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Abstract Given a group G, we define suitable 2-categorical structures on the class of all
small categories with G-actions and on the class of all small G-graded categories, and prove
that 2-categorical extensions of the orbit category construction and of the smash product
construction turn out to be 2-equivalences (2-quasi-inverses to each other), which extends
the Cohen-Montgomery duality. Further we characterize equivalences in both 2-categories.
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1 Introduction

Throughout this paperG is a group and k is a commutative ring, and all categories, functors,
and algebras considered here are assumed to be k-linear unless otherwise stated. This is a
continuation of the paper [1] and will be applied in subsequent papers [3] and [2].

In [7] Cohen and Montgomery proved the following (called the Cohen-Montgomery
duality).
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Theorem 1.1 Let G be a finite group of order n, A an algebra with a G-action, and B a
G-graded algebra. Then we have isomorphisms

(A ∗ G)#G ∼= Mn(A)

(B#G) ∗ G ∼= Mn(B).

In the above, ∗ and # stand for the skew group algebra construction and the smash product
construction, respectively and Mn(A) denotes the algebra of all n × n matrices over A.
We can regard each algebra A as a category with a single object, and then Mn(A) can be
regarded as a category with precisely n objects that are isomorphic to each other, and A and
Mn(A) are equivalent as categories.

Already some attempts have been made to extend this theorem so that it satisfies the
following requirements.

(a) Deal with an arbitrary group G;
(b) Replace algebras by categories.

For instance (a) was investigated in [4], [11], and (b) was examined in [6], [1]. To be more
precise let C be a category with a G-action and B a G-graded category. Then a G-graded
category C/G, called the orbit category of C by G is constructed in [1, 6, 8] (this turns out to
be also a generalization of the skew group algebra construction); and a category B#G with
a free G-action, called the smash product of C and G is constructed in [6]; and in [1] we
defined a (weakly) G-equivariant equivalence εC : C ⇒ (C/G)#G and a degree-preserving
equivalence ωB : B ⇒ (B#G)/G. This seems to give a full categorical generalization of
Cohen-Montgomery duality.

Here recall the definition of equivalences between categories: Categories (= objects) A
and B are said to be equivalent if there exist a pair of functors (= 1-morphisms) E : A →
B and F : B → A in mutually reverse directions such that there exist a pair of natural
isomorphisms (= 2-isomorphisms) ε : EF ⇒ 1B and η : 1A ⇒ FE. Namely, to define
equivalences between objects in a categorical sense we need a 2-categorical structure in the
class of objects. In our case, the class G-Cat of all small k-categories with G-actions and
the class G-GrCat of all small G-graded k-categories should have 2-categorical structures.
To insist that the above gives a full categorical generalization of Cohen-Montgomery duality
we have to have an affirmative answer to the following question:

(i) Are the G-equivariant equivalence εC and the degree-preserving equivalence ωB
obtained in [1] equivalences defined by 2-categorical structures on G-Cat and
G-GrCat, respectively?

Once we have 2-categorical structures on G-Cat and G-GrCat, it also becomes
important to consider the following question:

(ii) Are εC and ωB 2-natural in C and in B?
These suggest us the following problem:

(c) Not only give an equivalence for each individual category, but extend it to a 2-
equivalence between 2-categories of k-categories with G-action and of G-graded
k-categories.

In this paper we will give a positive solution to the problem (c) which includes affirmative
answers to both (i) and (ii). We also give characterizations of equivalences in 2-categories
G-Cat and G-GrCat in terms of a half of a pair of functors in mutually reverse directions,
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which give relationships between G-equivariant equivalences and equivalences in G-Cat
and between degree-preserving equivalences and equivalences in G-GrCat. The solution
proceeds in the following steps:

• to suitably define a 2-category G-Cat of all small k-categories with G-actions (Defini-
tion 2.9) and a 2-categoryG-GrCat of all smallG-graded k-categories (Definition 3.3);

• to extend the orbit category construction to a 2-functor

?/G : G-Cat → G-GrCat

(Definition 7.1) (this is given by the 2-universality of the canonical functor (P,ψ)

that is a generalization of Gabriel’s Galois covering functor) and the smash product
construction to a 2-functor

?#G : G-GrCat → G-Cat

(Definition 7.3); and
• to prove the following (see Theorem 7.5 for detail):

Theorem 1.2 ?/G is strictly left 2-adjoint to ?#G and they are mutual 2-quasi-inverses (in
a weak sense).

Therefore in other words we obtain the following.

Theorem 1.3 Let C, C ′ ∈ G-Cat and B,B′ ∈ G-GrCat. Then

(1) there exists an equivalence C � (C/G)#G (in fact this is given by εC above) in the
2-category G-Cat that is 2-natural in C;

(2) there exists an equivalence B � (B#G)/G (in fact this is given by ωB above) in the
2-category G-GrCat that is 2-natural in B;

(3) there exists an isomorphism

G-GrCat(C/G,B) ∼= G-Cat(C,B#G)

of k-categories that is 2-natural in C and B;
(4) there exists an equivalence

G-Cat(C,C ′) � G-GrCat(C/G,C ′/G)

of k-categories that is 2-natural in C and C ′; and
(5) there exists an equivalence

G-GrCat(B,B′) � G-Cat(B#G,B′#G)

of k-categories that is 2-natural in B and B′.

Note that the statements (1) and (2) above give affirmative answers to both questions
(i) and (ii). We remark that the definition of degree-preserving functors (= 1-morphisms in
G-GrCat) given here is slightly weakened than that used in [1], where degree-preserving
functors were defined as strictly degree-preserving functors in the sense of this paper
(see Definition 3.1 (2), (3)). This would be the most important point to establish our 2-
equivalences (see Remark 8.9 for the necessity of the weaker definition). The results of this
paper are applied at least in papers [2], [3] and [12] so far.

For general 2-categorical notions we refer the reader to [5] or [9]. In this paper 2-
categories are strict 2-categories, and we use the word “strictly 2-natural transformation”
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to mean the 2-natural transformation in a usual sense (e.g., as in [5, 9]), and the word “2-
natural transformation” in a weak sense, i.e., we only require that the equalities defining the
notion of usual 2-natural transformations hold up to natural isomorphisms. Thus we use the
word “2-quasi-inverse” in a weak sense (although in fact a half of the equalities to define
this notion hold strictly).

