration categories and the construction of the quasicategory
of frames. Section 4 contains the technical heart of the paper—a proof of the compatibil-
ity of Nf with formation of diagrams, which is then used in Section 5 to establish our main
theorem relating the quasicategory of frames to the classification diagram. In particular, it
follows that given a model category, the quasicategories of frames associated to its underly-
ing cofibration and fibration categories are equivalent. In Section 6, we supply a more direct
comparison of these quasicategories.

2 Models of Homotopy Theories

In this section, we present three models of the homotopy theory of homotopy theories:
categories with weak equivalences, quasicategories, and complete Segal spaces. For future
reference, we will also recall some of their basic properties.

A category with weak equivalences consists of a category C together with a wide
subcategory wC, i.e., a subcategory containing all objects of C. Morphisms of wC will
be referred to as weak equivalences. A functor F : C → D between categories with
weak equivalences is homotopical if it takes weak equivalences of C to weak equivalences
of D.

A homotopical functor F : C → D is a Dwyer–Kan equivalence (or DK-equivalence
for short) if it induces an equivalence HoF of homotopy categories and a weak homotopy
equivalence on mapping spaces in the hammock localizations of C and D (see [7, 9]). This
notion naturally implements the idea of equivalence of homotopy theories—two homotopy
theories (presented as categories with weak equivalences) are considered the same if their
homotopy categories and mapping spaces agree.

We will write weCat for the category of small categories with weak equivalences and
consider it as a category with weak equivalences with Dwyer–Kan equivalences as weak
equivalences.
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A quasicategory is a simplicial set C satisfying the inner horn filling condition, i.e., for
every 0 < i < m and every �i[m] → C, there exists a filler:

We will write qCat for the full subcategory of sSet whose objects are quasicategories.
Given a category C, one associates to it a quasicategory NC, called the nerve of C, whose

m-simplices are given by functors [m] → C.
The category sSet can also be equipped with a class of maps, called categorical equiv-

alences, playing the role of equivalences of homotopy theories. We first need to introduce
the notion of an E[1]-homotopy, where E[1] denotes the nerve of a contractible groupoid
with two objects 0 and 1. Two maps f, g : K → L of simplicial sets are E[1]-homotopic
if there exists a map H : K × E[1] → L whose restriction to K × ∂�[1] is [f, g]. A map
w : K → L is a categorical equivalence if the induced map [L,C]E[1] → [K,C]E[1] is
a bijection for every quasicategory C, where [X, Y ]E[1] denotes the set of E[1]-homotopy
classes of maps X → Y .

Another class of examples of quasicategories is given by Kan complexes, which satisfy
a stronger version of the horn filling condition; that is, they are required to have horn fillers
for all horns (i.e., we take 0 ≤ i ≤ m). The full subcategory of qCat whose objects are
Kan complexes will be denoted Kan. The inclusion Kan ↪→ qCat admits a right adjoint
J : qCat → Kan picking out the largest Kan complex contained in a quasicategory [13, Thm.
4.19].

Proposition 2.1 ([13, Prop. 4.26]) J carries categorical equivalences of quasicategories to
homotopy equivalences of Kan complexes.

Lastly, we will need the notion of an inner isofibration. Recall that a map is an inner
fibration if it has the right lifting property with respect to all inner horn inclusions, i.e.,
�i[m] ↪→ �[m] for 0 < i < m. An inner isofibration is a map that that is an
inner fibration and, in addition, has the right lifting property with respect to the inclusion
δ1 : �[0] ↪→ E[1].

As our last model for the homotopy theory of homotopy theories, we shall discuss com-
plete Segal spaces. Before doing that, let us introduce some notation. Given a bisimplicial
set W : �op × �op → Set, we may regard it as a simplicial object W : �op → sSet in
two different ways. This gives us two different contravariant Kan extensions of W , one in
the spatial direction and one in the categorical direction, along the opposite of the Yoneda
embedding �op ↪→ sSetop that we will denote W sp,W cat : sSetop → sSet. We will also
write W

sp
m for W sp(�[m]) and W cat

n for W cat(�[n]).
A bisimplicial set W is a complete Segal space if it satisfies the following conditions:

(1) it is Reedy fibrant, i.e., the canonical map W
sp
m → W sp(∂�[m]) is a Kan fibration for

all m ∈ N;
(2) it is a Segal space, i.e., the canonical map W

sp
m → W sp(S[m]) is a weak homotopy

equivalence for all m ∈ N, where S[m] is the simplicial subset of �[m] consisting of
all vertices and edges connecting all pairs of consecutive vertices (the spine of �[m]);
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(3) it is complete, i.e., the canonical map W
sp
0 → W sp(E[1]) is a weak homotopy

equivalence.

A map of bisimplicial sets w : X → Y is a Rezk equivalence if for every complete
Segal space W the induced map WY → WX is a levelwise weak homotopy equivalence.
In particular, every levelwise weak homotopy equivalence of bisimplicial sets is a Rezk
equivalence.

Proposition 2.2 ([14, Prop. 4.4]) A bisimplicial set W is a complete Segal space if it is a
frame in the category qCat, i.e.,

(1) it is Reedy fibrant (the canonical map W cat
n → W cat(∂�[n]) is an inner isofibration

for all n ∈ N);
(2) it is homotopically constant (every simplicial operator [n] → [n′] induces a

categorical equivalence W cat
n′ → W cat

n ).

Lemma 2.3 A Rezk equivalence w : X → Y between complete Segal spaces is a lev-
elwise categorical equivalence (i.e., wcat

n : Xcat
n → Y cat

n is a categorical equivalence of
quasicategories for all n ∈ N).

Proof See the proof of [14, Prop. 4.7].

Let C be a category with weak equivalences. The classification diagram of C (cf. [20,
Sec. 3.3]) is a bisimplicial set NC whose (m, n)-simplices are given by:

(NC)m,n = {
homotopical functors [m] × [̂n] → C

}
.

Here, in [m] we take only identity maps as weak equivalences, while in [̂n] all maps are
weak equivalences. Alternatively, one may describe NC by: (NC)

sp
m = Nw(C[m]), where the

weak equivalences in the category C[m] are the natural weak equivalences (i.e., natural trans-
formations whose components are weak equivalences). The functor N : weCat → ssSet is
a DK-equivalence by [3, Lem. 5.4, Thm. 6.1(i), Prop. 10.3].

