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Abstract Given a group G, we define suitable 2-categorical structures on the class of all
small categories with G-actions and on the class of all small G-graded categories, and prove
that 2-categorical extensions of the orbit category construction and of the smash product
construction turn out to be 2-equivalences (2-quasi-inverses to each other), which extends
the Cohen-Montgomery duality. Further we characterize equivalences in both 2-categories.
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1 Introduction

Throughout this paper G is a group and k is a commutative ring, and all categories, functors,
and algebras considered here are assumed to be k-linear unless otherwise stated. This is a
continuation of the paper [1] and will be applied in subsequent papers [3] and [2].

In [7] Cohen and Montgomery proved the following (called the Cohen-Montgomery
duality).
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Theorem 1.1 Let G be a finite group of order n, A an algebra with a G-action, and B a
G-graded algebra. Then we have isomorphisms

(A * GH#G = M,(A)
(B#G)* G = M, (B).

In the above, * and # stand for the skew group algebra construction and the smash product
construction, respectively and M, (A) denotes the algebra of all n x n matrices over A.
We can regard each algebra A as a category with a single object, and then M, (A) can be
regarded as a category with precisely n objects that are isomorphic to each other, and A and
M,,(A) are equivalent as categories.

Already some attempts have been made to extend this theorem so that it satisfies the
following requirements.

(a) Deal with an arbitrary group G;
(b) Replace algebras by categories.

For instance (a) was investigated in [4], [11], and (b) was examined in [6], [1]. To be more
precise let C be a category with a G-action and B a G-graded category. Then a G-graded
category C/ G, called the orbit category of C by G is constructed in [1, 6, 8] (this turns out to
be also a generalization of the skew group algebra construction); and a category B#G with
a free G-action, called the smash product of C and G is constructed in [6]; and in [1] we
defined a (weakly) G-equivariant equivalence e¢: C = (C/G)#G and a degree-preserving
equivalence wg: B = (B#G)/G. This seems to give a full categorical generalization of
Cohen-Montgomery duality.

Here recall the definition of equivalences between categories: Categories (= objects) A
and B are said to be equivalent if there exist a pair of functors (= 1-morphisms) E: A —
B and F: B — A in mutually reverse directions such that there exist a pair of natural
isomorphisms (= 2-isomorphisms) €: EF = 1g and n: 14 = FE. Namely, to define
equivalences between objects in a categorical sense we need a 2-categorical structure in the
class of objects. In our case, the class G-Cat of all small k-categories with G-actions and
the class G-GrCat of all small G-graded k-categories should have 2-categorical structures.
To insist that the above gives a full categorical generalization of Cohen-Montgomery duality
we have to have an affirmative answer to the following question:

(i) Are the G-equivariant equivalence ec and the degree-preserving equivalence wg
obtained in [1] equivalences defined by 2-categorical structures on G-Cat and
G-GrCat, respectively?

Once we have 2-categorical structures on G-Cat and G-GrCat, it also becomes
important to consider the following question:

(i)  Are g¢ and wg 2-natural in C and in B?
These suggest us the following problem:

(c) Not only give an equivalence for each individual category, but extend it to a 2-
equivalence between 2-categories of k-categories with G-action and of G-graded
k-categories.

In this paper we will give a positive solution to the problem (c) which includes affirmative
answers to both (i) and (ii). We also give characterizations of equivalences in 2-categories
G-Cat and G-GrCat in terms of a half of a pair of functors in mutually reverse directions,
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which give relationships between G-equivariant equivalences and equivalences in G-Cat
and between degree-preserving equivalences and equivalences in G-GrCat. The solution
proceeds in the following steps:

® to suitably define a 2-category G-Cat of all small k-categories with G-actions (Defini-
tion 2.9) and a 2-category G-GrCat of all small G-graded k-categories (Definition 3.3);
e to extend the orbit category construction to a 2-functor

?/G: G-Cat — G-GrCat

(Definition 7.1) (this is given by the 2-universality of the canonical functor (P, i)
that is a generalization of Gabriel’s Galois covering functor) and the smash product
construction to a 2-functor

MG : G-GrCat — G-Cat

(Definition 7.3); and
e to prove the following (see Theorem 7.5 for detail):

Theorem 1.2 ?/G is strictly left 2-adjoint to MG and they are mutual 2-quasi-inverses (in
a weak sense).

Therefore in other words we obtain the following.

Theorem 1.3 Let C,C’ € G-Cat and B, B’ € G-GrCat. Then

(1) there exists an equivalence C >~ (C/G)#G (in fact this is given by ec above) in the
2-category G-Cat that is 2-natural in C;

(2) there exists an equivalence B ~ (B#G)/G (in fact this is given by wg above) in the
2-category G-GrCat that is 2-natural in B;

(3) there exists an isomorphism

G-GrCat(C/G, B) = G-Cat(C, B#G)

of k-categories that is 2-natural in C and I3;
(4) there exists an equivalence

G-Cat(C,C') ~ G-GrCat(C/G,C'/G)

of k-categories that is 2-natural in C and C'; and
(5) there exists an equivalence

G-GrCat(B, B) ~ G-Cat(B#G, B'#G)

of k-categories that is 2-natural in B and B’

Note that the statements (1) and (2) above give affirmative answers to both questions
(i) and (ii). We remark that the definition of degree-preserving functors (= 1-morphisms in
G-GrCat) given here is slightly weakened than that used in [1], where degree-preserving
functors were defined as strictly degree-preserving functors in the sense of this paper
(see Definition 3.1 (2), (3)). This would be the most important point to establish our 2-
equivalences (see Remark 8.9 for the necessity of the weaker definition). The results of this
paper are applied at least in papers [2], [3] and [12] so far.

For general 2-categorical notions we refer the reader to [5] or [9]. In this paper 2-
categories are strict 2-categories, and we use the word “strictly 2-natural transformation”
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to mean the 2-natural transformation in a usual sense (e.g., as in [5, 9]), and the word “2-
natural transformation” in a weak sense, i.e., we only require that the equalities defining the
notion of usual 2-natural transformations hold up to natural isomorphisms. Thus we use the
word “2-quasi-inverse” in a weak sense (although in fact a half of the equalities to define
this notion hold strictly).

The paper is organized as follows. In Sections 2 and 3 we define the 2-category G-Cat
and the 2-category G-GrCat, respectively. In Sections 4, 5 and 6 we recall from [1] fun-
damental facts about G-coverings, the definition and characterizations of orbit categories,
and fundamental facts about smash products, respectively. In Section 7 we extend the orbit
category construction and the smash product construction to 2-functors ?/G and MG,
respectively, and give the precise statement of the main result. We also give a charac-
terization of G-covering functors that induce degree-preserving functors (Definition 7.7).
Section 8 is devoted to the proof of the main theorem. Finally, in Section 9 we characterize
equivalences in the 2-categories G-Cat and G-GrCat.

For categories A and B we write A = B (resp. A ~ B) to express that they are iso-
morphic (resp. equivalent); and the class of objects (resp. morphisms) in A is denoted by
Ay (resp. Aj). We sometimes write “x € A” as an abbreviation of “x € 4y”. Natural
transformations (and 2-morphisms in 2-categories) are expressed by a double arrow symbol
=.

2 The 2-Category G-Cat
First in this section we define the 2-category of G-categories.
2.1 G-Categories

Definition 2.1 A k-category with a G-action, or a G-category for short, is a pair (C, A) of a
category C and a group homomorphism A: G — Aut(C). We set A, := A(a) foralla € G.
If there is no confusion we always denote G-actions by the same letter A, and simply write

C=(,A).

Notation 2.2 We denote by k-Cat the 2-category of small k-categories, k-functors between
them, and natural transformations between k-functors.

Example 2.3 Any k-category B defines a G-category AB := (B, A), where A: G —
Aut(B) is the trivial G-action, namely it is defined by A, := 13 foralla € G. We
sometimes identify AB with .

2.2 G-Equivariant Functors
Definition 2.4 ([1, Definition 4.8]) Let C and C’ be G-categories. Then a G-equivariant

functor from C to C’ is a pair (E, p) of a k-functor E: C — C’ and a family p = (0,)acc
of natural isomorphisms p,: AE = EA, (a € G) such that the diagrams

Ay F = AyAE 22 A EA,

A
Pba ﬂ,pb “

EAy, = EAYA,
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2-Categorical Cohen-Montgomery Duality 159

commute foralla, b € G.
A k-functor E: C — (' is called a strictly G-equivariant functor if (E, (1 g)sec) is a
G-equivariant functor, i.e., if A,E = EA, foralla € G.

