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Abstract Let H be a ×-bialgebra in the sense of Takeuchi. We show that if H is ×-Hopf,
and if H fulfills the finiteness condition necessary to define its skew dual H∨, then the
coopposite of the latter is ×-Hopf as well. If in addition the coopposite ×-bialgebra of H

is ×-Hopf, then the coopposite of the Drinfeld double of H is ×-Hopf, as is the Drinfeld
double itself, under an additional finiteness condition.
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1 Introduction

Takeuchi [6] introduced ×R-bialgebras as a generalization of ordinary bialgebras replacing
the commutative base ring k by a base algebra R that can be noncommutative. Takeuchi’s
×-algebras can be viewed as being to groupoids what bialgebras are to groups. We will
also call them bialgebroids and refer to the survey [1] for references and relations to similar
notions of Hopf algebroid or quantum groupoid.

In [4] three elements were added to ×R-bialgebra theory. The first is a certain notion
of ×R-Hopf algebra. It is designed to be analogous in some respects to the notion of a
Hopf algebra. The other two elements are the construction of the dual of a ×R-bialgebra
H , defined if a certain one of the four R-module structures of H makes it finitely generated
projective, and the construction of the Drinfeld double of H , defined if H admits a dual and
is Hopf.
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These notions raise the following obvious questions:

• If H is Hopf and admits a dual, is the latter also Hopf?
• If H is Hopf and admits a dual, is the double of H also Hopf?

These questions are mentioned in [1]; it seems that they did not undergo a serious attack
since, although we do believe that they should be considered rather basic for the theory of
Hopf algebroids. A directly positive answer is perhaps to naive (see below) but we do give
positive answers to what we believe are the “correct” versions of the questions.

×R-Hopf algebras can be viewed as defined by the existence of a certain additional struc-
ture map, which is not directly analogous to the antipode S of an ordinary Hopf algebra,
but to a combination of the antipode with the comultiplication. They can also be viewed as
defined by a categorical property of their module categories. We use the latter characteri-
zation for our proofs; an explicit formula for the Hopf structure will not be given, simply
because we did not manage to extract an explicit formula from the abstract arguments.
This failure may be related to the fact that our result was so far unknown; it may equally
well reflect the author’s clumsiness, and perhaps someone else will write down the Hopf
structures with ease.

2 Dual and Double Hopf Algebroids

In this section we present and prove —in a sense— our main results on the Hopf properties
of duals and doubles of Hopf algebroids. The proofs will be by reference to the next section,
where the needed categorical results are proved. We also postpone until then recalling the
necessary terminology, which we will assume known for the time being.

As to ×R-bialgebras, we can afford to be succinct on the preliminaries, since the
technical details of the definition of a ×R-bialgebra are not needed explicitly.

Let k be a commutative ring, and R a k-algebra. Write R = Rop for the opposite algebra
of R, and Re = R ⊗ R for the enveloping algebra. An Re-ring is a k-algebra H equipped
with an algebra homomorphism Re → H ; in particular there is an underlying functor
HM → ReM, and its target is a monoidal category since it can be identified with the cate-
gory of R-bimodules. A ×R-bialgebra H is an Re-ring whose module category HM

is endowed with the structure of a monoidal category such that the underlying functor
HM → ReM is a strict monoidal functor. This means that H has a comultiplication that
allows to endow the tensor product over R of two left H -modules M and N , taken with
respect to the left R-module structure of N and the left R-module structure of M , with a left
H -module structure.

By definition in [4], a ×R-bialgebra H is a ×R-Hopf algebra if the underlying func-
tor HM → ReM preserves right inner hom-functors. The coopposite of H , which is a
×Rop -bialgebra, is ×Rop -Hopf if and only if the underlying functor preserves left inner
hom-functors, since its module category is the same category with the order of tensor
products reversed. We will call a ×R-bialgebra whose coopposite is ×Rop -Hopf a ×R-anti-
Hopf algebra (following a usage of “anti-Hopf” introduced for ordinary bialgebras by Doi
and Takeuchi).