3 Cofibration Categories and the Quasicategory of Frames

In this section, we will review the background on cofibration categories and, as indicated in
the Introduction, will take advantage of the structure of a cofibration category to produce
a convenient model for its simplicial localization, called the quasicategory of frames. This
construction was introduced in [22]; here, we summarize the relevant notions and techniques
of this paper.

Definition 3.1 A cofibration category consists of a category C together with two wide
subcategories: the subcategory of cofibrations and the subcategory of weak equivalences
subject to the following axioms. In what follows, an acyclic fibration is a morphism that is
both a cofibration and a weak equivalence.

(1) The class of weak equivalences satisfies 2-out-of-6 property; that is, given a compos-
able triple of morphisms

X
f−→ Y

g−→ Z
h−→ Z

if hg, gf are weak equivalences, then so are f , g, and h.
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(2) All isomorphisms are acyclic cofibrations.
(3) Pushouts along cofibrations exist; cofibrations and acyclic cofibrations are stable

under pushouts.
(4) C has an initial object 0; the canonical morphism 0 → X is a cofibration for any object

X ∈ C (that is, all objects are cofibrant).
(5) Every morphism can be factored as a cofibration followed by a weak equivalence.

Given a model category, its subcategory of cofibrant objects is a cofibration category.
There are, however, plenty of examples of cofibration categories that do not arise as the
subcategory of cofibrant objects in a model category, e.g. the category of topological spaces
and proper maps (see [22, Sec. 1.4] for a discussion of such examples).

There is also the dual notion of a fibration category. A fibration category consists of
a category C, together with two classes of maps: fibrations and weak equivalences, subject
to the axioms dual to those of a cofibration category. The category qCat of quasicategories
carries a structure of a fibration category, in which weak equivalences are categorical equiv-
alences and fibrations are inner isofibrations. This category arises as the subcategory of
fibrant objects in Joyal’s model structure on simplicial sets.

Definition 3.2

(1) A functor between cofibration categories is exact if it preserves cofibrations, acyclic
cofibrations, pushouts along cofibrations, and an initial object.

(2) An exact functor is a weak equivalence of cofibration categories if it induces an
equivalence of homotopy categories.

(Again, there is a dual notion of an exact functor between fibration categories; such a
functor is required to preserve fibrations, acyclic fibrations, pullbacks along fibrations, and
a terminal object.)

The following theorem gives a useful characterization of weak equivalences between
cofibration categories:

Theorem 3.3 ([4, Thm. 3.19]) An exact functor F : C → D between cofibration categories
is a weak equivalence if and only if it satisfies the following Approximation Properties:

(App1) F reflects weak equivalences;
(App2) given a morphism f : FA → Y in D, there exists a morphism i : A → B in C and

a commutative square:

in D.

One can also define the notion of a fibration between between cofibration categories. An
exact functor P : C → D is a fibration if it satisfies the following conditions:

(1) P is an isofibration, i.e., it has the right lifting property with respect to the inclusion
δ1 : [0] ↪→ E(1), where E(1) denotes the contractible groupoid with objects 0 and 1.
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(2) Given a map f : A → B in C and a factorization Pf = tj of Pf as a cofibration fol-
lowed by a weak equivalence, there exists a factorization f = si of f into a cofibration
followed by a weak equivalence such that P i = j and Ps = t .

(3) Given a map f : A → B in C and a commutative square:

in D, in which j is a cofibration, t is a weak equivalence, and v is an acyclic
cofibration, there is a commutative square:

in C, in which i is a cofibration, s is a weak equivalence, and u is an acyclic cofibration
such that P i = j , Ps = t , and Pu = v.

Theorem 3.4 ([22, Thm. 1.14]) The category of cofibration categories and exact functors
with fibrations and weak equivalences defined above is a fibration category.

The definition of the quasicategory of frames (and its enhancement to a complete Segal
space) will depend on the notion of a Reedy cofibrant diagram on a direct category. We
therefore review the necessary definitions.

Definition 3.5

(1) A category J is direct if there is a function, called degree, deg : Ob(J ) → N such
that for every non-identity map j → j ′ in J we have deg(j) > deg(j ′).

Let J be a direct category.

(2) Let j ∈ J . The latching category ∂(J ↓ j) of j is the full subcategory of the
slice category J ↓ j consisting of all objects except idj . There is a canonical functor
∂(J ↓ j) → J , assigning to a morphism (regarded as an object of ∂(J ↓ j)) its
domain.

(3) Let X : J → C and j ∈ J . The latching object of X at j is defined as a colimit of the
composite

LjX := colim(∂(J ↓ j) −→ J
X−→ C).

The canonical morphism LjX → Xj is called the latching morphism.
(4) Let C be a cofibration category. A diagram X : J → C is called Reedy cofibrant, if

for all j ∈ J , the latching object LjX exists and the latching morphism LjX → Xj

is a cofibration.
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(5) Let C be a cofibration category and let X, Y : J → C be Reedy cofibrant diagrams in
C. A morphism f : X → Y of diagrams is a Reedy cofibration if for all j ∈ J the
induced morphism Xj �Lj X LjY → Yj is a cofibration.

Recall that a homotopical category is a category with weak equivalences satisfying the
2-out-of-6 property. We will denote by hoCat the full subcategory of weCat whose objects
are homotopical categories. We will restrict our attention to homotopical categories, because
the techniques of [22] are well-adapted for this notion. This results in no loss of general-
ity, because by [9, Lem. 5.1], in every category with weak equivalences, the class of weak
equivalences can saturated, which results in a Dwyer–Kan equivalent homotopical category.
Given a small homotopical category J , we will construct a direct homotopical category
DJ (a “direct approximation” of J ), together with a homotopical functor p : DJ → J .
The objects of DJ are pairs ([m], ϕ) for all m ∈ N and all functors ϕ : [m] → J .
A morphism

f : ([m], ϕ) → ([n], ψ)

is an injective, order preserving map f : [m] ↪→ [n] making the following triangle
commute:

It is clear that DJ is a direct category (with deg([m], ϕ) = m). To define p : DJ → J we
put p([m], ϕ) = ϕ(m). Finally, we declare that a map w in DJ is a weak equivalence if
p(w) is a weak equivalence in J . This makes DJ into a homotopical category and p into a
homotopical functor.

Definition 3.6 Let C be a cofibration category. We define the simplicial set NfC, called the
quasicategory of frames in C, by setting:

(NfC)m := {homotopical, Reedy cofibrant diagrams D[m] → C} ,

where [m] has the trivial homotopical structure, consisting only of identities, as defined in
Section 2.