Remark 2.5 In the above since A; = 1, we have pjx = p1x-p1x, and hence p1x = 1 g, for
all x € C. Hence the natural requirement p; = 1 g follows automatically from the defining
condition.

Example 2.6 Any k-functor F: 3 — 3 defines a strictly G-equivariant functor AF :=
(F,(1F)aec): AB — AB'.

2.3 Morphisms of G-Equivariant Functors

Definition 2.7 Let (E, p), (E’, p'): C — C’ be G-equivariant functors. Then a morphism
from (E, p) to (E’, p’) is a natural transformation n: E = E’ such that the diagrams

AE =22 EA,

Aanﬂ H/nAa

AE == F'A,
Pa
commute for alla € G.

We define a composition of G-equivariant functors.

(Ep) (B
Lemma28 Let C ——=C' ——=C" be G-equivariant functors of G-categories. Then
(1) (E'E,((E'pa)(pLE))acc): C — C” is a G-equivariant functor, which we define to
be the composite (E', p")(E, p) of (E, p) and (E’, p’).
(2)  If further (E", p""): C" — C"" is a G-equivariant functor, then we have

((E, p)(E", PWE", p") = (E, p)(E', p)E", p")).

Proof Straightforward. (]
2.4 2-Category G-Cat

Definition 2.9 A 2-category G-Cat is defined as follows.

The objects are the small G-categories.

The 1-morphisms are the G-equivariant functors between objects.

The identity 1-morphism of an object C is the 1-morphism (1¢, (L1, )aeG)-

The 2-morphisms are the morphisms of G-equivariant functors.

The identity 2-morphism of a 1-morphism (E, p): C — C’ is the identity natural
transformation 1 g of E, which is clearly a 2-morphism.

The composition of 1-morphisms is the one given in the previous lemma.

The vertical and the horizontal compositions of 2-morphisms are given by the usual
ones of natural transformations.
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Proposition 2.10 The data above determine a 2-category.
Proof Straightforward. O

Definition 2.11 Let F and F’ be functors B — B’ in k-Cat, and o: F — F’ a natural
transformation. Then we define a morphism Ag: AF — AF’ of G-equivariant functors
by setting Ae := ¢. This and the constructions given in Examples 2.3 and 2.6 define a
2-functor A: k-Cat — G-Cat.

3 The 2-Category G-GrCat

In this section we cite necessary definitions and statements from [1, §5] and add new con-
cepts and statements to define the 2-category of G-graded categories. Here we modified
the definition of degree-preserving functors in order to include the functor H (and hence
the functors a)/B for all G-graded categories I3, see Definition 8.7) in Proposition 6.4 below
because H is not degree-preserving in the sense of [1] in general (see [1, Remark 5.9] and
Remark 8.9).

Definition 3.1 (1) A G-graded k-category is a category B together with a family of
direct sum decompositions B(x, y) = @ g B*(x, y) (x, y € B) of k-modules such
that B2(y, z) - B%(x, y) € B?(x,z) forallx,y € Banda,b € G.If f € B(x, y)
for some a € G, then we set deg f := a.

(2) A degree-preserving functor is a pair (H, r) of a k-functor H: 5 — A of G-graded
categories and a map r: By — G such that

H(B"(x,y)) €AY (Hx, Hy)

(or equivalently H (B%(x, y)) C Ay o (Hx, Hy))forallx,y € Band a € G. This
r is called a degree adjuster of H.

(3) Ak-functor H: B — A of G-graded categories is called a strictly degree-preserving
functor if (H, 1) is a degree-preserving functor, where 1 denotes the constant map
By — G with value 1 € G, i.e., if H(B(x,y)) € A*(Hx, Hy) forall x, y € B and
aegG.

(4) Let(H,r),(,s): B — A be degree-preserving functors. Then a natural transfor-
mation 0: H = [ is called a morphism of degree-preserving functors if Ox €

A (Hx, Ix) for all x € B.

The composite of degree-preserving functors can be made into again a degree-preserving
functor as follows.

(H,r) (H',r")
Lemma 3.2 Let B _> B — B" be degree-preserving functors. Then

(H H, (rerx)xeB): B— B"
is also a degree-preserving functor, which we define to be the composite (H',r')(H, r) of
(H,r)and (H',r").
Proof Straightforward. O

Definition 3.3 A 2-category G-GrCat is defined as follows.

e The objects are the small G-graded categories.
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The 1-morphisms are the degree-preserving functors between objects.

The identity 1-morphism of an object B is the 1-morphism (15, 1).

The 2-morphisms are the morphisms of degree-preserving functors.

The identity 2-morphism of a 1-morphism (H, r): B — A is the identity natural trans-
formation 1 5 of H, which is a 2-morphism (because (Lg)x = Ly, € AY(Hx, Hx) =
A< ' (Hx, Hx) for all x € B).

The composition of 1-morphisms is the one given in the previous lemma.

The vertical and the horizontal compositions of 2-morphisms are given by the usual
ones of natural transformations.

Proposition 3.4 The data above determine a 2-category.

Proof Straightforward. O

4 Covering Functors

Throughout Sections 4 and 5, C is a G-category and B is a k-category. In this section we
cite definitions and statements without proofs from [1, §1].

4.1 G-Invariant Functors

Definition 4.1 ([1, Definition 1.1]) A G-invariant functor from C to B is a G-equivariant
functor

(F,¢): C - AB.
We sometimes write this as (F, ¢): C — B.

Remark 4.2 In the above the defining condition on ¢ = (¢,),cc becomes as follows: The
diagrams

P2 FA,

PpAa
Pba ﬂ/ ’

FAy, = FAA,

commute for all a, b € G. In particular, this implies ¢, = —1Aq foralla € G.
4.2 Morphisms of G-Invariant Functors

Definition 4.3 Let (F, ¢), (F’, ¢’) be G-invariant functors C — . Then a morphism of
G-invariant functors from (F, ¢) to (F’, ¢’) is just a morphism 1 of G-equivariant functors,

namely 7 is a natural transformation F — F’ such that the diagrams

F%FAG

nﬂ [

F’TF’AE

commute for alla € G.
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Notation 4.4 All G-invariant functors C — B and all morphisms between them form a
category, which we denote by Inv(C, ). When both C and B are small categories, we have
Inv(C, B) = G-Cat(C, AB).

As a special case of Lemma 2.8, the composite of a G-invariant functor and a functor is
made into again a G-invariant functor:

Lemma 4.5 ([1, Lemma 1.4]) Let (F, ¢): C — B be a G-invariant functor and H : B —
A a functor. Then (HF, Hp): C — A is again a G-invariant functor, where H¢ =
(H¢a)ac- We set H(F, ¢) :== (HF, Hp).

4.3 G-Covering Functors

Notation 4.6 Let (F,¢): C — B be a G-invariant functor and x,y € C. Then we

define homomorphisms F\) := (F,$){"), and F? = (F,$)% of k-modules as
follows.

F): @CAwx, y) — B(Fx, Fy), (foacc > Y F(fa) - $ax

aeG aeG
FO: EPCx, Apy) — B(Fx, Fy), (fodvec > Y $p-1(Aby) - F(fy)
beG beG

Proposition 4.7 ([1, Proposition 1.6]) In the above, F)gl; is an isomorphism if and only if
)
Fyly is.

Definition 4.8 ([1, Definition 1.7]) Let (F, ¢): C — B be a G-invariant functor. Then

(1) (F, ¢) is called a G-precovering if for each x, y € C, F)gl)) is an isomorphisms (the
latter is equivalent to saying that F’ ngy) is an isomorphism by Proposition 4.7);
(2) (F, ¢) is called a G-covering if it is a G-precovering and F is dense (i.e., for each

y € B there is an x € C such that Fx = y in B).

5 Orbit Categories

In this section we cite necessary definitions and statements without proofs from [1, §2]
except for § 5.4. The symbol §, 5 stands for the Kronecker’s delta below.