The paper is organized as follows. In Sections 2 and 3 we define the 2-category G-Cat
and the 2-category G-GrCat, respectively. In Sections 4, 5 and 6 we recall from [1] fun-
damental facts about G-coverings, the definition and characterizations of orbit categories,
and fundamental facts about smash products, respectively. In Section 7 we extend the orbit
category construction and the smash product construction to 2-functors ?/G and ?#G,
respectively, and give the precise statement of the main result. We also give a charac-
terization of G-covering functors that induce degree-preserving functors (Definition 7.7).
Section 8 is devoted to the proof of the main theorem. Finally, in Section 9 we characterize
equivalences in the 2-categories G-Cat and G-GrCat.

For categories A and B we write A ∼= B (resp. A � B) to express that they are iso-
morphic (resp. equivalent); and the class of objects (resp. morphisms) in A is denoted by
A0 (resp. A1). We sometimes write “x ∈ A” as an abbreviation of “x ∈ A0”. Natural
transformations (and 2-morphisms in 2-categories) are expressed by a double arrow symbol
⇒.

2 The 2-Category G-Cat

First in this section we define the 2-category of G-categories.

2.1 G-Categories

Definition 2.1 A k-category with a G-action, or a G-category for short, is a pair (C, A) of a
category C and a group homomorphism A : G → Aut(C). We set Aa := A(a) for all a ∈ G.
If there is no confusion we always denote G-actions by the same letter A, and simply write
C = (C, A).

Notation 2.2 We denote by k-Cat the 2-category of small k-categories, k-functors between
them, and natural transformations between k-functors.

Example 2.3 Any k-category B defines a G-category �B := (B, A), where A : G →
Aut(B) is the trivial G-action, namely it is defined by Aa := 1B for all a ∈ G. We
sometimes identify �B with B.

2.2 G-Equivariant Functors

Definition 2.4 ([1, Definition 4.8]) Let C and C ′ be G-categories. Then a G-equivariant
functor from C to C ′ is a pair (E, ρ) of a k-functor E : C → C ′ and a family ρ = (ρa)a∈G

of natural isomorphisms ρa : AaE ⇒ EAa (a ∈ G) such that the diagrams



2-Categorical Cohen-Montgomery Duality 159

commute for all a, b ∈ G.
A k-functor E : C → C ′ is called a strictly G-equivariant functor if (E, (1E)a∈G) is a

G-equivariant functor, i.e., if AaE = EAa for all a ∈ G.

Remark 2.5 In the above since A1 = 1, we have ρ1x = ρ1x ·ρ1x, and hence ρ1x = 1Ex for
all x ∈ C. Hence the natural requirement ρ1 = 1E follows automatically from the defining
condition.

Example 2.6 Any k-functor F : B → B′ defines a strictly G-equivariant functor �F :=
(F, (1F )a∈G) : �B → �B′.

2.3 Morphisms of G-Equivariant Functors

Definition 2.7 Let (E, ρ), (E′, ρ′) : C → C ′ be G-equivariant functors. Then a morphism
from (E, ρ) to (E′, ρ′) is a natural transformation η : E ⇒ E′ such that the diagrams

commute for all a ∈ G.

We define a composition of G-equivariant functors.

Lemma 2.8 Let be G-equivariant functors of G-categories. Then

(1) (E′E, ((E′ρa)(ρ
′
aE))a∈G) : C → C ′′ is a G-equivariant functor, which we define to

be the composite (E′, ρ′)(E, ρ) of (E, ρ) and (E′, ρ′).
(2) If further (E′′, ρ′′) : C ′′ → C ′′′ is a G-equivariant functor, then we have

((E, ρ)(E′, ρ′))(E′′, ρ′′) = (E, ρ)((E′, ρ′)(E′′, ρ′′)).

Proof Straightforward.

2.4 2-Category G-Cat

Definition 2.9 A 2-category G-Cat is defined as follows.

• The objects are the small G-categories.
• The 1-morphisms are the G-equivariant functors between objects.
• The identity 1-morphism of an object C is the 1-morphism (1C, (11C )a∈G).
• The 2-morphisms are the morphisms of G-equivariant functors.
• The identity 2-morphism of a 1-morphism (E, ρ) : C → C ′ is the identity natural

transformation 1E of E, which is clearly a 2-morphism.
• The composition of 1-morphisms is the one given in the previous lemma.
• The vertical and the horizontal compositions of 2-morphisms are given by the usual

ones of natural transformations.
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Proposition 2.10 The data above determine a 2-category.
Proof Straightforward.

Definition 2.11 Let F and F ′ be functors B → B′ in k-Cat, and α : F → F ′ a natural
transformation. Then we define a morphism �ε : �F → �F ′ of G-equivariant functors
by setting �ε := ε. This and the constructions given in Examples 2.3 and 2.6 define a
2-functor � : k-Cat → G-Cat.

3 The 2-Category G-GrCat

In this section we cite necessary definitions and statements from [1, §5] and add new con-
cepts and statements to define the 2-category of G-graded categories. Here we modified
the definition of degree-preserving functors in order to include the functor H (and hence
the functors ω′

B for all G-graded categories B, see Definition 8.7) in Proposition 6.4 below
because H is not degree-preserving in the sense of [1] in general (see [1, Remark 5.9] and
Remark 8.9).

Definition 3.1 (1) A G-graded k-category is a category B together with a family of
direct sum decompositions B(x, y) = ⊕

a∈G Ba(x, y) (x, y ∈ B) of k-modules such
that Bb(y, z) · Ba(x, y) ⊆ Bba(x, z) for all x, y ∈ B and a, b ∈ G. If f ∈ Ba(x, y)

for some a ∈ G, then we set deg f := a.
(2) A degree-preserving functor is a pair (H, r) of a k-functor H : B → A of G-graded

categories and a map r : B0 → G such that

H(Brya(x, y)) ⊆ A arx (Hx, Hy)

(or equivalently H(Ba(x, y)) ⊆ Ar−1
y arx (Hx, Hy)) for all x, y ∈ B and a ∈ G. This

r is called a degree adjuster of H .
(3) A k-functor H : B → A of G-graded categories is called a strictly degree-preserving

functor if (H, 1) is a degree-preserving functor, where 1 denotes the constant map
B0 → G with value 1 ∈ G, i.e., if H(Ba(x, y)) ⊆ Aa(Hx, Hy) for all x, y ∈ B and
a ∈ G.