Theorem 3.7 ([22, Thm. 3.3]) For any cofibration category C, the simplicial set NfC
is a quasicategory and moreover, Nf is an exact functor from the fibration category of
cofibration categories (of Theorem 3.4) to the fibration category of quasicategories.

In fact, more is true: for a cofibration category C, the quasicategory NfC can be shown
to possess all finite colimits. Moreover, Nf is a weak equivalence between the fibration
category of cofibration categories and the fibration category of finitely cocomplete quasi-
categories [22, Thm. 2.17 and 4.11]. Let us also record that by Ken Brown’s Lemma, we
obtain the following corollary:

Corollary 3.8 Nf carries weak equivalences of cofibration categories to categorical
equivalences of quasicategories.
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One of the goals of the present work is to establish an equivalence between Nf and
other constructions of simplicial localizations. For this purpose we introduce the following
enhancement of the quasicategory of frames to a complete Segal space.

Definition 3.9 Given a cofibration category C, we define a bisimplicial set NfC by:

(NfC)m,n := {
homotopical, Reedy cofibrant diagrams D([m] × [̂n]) → C

}
,

where [̂n] has the homotopical structure consisting of all maps, as defined in Section 2.

Remark 3.10 This definition is inspired by the construction of Joyal and Tierney, assigning
to a quasicategory C, a complete Segal space J(C�[−]) [14, p. 24]. Unwinding the defini-
tions, one can check that NfC is given by applying their construction to NfC. It follows that
NfC is a complete Segal space for any cofibration category C.

Our main result (Theorem 5.1) shows that the bisimplicial sets NC and NfC are Rezk
equivalent. We also point out that putting n = 0, i.e., taking the 0th row, yields (NfC)cat

0
∼=

NfC. This implies that NfC and NfC capture the same (∞, 1)-category by [14, Thm. 4.11].
We will make this remark more precise at the end of Section 5.

In the remainder of this section, we will collect several lemmas needed in the subsequent
sections. We begin, however, with two auxiliary constructions.

Given a poset P , define a direct category SdP with weak equivalences as the full
subcategory of DP whose objects are injective monotone functions ϕ : [n] ↪→ P ,
i.e., non-empty chains in P . The weak equivalences of SdP are created by the functor
max : SdP → P , taking a chain to its maximal element, or, equivalently, by the inclusion
SdP ↪→ DP (notice that max is simply the restriction of p : DP → P to the subcategory
SdP ).

Similarly, we may define D for simplicial sets, rather than for categories. Let K ∈ sSet
and define the underlying category of DK to be the category of elements of K , considered
as a semisimplicial set (i.e., without degeneracy maps). The set of weak equivalences in
DK is the smallest set closed under 2-out-of-6 and containing the morphisms induced by
the degenerate 1-simplices of K .

Proposition 3.11 ([22, Prop. 3.7]) Let C be a cofibration category and K a simplicial set.
There is a natural bijection between the set of simplicial maps K → NfC and the set of
Reedy cofibrant diagrams DK → C.

The remaining lemmas will establish several properties of the cofibration categories of
diagrams.

Proposition 3.12 Let C be a cofibration category and J a direct category with weak
equivalences and finite latching categories.

1. The category CJ
R of homotopical, Reedy cofibrant diagrams J → C is a cofibration

category, in which weak equivalences are levelwise weak equivalences and cofibrations
are Reedy cofibrations [19, Thm. 9.3.8(1a)].

2. The category CJ of all homotopical diagrams J → C is a cofibration category, in which
weak equivalences are levelwise weak equivalences and cofibrations are levelwise
cofibrations [19, Thm. 9.3.8(1b)].
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3. The canonical inclusion CJ
R ↪→ CJ is a weak equivalence of cofibration categories

[22, Prop. 1.16(3)].

Lemma 3.13 ([22, Lem. 3.9]) The map p : D[m] → [m] is a homotopy equivalence and
thus induces weak equivalences of cofibration categories of diagrams (both for Reedy and
levelwise structures).

Lemma 3.14 For a cofibration category C and direct categories I and J , the cofibration
categories of diagrams CI×J

R and (CI
R)JR are equivalent.

Proof The latching categories satisfy the Leibniz formula [21, Ex. 4.6] and thus a morphism
of CI×J

R is a cofibration if and only if the corresponding morphism of (CI
R)JR is.

Recall that a functor I → J of small categories is a sieve if it is injective on objects,
fully faithful, and if j → i is a morphism of J such that i ∈ I , then j ∈ I .

Lemma 3.15 For every acyclic fibration P : C → D of cofibration categories and every
square of the form:

in which I → J is a sieve of direct categories with weak equivalences with finite latching
categories and the horizontal arrows are Reedy cofibrant, there is a diagonal filler J → C,
which is Reedy cofibrant.

Proof Implication (1) ⇒ (2) in [22, Lem. 1.24].

Let us point out that not every functor f : I → J between direct categories induces
an exact functor between the corresponding categories of Reedy cofibrant diagrams. The
following lemma gives a useful criterion for checking the exactness.

Lemma 3.16 Let f : I → J be a functor between direct categories such that for each
i ∈ I , the canonical map ∂(I ↓ i) → ∂(J ↓ f (i)) factors as the composite of a cofinal
functor followed by a sieve

∂(I ↓ i) −−−−→ K −−−−→ ∂(J ↓ f (i)).

Then, for any cofibration category C, the induced functor f ∗ : CJ
R → CI

R is exact.

Proof Consider a Reedy cofibrant diagram X ∈ CJ
R and i ∈ I . We need to show that the

latching map Lif
∗X → (f ∗X)i is a cofibration. It factors as:

Lif
∗X = colim∂(I↓i) f ∗X → colimK X → colim∂(J↓f (i)) X → Xf (i) = (f ∗X)i

The first of these arrows is an isomorphism by the cofinality assumption; the second is a
cofibration, by [19, Thm. 9.4.1.(1a)]; and the third is a cofibration since X was assumed to
be Reedy cofibrant.

A similar argument shows that f ∗ preserves cofibrations.
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The remaining two lemmas contain technical results on diagrams in cofibration cate-
gories.

Lemma 3.17 Let f : I → J be a homotopical functor between finite homotopical direct
categories and C a cofibration category. If f induces a weak equivalence CJ

R → CI
R,

then for every homotopical Reedy cofibrant diagram X : J → C the induced morphism
colimI f ∗X → colimJ X is a weak equivalence.