5.1 Canonical G-Covering
Definition 5.1 ([1, Definition 2.1]) The orbit category C/G of C by G is a category defined

as follows.

e (C/G)o:=Co.

e For each x,y € C/G, (C/G)(x,y) is the set of all f = (fpa) €
H(a,b)erG C(Agx, Apy) suchthat f is row finite and column finite and that fop g =
Acfpqforallc € G.
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e Foranypair f: x —> yandg: y —> zinC/G, gf := (ZCGG gh,cfc’a)(a’b) .

Then C/G becomes a category where the identity 1, of each x € C/G is given by 1, =
Ba,pL A %) (a,b)-

Definition 5.2 ([1, Definition 2.4]) We define a functor P g := P: C — C/G as follows.

e TForeachx €C, P(x) := x;
e  For each morphism f inC, P(f) := (84,644 f)(a,b)-

Then P turns out to be a functor.

Definition 5.3 ([1, Definition 2.5]) For each ¢ € G and x € C, set Y.x :=
Ba,bela,x)ap) € (C/G)(Px, PAcx). Then y. := (Yex)xec: P — PA. is a natural iso-
morphism, and the pair (P¢.g, ¥c.¢) := (P, ¥): C — C/G turns out to be a G-invariant
functor, where we set Y¢,g := ¥ 1= (Y)ceg- We call (P, ) the canonical functor.

Proposition 5.4 ([1, Proposition 2.6]) The following statements hold:

(1) (P, ) is a G-covering functor;

(2) (P,) is universal among G-invariant functors from C, i.e., for any G-invariant
functor (F,$): C — B there exists a unique functor H: C/G — B such that
(F,¢) = H(P, V) as G-invariant functors.

Corollary 5.5 ([1, Corollary 2.7]) In the above, (P, ) is 2-universal, i.e., the induced
functor

(P, ¥)*: Fun(C/G, B) — Inv(C, B)

is an isomorphism of categories, where Fun(C/G, B) is the category of k-functors from

C/GtobB.
This will be used later in § 7.1.
Lemma 5.6 ([1, Lemma 5.4]) C/G is G-graded.

Recall the definition of G-grading of C/G: Let (P,v¥): C — C/G be the canonical
functor. Then the G-grading is given by (C/G)(x, y) = @,c5(C/G)*(x, y), where

(€/G)*(x,y) == P(C(Aux. y)) (.1

forall x,y € C and a € G. Further [1, Remark 5.5] says that for each x, y € C, a € G, and
f €(C/G)(x,y) wehave f € (C/G)*(x, ) if and only if f., = 0 whenever c b £ a.

Remark 5.7 In Corollary 5.5 if both C and B are small categories, then the corollary above
gives us an isomorphism of categories

(P, ¥)*: k-Cat(C/G, B) — G-Cat(C, AB).

In Lemma 7.2 we will define a 2-functor ?/G: G-Cat — G-GrCat. If we consider the
composite 2-functor Fgto(?/G): G-Cat — k-Cat, where Fgt: G-GrCat — k-Cat is the
forgetful functor, we see that the isomorphism above is 2-natural in C and in . This means
that Fgto(?/G) is a left adjoint to A.
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5.2 Characterization of G-Covering Functors
The following gives a characterization of G-covering functors.

Theorem 5.8 ([1, Theorem 2.9]) Ler (F, ¢): C — B be a G-invariant functor. Then the
following are equivalent.

(1) (F,¢)isa G-covering;

(2) (F, ) is a G-precovering that is universal among G-precovering from C;

(3) (F, ¢) is universal among G-invariant functors from C;

(4) There exists an equivalence H: C/G — B such that (F,¢) = H(P,vy) as
G-invariant functors; and

(5) There exists an equivalence H: C/G — B such that (F, ¢) = H(P, V).

5.3 Other Isomorphic Forms of Orbit Categories

The orbit category constructed in Definition 5.1 has the form of a “subset of the product”,
which seems not to match its universality, but it is essentially a left-right symmetrized direct
sum as stated below. (Note that the direct sum of modules were also constructed as a “subset
of the direct product”.)
Definition 5.9 (Cibils-Marcos, Keller) (1) An orbit category C/, G is defined as follows.
° (C/| G)O = CO;
e Foranyx,yeC,C/G(x,y) =@, cqClax, y); and

f g .
e ForanyX > Y 7 Zin C/l G, gf = (Za,ﬂeG;ﬂ(x:/L 8B B(fa)) peG-
(2) Similarly another orbit category C/, G is defined as follows.

b (C/zG)O = CO;
e Foranyx,yeC, (CLG)(x,y) = @ﬁec C(x, By); and

f 9. .
e ForanyZ — Y — 2inC/G, gf = (Za,ﬂeG:aﬂ:Ma(gﬂ) “ Jaduea-
Note that C/,G = (C°/,G)°P.

Proposition 5.10 ([1, Proposition 2.11]) We have isomorphisms of categories C/, G
C/G=C/0G.

(1P

5.4 Composition of a G-Equivariant Functor and a G-Invariant Functor

As a special case of Lemma 2.8, the composite of a G-equivariant functor and a G-invariant
functor can be made into a G-invariant functor as follows.

, (Ep) (F.¢)
Lemma 5.11 (1) Let C' ——=C —— B be functors with C,C’ G-categories, (E, p)

G-equivariant and (F, ¢) G-invariant. Then

(FE, (Fpa)(@aE))aec): C' — B

is a G-invariant functor, which we define to be the composite (F, ¢)(E, p) of (E, p) and
(F, 9).
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2-Categorical Cohen-Montgomery Duality 165

(2) In the above if (E, p) is a G-equivariant equivalence and (F, ¢) is a G-covering
functor, then the composite (F,¢)(E, p) is a G-covering functor, and hence C'/G is
equivalent to B.

Proof (1) This follows from Lemma 2.8
(2) This is shown in the proof of [1, Lemma 4.10].

6 Smash Products

In this section we cite necessary definitions and statements from [1, § 5] without proofs.

Definition 6.1 ([1, Definition 5.2]) Let 13 be a G-graded category. Then the smash product
B#G is a category defined as follows.
o (B#G)y:= By x G, weset x@ := (x,a) forallx € Banda € G.

(B#G)(x @, y®)) := Bb7'a(x y) for all x@, y®) ¢ B#G.

For any x@, y® 7(©) ¢ B#G the composition is given by the following commutative

diagram

B#G) (Y, 29) x (B#G)(x, y©)) — (B#G)(x ¥, 29)
Il Il
B (y, ) x B (x, y) — B, 2),

where the lower horizontal homomorphism is given by the composition of 5.
Lemma 6.2 (The first part of [1, Proposition 5.6]) B#G has a free G-action.

Recall the definition of the free G-action on B#G: For] each ¢ € G and x@ € B#G,
Acx@ = x(@_For each f € (B#G)(x @, y®) = BV 4(x, y) = (B#G)(x(@, y(D)),
Acf = f.

Definition 6.3 ([1, Definition 5.7]) Let B be a G-graded category. Then we define a functor
08,6 = Q: B#G — B as follows.

o O(x@)=xforall x@ e B#G .
e O(f):= fforall f e (B4G)(x@, y®) = B7la(x, y).

Proposition 6.4 ([1, Proposition 5.8, Remark 59]) O = QA, for all a € G and
0 = (0,1): B#G — B is a G-covering functor. Hence in particular, Q factors through
the canonical G-covering functor (P,¥): B#G — (B#G)/G, i.e., there exists a unique
equivalence H: (B#G)/G — B such that Q = H(P, V).

7 2-Functors

7.1 Orbit 2-Functor

We first extend the orbit category construction to a 2-functor G-Cat — G-GrCat.
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166 H. Asashiba

Definition 7.1 Let (E, p), (E’, p'): C — C’ be 1-morphisms and n: (E, p) — (E’, p') a
2-morphism in G-Cat. Set (P,v¥): C — C/G, (P, ¢'): C' — C’/G to be the canonical
functors. By Proposition 5.11 we have (P’, ¥")n: (P', ¥/)(E, p) — (P, ¥ )(E’, p’) is in
Inv(C, C'/G). Then using the isomorphism (P, ¥)*: Fun(C/G,C’/G) — Inv(C,C'/G)
of categories we can define

(E,p)/G = (P,y)* " ((P',¥')(E, p)) and
n/G = (P.y)* " ((P'Y))m).
This construction is visualized in the following diagram:
(E,p)
4 C’

(E".p")

C

(P' ") (E,p)

(Pa) (P' ")
(P2 0')
(E.0)/G
— | 4T
C/G___ Ywe _CJG.