(4) Let (H, r), (I, s) : B → A be degree-preserving functors. Then a natural transfor-
mation θ : H ⇒ I is called a morphism of degree-preserving functors if θx ∈
As−1

x rx (Hx, Ix) for all x ∈ B.

The composite of degree-preserving functors can be made into again a degree-preserving
functor as follows.

Lemma 3.2 Let be degree-preserving functors. Then

(H ′H, (rxr
′
Hx)x∈B) : B → B′′

is also a degree-preserving functor, which we define to be the composite (H ′, r ′)(H, r) of
(H, r) and (H ′, r ′).

Proof Straightforward.

Definition 3.3 A 2-category G-GrCat is defined as follows.

• The objects are the small G-graded categories.
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• The 1-morphisms are the degree-preserving functors between objects.
• The identity 1-morphism of an object B is the 1-morphism (1B, 1).
• The 2-morphisms are the morphisms of degree-preserving functors.
• The identity 2-morphism of a 1-morphism (H, r) : B → A is the identity natural trans-

formation 1H ofH , which is a 2-morphism (because (1H )x = 1Hx ∈ A1(Hx, Hx) =
Ar−1

x rx (Hx, Hx) for all x ∈ B).
• The composition of 1-morphisms is the one given in the previous lemma.
• The vertical and the horizontal compositions of 2-morphisms are given by the usual

ones of natural transformations.

Proposition 3.4 The data above determine a 2-category.

Proof Straightforward.

4 Covering Functors

Throughout Sections 4 and 5, C is a G-category and B is a k-category. In this section we
cite definitions and statements without proofs from [1, §1].

4.1 G-Invariant Functors

Definition 4.1 ([1, Definition 1.1]) A G-invariant functor from C to B is a G-equivariant
functor

(F, φ) : C → �B.

We sometimes write this as (F, φ) : C → B.

Remark 4.2 In the above the defining condition on φ = (φa)a∈G becomes as follows: The
diagrams

commute for all a, b ∈ G. In particular, this implies φ−1
a = φa−1Aa for all a ∈ G.

4.2 Morphisms of G-Invariant Functors

Definition 4.3 Let (F, φ), (F ′, φ′) be G-invariant functors C → B. Then a morphism of
G-invariant functors from (F, φ) to (F ′, φ′) is just a morphism η of G-equivariant functors,
namely η is a natural transformation F → F ′ such that the diagrams

commute for all a ∈ G.
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Notation 4.4 All G-invariant functors C → B and all morphisms between them form a
category, which we denote by Inv(C,B). When both C and B are small categories, we have
Inv(C,B) = G-Cat(C,�B).

As a special case of Lemma 2.8, the composite of a G-invariant functor and a functor is
made into again a G-invariant functor:

Lemma 4.5 ([1, Lemma 1.4]) Let (F, φ) : C → B be a G-invariant functor and H : B →
A a functor. Then (HF,Hφ) : C → A is again a G-invariant functor, where Hφ :=
(Hφa)a∈G. We set H(F, φ) := (HF, Hφ).

4.3 G-Covering Functors

Notation 4.6 Let (F, φ) : C → B be a G-invariant functor and x, y ∈ C. Then we
define homomorphisms F

(1)
x,y := (F, φ)

(1)
x,y and F

(2)
x,y := (F, φ)

(2)
x,y of k-modules as

follows.

F (1)
x,y :

⊕

a∈G

C(Aax, y) → B(Fx, Fy), (fa)a∈G 
→
∑

a∈G

F(fa) · φax

F (2)
x,y :

⊕

b∈G

C(x,Aby) → B(Fx, Fy), (fb)b∈G 
→
∑

b∈G

φb−1(Aby) · F(fb)

Proposition 4.7 ([1, Proposition 1.6]) In the above, F
(1)
x,y is an isomorphism if and only if

F
(2)
x,y is.

Definition 4.8 ([1, Definition 1.7]) Let (F, φ) : C → B be a G-invariant functor. Then

(1) (F, φ) is called a G-precovering if for each x, y ∈ C, F
(1)
x,y is an isomorphisms (the

latter is equivalent to saying that F (2)
x,y is an isomorphism by Proposition 4.7);

(2) (F, φ) is called a G-covering if it is a G-precovering and F is dense (i.e., for each
y ∈ B there is an x ∈ C such that Fx ∼= y in B).

5 Orbit Categories

In this section we cite necessary definitions and statements without proofs from [1, §2]
except for § 5.4. The symbol δa,b stands for the Kronecker’s delta below.

5.1 Canonical G-Covering

Definition 5.1 ([1, Definition 2.1]) The orbit category C/G of C by G is a category defined
as follows.

• (C/G)0 := C0.
• For each x, y ∈ C/G, (C/G)(x, y) is the set of all f = (fb,a) ∈∏

(a,b)∈G×G C(Aax, Aby) such that f is row finite and column finite and that fcb,ca =
Acfb,a for all c ∈ G.
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• For any pair f : x → y and g : y → z in C/G, gf := (∑
c∈G gb,cfc,a

)
(a,b)

.

Then C/G becomes a category where the identity 1x of each x ∈ C/G is given by 1x =
(δa,b1Aax)(a,b).

Definition 5.2 ([1, Definition 2.4]) We define a functor PC,G := P : C → C/G as follows.

• For each x ∈ C, P(x) := x;
• For each morphism f in C, P(f ) := (δa,bAaf )(a,b).

Then P turns out to be a functor.