Proof The left Kan extension functor Lanf : CI
R → CJ

R exists, is exact by [19, Thm.
9.4.3(1)] and is a left adjoint of f ∗. Hence Lanf is a weak equivalence since f ∗ is.
In particular, the counit Lanf f ∗X → X is a weak equivalence and hence so is the
resulting morphism colimJ Lanf f ∗X → colimJ X which coincides with the morphism
colimI f ∗X → colimJ X.

Lemma 3.18 ([22, Lem. 1.19(i)]) Let I ↪→ J be a sieve and let X : J → C be a dia-
gram whose restriction X|I is Reedy cofibrant. Then there exists a Reedy cofibrant diagram
X̃ : J → C together with a weak equivalence X̃ → X whose restriction to I is the identity
map (thus, in particular, we have X̃|I = X|I ).

4 Compatibility with Categories of Diagrams

The goal of this section is to show that for any cofibration category C and any k ∈ N,
the quasicategories Nf(CD[k]

R ) and (NfC)�[k] are equivalent (Theorem 4.15). We will intro-
duce a technical notion of an adequate cosimplicial object (Definition 4.1), which abstracts
the properties of the functor D that ensure that NfC is a quasicategory for any cofi-
bration category C. Indeed, every adequate cosimplicial object yields a functor from the
category of cofibration categories to the category of quasicategories (Proposition 4.12)
and also to the category of complete Segal spaces (Proposition 4.13). We point out that
the latter is different than the former followed by the construction of Remark 3.10 and
in fact, the key step in the proof is a comparison between the two in a relevant special
case.

Given a cosimplicial object A : � → hoCat and a simplicial set K , we will write AK

for the value of the left Kan extension of A along the Yoneda embedding � ↪→ sSet at K .
In particular, for K = �[m], we will write A[m] for A(�[m]) = Am, and for K = ∂�[m],
we will write ∂A[m] for A(∂�[m]). The induced functor ∂A[m] ↪→ A[m] is called the
latching morphism and is analogous to the one of Definition 3.5.

Definition 4.1 A cosimplicial object A : � → hoCat is adequate if:

1. A[m] is direct for all [m] ∈ �, and for every cofibration category C and every simplicial

operator [m] → [m′], the induced functor CA[m′]
R → CA[m]

R is exact.
2. The latching morphism ∂A[m] ↪→ A[m] is a sieve for all [m] ∈ �.
3. For all cofibration categories C and all natural numbers 0 < i < m, the functor

CA[m]
R → CA(�i [m])

R is an equivalence of cofibration categories.

4. For all cofibration categories C, the map CA(E[1])
R → CA[0]

R is an equivalence of
cofibration categories.
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Lemma 4.2 The cosimplicial object D : � → hoCat is adequate.

Proof Condition (1) follows from [22, Lem. 3.1]. By the proof of [22, Prop. 3.7], DK

as defined in Section 3 is the left Kan extension of D : � → hoCat along the Yoneda
embedding. Thus (2) follows, (3) follows by the proof of [22, Prop. 3.12], and (4) follows
by [22, Lem. 3.13].

Lemma 4.3 For any k ∈ N, the cosimplicial object D[k] × D[−] : � → hoCat is a
adequate.

Proof Direct categories and sieves are stable under products and thus condition (2) follows.
For (1) we also use Lemma 3.14. Finally, for (3) and (4), we use Lemma 3.14 again to
reduce it to the case of D.

Lemma 4.4 Suppose A,B : � → hoCat satisfy conditions (1) and (2) of Definition 4.1 and
let f : A → B be a natural transformation such that for each m ∈ N, fm : A[m] → B[m]
induces an equivalence of cofibration categories CB[m]

R → CA[m]
R . Then A is adequate if

and only if B is adequate.

Proof It suffices to show that for each simplicial set K , the induced functor CBK
R → CAK

R is
an equivalence of cofibration categories. This can be proven by induction on skeleta with the
base case given by the assumption and the inductive steps using the structure of a fibration
category on the category of cofibration categories of Theorem 3.4.

Proposition 4.5 For any cofibration category C, the canonical inclusion D([k] × [m]) ↪→
D[k] × D[m] induces an equivalence CD[k]×D[m]

R → CD([k]×[m])
R of cofibration categories

of diagrams.

As a combination of Lemmas 4.3 and 4.4 and Proposition 4.5, we obtain:

Corollary 4.6 For any k ∈ N, the cosimplicial object D([k] × [−]) : � → hoCat is
adequate.

Our next goal is the proof of Proposition 4.5. Our techniques closely follow these of
[6, Sec. 23] and [19, Sec. 9.5]. In the following series of lemmas, we will assume that C is
a cofibration category and P a finite poset.

Lemma 4.7 Let X : SdP → C be a Reedy cofibrant diagram. Then for each p ∈ P , the
restriction X| max−1{p} is again a Reedy cofibrant diagram.

Proof We verify that the inclusion max−1{p} ↪→ SdP satisfies the assumptions of
Lemma 3.16.

Let A ∈ max−1{p}, i.e. A ⊆ P is a chain satisfying max A = p. We have:

∂(max −1{p} ↓ A) = {B � A | B = ∅, A and max B = p},
∂(SdP ↓ A) = {B � A | B = ∅}.
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The map ∂(max −1{p} ↓ A) ↪→ ∂(SdP ↓ A) factors through:

L := {B ⊆ A | B = ∅ and there exists C ⊇ B such that C = A and max C = p}.
The inclusion L ↪→ ∂(SdP ↓ A) is clearly a sieve. Thus it remains to show that
∂(max −1{p} ↓ A) ↪→ L is cofinal. By [18, Thm. IX.3.1], we need to show that for each
B ∈ L, the slice category B ↓ ∂(max −1{p} ↓ A) is connected. Explicitly, we have:

B ↓ ∂(max −1{p} ↓ A) = {C ⊇ B | C = A and max C = p}.
This poset has the least element, namely B ∪ {p}, and hence is connected.

Lemma 4.8 Let X : SdP → C be a Reedy cofibrant diagram. Then the left Kan extension
Lanmax(X) : P → C exists and is given by Lanmax(X)p = colim(X| max −1{p}).