(E".p")/G
The explicit form of 1/ G is given by
(n/G)Px := P'(nx) € (C'/G)' (((E, p)/G)Px, ((E', p')/ G) Px)
(for (C'/G)" see Eq. 5.1) for all x € C. Then as easily seen, (E, p)/G is a strictly degree-
preserving functor and 1/ G is a 2-morphism in G-GrCat.
Lemma 7.2 The definition above extends the orbit category construction to a 2-functor

?7/G: G-Cat - G-GrCat.

Proof (1) 1¢/G = 1¢/¢ forallC € G-Cat.
Indeed, let (P,¥): C — C/G be the canonical functor. Then this follows from the
following strict commutative diagram:

CLC

(wa)l l(P»w)
C/G —=CJG.

lc/c

B or E oni Gocat, (B, ) - (E. o))/ G = (E'. p')/G -

(2) For any C (
(E,p)/G.

Indeed, let (P,vy): C — C/G, (P',y"):C' — C'/G, (P",¢"): C" — C"/G be the
canonical functors. We can set (E, p)/G = (H,1): C/G — C'/G and (E’, p")/G =
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(H',1): C'/G — (C"/G. Then we have the following strictly commutative diagram
consisting of solid arrows:

(.E/E7P//)
o / sy
¢ (E,p) ¢ (E'p")
(Py) l l (P" ") l (P" ")
c/qat-cjascrja.
wH

Comparing the second entries of G-invariant functors this implies the following for all
aeG:

(P'pa)(W4E) = Hig (7.1)
(PO (WIE") = H'Y, (71.2)

Set (E'E, p”) := (E', p) - (E, p), namely, p” := ((E'pq)(p,E))aec- Then the two
triangles consisting of dotted arrows and horizontal arrows are strictly commutative. This
shows the strict commutativity of the following as a diagram of functors:

(E'E,p")

C——=C"
(Pab) l l (P" ")
C/G H'H ¢ /G’ (7.3)

i.e., we have P"E'E = H'H P. We have to verify that this is strictly commutative as a
diagram of G-invariant functors, i.e., that the following holds:

(P, y")-(E'E,p") = H'H - (P, ).
Looking at the second entries of G-invariant functors it is enough to show the following for
alla € G:
(P"p )Y E'E) = H' Hra. (7.4)
From Eq. 7.1 the composition with H' on the left yields
(H'P'pa)(H'Y,E) = H'HY,.
From Eq. 7.2 the composition with E on the right yields
(PP, E)W,E'E) = H'VE.
Using these equalities we see that the left hand side of Eq. 7.4 is equal to
(P"E'p)(P"p, EYW,E'E) = (P"E'p,)(H'V,E)
(H'P'pu)(H'V,E)
= H/HW(J’
the right hand side, and the strict commutativity of Eq. 7.3 as a diagram of G-invariant
functors is verified, which shows that ((E’, p')(E, p))/G = H'H = (E’, p')/G-(E, p)/G.
(3) L(£,p)/G = 1 (g p)/c for all 1-morphism (E, p): C — C’" in G-Cat.
Indeed, set (P, v¥), (P’,v¥’), H to be as in (2) above. For each Px € C/G we have

(L(g,py)/G)(Px) = P/(L(g,p))x) = Lprpx = Lupx = (L(E,p)/6) (PX).
(4) 7/ G preserves the vertical composition.
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Indeed, let (E, p), (E'p"), (E”, p") € (G-Cat)(C,(’), and let n: (E, p) = (E', p'),
n': (E',p") = (E”, p”) be 2-morphisms in G-Cat. Set (P, ), (P’, ') to be as in (2)
above. Then for each Px € C/G we have

(('m)/G)(Px) = P'((n'mx) = P'(f'x)P'(nx) = (' /G)(Px) - (n/ G)(Px).

This shows that (7'n)/G = (n'/G)(n/ G).

(5) 7/ G preserves the horizontal composition.

Indeed, let (E, p), (E'p") € (G-Cat)(C,C"), (F,t),(F't") € (G-Cat)(C’',C") and
n: (E,p) = (E',p"),n": (F,7) = (F', /) be 2-morphisms in G-Cat. Then we have to
show the equality

' xn)/G=®'/G)*(1n/G).
Set (P, ), (P, y') and (P”, ") to be as in (2) above. Then for each Px € C/G we have

(' *m)/G)(Px) = P"((n" xmx) = P"((F'm)(n'E)x) = P"((F'mx - ' E)x)
= P"((F'mx)P"(('E)x) = P"(F'(nx)) - P" (' (Ex)),

and
(('/G) * (n/G)(Px) = (F',t)/G -n/G)(Px)-('/G - (E, p)/G)(Px)

(F', T/ G)(P'(nx)) - '/ G)(P'Ex)
= P"(F'(nx)) - P"(n'(Ex)),

from which the equality follows, where ((F’, t/)/G)(P’(nx)) = P”(F’(nx)) follows from
the commutative diagram

C'(Ex, E't)—> @, C'(AuEx, E'r) — @, ., C"(F A, Ex, F'E'z)

l@aec C"(tqEx,F'E'z)
P P C"(AF'Ex, F'E'x)

Exz,E'z
/1(1)
\LP F'Exz,F'E'zx

(C/G)(P'Bx, P'E'x) ~~ (C"/G)(P"F' B, P'F'E'x).

FIT/)

As a consequence, 7/ G : G-Cat — G-GrCat is a 2-functor. O
7.2 Smash 2-Functor
Next we extend the smash product construction to a 2-functor.

Definition 7.3 Let (H,r): B — B’ be in G-GrCat. Then the functor (H, r)#G: B#G —
B'#G is defined as follows.

On Objects For each x@ € B#G we set
((H, r#G)(x“) := (Hx)“"™).
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On Morphisms For each f € (B#G)(x@, y®) = Bb_l“(x, y) we set
((H,n#G)(f) = H(f),

which is an element of B"% "' (Hx, Hy) = (B'#G)((Hx)@, (Hy)®™»)). Then
as easily seen, (H,r)#G is a strictly G-equivariant functor, and hence (H,r)#G =
((H,r)#G, 1): B#G — B'#G is in G-Cat.
Next let (H',r"): B — B’ be a 1-morphism and 0: (H,r) — (H’, ") a 2-morphism in
G-GrCat. We define 0#G: (H, r)#G = (H', r)#G by
(O#G)x@ = Ox

for all x() € B#G. Then it is easy to see that 0#G is a 2-morphism in G-Cat.

Lemma 7.4 The definition above extends the smash product construction to a 2-functor

MG . G-GrCat — G-Cat.

Proof We only show that 2#G preserves the horizontal composition because the other prop-
erties for 7#G to be a 2-functor are immediate from the definition. Let (H, &), (H', §’) €
G-GrCat(B, B, (F,¢),(F't)) € G-GrCat(B',B") and let 6: (H,&§) = (H', &),
0': (F,¢) = (F'¢’) be 2-morphisms in G-GrCat. For each x® e B#G we have

(0" % O)#G)(x' D) = (0" % 0)x = (F'0)x - (8'H)x = F'(0x) - 0'(Hx),

and
((O#G) * (O#G)) (x V) = ((F', { WG (O#G)) (0'#G) ((H, £)#G))) (x V)
= ((F'{MG)(0#G)(x' V) - (0'#G)((H, £)#G)) (x?)
= ((F', {G)(0x) - ("#G)((Hx) )
= F'(0x) -0’ (Hx),
which shows that (8’ x 0)#G = (0#G) x (O#G). O

7.3 Main Theorem
We are now in a position to state our main result, which is a precise form of Theorem 1.2.

Theorem 7.5 Both 2-functors 7/ G and %G are 2-equivalences. They are mutual 2-quasi-
inverses. Hence the 2-categories G-Cat and G-GrCat are 2-equivalent. More precisely, we
have four 2-natural isomorphisms

e: lg.cat = (MG)(?/G)
't (HG)(?/G) = 1g.cat

w: 1g.Grcat = (?7/G)(HG)
o't (?7/G)(MG) = Lg.Grcar

with the property that
8/C8c = 1c, (7.5)
eceq = Lc/ea, (7.6)
a)/Ba)B = 1z, (7.7)
wpwy = LB/, (7.8)
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and that 8& are strictly G-equivariant functors and wp are strictly degree-preserving func-
tors for all C € G-Cat and B € G-GrCat. Furthermore ¢ and o' are strictly 2-natural
transformations, and in particular, 7/ G is strictly left 2-adjoint to WG. Namely the pasting
of the diagram

G-GrCat ! G-GrCat
/ . 274G
%G ﬂ“ /G ﬂ
G-Cat G-Cat

1 (7.9)

is equal to the identity logc, and the pasting of the diagram

G-GrCat ! G-GrCat
?7/G 724G ﬂ ,
ﬂs v ?7/G
G-Cat N G-Cat (7.10)

is equal to the identity 19,
The proof is given in the next section.
7.4 Proof of Theorem 1.3

(1) and (2) These are direct consequences of Egs. 7.5-7.8.
(3) This follows from Eqs. 7.9 and 7.10 by a general theory of 2-categories (see e.g. [9],
[5]; the proof proceeds just the same way as in the usual category case).
(4) G-Cat(C, C") ~ G-Cat(C, (C'/G)#G) = G-Cat(C/G,(C'/G).
(5) A similar proof as above works. O
Theorem 1.3 gives the following.