A ×R-bialgebra H is said to be left finite if it is finitely generated projective as left R-
module, and right finite if it is finitely generated projective as left R-module. If H is left
finite, then one can construct a ×R-bialgebra structure on H∨ := HomR−(H, R), which
we will call the left skew dual of H . We shun details on the ×R-bialgebra structure in
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favor of a characterization of H∨-modules assembled from [4] and [5]. By the first, the
skew dual H∨ can be characterized through an equivalence of monoidal categories HM ∼=
H∨M. We do not recall the definition of H -comodules, but rather the fact that by the second
reference, HM can in turn be characterized by an equivalence of HM with the left weak
center W�(HM → ReM), whose definition we will recall in the next section. Thus, we
have a category equivalence H∨M ∼= W�(HM → ReM) commuting with the underlying
functors to ReM.

After these more than flimsy explanations, we are ready to state:

Theorem 2.1 Let H be a left finite ×R-Hopf algebra. Then H∨ is a ×R-anti-Hopf algebra.

Proof Clearly any object of HM is a direct limit of quotients of finitely generated projective
objects. As observed in [5], finitely generated projective H -modules admit left duals. Since
the underlying functor HM → ReM is clearly cocontinuous, Corollary 3.2 then shows that
the underlying functorW�(HM → ReM) → ReM preserves left inner hom-functors. Thus
H∨M → ReM preserves left inner hom-functors, whence the claim.

Theorem 2.2 Let H be a left finite ×R-Hopf algebra which is also a right finite ×R-anti-
Hopf algebra. Then H∨ is ×R-Hopf.

Proof Since H is also anti-Hopf, the weak left centralizer W�(HM → ReM) equals the
weak right centralizer; in fact, by applying [5, Lemma 3.8], which extends a well-known
argument on (pre)braidings and duals, to L and Lcop one sees that both weak centralizers
agree with the centralizer. Thus, we can apply Corollary 3.2 to show that HM → ReM

preserves right inner hom-functors.

In [4] the Drinfeld doubleD(H) of a left finite×R-Hopf algebra was defined to be a×R-
bialgebra with the property that D(H)M ∼= W�(HM) := W�(Id : HM → HM). Without
having to care about the details of the construction, we can obtain

Theorem 2.3 Let H be a left finite ×R-Hopf algebra which is also ×R-anti-Hopf. Then
D(H) is a ×R-anti-Hopf algebra. If in addition H is right finite, then D(H) is also
×R-Hopf.

Proof By the same reasoning as before, the underlying functor D(H)M → HM preserves
left inner hom-functors. But so does HM → ReM and thus D(H)M → ReM. Thus D(H)

is a ×R-anti-Hopf algebra. Under the additional hypothesis, D(H)M → HM and therefore
D(H)M → ReM also preserves right inner-hom functors.

3 Hom Functors in Centralizer Categories

Our results on the duals and doubles of Hopf algebroids were based on tailor-made results
on inner hom-functors in monoidal categories and generalizations of the Drinfeld center.
This section contains those categorical arguments, following a presentation of the necessary
categorical notions.
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3.1 Categorical Preliminaries

We will use the language of monoidal categories, suppressing the associativity constraints
in view of the well-known coherence results. A general reference is [2].

We denote the neutral object of a monoidal category C by I . The left dual of an object
X ∈ C, if it exists, is denoted by X∗, it is equipped by definition with evaluation and
coevaluation morphisms

ev = evX : X∗ ⊗ X → I and db = dbX : I → X ⊗ X∗.

An object admitting a left dual will be called left rigid. A monoidal category will be called
left rigid if each of its objects is.

On the full subcategory of left rigid objects, duality extends to a contravariant functor
with the dual f ∗ : Y ∗ → X∗ of f : X → Y defined by evY (Y ∗ ⊗f ) = evX(f ∗ ⊗X) : Y ∗ ⊗
X → I or, equivalently (Y ⊗f ∗) dbY = (f ⊗X∗) dbX : I → Y ⊗X∗, that is, the condition
that ev or db be a dinatural transformation.