Proof For p ∈ P , the obvious inclusion max −1{p} ↪→ (max ↓ p) is cofinal and hence, by
the pointwise formula for Kan extensions [18, Thm. X.5.1], we have:

Lanmax(X)p = colim(X|(max ↓ p)) ∼= colim(X| max −1{p}).here

Lemma 4.9 Let A : P → C and X : SdP → C be Reedy cofibrant. Then a map
Lanmax(X) → A is a weak equivalence if and only if its transpose X → max∗ A is a weak
equivalence.

Proof We need to show that the following conditions are equivalent:

1. Lanmax(X)p → Ap is a weak equivalence for all p ∈ P .
2. XS → max∗ AS is a weak equivalence for all S ∈ SdP .

All morphisms of the category max−1{p} are weak equivalences and {p} is its ini-
tial object, so the inclusion {p} ↪→ max−1{p} is a homotopy equivalence, and hence, by
Lemma 3.17, the induced map X{p} → Lanmax(X)p is an equivalence (since Lanmax(X)p =
colim(X| max −1{p}) by Lemma 4.8). Thus, by 2-out-of-3, 1. is equivalent to:

1’. the composite X{p} → Lanmax(X)p → Ap is a weak equivalence for all p ∈ P .

We will then show that 1′. ⇔ 2..
For 2. ⇒ 1′., simply take S = {p}. For 1′. ⇒ 2., consider the following commutative

square:

Since X is homotopical and weak equivalences in SdP are created by max, the vertical
left-hand arrow is a weak equivalence. By assumption the top arrow is a weak equivalence,
hence by 2-out-of-3 so is the bottom one.

Lemma 4.10 The functor max ∗ : CP → CSdP is a weak equivalence of cofibration
categories.
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Proof Putting A := Lanmax(X) in Lemma 4.9, we deduce that the unit in the diagram

is a natural weak equivalence and hence the composite max∗ Lanmax is homotopic to a weak
equivalence of Proposition 3.12.(3), thus is itself a weak equivalence.

So by 2-out-of-3, it suffices to show that Lanmax is a weak equivalence. We check the
Approximation Properties of Theorem 3.3.

(App1) Let X → Y be a map in CSdP
R whose image Lanmax(X) → Lanmax(Y ) in CP is

a weak equivalence. We need to show that X → Y is a weak equivalence, that is, for all
S ∈ SdP , XS → YS is a weak equivalence. Since both X and Y are homotopical and weak
equivalences in SdP are created by max, we have a commutative diagram:

in which both vertical arrows are weak equivalences. Combining Lemma 4.8 and the
assumption that for all p ∈ P , Lanmax(X)p → Lanmax(Y )p is an equivalence, we see that
the bottom map is a weak equivalence as well. Hence, by 2-out-of-3 so is the top map.

(App2) Let f : Lanmax(X) → A. Factor the transpose f : X → max∗ A as a cofibration
followed by a weak equivalence:

Then we have a commutative square:

where w is the transpose of w and hence, by Lemma 4.9, a weak equivalence. Thus (App2)
is satisfied.
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Lemma 4.11 The canonical map D([k] × [m]) ↪→ D[k] × D[m] induces an exact functor

CD[k]×D[m]
R → CD([k]×[m])

R .

Proof We check that D([k] × [m]) ↪→ D[k] × D[m] satisfies the assumptions of the
Lemma 3.16. Let (ϕ, ψ) : [l] → [k] × [m]; unpacking the definitions, we see that the
latching categories are as follows:

∂
(
D([k] × [m]) ↓ (ϕ, ψ)

) = {A � [l] | A = ∅},
∂
(
D[k] × D[m] ↓ (ϕ × ψ)

) = {A × B � [l] × [l] | A,B = ∅},
and the induced map is given by A �→ A × A. Let:

L := {A × B ⊆ [l] × [l] | A,B = ∅ and A ∪ B = [l]}.
The inclusion L ↪→ ∂

(
D[k]×D[m] ↓ (ϕ ×ψ)

)
is easily seen to be a sieve; thus, it remains

to show that ∂
(
D([k]×[m]) ↓ (ϕ, ψ)

)
↪→ L is cofinal. Given A×B ∈ L, the slice category

(A × B) ↓ ∂
(
D([k] × [m]) ↓ (ϕ, ψ)

)

is connected since it has the initial object given by A × B ↪→ (A ∪ B) × (A ∪ B) and the
result then follows by [18, Thm. IX.3.1].

Proof of Proposition 4.5 Consider the following commutative diagram:

By [22, Lem. 3.18], 1© induces an equivalence; by Lemma 4.10 so does 2©. By
Lemma 3.13, 3© induces an equivalence, and hence, by 2-out-of-3, so does 4©.

Let A : � → hoCat be an adequate cosimplicial object and C a cofibration category.
Define a simplicial set NAC by:

(NAC)m := {homotopical, Reedy cofibrant diagrams A[m] → C} .

The reminder of the proof will proceed by introducing a criterion for a map of adequate
cosimplicial objects A → B to induce a categorical equivalence NBC → NAC (Proposi-
tion 4.14). We will then deduce the equivalence Nf(CD[k]

R ) → (NfC)�[k] by instantiating
this criterion with D([k] × [−]) → D[k] × D[−] (Theorem 4.15).

Proposition 4.12 For any adequate cosimplicial object A and cofibration category C, NAC
is a quasicategory.

Proof By (2), the inclusion A(�i[m]) ↪→ A[m] is a sieve, and hence, by [22, Lem. 1.20]

the induced map CA[m]
R → CA(�i [m])

R is a fibration for all 0 < i < m. By (3), this fibration
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is acyclic. Thus, by Lemma 3.15, there exists a solution to the following lifting problem:

This implies that NAC has fillers for all inner horns.

The definition of DK can be extended to simplicial sets with certain extra structure, but
we will only need one instance of that, so we will give an ad hoc definition. Namely, let
D∂̂�[n] denote the homotopical category with D(∂�[n]) as its underlying category and all
maps as weak equivalences.

Proposition 4.13 Let A : � → hoCat be an adequate cosimplicial object. Then JNf(CA[−]
R )

is a complete Segal space.

Proof By Proposition 2.2, it suffices to show that JNf(CA[−]
R ) is a frame over JNf(CA[−]

R )
cat

0
in Joyal’s model structure.

We begin by checking that JNf(CA[−]
R ) is Reedy fibrant, i.e., for each n ∈ N, the canonical

map JNf(CA[−]
R )

cat

n
→ JNf(CA[−]

R )
cat

(∂�[n]) is an inner isofibration. First, let 0 < i < m

and consider the lifting problem:

which, by [22, Lem. 1.23] is equivalent to:

The latter admits a solution by Lemma 3.15. This implies that the map in question is an
inner fibration.