Corollary 7.6 Let C,C’ € G-Cat. Then we have a faithful embedding
G-Cat(C,C") — Inv(C,C'/G)

of k-categories.

Proof G-Cat(C,(C’) ~ G-GrCat(C/G,C'/G) <€ Fun(C/G,C'/G) = Tnv(C,(C'/G),
where the first equivalence is an injection on objects by Eq. 7.5. Indeed, if (F, ¢), (F’, ¢') €
G-Cat(C,C’) and (F, ¢)/G = (F', ¢')/ G, then the naturality of ¢ shows that

gc'(F,¢) = ((F, 9)/G)#G)ec = (F', ¢')/ G)#G)ec = ec/ (F', ¢').
Hence by Eq. 7.5 we have (F, ¢) = (F/, ¢'). O

7.5 Weak Universality of the Canonical Functor of a Smash Product

As an application of Theorem 7.5 we obtain the proposition below, which states that the
canonical functor (Q, 1): B#G — B to a G-graded category B3 has the weak universality
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among G-invariant functors from G-categories to B that induce degree-preserving functors
(see Definition 7.7 below). (It often does not have the universality as Remark 7.10 shows.)

Definition 7.7 Let C be a G-category with the canonical functor (P, ¥): C — C/G, B a
G-graded category, and r: Cy — G a map. Then a G-invariant functor (F, ¢): C — B is
said to induce a degree-preserving functor with r if the unique functor H: C/G — B such
that (F, ¢) = H(P, V) (the existence of which is guaranteed by Proposition 5.4) has the
property that (H, r) is a degree-preserving functor.

Lemma 7.8 Let C be a G-category and B a G-graded category. Then a G-invariant functor
(F,®): C — B induces a degree-preserving functor with a map r: Cy — G if and only if
foreach x,y € C and a € G the restriction of

FO: @PCApx. y) — B(Fx, Fy)
beG

to C(Ay,ax, y) induces a homomorphism C(Ay qx,y) — B (Fx, Fy), or equivalently,
for each f € C(Ayqx,y) we have F(f) - ¢ ax € B (Fx, Fy).

Proof This follows from the definition Eq. 5.1 of the G-grading of C/G and the commuta-
tivity of the diagram

i3
Ducc C(Aaz, y) B(Fz, Fy)
(C/G)(z,y). (7.11)
(see Proof of [1, Proposition 2.6 (3)]). O

Proposition 7.9 Let C be a G-category, B a G-graded category, and (Q,1): B#G —
B the canonical functor. If (F, ¢): C — B is a G-invariant functor inducing a degree-
preserving functor, then there exists a G-equivariant functor (K, p): C — B#G such that

(F,¢) = (Q. 1)(K, p).

Proof Let (P,¥): C — C/G be the canonical functor, and assume that a G-invariant
functor (F, ¢): C — B induces a degree-preserving functor with a map r: Cy — G. Then
there exists a unique equivalence H: C/G — B such that (F, ¢) = H(P, ¥) and (H,r) is
a degree-preserving functor. It is easy to verify the commutativity of the diagram

F.¢
c— " g
] |
C/G)#G c/G
( / )# (QC/le) / (HJ') B
m @1

B#G
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using the explicit forms of the functors (see Definition 8.1 for e¢ = (e¢, ¢¢)). Thus we can
take (K, p) := ((H, r)#G)(ec, ¢c), which is G-equivariant by Lemma 2.8. O

Remark 7.10 In the above proposition (K, p) is not uniquely determined in general. For
instance, consider the case that the center Z(G) of G is not trivial, and take C := B#G and
(F,¢) :=(Q,1). Then (K, p) := (Ag, 1) satisfies the required property for all a € Z(G).

Also the weak universality of (Q, 1): B#G — B gives us a characterization of a G-
covering functor to BB inducing a degree-preserving functor.

Proposition 7.11 Let C be a G-category, B a G-graded category with the canonical
functor (Q,1): B#G — B, and (F,¢): C — B a G-invariant functor inducing a
degree-preserving functor. Then (F, ¢) is a G-covering functor if and only if there exists a
G-equivariant equivalence (K, p): C — B#G such that (F, ¢) = (Q, 1)(K, p).

Proof (=). We keep the notation and the argument used in the proof of the proposition
above, which constructed a G-equivariant functor (K, p): C — B#G such that (F, ¢) =
(0, 1)(K, p). Since %G is a 2-functor, (H, r)#G is an equivalence. In addition (e¢, ¢¢) is
also a G-equivariant equivalence by Theorem 7.5. Hence as the composite of these (K, p)
is an equivalence.

(«). This follows by Lemma 5.11(2). O

8 Proof of Theorem 7.5
8.1 e: 1g.cat = (MH#G)(?/G)

Definition 8.1 (see [1, Theorem 5.10]) Let C be an object of G-Cat and (P, ¥): C — C/G
the canonical functor. We define a G-equivariant functor e¢c: C — (C/G)#G as follows.
On Objects For each x € C we set

ec(x) = (Px)W,

On Morphisms For each f: x — y in C, we set

ec(f) = PN (= P(f)).

Natural Isomorphisms For each a € G we define a natural transformation ¢, : Azec —
ecAg by ¢ux := Y,x forall x € C, i.e., by the commutative diagram

Aqec E) ecAgx
Il Il
(Px)@ ™ (PAx) Y.

a

Here note that ((C/G)#G)((Px)@, (PAux)V) = (C/G)*(Px, PAgx) 3 Yax. Set ¢¢ :=
(¢a)acc- Then we have already shown that e¢ = (e¢, ¢¢) is a G-equivariant equivalence in
[1, Theorem 5.10].
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Lemma 8.2 ¢ is a strictly 2-natural transformation.

Proof LetC,C' € G-Cat.
(1) Let (E, p) € (G-Cat)(C,C"). Set (H,1) := (E, p)/G. Then we have a strictly
commutative diagram

(E.p)

c—"=¢
(Py) l l (P'")
C/G = C/C,

where the vertical arrows are the canonical functors. For each x,y € C we have a
commutative diagram

C(, )= Boei C(Aat, y) —= B,e; C(EAaz, By)
l@mc C'(paz,Ey)
Py D, C(AEx, By)
|7,

(C/G)(Pz, Py) — (C’/G)(P’Ex P'Ey)
Hpy
by which it is easy to see that the following diagram is strictly commutative:

C (E,p) o

(C/GYHC 7 (CCIHG.

(2) Letn: (E, p) — (E’, p’) be in (G-Cat)(C,C’). Set (H, 1) := (E, p)/G, (H', 1) :

(E', 0)/G and 0: = n/G. Then it immediately follows from definition that ec'np =
m/G#G - ec.
By (1) and (2) above ¢ is a strictly 2-natural transformation. O

e: (MG)(?/G) = 1g.cat

Definition 8.3 Let C be an object of G-Cat and (P, ¥): C — C/G the canonical functor.
We define a G-equivariant functor s, : (C/G)#G — C as follows.

On Objects Foreach x € C and a € G we set
eL((Px) @) := Agx.
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On Morphisms Let f: (Px)@ — (Py)® be in (C/G)#G. Then we have the diagram
((C/GV#G)((Px) @, (Py)®)) - = = C(Auz, Apx)

ZTAb

C(Ay-1,2,y).

o

(C/G)""(Pa, Py)

1
P

Using this we set
-1
e (f) = AP (f).