Definition 5.3 ([1, Definition 2.5]) For each c ∈ G and x ∈ C, set ψcx :=
(δa,bc1Aax)(a,b) ∈ (C/G)(Px, PAcx). Then ψc := (ψcx)x∈C : P → PAc is a natural iso-
morphism, and the pair (PC,G, ψC,G) := (P,ψ) : C → C/G turns out to be a G-invariant
functor, where we set ψC,G := ψ := (ψc)c∈G. We call (P,ψ) the canonical functor.

Proposition 5.4 ([1, Proposition 2.6]) The following statements hold:

(1) (P,ψ) is a G-covering functor;
(2) (P,ψ) is universal among G-invariant functors from C, i.e., for any G-invariant

functor (F, φ) : C → B there exists a unique functor H : C/G → B such that
(F, φ) = H(P, ψ) as G-invariant functors.

Corollary 5.5 ([1, Corollary 2.7]) In the above, (P,ψ) is 2-universal, i.e., the induced
functor

(P,ψ)∗ : Fun(C/G,B) → Inv(C,B)

is an isomorphism of categories, where Fun(C/G,B) is the category of k-functors from
C/G to B.

This will be used later in § 7.1.

Lemma 5.6 ([1, Lemma 5.4]) C/G is G-graded.

Recall the definition of G-grading of C/G: Let (P,ψ) : C → C/G be the canonical
functor. Then the G-grading is given by (C/G)(x, y) = ⊕

a∈G(C/G)a(x, y), where

(C/G)a(x, y) := P (1)
x,y(C(Aax, y)) (5.1)

for all x, y ∈ C and a ∈ G. Further [1, Remark 5.5] says that for each x, y ∈ C, a ∈ G, and
f ∈ (C/G)(x, y) we have f ∈ (C/G)a(x, y) if and only if fc,b = 0 whenever c−1b �= a.

Remark 5.7 In Corollary 5.5 if both C and B are small categories, then the corollary above
gives us an isomorphism of categories

(P,ψ)∗ : k-Cat(C/G,B) → G-Cat(C,�B).

In Lemma 7.2 we will define a 2-functor ?/G : G-Cat → G-GrCat. If we consider the
composite 2-functor Fgt ◦(?/G) : G-Cat → k-Cat, where Fgt : G-GrCat → k-Cat is the
forgetful functor, we see that the isomorphism above is 2-natural in C and in B. This means
that Fgt ◦(?/G) is a left adjoint to �.
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5.2 Characterization of G-Covering Functors

The following gives a characterization of G-covering functors.

Theorem 5.8 ([1, Theorem 2.9]) Let (F, φ) : C → B be a G-invariant functor. Then the
following are equivalent.

(1) (F, φ) is a G-covering;
(2) (F, φ) is a G-precovering that is universal among G-precovering from C;
(3) (F, φ) is universal among G-invariant functors from C;
(4) There exists an equivalence H : C/G → B such that (F, φ) ∼= H(P, ψ) as

G-invariant functors; and
(5) There exists an equivalence H : C/G → B such that (F, φ) = H(P, ψ).

5.3 Other Isomorphic Forms of Orbit Categories

The orbit category constructed in Definition 5.1 has the form of a “subset of the product”,
which seems not to match its universality, but it is essentially a left-right symmetrized direct
sum as stated below. (Note that the direct sum of modules were also constructed as a “subset
of the direct product”.)

Definition 5.9 (Cibils-Marcos, Keller) (1) An orbit category C/1G is defined as follows.

• (C/1G)0 := C0;
• For any x, y ∈ C, C/1G(x, y) := ⊕

α∈G C(αx, y); and

• For any in C/1G, gf := (
∑

α,β∈G;βα=μ gβ · β(fα))μ∈G.

(2) Similarly another orbit category C/2G is defined as follows.

• (C/2G)0 := C0;
• For any x, y ∈ C, (C/2G)(x, y) := ⊕

β∈G C(x, βy); and

• For any in C/2G, gf := (
∑

α,β∈G;αβ=μ α(gβ) · fα)μ∈G.

Note that C/2G = (Cop/1G)op.

Proposition 5.10 ([1, Proposition 2.11]) We have isomorphisms of categories C/1G
∼=

C/G ∼= C/2G.

5.4 Composition of a G-Equivariant Functor and a G-Invariant Functor

As a special case of Lemma 2.8, the composite of a G-equivariant functor and a G-invariant
functor can be made into a G-invariant functor as follows.

Lemma 5.11 (1) Let be functors with C,C ′ G-categories, (E, ρ)

G-equivariant and (F, φ) G-invariant. Then

(FE, ((Fρa)(φaE))a∈G) : C ′ → B

is a G-invariant functor, which we define to be the composite (F, φ)(E, ρ) of (E, ρ) and
(F, φ).
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(2) In the above if (E, ρ) is a G-equivariant equivalence and (F, φ) is a G-covering
functor, then the composite (F, φ)(E, ρ) is a G-covering functor, and hence C ′/G is
equivalent to B.

Proof (1) This follows from Lemma 2.8
(2) This is shown in the proof of [1, Lemma 4.10].

6 Smash Products

In this section we cite necessary definitions and statements from [1, § 5] without proofs.

Definition 6.1 ([1, Definition 5.2]) Let B be a G-graded category. Then the smash product
B#G is a category defined as follows.

• (B#G)0 := B0 × G, we set x(a) := (x, a) for all x ∈ B and a ∈ G.
• (B#G)(x(a), y(b)) := Bb−1a(x, y) for all x(a), y(b) ∈ B#G.
• For any x(a), y(b), z(c) ∈ B#G the composition is given by the following commutative

diagram

(B#G)(y(b), z(c)) × (B#G)(x(a), y(b)) −→ (B#G)(x(a), z(c))

|| ||
Bc−1b(y, z) × Bb−1a(x, y) −→ Bc−1a(x, z),

where the lower horizontal homomorphism is given by the composition of B.

Lemma 6.2 (The first part of [1, Proposition 5.6]) B#G has a free G-action.

Recall the definition of the free G-action on B#G: For each c ∈ G and x(a) ∈ B#G,
Acx

(a) := x(ca). For each f ∈ (B#G)(x(a), y(b)) = Bb−1a(x, y) = (B#G)(x(ca), y(cb)),
Acf := f .