A right inner hom-functor homr (X,—) in C is a right adjoint to the endofunctor —⊗X,
a left inner hom-functor hom�(X,—) is a right adjoint to X ⊗—.We denote the adjunction
morphisms by ε : X ⊗ hom�(X, Y ) → Y and η : Y → hom�(X,X ⊗ Y ).

If X is left rigid, then — ⊗ X∗ is a right inner hom-functor. If a right inner hom-functor
homr (X,—) exists, and the canonical morphism Y ⊗ homr (X, I ) → homr (X, Y ) defined
by the adjunction is an isomorphism for all Y ∈ C, then X is left rigid with dual homr (X, I ).

A monoidal functor (F , ξ) : C → D between monoidal categories C andD consists of a
functor, a natural isomorphism ξ : F(X ⊗ Y ) → F(X) ⊗ F(Y ) (often suppressed) and an
isomorphism ξ0 : F(I ) → I (very often suppressed) that satisfy coherence conditions with
the associativity constraints of C and D.

It is well-known that monoidal functors preserve dual objects: If T ∈ C has a left dual T ∗,

then U = F(T ) has the left dual F(T ∗) with evaluation F(T ∗) ⊗ F(T )
ξ−1

−−→ F(T ∗ ⊗ T )
F(ev)−−−→ F(I ) ∼= I and coevaluation I ∼= F(I )

F(db)−−−→ F(T ⊗ T ∗) ξ−→ F(T ) ⊗ F(T ∗). We
will take the liberty to identify the dual U∗ (normally defined already in the category D)
with F(T ∗).

If left inner hom-functors hom�(X,—) and hom�(F(X),—) exist, then there is a natural

morphismFhom�(X, Y ) → hom�(F(X),F(Y )) induced byF(X)⊗F(hom�(X, Y ))
ξ−1

−−→
F(X ⊗hom�(X, Y ))

F(ε)−−→ F(Y ). We say that F preserves left inner hom-functors, if these
natural morphisms are isomorphisms.

Let (F , ξ) : C → D be a monoidal functor. The left weak centralizer W�(F) of F
is the category whose objects are pairs (X, σ ) in which X is an object of D, and σ =
σX,V : X ⊗ F(V ) → F(V ) ⊗ X is a natural transformation making

(1)

commute and satisfying σ = id : X ⊗ F(I ) → F(I ) ⊗ X.
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The left weak centralizer is a monoidal category, the tensor product of X and Y being the
tensor product X ⊗ Y in D endowed with

σ =
(
X ⊗ Y ⊗ F(V )

X⊗σ−→ X ⊗ F(V ) ⊗ Y
σ⊗Y−→ F(V ) ⊗ X ⊗ Y

)

We refer to σ as a half-braiding, though this is more customary for the special case that
C = D and F is the identity functor.

The right weak centralizer Wr (F) is defined similarly. The (left) centralizer Z(F) =
Z�(F) consists of those objects (X, σ ) in the left weak centralizer where σ is an isomor-
phism. It is naturally equivalent to the right centralizer. Centralizers and weak centralizers
were introduced by Majid [3], who calls the right weak centralizer of F the dual of the
functored category (C,F).

We note that if V ∈ C is left rigid, and X ∈ W�(F), then σX,V ∗ is an isomorphism. The
inverse σ−1

X,V ∗ ∈ D(F(V ∗) ⊗ X,X ⊗ F(V ∗)) corresponds to σX,V under the bijection

D(F(V ∗) ⊗ X,X ⊗ F(V ∗)) ∼= D(X ⊗ F(V ),F(V ) ⊗ X)

coming from—⊗F(V ∗) being a right inner hom-functor andF(V )⊗— being a left inner
hom-functor.

3.2 Hom Functors in Centralizer Categories

Our key result says that under favorable conditions weak centralizer categories have inner
hom-functors preserved by underlying functors.

For the rest of the paper we will simplify notations as follows: We suppress the tensor
product symbol, and we write hom�(X, Y ) =: [X, Y ].