Natural Isomorphisms For each a € G we easily see that A,e, = g, A,. Thus g5 is a
strictly G-equivariant functor.

Lemma 8.4 ¢’ is a 2-natural transformation.

Proof Let (E, p): C — C' be a 1-morphism in G-Cat. We define a natural transformation
Y(E,p) in the diagram

((E,p)/G)#G ,
(C/Q#G ‘ (C'/G)#G
a&l \II(E;) lfé,
¢ (E,p) ¢

by

V.0 (PX)@ = pax
for all (Px)@ e (C /G)#G. Then it is not hard to verify that W(g ,) is a natural isomor-
phism. This shows the 1-naturality of ¢’. Now let (E’, p)’': C — C’ be another 1-morphism
andn: (E, p) = (E’p") a2-morphism in G-Cat. Then it is easy to check the commutativity
of the diagram

&l - (B, p) [G)HG ——L2 s (B, p) - &)

ﬂsg,-((n/G)#G) ﬂn-eﬁ;
o (B, 0)|G)#G ———= (E'./) - ¢
(E,p")
of natural transformations, which shows the 2-naturality of &’. O

8.3 w: 1g.grcat = (2/G)(H#G)
Definition 8.5 (see [1, Proposition 5.6]) Let B € G-GrCat and let (P, ¢): B#G —
(B#G)/G be the canonical functor. We define a 1-morphism wp: B — (B#G)/G in
G-GrCat as follows.
On Objects For each x € B we set

wp(x) = P(xW).
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On Morphisms Foreach f: x — yin B, we set

wp(f) = P((ll))’y(l)(f)‘

X

Then we have already shown that wp is a strictly degree-preserving equivalence of G-graded
categories in [1, Proposition 5.6].

Lemma 8.6 w is a 2-natural transformation.

Proof Let (H,r): B — B’ be a l-morphism in G-GrCat and (P',¢'): B#G —
(B'#G)/ G the canonical functor. We define a natural transformation ® g ;) in the diagram

H,r
B (Hr) B
wB ~ wB/
(B#G)/G — o (B#C) /G

by

Dpryx = ¢, (Hx)D
for all x € B. Then it is not hard to verify that ® g ,) is a natural isomorphism. This shows
the 1-naturality of w. Now let (H’, r"): B — B’ be another 1-morphism and §: (H,r) =
(H'r’) a2-morphism in G-GrCat. Then it is easy to check the commutativity of the diagram

()

wpr - (H,T) Q: ((H,T)#G)/GWB

ﬂwg,-a ﬂ(Q#G)/G'wB
wp - (H', 1) ————= ((H',")}#G) /G - ws
(H',r")

of natural transformations, which shows the 2-naturality of w. O
84 o': (?/G)MHG) = 1g.Grcat

Definition 8.7 (see Proposition 6.4) Let B € G-GrCatand let (P, V) : B#G — (B#G)/G
be the canonical functor. We define a functor wy;: (B#G)/G — B as the unique functor
that makes the diagram

Q
B#G /75‘

(Pa) 7 wg
(B#G)/

strictly commutative, where Q is the canonical G-covering functor associated to the smash
product. Namely, wg is defined as follows.

On Objects For each P(x@) e (B#G)/G we set
wg(P(xV)) 1= x.
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On Morphisms For each P (x@), P(y®) e (B#G) /G, we have the following diagram:

(B#G)/G)(P(x'V), P(y")) - = - - - = B(z,y)
Py o) T*
Do (B#G) (), yV) == B, B "“(x,y).

Using this we set
C )= ph !
wp(u) = (@, y® ()

for all u € (B#G)/G)(P(x@), P(y®)).

Degree Adjuster Finally we define a degree adjuster rj5 of w); by
rg(P(x@)) :=a
for all P(x@) e (B#G)/G.

Lemma 8.8 w); = (0}, rB) is a degree-preserving functor, and hence a I-morphism in
G-GrCat for all B € G-GrCat.

Proof 1t is not hard to verify that wj; turns out to be a functor. We show that wj; = (@}, 5)
is degree-preserving (see Definition 9). Let P (x(@), P(y®) e (B#G)/G and ¢ € G. Then

w/B(((B#G/G)rB(y(b))'C(P(x(a))’ PO = w’(P)f},l))’),(b)((B#G)(Abcx(a)’ y®y))
= (B#G)(x V. y®)
_ Bb*‘bca(x’ y) = B“(x, y)
= B"'rB@(“))(w/B(P(x(“)), wp(P(y*)).
(I

Remark 8.9 (cf. [1, Remark 5.9]) As is seen above w}; is not strictly degree-preserving in
general. This forced us to extend the definition of degree-preserving functors from a strict
version to a weak one.

Lemma 8.10 ' is a strictly 2-natural transformation.

Proof Let (H,r): B — B be a 1-morphism in G-GrCat and (P, ¥): B#G — (B#G)/G,
(P',y'): B#G — (B'#G)/G the canonical functors. We first show the 1-naturality of o/,
i.e., the commutativity of the diagram

Hr)#G)/G

(B#G) /G " (B#G)/G
" g
B e B.
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To show this let u: P(x@) — P(y®) be in (B#G)/G and f := Px((lu)) y(bfl(u). Then

[w)g o (H, 1)#G)/GI(P(x@)) = @iy (P'(Hx)“))) = Hx = [(H, r) 0 wgl(P(xV)),

and

@

[wyy o ((H, r)#G)/Glw) = [((P', /) (H, HG)) 0, 0y 1(f)

/ (1)

(P ’ ’lp )(H.x)(ar)‘),(Hy)(bry)(Hf)
= [(H,r) o wgl(u),

where the equality (a) holds by definition of ((H, r)#G)/G (see (7.11) and Proof of [1,
Proposition 2.6 (3)]), and the equality (b) follows from the fact that (H, r)#G is strictly
G-equivariant.

To show the 2-naturality of &’ let (H',r'): B — BB’ be another 1-morphism and
0: (H,r) = (H',r") a2-morphism in G-GrCat. It is enough to verify the following:

g ((0#G)/G) = Owi.

For each P(x@) e (B#G)/G we have

[w} (0#G)/G) 1P (x?)

®

0 (0#G)/G)P(x“))
Wl (P'(B#G) (x)))
= wjz (P'(0x))

= wp (P’
= Ox

= Qwlg(P(x©)).

(Hx)(“"x),(Hy)(“V)/c) (9)6))

8.5 Remaining Parts of the Proof of Theorem 7.5
Verification of (7.5) By definitions of ¢ and &’ the the equality (7.5) is obvious.

Verification of (7.6) Let C € G-Cat and let (P, v): C — C/G be the canonical functor.

It is easy to see that we can define a natural isomorphism ©: 1¢;Gc — scs’c by
O(P) @) = Yrax

for all (Px)@ e (C/G)#G.

Verification of (7.7) By definitions of @ and ' the equality (7.7) is obvious.

Verification of (7.8) Let B € G-GrCatand let (P, v): B#G — (B#G)/ G be the canon-
ical functor. It is not hard to see that we can define a natural isomorphism E: w,, a)/B —
Lisra)/c by
E(PED) = ya(xD)
for all P(x@) e (B#G)/G.
The verifications that the pasting of Eq. 7.9 is equal to the identity and that the pasting
of Eq. 7.10 is equal to the identity are easy and are left to the reader.
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This finishes the proof of Theorem 7.5.

9 Equivalences in 2-Categories G-Cat and G-GrCat

To distinguish several kinds of equivalences (resp. isomorphisms) we call equivalences
(resp. isomorphisms) between categories category equivalences (resp. category isomor-
phisms). In this section we give characterizations of equivalences in the 2-categories G-Cat
and G-GrCat and examine relationships

(a) between G-equivariant functors that are category equivalences and equivalences in the
2-category G-Cat (see Theorem 9.1), and

(b) between degree-preserving functors that are category equivalences and equivalences
in the 2-category G-GrCat. (See Remark 9.7(2).)

Note that a category equivalence was characterized by a half of a pair of functors in mutually
reverse directions, namely a functor is a category equivalence if and only if it is a fully faith-
ful, dense functor. We give similar characterizations of equivalences in both 2-categories
G-Cat and G-GrCat.