Definition 6.3 ([1, Definition 5.7]) Let B be a G-graded category. Then we define a functor
QB,G := Q : B#G → B as follows.

• Q(x(a)) = x for all x(a) ∈ B#G .
• Q(f ) := f for all f ∈ (B#G)(x(a), y(b)) = Bb−1a(x, y).

Proposition 6.4 ([1, Proposition 5.8, Remark 5.9]) Q = QAa for all a ∈ G and
Q = (Q,1) : B#G → B is a G-covering functor. Hence in particular, Q factors through
the canonical G-covering functor (P,ψ) : B#G → (B#G)/G, i.e., there exists a unique
equivalence H : (B#G)/G → B such that Q = H(P, ψ).

7 2-Functors

7.1 Orbit 2-Functor

We first extend the orbit category construction to a 2-functor G-Cat → G-GrCat.
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Definition 7.1 Let (E, ρ), (E′, ρ′) : C → C ′ be 1-morphisms and η : (E, ρ) → (E′, ρ′) a
2-morphism in G-Cat. Set (P,ψ) : C → C/G, (P ′, ψ ′) : C ′ → C ′/G to be the canonical
functors. By Proposition 5.11 we have (P ′, ψ ′)η : (P ′, ψ ′)(E, ρ) → (P ′, ψ ′)(E′, ρ′) is in
Inv(C, C ′/G). Then using the isomorphism (P,ψ)∗ : Fun(C/G,C ′/G) → Inv(C, C ′/G)

of categories we can define

(E, ρ)/G := (P,ψ)∗−1
((P ′, ψ ′)(E, ρ)) and

η/G := (P,ψ)∗−1
((P ′ψ ′)η).

This construction is visualized in the following diagram:

The explicit form of η/G is given by

(η/G)Px := P ′(ηx) ∈ (C ′/G)1(((E, ρ)/G)Px, ((E′, ρ′)/G)Px)

(for (C ′/G)1 see Eq. 5.1) for all x ∈ C. Then as easily seen, (E, ρ)/G is a strictly degree-
preserving functor and η/G is a 2-morphism in G-GrCat.

Lemma 7.2 The definition above extends the orbit category construction to a 2-functor

?/G : G-Cat → G-GrCat.

Proof (1) 1C/G = 1C/G for all C ∈ G-Cat.
Indeed, let (P,ψ) : C → C/G be the canonical functor. Then this follows from the

following strict commutative diagram:

(2) For any in G-Cat, ((E′, ρ′) · (E, ρ))/G = (E′, ρ′)/G ·
(E, ρ)/G.

Indeed, let (P,ψ) : C → C/G, (P ′, ψ ′) : C ′ → C ′/G, (P ′′, ψ ′′) : C ′′ → C ′′/G be the
canonical functors. We can set (E, ρ)/G = (H, 1) : C/G → C ′/G and (E′, ρ′)/G =
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(H ′, 1) : C ′/G → C ′′/G. Then we have the following strictly commutative diagram
consisting of solid arrows:

Comparing the second entries of G-invariant functors this implies the following for all
a ∈ G:

(P ′ρa)(ψ
′
aE) = Hψa (7.1)

(P ′′ρ′
a)(ψ

′′
a E′) = H ′ψ ′

a (7.2)

Set (E′E, ρ′′) := (E′, ρ′) · (E, ρ), namely, ρ′′ := ((E′ρa)(ρ
′
aE))a∈G. Then the two

triangles consisting of dotted arrows and horizontal arrows are strictly commutative. This
shows the strict commutativity of the following as a diagram of functors:

(7.3)
i.e., we have P ′′E′E = H ′HP . We have to verify that this is strictly commutative as a
diagram of G-invariant functors, i.e., that the following holds:

(P ′′, ψ ′′) · (E′E, ρ′′) = H ′H · (P,ψ).

Looking at the second entries of G-invariant functors it is enough to show the following for
all a ∈ G:

(P ′′ρ′′
a )(ψ ′′

a E′E) = H ′Hψa. (7.4)
From Eq. 7.1 the composition with H ′ on the left yields

(H ′P ′ρa)(H
′ψ ′

aE) = H ′Hψa.

From Eq. 7.2 the composition with E on the right yields

(P ′′ρ′
aE)(ψ ′′

a E′E) = H ′ψ ′
aE.

Using these equalities we see that the left hand side of Eq. 7.4 is equal to

(P ′′E′ρa)(P
′′ρ′

aE)(ψ ′
aE

′E) = (P ′′E′ρ′
a)(H

′ψ ′
aE)

= (H ′P ′ρa)(H
′ψ ′

aE)

= H ′Hψa,

the right hand side, and the strict commutativity of Eq. 7.3 as a diagram of G-invariant
functors is verified, which shows that ((E′, ρ′)(E, ρ))/G = H ′H = (E′, ρ′)/G·(E, ρ)/G.

(3) 1(E,ρ)/G = 1(E,ρ)/G for all 1-morphism (E, ρ) : C → C ′ in G-Cat.
Indeed, set (P,ψ), (P ′, ψ ′), H to be as in (2) above. For each Px ∈ C/G we have

(1(E,ρ)/G)(Px) = P ′((1(E,ρ))x) = 1P ′Ex = 1HPx = (1(E,ρ)/G)(Px).
(4) ?/G preserves the vertical composition.
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Indeed, let (E, ρ), (E′ρ′), (E′′, ρ′′) ∈ (G-Cat)(C,C ′), and let η : (E, ρ) ⇒ (E′, ρ′),
η′ : (E′, ρ′) ⇒ (E′′, ρ′′) be 2-morphisms in G-Cat. Set (P,ψ), (P ′, ψ ′) to be as in (2)
above. Then for each Px ∈ C/G we have

((η′η)/G)(Px) = P ′((η′η)x) = P ′(η′x)P ′(ηx) = (η′/G)(Px) · (η/G)(Px).