Proposition 3.1 Let F : C → D be a monoidal functor. Assume that D has left inner
hom-functors, and that C is left rigid. Then W�(F) admits left inner hom-functors, and the
underlying functor W�(F) → D preserves them. More precisely, given a choice of left
inner hom-functors in D, one can choose left inner hom-functors in W�(F) in such a way
that the underlying functor strictly preserves them.

Proof In other words, for X, Y ∈ W�(F) and T ∈ C we have to construct a half-braiding

σ = σ[X,Y ],T : [X, Y ]F(T ) → F(T )[X, Y ] (2)

and show that the unit and counit

ε : X[X, Y ] → Y (3)

η : Y → [X, XY ] (4)

of the hom-tensor adjunction are morphisms inW�(F).
We use the bijection

D([X, Y ]U, V [X, Y ]) ∼= D(XV ∗[X, Y ]U, Y ) (5)
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for V = U = F(T ) to define σ[X,Y ],T by commutativity of

(6)

Thus σ[X,Y ],T corresponds to the dinatural transformation

XU∗[X, Y ]U σ [X,Y ]U−−−−−→ U∗X[X, Y ]U U∗εU−−−→ U∗YU
U∗σ−−→ U∗UY

ev Y−−→ Y

under the natural bijection (5) and is, in particular, natural in T .
Since σXI and σYI are trivial, one reads off easily from (6) that so is σ[X,Y ],I . For S, T ∈

C, U = F(S) and V = F(T ), the diagram

shows that σ[X,Y ],— is a half-braiding. The two heptagons in the diagram are the definition
of σ[X,Y ],—, while the remaining fields commute for trivial reasons.

That the unit η : Y → [X, XY ] of the hom-tensor adjunction is a morphism in W�(F)

amounts to equality of two morphisms YF(T ) → F(T )[X,XY ] which we will verify after
applying the bijection

D(YU,U [X, XY ]) ∼= D(XU∗YU, XY)

by the diagrams
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and

Given that σX,T ∗ is an isomorphism, the diagram (6) used to define σ[X,Y ],T also cal-
culates the image of

X[X, Y ]U εU−→ YU
σ−→ UY

under the bijection

D(X[X, Y ]U, UY) ∼= D(U∗X[X, Y ]U, Y ). (7)

By naturality of σX,— applied to evU (the image of evT ), the half-braiding axiom and
triviality of σX,I the upper triangle in

commutes. The other triangle and the rectangle commute trivially, thus

X[X, Y ]U Xσ−−→ XU [X, Y ] σ [X,Y ]−−−−→ UX[X, Y ] Uε−→ UY

has the same image under (7), and

commutes, so that the counit of adjunction is also a morphism in the weak left center.

Corollary 3.2 Let C and D be abelian monoidal categories with colimits, and F : C → D
a cocontinuous additive monoidal functor.

Assume that D has left inner hom-functors. Assume that every object in C is the directed
union of finitely generated subobjects, that every finitely generated object of C is the quotient
of a finitely generated projective object, and that finitely generated projective objects in C
admit left duals.

Then W�(F) has left inner hom-functors, and the underlying functor W�(F) → D
preserves them.

Proof Arguing as in the proof of the preceding proposition, we can first define
σ : [X, Y ]F(P ) → F(P )[X, Y ] for finitely generated projective P . Any finitely generated

M ∈ C can be written as the colimit of a diagram Pi
fi−→ P by choosing an epimorphism

P → M from a finitely generated projective P , and writing the kernel as the directed union
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of finitely generated subobjects, which are epimorphic images of finitely generated projec-
tive objects Pi . By our hypotheses, this allows to extend the definition of the half-braiding
to σ : [X, Y ]F(M) → F(M)[X, Y ]; this in a unique and natural way, since every mor-
phism M → M ′ can be lifted, for any choice of epimorphisms P → M and P ′ → M ′, to a
commutative square by a morphism P → P ′. Finally, the half-braiding can be extended to
any object of C since these objects are assumed to be directed unions of finitely generated
subobjects.
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