An analogous argument (with condition (4) in place of (3)) shows that the map

JNf(CA[−]
R )

cat

n
→ JNf(CA[−]

R )
cat

(∂�[n]) is also an isofibration.

It remains to show that JNf(CA[−]
R ) is homotopically constant, i.e., any simplicial operator

ϕ : [n] → [n′] induces a categorical equivalence ϕ∗ : JNf(CA[−]
R )

cat

n′ → JNf(CA[−]
R )

cat

n
. But

since all simplicial operators factor as composites of face and degeneracy maps and the
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latter admit sections, it suffices to verify it only for inclusions [n] ↪→ [n′]. We will verify
that in this case ϕ∗ is in fact an acyclic fibration, i.e., every square of the form:

admits a diagonal filler. Such a filler corresponds in turn to a lift in

which exists, by a similar argument, since D[̂n] → D[̂n′] induces a weak equivalence

CD[̂n′]
R → CD[̂n]

R of cofibration categories.

Proposition 4.14 Let f : A → B be a map of adequate cosimplicial objects such that
for all m ∈ N, the induced map f ∗

m : CB[m]
R → CA[m]

R is an equivalence of cofibration
categories. Then f ∗ : NBC → NAC is an equivalence of quasicategories.

Proof First, notice that for any adequate cosimplicial object A : � → hoCat, the canonical

map JNf(CA[−]
R )

cat

0 → NAC, induced by the inclusion [0] ↪→ D[0], is an acyclic fibration.
Indeed, the lifting problem:

corresponds to

which has a solution by Lemma 3.15, since [0] ↪→ D[0] induces an acyclic fibration of
categories of diagrams by Lemma 3.13 and by (2), A(∂�[m]) ↪→ A[m] is a sieve. Thus the
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vertical maps in the commutative square

are categorical equivalences and so, by 2-out-of-3, it suffices to show that so is the top
horizontal map. This, however, follows by Lemma 2.3 from our assumption on f ∗

m since
JNf carries equivalences of cofibration categories to weak homotopy equivalences of Kan
complexes by Proposition 2.1 and Corollary 3.8.

Theorem 4.15 For any cofibration category C and k ∈ N, the canonical map

Nf(CD[k]
R ) → (NfC)�[k]

is a categorical equivalence.

Proof Consider adequate cosimplicial objects A = D([k] × [−]) and B = D[k] × D[−]
(see Corollary 4.6 and Lemma 4.3). By Proposition 4.14, the canonical map NBC → NAC
is a categorical equivalence. This, however, completes the proof since NBC = Nf(CD[k]

R )

and NAC = (NfC)�[k].

Corollary 4.16 For any K ∈ sSet, there is a natural categorical equivalence Nf(CDK
R ) →

(NfC)K .

Proof Induction on skeleta with the base case given by Theorem 4.15.

5 Quasicategory of Frames Implements Simplicial Localization

In this section, we prove that the enhancement of the quasicategory of frames of a cofibra-
tion category to a complete Segal space of Definition 3.9 is equivalent to the classification
diagram of Rezk.

Theorem 5.1 For a cofibration category C, the bisimplicial sets NC and NfC are levelwise
equivalent and hence Rezk equivalent.

The proof of this theorem will be given at the end of the section and throughout we will
gather the necessary notions and lemmas.

First off, we are going to need a fattened version of Kan’s Ex functor which we will
denote by Ex. For a simplicial set K , we define

(Ex K)n = sSet(ND[n], K).

Notice that by [22, Lem. 3.6] and the definition of Ex, D : sSet → Cat is the left adjoint to
the composite Ex N : Cat → sSet. Moreover, Ex K comes equipped with a map K → Ex K

induced by the functor p : D[n] → [n].
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For a cofibration category D, we will consider Ex NwD as an intermediate step in the
comparison between NwD and JNfD, which in turn will yield an equivalence between
Nw(C[m]

R ) and JNf(CD[m]
R ). Together with Theorem 4.15, this will complete the proof of

Theorem 5.1.

Lemma 5.2 For any simplicial set K , the map K → Ex K is a weak homotopy equivalence.

This lemma is an instance of [16, Thm. 4.1] with θ = D. For the reader’s convenience,
we present the specialization of their proof to our case.

Proof We begin by noticing that Ex preserves homotopies. Indeed, a homotopy K ×
�[1] → L gives a map

Ex K × �[1] → Ex K × Ex �[1] → Ex L

as desired. Thus, Ex also preserves homotopy equivalences. Similarly, K(−) preserves
homotopy equivalences.

Now, consider the following commutative square:

As m and n vary each of the objects becomes a (possibly constant) bisimplicial set.
First, fix n ∈ N. Then the square becomes:

in which:

• the top map K�[0] → K�[n] is a homotopy equivalence as the image of the homotopy
equivalence �[n] → �[0] under K(−);

• the bottom map Ex(K�[0]) → Ex(K�[n]) is a homotopy equivalence since Ex
preserves homotopy equivalences.

Next, fix m ∈ N. Then the square becomes:

(in which the bullets stand for the objects that do not need to be named) and the right hand
side vertical map K�[m] → KN(D[m]) is a homotopy equivalence as the image under K(−)

of Np : ND[m] → �[m] which is a homotopy equivalence by Lemma 3.13.
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Consequently, applying the diagonal functor diag : ssSet → sSet to the original square
yields:

in which both horizontal and the right vertical map are weak equivalences by the Diagonal
Lemma [11, Thm. 4.1.9]. Thus, by 2-out-of-3, K → Ex K is also a weak equivalence.
here

For our next argument, we will need an auxiliary lemma about the category of simplicial
sets. Our statement is similar to the one proven by Vogt [24]. Here, we only prove one
implication, but under weaker assumptions.

Lemma 5.3 Let f : K → L be a map of simplicial sets. Suppose that for each n ∈ N and
a square

there are a map w : �[n] → K such that w|∂�[n] = u and a homotopy (respectively,
an E[1]-homotopy) from f w to v relative to the boundary. Then f is a weak homotopy
equivalence (respectively, a categorical equivalence).

Moreover, if L is a Kan complex (respectively, a quasicategory), then so is K . (Even
though f may not be a fibration.)

Proof We prove the lemma for weak homotopy equivalences; the proof of categorical
equivalences in analogous.