9.1 Equivalences in G-Cat
First we characterize equivalences in G-Cat in the following theorem.
Theorem 9.1 Let (E, p): C — C’ be a G-equivariant functor in G-Cat. Then the following

are equivalent.

(1) (E, p) is an equivalence in G-Cat;
(2) E is fully faithful and dense (i.e., E is a category equivalence).

Thus what we called G-equivariant equivalences in earlier sections are exactly the
equivalences in G-Cat.

Proof (1) =(2). This is trivial.

(2) =(1). Assume that E is a category equivalence. Then E has a quasi-inverse F: C' —
C, which we may regard as a right adjoint to £, and hence there exist a counite: EF = 1¢
and a unit n: 1o = FE, which are natural isomorphisms. Since (E, p) is G-equivariant,
paq are natural isomorphisms for all ¢ € G. Therefore we can construct & = (A;)gec by the
following commutative diagram:

AF—22 o FA,

nAaFﬂ% ’E’WFAEE

FEA,F = FA,EF.
Fpg F

By construction A, are natural isomorphisms for alla € G.

Claim 1 (F,\): C’ — Cis a l-morphism in G-Cat.
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Indeed, let a, b € G. It is enough to show the commutativity of the diagram:

AAF 22 4 FA, 228 pa A,

F Ay,

Ay F ;
ba
This follows from the following commutative diagrams:
ApAF —22 o A FA, AyFA, =22 s P A A, ——— F A,
e N S
—1
FEAALF AbFEA,F == A,FA,EF FEAFA, = FAEF A,
e ~p e
I n~ n~ ’
~E
FEAFEA,F = FEA,EA,EF
~pa '~
~py ~py i
~py t (%) FAyEFEAF FAEFAEF
NpglNﬂ ﬂwaw
FAEFA,EF —— FA,A,EF — FAA,
FA,EAF — FA ALEF
~pa i~
Np71N
b
FEAVAF — FAFAF

FEAyF = FA,EF,

Np;a ~

where the commutativity () follows from the following commutative diagram:

EAA, —= EA,FEA,

—1 —1
Py ™~ Py

AEA, == A EFEA,

~EN

AbEAa ~pPa
~pa "t
AbAaE <N:€NA1,EFACLE

In the above the symbol ~ stands for a functor that is uniquely determined in the diagram
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Claim 2 e: (E, p)(F, 1) = (I¢, (1 a,)acc) is a 2-isomorphism in G-Cat.

Indeed, it is enough to show that & is a 2-morphism in G-Cat, i.e., the following is
commutative:

AEF — A 1o

E')\aopaFﬂ/

EFA, % I A,

This follows from the following commutative diagram:

AEF
paFﬂ \
FA,I'————FA, F:>A EF

pa'F
Nwﬂ / / \
EFEA,F —> EFA,EF —= EFA, = A,

~pa
Claim 3 n: (1¢, (Lay)aec) = (F, M) (E, p) is a 2-isomorphism inc G-Cat.

Indeed, it is enough to show that n is a 2-morphism in G-Cat, i.e., the following is
commutative:

AJFE <2 A,

Fpao)\aEﬂ

FEA, —— 1,A,.
nAa

This follow from the following commutative diagram:

FEAaF E

—1

~pPg ™~

FAQEFENS:N> FAaE F:p> FEA,.

These three claims show that (E, p) is an equivalence in G-Cat. O
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Remark 9.2 Tt is now trivial that the G-equivariant equivalence e¢c: C — (C/G)#G is an
equivalence in G-Cat by the theorem above.

9.2 Equivalences in G-GrCat

Next we characterize equivalences in G-GrCat. We first define necessary terminologies.

Definition 9.3 Let A be a category and /3 a G-graded category.

(1) Let E, F: A — B be functors. Then a natural transformation ¢: E = F is called
homogeneous if &, : Ex — Fx are homogeneous in 5 for all x € Ay.

(2) Let S be a subclass of By and 5’ a full subcategory of B with 5, = S. Then S (or ')
is said to be homogeneously dense in B if for each x € By there exists an x” € S such
that there exists a homogeneous isomorphism x — x’.

(3) A functor F: A — B is said to be homogeneously dense if the object class F(Ap) is
homogeneously dense in 3.

We give two examples of homogeneously dense subcategories, the latter will be used to
give an alternative proof of the fact that wg: B — (B#G)/G is an equivalence in G-GrCat
in Remark 9.7(1).

Recall that a k-algebra A is called local if the sum of non-invertible elements is non-
invertible and that if A is local, then 0 and 1 are its only idempotents.

Example 9.4 Let B be a G-graded k-category and (P, ¥): B#G — (B#G)/G be the
canonical functor.

(1) If B(x, x) are local k-algebras for all x € By, then any dense full subcategory 3’ of 13
is homogeneously dense.

(2) Let B’ be the full subcategory of (B#G)/G with B, := wg(Bo) = {P(xV) | x € B}
(see Definition 8.5). Then B’ is homogeneously dense in (B#G)/G. Hence wg: B —
(B#G)/ G is homogeneously dense.

Indeed, to show the statement (1) it is enough to show that if x = y in 3, then there exists a
homogeneous isomorphism in B(x, y). Now let f: x — y be an isomorphism in /3. We may
assume that x # 0. Write f and f~! as finite sums: f = Y s faand f~1 =3, ;g
with f, € B4, y) and g, € BY(y, x) foralla,b € G. Then > a.beG 8 fa = 1y shows
that & := g f, is an automorphism of x for some a,b € G because B(x, x) is a local
algebra. Thus (h~! gv)fa =1 ande := f, (h’lgb) is an idempotent in B(x, x), and hence
e =1, ore =0.But (h’lgb)efa = 1, # 0 shows that e # 0. Hence f,: x — yisa
homogeneous isomorphism.

The statement (2) follows from the fact that ¥, x : P(x(])) — P(x @) are homogeneous
isomorphisms of degree a in (B#G)/G for all x € By and all a € G (see proof of [1, p.
131, Claim 4] for deg ¥, x).

We now give a characterization of equivalences in the 2-category G-GrCat.

Theorem 9.5 Let (H,r): B — A be a degree-preserving functor in G-GrCat. Then the
following are equivalent.

(1) (H,r) is an equivalence in G-GrCat.
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(2) H: B — Ais a category equivalence with a quasi-inverse I as a left adjoint both
of whose counit ¢: IH = 1 4 and unit n: 1g = HI are homogeneous natural
isomorphisms.

(3) H is fully faithful and homogeneously dense.

In (2), I is made into a quasi-inverse (1, s) of (H, r) with € the counit and n the unit in a
unique way. The degree adjuster s is given by

5 = (Sx)xedo Withsy == (degny) "' r;! € G forallx € Aj. 9.1)

Proof (2) =(1). Assume the statement (2). Set 7, := deg &, forall x € By, and ¢} := deg ny
for all x € Ay. Define s as in Eq. 9.1, i.e., sy := t)’(_l rl_x1 € G forall x € Aj.

Claim 1 (I,s): A — Bisa l-morphism in G-GrCat.

Indeed, let x,y € Ap, a € G and f € A%x,y). It is enough to show that
~1
If € B “*(Ix, Iy). Since n is a natural transformation we have HIf = n,fn;! €

A (y, HIy)A“(x, y) A% (HIx,x) € A~V (HIx, HIy). Since H is fully faithful, H
induces a bijection B(Ix, I'y) — A(HIx, HIy), which also induces bijections

Bb(Ix, Iy) — A 'O (HIx, HIy)

for all b € G. Applying this to b with 7, ~1br;, = t;at;_l, we have
;=1 — _

If € By " (Ix,Iy) =B las, (Ix, Iy).

Claim2 ¢: (I,s)(H,r) = (1p, 1) is a 2-isomorphism in G-GrCat.

Indeed, it is enough to show that ¢ is a 2-morphism in G-GrCat. This is equivalent to
saying that t, = rysgy for all x € By because (I, s)(H,r) = (I H, (rysHx)xeB,)- Letx €
By. Then since (Hex)(nHx) = 1 g, we have 1 = deg(Hex) deg(nHx) = rx_lterth}{x.

Hence rysy, = rxtl’qxflrl}}x = rxrx_ltx = 1, as desired.