This shows that (η′η)/G = (η′/G)(η/G).
(5) ?/G preserves the horizontal composition.
Indeed, let (E, ρ), (E′ρ′) ∈ (G-Cat)(C,C ′), (F, τ ), (F ′τ ′) ∈ (G-Cat)(C ′, C ′′) and

η : (E, ρ) ⇒ (E′, ρ′), η′ : (F, τ ) ⇒ (F ′, τ ′) be 2-morphisms in G-Cat. Then we have to
show the equality

(η′ ∗ η)/G = (η′/G) ∗ (η/G).

Set (P,ψ), (P ′, ψ ′) and (P ′′, ψ ′′) to be as in (2) above. Then for each Px ∈ C/G we have

((η′ ∗ η)/G)(Px) = P ′′((η′ ∗ η)x) = P ′′(((F ′η)(η′E))x) = P ′′((F ′η)x · (η′E)x)

= P ′′((F ′η)x)P ′′((η′E)x) = P ′′(F ′(ηx)) · P ′′(η′(Ex)),

and

((η′/G) ∗ (η/G))(Px) = ((F ′, τ ′)/G · η/G)(Px) · (η′/G · (E, ρ)/G)(Px)

= ((F ′, τ ′)/G)(P ′(ηx)) · (η′/G)(P ′Ex)

= P ′′(F ′(ηx)) · P ′′(η′(Ex)),

from which the equality follows, where ((F ′, τ ′)/G)(P ′(ηx)) = P ′′(F ′(ηx)) follows from
the commutative diagram

As a consequence, ?/G : G-Cat → G-GrCat is a 2-functor.

7.2 Smash 2-Functor

Next we extend the smash product construction to a 2-functor.

Definition 7.3 Let (H, r) : B → B′ be in G-GrCat. Then the functor (H, r)#G : B#G →
B′#G is defined as follows.

On Objects For each x(a) ∈ B#G we set

((H, r)#G)(x(a)) := (Hx)(arx).
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On Morphisms For each f ∈ (B#G)(x(a), y(b)) = Bb−1a(x, y) we set

((H, r)#G)(f ) := H(f ),

which is an element of B′r−1
y b−1arx (Hx, Hy) = (B′#G)((Hx)(arx), (Hy)(bry)). Then

as easily seen, (H, r)#G is a strictly G-equivariant functor, and hence (H, r)#G =
((H, r)#G, 1) : B#G → B′#G is in G-Cat.

Next let (H ′, r ′) : B → B′ be a 1-morphism and θ : (H, r) → (H ′, r ′) a 2-morphism in
G-GrCat. We define θ#G : (H, r)#G ⇒ (H ′, r ′)#G by

(θ#G)x(a) := θx

for all x(a) ∈ B#G. Then it is easy to see that θ#G is a 2-morphism in G-Cat.

Lemma 7.4 The definition above extends the smash product construction to a 2-functor

?#G : G-GrCat → G-Cat.

Proof We only show that ?#G preserves the horizontal composition because the other prop-
erties for ?#G to be a 2-functor are immediate from the definition. Let (H, ξ), (H ′, ξ ′) ∈
G-GrCat(B,B′), (F, ζ ), (F ′ζ ′) ∈ G-GrCat(B′,B′′) and let θ : (H, ξ) ⇒ (H ′, ξ ′),
θ ′ : (F, ζ ) ⇒ (F ′ζ ′) be 2-morphisms in G-GrCat. For each x(a) ∈ B#G we have

((θ ′ ∗ θ)#G)(x(a)) = (θ ′ ∗ θ)x = (F ′θ)x · (θ ′H)x = F ′(θx) · θ ′(Hx),

and

((θ#G) ∗ (θ#G))(x(a)) = (((F ′, ζ ′)#G)(θ#G))((θ ′#G)((H, ξ)#G)))(x(a))

= ((F ′ζ ′)#G)(θ#G))(x(a)) · ((θ ′#G)((H, ξ)#G))(x(a))

= ((F ′, ζ ′)#G)(θx) · (θ ′#G)((Hx)(aξx))

= F ′(θx) · θ ′(Hx),

which shows that (θ ′ ∗ θ)#G = (θ#G) ∗ (θ#G).

7.3 Main Theorem

We are now in a position to state our main result, which is a precise form of Theorem 1.2.

Theorem 7.5 Both 2-functors ?/G and ?#G are 2-equivalences. They are mutual 2-quasi-
inverses. Hence the 2-categories G-Cat and G-GrCat are 2-equivalent. More precisely, we
have four 2-natural isomorphisms

ε : 1G-Cat ⇒ (?#G)(?/G)

ε′ : (?#G)(?/G) ⇒ 1G-Cat

ω : 1G-GrCat ⇒ (?/G)(?#G)

ω′ : (?/G)(?#G) ⇒ 1G-GrCat

with the property that

ε′
CεC = 1C, (7.5)

εCε′
C ∼= 1(C/G)#G, (7.6)

ω′
BωB = 1B, (7.7)

ωBω′
B ∼= 1(B#G)/G, (7.8)



170 H. Asashiba

and that ε′
C are strictly G-equivariant functors and ωB are strictly degree-preserving func-

tors for all C ∈ G-Cat and B ∈ G-GrCat. Furthermore ε and ω′ are strictly 2-natural
transformations, and in particular, ?/G is strictly left 2-adjoint to ?#G. Namely the pasting
of the diagram

(7.9)

is equal to the identity 1?#G, and the pasting of the diagram

(7.10)

is equal to the identity 1?/G

The proof is given in the next section.

7.4 Proof of Theorem 1.3

(1) and (2) These are direct consequences of Eqs. 7.5–7.8.
(3) This follows from Eqs. 7.9 and 7.10 by a general theory of 2-categories (see e.g. [9],

[5]; the proof proceeds just the same way as in the usual category case).
(4) G-Cat(C,C ′) � G-Cat(C, (C ′/G)#G) ∼= G-Cat(C/G,C ′/G).
(5) A similar proof as above works.
Theorem 1.3 gives the following.

Corollary 7.6 Let C,C ′ ∈ G-Cat. Then we have a faithful embedding

G-Cat(C, C ′) → Inv(C,C ′/G)

of k-categories.