The class of cofibrations A → B satisfying the lifting property with respect to f

as in the statement of the lemma is closed under (infinite) coproducts, pushouts, and sequen-
tial colimits. Thus this lifting property is satisfied by all cofibrations, not only the boundary
inclusions. In particular, we can use it for the horn inclusions to see that K is a Kan complex,
provided that L is.
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Using it with the inclusion ∅ ↪→ L, we obtain a map g : L → K along with a homotopy
H from fg to idL. Consequently, we have a lift in the square:

and the commutativity of the upper triangle means that G is a homotopy from gf to 1K .

Next, observe that, for any cofibration category D, the n-simplices of the Kan com-
plex J Nf D are the homotopical, Reedy cofibrant diagrams D[̂n] → D, whereas the
n-simplices of Ex NwD are all homotopical diagrams D[̂n] → D. We thus obtain an
inclusion J Nf D ↪→ Ex NwD.

Lemma 5.4 The inclusion J Nf D ↪→ Ex NwD is a weak homotopy equivalence.

Proof It suffices to solve the following lifting problem in the sense of Lemma 5.3:

A map X : �[n] → Ex NwD corresponds to a homotopical functor D[̂n] → D and by
commutativity of the square above, the restriction of X to the boundary ∂�[n] is a Reedy
cofibrant and homotopical functor:

D(∂̂�[n]) X−→ JNfD ⊆ Ex NwD.

Since D(∂̂�[n]) ↪→ D[n] is a sieve, by Lemma 3.18, we may find an extension X̃ and a
natural weak equivalence X̃ → X. Such a natural weak equivalence is a diagram D[̂n] ×
[̂1] → wD and the composite D([̂n] × [̂1]) → D[̂n] × [̂1] → wD gives the desired
homotopy by adjunction D � Ex N.

Proof of Theorem 5.1 First, observe that for every m we have equivalences of cofibration
categories

C[m] ∼−−−→ CD[m] ∼←−−− CD[m]
R

by Lemma 3.13 and Proposition 3.12, which, by Proposition 2.1 and Corollary 3.8, induce
weak homotopy equivalences of simplicial sets

J Nf(C[m]) ∼−−−→ J Nf(CD[m]) ∼←−−− J Nf(CD[m]
R )

Moreover by Lemmas 5.2 and 5.4, for any cofibration category D, we obtain weak
homotopy equivalences:

NwD ∼−−−→ Ex NwD ∼←−−− J Nf D
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By specializing D to C[m], CD[m] and CD[m]
R we obtain the rows of the diagram

where the bottom right map is a weak homotopy equivalence by Theorem 4.15 and Propo-
sition 2.1; and so are the maps of the right column by the preceding discussion. Therefore,
all the maps in the diagram are weak homotopy equivalences.

The shortest zig-zag of weak homotopy equivalences connecting N(wC[−]) to
J(Nf C)�[−] that we can extract is

NC = Nw(C[−]) ∼−−−→ Ex Nw(CD[−]) ∼←−−− J Nf(CD[−]
R )

∼−−−→ J(Nf C)�[−] = NfC.

The categories with weak equivalences sSet and ssSet admit model structures, known
as Joyal’s [13, Thm. 6.12] and Rezk’s [20, Thm. 7.2] model structures, respectively. The
functor ev0 : ssSet → sSet defined by ev0(W) = W cat

0 is a right Quillen functor and a
Quillen equivalence [14, Thm. 4.11]. It follows that its right derived functor Rev0 : ssSet →
sSet exists and is a DK-equivalence.

Corollary 5.5 For any cofibration category C, the quasicategories NfC and (Rev0)NC are
equivalent.

Remark 5.6 By [23, Thm. 6.3], the simplicial set of derived autoequivalences of ssSet is
equivalent to Z/2, which therefore acts freely and transitively on the set of homotopy classes
of derived equivalences weCat → ssSet. Hence there are two homotopy classes, repre-
sented by N and Nop, respectively. One recognizes the class of such F by the following
criterion: the diagram of solid arrows

can be completed to a (homotopy) commutative square in two ways, either with Nδ0 or Nδ1.
The former implies F ∼ N and the latter F ∼ Nop. It follows by Theorem 5.1 that the
restriction of such F to the category of cofibration categories is equivalent to either Nf or
Nop

f .
Since Rev0 : ssSet → sSet is an equivalence, there are two homotopy classes of derived

equivalences weCat → sSet represented by the composites: (Rev0)N and (Rev0)Nop. Thus
the restriction of such an equivalence to the category of cofibration categories is equivalent
to either Nf or Nop

f . One example of such an equivalence (equivalent to Nf) is the composite
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of the hammock localization of Dwyer and Kan [7, 9] followed by the derived homotopy
coherent nerve [5] (these are indeed equivalences by [2, Thm. 1.7] and e.g. [17, Sec. 1.5] or
[10, Cor. 8.2], respectively).

6 Frames in Model Categories

Let M be a model category. Then its full subcategory of cofibrant objects Mcof inherits a
structure of a cofibration category. Dually, the full subcategory of fibrant objects Mfib is a
fibration category. Thus there are two different quasicategories of frames associated to M:
Nf Mcof and Nf Mfib (these two Nf’s are, of course, different functors). It follows from
Corollary 5.5 and its dual that these two quasicategories are naturally equivalent. However,
the resulting zig-zag of equivalences is rather long and unwieldy. In this section, we discuss
an alternative and much more direct comparison involving only a single fraction.

To this end we introduce an enhanced version of the quasicategory of frames that uti-
lizes both the cofibrations and the fibrations of M. For this reason we need to use Reedy
categories as opposed to direct categories. Recall that a Reedy category is a category I ,
equipped with two wide subcategories I
 and I� (whose morphisms are called the face
operators and degeneracy operators, respectively) such that:

1. there exists a function deg : Ob I → N making I
 into a direct category and I� into an
inverse category (i.e., opposite of a direct category);

2. every morphism of I factors uniquely as the composite of a degeneracy operator
followed by a face operator.