Claim3 n: (1 4,1) = (H,r)(1,s) is a 2-isomorphism in G-GrCat.

Indeed, it is enough to show that 1 is a 2-morphism in G-GrCat. This is equivalent to
saying that t)’c = rl_xls;l for all x € Agy because (H,r)(I,s) = (HI, (SxT1x)xedy)- By
definition r; 's; ! = rylrporl = 1), as desired.

These three claims show that (H, r) is an equivalence in G-GrCat. By looking at the
proof of Claim 3, we see that the degree adjuster s of / is uniquely determined as in Eq. 9.1
by n and r.

(1) =(3). Assume the statement (1), and let (/, s) be a quasi-inverse of (H, r) with 2-
isomorphisms ¢: (I, s)(H,r) = lgand n: 14 = (H,r)(I,s). Then H(By) 2 HI(Ay),
and the latter is homogeneously dense in A because : 14 = HI is a homogeneous
natural isomorphism.

(3) =(2). Assume the statement (3). We can imitate the proof of (iii) =(ii) in [10, p. 93,
Theorem 1] to construct a quasi-inverse 1: A — 15 as a left adjoint to H and a pair of a
counite: TH = 1 and aunit n: 1 4 = HI. Here we just give definitions of them. Then
it is enough to show that both ¢ and 1 are homogeneous natural isomorphisms.
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Definition of 7 and n Let x € Ay. Since H is homogeneously dense, there exists a
yx € By such that there is a homogeneous isomorphism 7, : x — Hy,. Choose a pair
(yx, nx) once for all x, and define Ix := y,. Then n,: x — HIx is a homogeneous
isomorphism, and define 7 := (nx)xeA,-

Let f € A(x,x’). we define If as follows. Since H is fully faithful, H induces a
bijection Hyy 2 B(Ix, Ix") — A(HIx, HIx'). Then define [ f := fo%lx/(r]x/fnx_l) as
in the following diagram:

.T/

Nz l O \an/

-1
Nyt f

Hlx —— HIx'

Iz T Ix'.

Definition of ¢ Let y € By. Then Hy € Ao, and ny, € A(Hy, HIHy). H induces a
bijection Hypy, y: BUIHy, y) — A(HIHy, Hy). Then define &, := Hy . (1)

Then the same proof as in [10, p. 93] works (or it is straightforward) to show that [ is a
left adjoint functor to H with the unit : 1 4 — H and the counit & := (¢y)yep,: 1H =
13.

Now by definition 1 is a homogeneous natural isomorphism. It remains to show that ¢,
are homogeneous isomorphisms for all y € By. Since gy is a homogeneous isomorphism,
S0 is ’71_11y € A(HIHy, Hy). Seta := degnpyy. Since (H, r) is a degree-preserving functor,
the bijection H;py, y induces a bijection

-1
BT (LHy, y) — AY(HIHy, Hy) 5 17,

1

-1
V)€ Bty (I Hy, y) and is a homogeneous isomorphism. [

Hence ¢y = HI_Hly,y(’?;I
The following is immediate by Theorem 9.5.
Corollary 9.6 Let (H,r): B — A be a I-morphism in G-GrCat. Then the following are

equivalent.

(1) (H,r) is an isomorphism in G-GrCat.
(2) H: B — Aisa category isomorphism.

If this is the case, then the inverse of (H, r) is given by
(H.r "= H 05 Dreay):

Remark 9.7 Let B € G-GrCaty.

(1) Theorem 9.5 and Example 9.4(2) give an immediate alternative proof of the fact that
wg: B — (B#G)/G is an equivalence in G-GrCat.

(2) Also by Theorem 9.5, a degree-preserving functor (H,r): A — B in G-GrCat
with H a category equivalence is an equivalence in G-GrCat if and only if H is
homogeneously dense. In particular, if 5(x, x) are local algebras for all x € By,
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then all degree-preserving functors that are category equivalences are equivalences in
G-GrCat by Example 9.4(1).

Next we will give one more characterization of an equivalence in G-GrCat using the
composite of degree preserving functors which are surjective, bijective and injective on
objects. First we add necessary terminologies.

Definition 9.8 Let 3 be a G-graded category.

(1) For each x,y € B, we say that x and y are homogeneously isomorphic (and write
x =g ) if there exists a homogeneous isomorphism x — y. Since the set of homo-
geneous isomorphisms in B is closed under composition and taking inverses, the
relation =g on By is an equivalence relation, whose equivalence classes are called
homogeneous isoclasses.

(2) Let B be a full subcategory of 3. Then BB’ is called a homogeneous skeleton of B if 13,
forms a complete set of representatives of homogeneous isoclasses in 3y. Note that 3’
is homogeneously dense in B if and only if it contains a homogeneous skeleton of 3.

Lemma 9.9 Let B € G-GrCaty. If B is a homogeneously dense full subcategory of I3, then
the inclusion functor S: B’ < B induces an equivalence (S, 1): B — B in G-GrCat.

Proof Note that B is again a G-graded category by setting 5 (x, y) := B%(x, y) for all
x,y € Byandall a € G, and hence (S, 1): B" — B is a degree-preserving functor. Then
the assertion following by Theorem 9.5. O

Proposition 9.10 Let (H,r): B — A be a degree-preserving functor in G-GrCat. Then
the following are equivalent.

(1) (H,r) is an equivalence in G-GrCat.
(2) There exist homogeneously dense full subcategories B' and A’ of B and A, respec-
tively and a homogeneous natural isomorphism

¢ (H,r) = (S, D(H, )N, s),

where S: B — Band S': A" — A are inclusion functors, and (N, s) is a quasi-
inverse of the equivalence (S, 1) in G-GrCat.

Proof (2) =(1). This immediately follows by Theorem 9.5.

(1) =(2). Assume the statement (1). Then there exist degree-preserving functors
(H,r): B— Aand (I,s): A — B, and 2-isomorphisms ¢: (I, s)(H,r) = (13, 1) and
n: (1g,1) = (H,r)(,s) in G-GrCat. Let B’ be a homogeneous skeleton of B. Then 5/
is homogeneously dense in B. Let A’ be the full subcategory of A with Aj, := H(B)).
Then we claim that A’ is a homogeneous skeleton of \A. Indeed, let x € Ay. Then by con-
struction there exist an x” € B’ and a homogeneous isomorphism f: Ix — x’ in 5. Hence

. . ¢ H . ~
we have homogeneous isomorphisms x Iy Hix 2, Hx"in A. Thus x =g Hx' € A},
which shows that A’ is homogeneously dense in A. Next assume that there exists a homo-
geneous isomorphism g: Hx — Hy for some x,y € B{. Then we have homogeneous
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X ! 4
isomorphisms x & JHx 25 IHy R y. Thus x =y y, and hence x = y. As a
consequence
x # yimpliesHx Zy Hy. 9.2)

This proves the claim. Now let S: B/ — B and §’: A" — A be inclusion functors,
and as in the proof of Theorem 9.5 construct a quasi-inverse (N,s) of the equiva-
lence (S, 1) in G-GrCat as a left adjoint with a counit 1y, : NS = 1p and a unit
v: 1z = SN. Then s, = (deg vy)~! for all x € By. The implication (9.2) also shows
that H induces a bijection B) — Aj. As H is fully faithful, H induces a category
isomorphism H': B’ — A’ that satisfies S’H’ = HS. Let r’ be the restriction of r
to Bj. Then (H',r"): B" — A’ is a degree-preserving functor, which turns out to be
an isomorphism in G-GrCat by Corollary 9.6. Now ¢ := Hv is a homogeneous nat-
ural isomorphism H = HSN = S’H’N. It remains to show that ¢ is a 2-morphism
(H,r)y= (8, )(H',r')(N,s) = (§H'N, (sxr'y,)xeB,) in G-GrCat. For this it is enough
to show that deg Hv, = (sxr;\,x)’lrx for all x € By. Now since degv, = s;l and
Vy: x > SNx = Nx, we have deg Hvy, = r;}cs;lrx = (sxr/’\,x)’lrx, as desired. O

The following is immediate by Proposition 9.10 and Lemma 9.9.

Corollary 9.11 Let B, A € G-GrCaty. Then the following are equivalent.

(1) B2~ AinG-GrCat.
(2) There exist homogeneously dense full subcategories B' and A’ of B and A, respec-
tively such that B' = A’ in G-GrCat.
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