Proof G-Cat(C,C ′) � G-GrCat(C/G,C ′/G) ⊆ Fun(C/G,C ′/G) ∼= Inv(C, C ′/G),
where the first equivalence is an injection on objects by Eq. 7.5. Indeed, if (F, φ), (F ′, φ′) ∈
G-Cat(C,C ′) and (F, φ)/G = (F ′, φ′)/G, then the naturality of ε shows that

εC′(F, φ) = (((F, φ)/G)#G)εC = (((F ′, φ′)/G)#G)εC = εC′(F ′, φ′).

Hence by Eq. 7.5 we have (F, φ) = (F ′, φ′).

7.5 Weak Universality of the Canonical Functor of a Smash Product

As an application of Theorem 7.5 we obtain the proposition below, which states that the
canonical functor (Q,1) : B#G → B to a G-graded category B has the weak universality
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among G-invariant functors from G-categories to B that induce degree-preserving functors
(see Definition 7.7 below). (It often does not have the universality as Remark 7.10 shows.)

Definition 7.7 Let C be a G-category with the canonical functor (P,ψ) : C → C/G, B a
G-graded category, and r : C0 → G a map. Then a G-invariant functor (F, φ) : C → B is
said to induce a degree-preserving functor with r if the unique functor H : C/G → B such
that (F, φ) = H(P, ψ) (the existence of which is guaranteed by Proposition 5.4) has the
property that (H, r) is a degree-preserving functor.

Lemma 7.8 Let C be a G-category and B a G-graded category. Then a G-invariant functor
(F, φ) : C → B induces a degree-preserving functor with a map r : C0 → G if and only if
for each x, y ∈ C and a ∈ G the restriction of

F (1)
x,y :

⊕

b∈G

C(Abx, y) → B(Fx, Fy)

to C(Aryax, y) induces a homomorphism C(Aryax, y) → Barx (Fx, Fy), or equivalently,
for each f ∈ C(Aryax, y) we have F(f ) · φryax ∈ Barx (Fx, Fy).

Proof This follows from the definition Eq. 5.1 of the G-grading of C/G and the commuta-
tivity of the diagram

(7.11)

(see Proof of [1, Proposition 2.6 (3)]).

Proposition 7.9 Let C be a G-category, B a G-graded category, and (Q,1) : B#G →
B the canonical functor. If (F, φ) : C → B is a G-invariant functor inducing a degree-
preserving functor, then there exists a G-equivariant functor (K, ρ) : C → B#G such that
(F, φ) = (Q,1)(K, ρ).

Proof Let (P,ψ) : C → C/G be the canonical functor, and assume that a G-invariant
functor (F, φ) : C → B induces a degree-preserving functor with a map r : C0 → G. Then
there exists a unique equivalence H : C/G → B such that (F, φ) = H(P, ψ) and (H, r) is
a degree-preserving functor. It is easy to verify the commutativity of the diagram
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using the explicit forms of the functors (see Definition 8.1 for εC = (εC, φC)). Thus we can
take (K, ρ) := ((H, r)#G)(εC, φC), which is G-equivariant by Lemma 2.8.

Remark 7.10 In the above proposition (K, ρ) is not uniquely determined in general. For
instance, consider the case that the center Z(G) of G is not trivial, and take C := B#G and
(F, φ) := (Q,1). Then (K, ρ) := (Aa,1) satisfies the required property for all a ∈ Z(G).

Also the weak universality of (Q,1) : B#G → B gives us a characterization of a G-
covering functor to B inducing a degree-preserving functor.

Proposition 7.11 Let C be a G-category, B a G-graded category with the canonical
functor (Q,1) : B#G → B, and (F, φ) : C → B a G-invariant functor inducing a
degree-preserving functor. Then (F, φ) is a G-covering functor if and only if there exists a
G-equivariant equivalence (K, ρ) : C → B#G such that (F, φ) = (Q,1)(K, ρ).

Proof (⇒). We keep the notation and the argument used in the proof of the proposition
above, which constructed a G-equivariant functor (K, ρ) : C → B#G such that (F, φ) =
(Q,1)(K, ρ). Since ?#G is a 2-functor, (H, r)#G is an equivalence. In addition (εC, φC) is
also a G-equivariant equivalence by Theorem 7.5. Hence as the composite of these (K, ρ)

is an equivalence.
(⇐). This follows by Lemma 5.11(2).

8 Proof of Theorem 7.5

8.1 ε : 1G-Cat ⇒ (?#G)(?/G)

Definition 8.1 (see [1, Theorem 5.10]) Let C be an object ofG-Cat and (P,ψ) : C → C/G

the canonical functor. We define a G-equivariant functor εC : C → (C/G)#G as follows.
On Objects For each x ∈ C we set

εC(x) := (Px)(1).

On Morphisms For each f : x → y in C, we set

εC(f ) := P (1)
x,y(f ) (= P(f )).

Natural Isomorphisms For each a ∈ G we define a natural transformation φa : AaεC →
εCAa by φax := ψax for all x ∈ C, i.e., by the commutative diagram

AaεC
φax−→ εCAax

|| ||
(Px)(a) −→

ψa

(PAax)(1).

Here note that ((C/G)#G)((Px)(a), (PAax)(1)) = (C/G)a(Px, PAax) � ψax. Set φC :=
(φa)a∈G. Then we have already shown that εC = (εC, φC) is a G-equivariant equivalence in
[1, Theorem 5.10].
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Lemma 8.2 ε is a strictly 2-natural transformation.

Proof Let C, C ′ ∈ G-Cat.
(1) Let (E, ρ) ∈ (G-Cat)(C,C ′). Set (H, 1) := (E, ρ)/G. Then we have a strictly

commutative diagram

where the vertical arrows are the canonical functors. For each x, y ∈ C we have a
commutative diagram

by which it is easy to see that the following diagram is strictly commutative:

(2) Let η : (E, ρ) → (E′, ρ′) be in (G-Cat)(C,C ′). Set (H, 1) := (E, ρ)/G, (H ′, 1) :=
(E′, ρ′)/G and θ : = η/G. Then it immediately follows from definition that εC′η =
(η/G)#G · εC .

By (1) and (2) above ε is a strictly 2-natural transformation.