For a small category J , define a homotopical category DJ as follows. Objects of DJ

are all functors [s] × [t] → J for varying s and t . A morphism from x : [s] × [t] → J to
x′ : [s′] × [t ′] → J is a pair of face operators ϕ : [s] ↪→ [s′] and ψ : [t ′] ↪→ [t] such that
x(id, ψ) = x′(ϕ, id) (as functors [s]×[t ′] → J ). There is a functor DJ → J that evaluates
x : [s] × [t] → J at (s, 0) and weak equivalences of DJ are created by this functor (from
the isomorphisms of J ). The category DJ is a Reedy category where a morphism (ϕ, ψ)

as above is a face operator if ψ = id and a degeneracy operator if ϕ = id. The unique
factorization of (ϕ, ψ) as the composite of a degeneracy operator and a face operator is
(ϕ, ψ) = (ϕ, id)(id, ψ).

For a model category M, define a simplicial set NfM by:

(NfM)m := {homotopical, Reedy cofibrant and fibrant diagrams D[m] → M} .

This is indeed a simplicial set since every simplicial operator ϕ : [m] → [n] induces isomor-
phisms of all latching and matching categories of D[m] and D[n], and thus preserves Reedy
(co)fibrancy. We will prove that it is a quasicategory naturally equivalent to both Nf Mcof
and Nf Mfib.

For a category J , we introduce the following functors relating DJ and DJ :

i : DJ → DJ, x : [s] → J �→ x : [s] × [0] → J

q : DJ → DJ, x : [s] × [t] → J �→ x : [s] × {0} → J

s : DJ → DJ, x : [s] × [t] → J �→ xσ0 : [s] × [t + 1] → J

Then we have qi = idDJ , si = i and there are natural weak equivalences κ : s → iq

and λ : s → idDJ . All components of κ are degeneracy operators of DJ that are dual to
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the inclusions [0] ↪→ [t + 1]. Similarly, components of λ are dual to the face operators
δ0 : [t] ↪→ [t + 1]. It follows that both κi and λi are equal to idi .

The definition of D could be extended to general simplicial sets, but we will only use
one such ad hoc extension. Namely, we define D∂�[m] as the full subcategory of D[m]
spanned by all non-surjective functors [s]×[t] → [m]. All the functors and transformations
introduced above are natural in J as well as with respect to the inclusions ∂�[m] ↪→ �[m].
Denote the induced inclusions u : D∂�[m] ↪→ D[m] and ū : D∂�[m] ↪→ D[m].

Theorem 6.1 For a model category M, the simplicial set NfM is a quasicategory.
Moreover, the functors i : D[m] → D[m] induce an equivalence NfM → Nf Mcof.

All the constructions above, as well as the theorem, readily dualize to yield an
equivalence NfM → Nf Mfib.

A map of Reedy categories I → J is a bisieve if it carries face operators to face operators
and the induced functor I
 → J
 is a sieve, and, dually, it carries degeneracy operators to
degeneracy operators and the induced functor I� → J� is a cosieve.

Lemma 6.2 Let J be a Reedy category and I ↪→ J a bisieve. Let X → Y be a morphism
of J -diagrams in a model category M with X Reedy cofibrant. Then any factorization

X|I ∼−−−→ X̃I −−−−� Y |I
in MI into a weak equivalence and a Reedy fibration such that X̃I is Reedy cofibrant lifts
to a factorization

X
∼−−−→ X̃ −−−−� Y

in MJ into a weak equivalence and a Reedy fibration such that X̃ is Reedy cofibrant.

Proof The argument is essentially the same as the standard construction of Reedy factor-
izations (see e.g. [21, Lem. 7.4]). By induction, it suffices to extend the given factorization
over an object j ∈ J of a minimal degree among these not in I . Given such an object
consider the following diagram.

Here, Lj and Mj denote the latching and matching objects at j . The morphism LjX → Xj

is a cofibration since X is Reedy cofibrant and LjX → Lj X̃j is a weak equivalence since
X → X̃ is a weak equivalence of Reedy cofibrant objects. The two objects denoted by
bullets are formed by taking the pushout on the left and the pullback on the right and X̃j

arises from a factorization of the resulting morphism.
This extends the original factorization over the subcategory I ′, i.e., the bisieve generated

by I and j . Denote the resulting diagram X̃I ′ . The composite Lj X̃ → • → X̃j is a
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cofibration so X̃I ′ is Reedy cofibrant. The composite Xj → • → X̃j is a weak equivalence
and hence so is the morphism X|I ′ → X̃I ′ . Finally, the map X̃j → • is a fibration and thus
X̃I ′ → Y |I ′ is a Reedy fibration.

Proof of Theorem 6.1. First, observe that i∗ is indeed a simplicial map since each
i : D[m] ↪→ D[m] induces isomorphisms of latching categories so that i∗ preserves Reedy
cofibrant diagrams.

By Lemma 5.3, it suffices to consider a square

and find a map Z : �[m] → NfM that makes the upper triangle commute and the lower one
commute up to E[1]-homotopy relative to ∂�[m]. In particular, it then follows that NfM is
a quasicategory since Nf Mcof is.

We have a Reedy fibrant and cofibrant diagram X : D∂�[m] → M and a Reedy cofi-
brant diagram Y : D[m] → M such that Yu = Xi. Therefore, we have Yqū = Yuq =
Xiq. We will correct Yq to a Reedy fibrant and cofibrant diagram Z so that Zū = X and
there is a weak equivalence Zi

∼→ Y relative to D∂�[m].
First, observe that κ and λ yield natural weak equivalences

Xiq
∼←−−− Xs

∼−−−→ X

relative to D∂�[m]. Factor the resulting morphism Xs → X×Xiq into a weak equivalence
and a Reedy fibration

so that the restriction to D∂�[m] is a path object factorization; in particular, the restriction
of w to D∂�[m] is a section of the restrictions of both r and r ′. Here, r and r ′ are weak
equivalences and r ′ is also a Reedy fibration (since X is Reedy fibrant). Hence r ′ admits
a section t since Xiq is Reedy cofibrant (q induces isomorphisms of latching categories).
Moreover, t can be chosen to agree with w on D∂�[m] since u is a bisieve. Thus, the
composite rt is a weak equivalence Xip

∼→ X relative to D∂�[m], i.e., X is a Reedy
fibrant replacement of Xiq relative to D∂�[m]. Since Yqū = Xiq, we can lift it to a
Reedy fibrant replacement Yq

∼→ Z relative to D∂�[m] with Z Reedy cofibrant using
Lemma 6.2.

Then we have Zū = X so that Z makes the upper triangle commute. Moreover, the
induced weak equivalence Y = Yqi

∼→ Zi is relative to D∂�[m] and hence induces an
E[1]-homotopy relative to ∂�[m] in the lower square by [22, Lem. 4.6].
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