8.2 ε′ : (?#G)(?/G) ⇒ 1G-Cat

Definition 8.3 Let C be an object of G-Cat and (P,ψ) : C → C/G the canonical functor.
We define a G-equivariant functor ε′

C : (C/G)#G → C as follows.

On Objects For each x ∈ C and a ∈ G we set

ε′
C((Px)(a)) := Aax.
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On Morphisms Let f : (Px)(a) → (Py)(b) be in (C/G)#G. Then we have the diagram

Using this we set

ε′
C(f ) := AbP

(1)
x,y

−1
(f ).

Natural Isomorphisms For each a ∈ G we easily see that Aaε
′
C = ε′

CAa . Thus ε′
C is a

strictly G-equivariant functor.

Lemma 8.4 ε′ is a 2-natural transformation.

Proof Let (E, ρ) : C → C ′ be a 1-morphism in G-Cat. We define a natural transformation
ψ(E,ρ) in the diagram

by
(ψ(E,ρ))(Px)(a) := ρax

for all (Px)(a) ∈ (C/G)#G. Then it is not hard to verify that �(E,ρ) is a natural isomor-
phism. This shows the 1-naturality of ε′. Now let (E′, ρ)′ : C → C ′ be another 1-morphism
and η : (E, ρ) ⇒ (E′ρ′) a 2-morphism inG-Cat. Then it is easy to check the commutativity
of the diagram

of natural transformations, which shows the 2-naturality of ε′.

8.3 ω : 1G-GrCat ⇒ (?/G)(?#G)

Definition 8.5 (see [1, Proposition 5.6]) Let B ∈ G-GrCat and let (P,ψ) : B#G →
(B#G)/G be the canonical functor. We define a 1-morphism ωB : B → (B#G)/G in
G-GrCat as follows.

On Objects For each x ∈ B we set

ωB(x) := P(x(1)).
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On Morphisms For each f : x → y in B, we set
ωB(f ) := P

(1)
x(1),y(1) (f ).

Then we have already shown thatωB is a strictly degree-preserving equivalence ofG-graded
categories in [1, Proposition 5.6].

Lemma 8.6 ω is a 2-natural transformation.

Proof Let (H, r) : B → B′ be a 1-morphism in G-GrCat and (P ′, ψ ′) : B′#G →
(B′#G)/G the canonical functor. We define a natural transformation �(H,r) in the diagram

by
�(H,r)x := φ′

rx
(Hx)(1)

for all x ∈ B. Then it is not hard to verify that �(H,r) is a natural isomorphism. This shows
the 1-naturality of ω. Now let (H ′, r ′) : B → B′ be another 1-morphism and θ : (H, r) ⇒
(H ′r ′) a 2-morphism inG-GrCat. Then it is easy to check the commutativity of the diagram

of natural transformations, which shows the 2-naturality of ω.

8.4 ω′ : (?/G)(?#G) ⇒ 1G-GrCat

Definition 8.7 (see Proposition 6.4) Let B ∈ G-GrCat and let (P,ψ) : B#G → (B#G)/G

be the canonical functor. We define a functor ω′
B : (B#G)/G → B as the unique functor

that makes the diagram

strictly commutative, where Q is the canonical G-covering functor associated to the smash
product. Namely, ω′

B is defined as follows.

On Objects For each P(x(a)) ∈ (B#G)/G we set

ω′
B(P (x(a))) := x.
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On Morphisms For each P(x(a)), P (y(b)) ∈ (B#G)/G, we have the following diagram:

Using this we set

ω′
B(u) := P

(1)
x(a),y(b)

−1
(u)

for all u ∈ ((B#G)/G)(P (x(a)), P (y(b))).

Degree Adjuster Finally we define a degree adjuster rB of ω′
B by

rB(P (x(a))) := a

for all P(x(a)) ∈ (B#G)/G.

Lemma 8.8 ω′
B = (ω′

B, rB) is a degree-preserving functor, and hence a 1-morphism in
G-GrCat for all B ∈ G-GrCat.

Proof It is not hard to verify that ω′
B turns out to be a functor. We show that ω′

B = (ω′
B, rB)

is degree-preserving (see Definition 9). Let P(x(a)), P (y(b)) ∈ (B#G)/G and c ∈ G. Then

ω′
B(((B#G/G)rB(y(b))·c(P (x(a)), P (y(b))) = ω′(P (1)

x(a),y(b) ((B#G)(Abcx
(a), y(b))))

= (B#G)(x(bca), y(b))

= Bb−1bca(x, y) = Bca(x, y)

= Bc·rB(x(a))(ω′
B(P (x(a)), ω′

B(P (y(b)))).

Remark 8.9 (cf. [1, Remark 5.9]) As is seen above ω′
B is not strictly degree-preserving in

general. This forced us to extend the definition of degree-preserving functors from a strict
version to a weak one.

Lemma 8.10 ω′ is a strictly 2-natural transformation.

Proof Let (H, r) : B → B′ be a 1-morphism in G-GrCat and (P,ψ) : B#G → (B#G)/G,
(P ′, ψ ′) : B′#G → (B′#G)/G the canonical functors. We first show the 1-naturality of ω′,
i.e., the commutativity of the diagram
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To show this let u : P(x(a)) → P(y(b)) be in (B#G)/G and f := P
(1)
x(a),y(b)

−1(u). Then

[ω′
B′ ◦ ((H, r)#G)/G](P (x(a))) = ω′

B′(P ′((Hx)(arx))) = Hx = [(H, r) ◦ ω′
B](P (x(a))),

and

[ω′
B′ ◦ ((H, r)#G)/G](u)

(a)= [((P ′, ψ ′)((H, r)#G))
(1)
x(a),y(b) ](f )

(b)= (P ′, ψ ′)(1)
(Hx)(arx ),(Hy)(bry ) (Hf )

= Hf

= [(H, r) ◦ ω′
B](u),

where the equality (a) holds by definition of ((H, r)#G)/G (see (7.11) and Proof of [1,
Proposition 2.6 (3)]), and the equality (b) follows from the fact that (H, r)#G is strictly
G-equivariant.

To show the 2-naturality of ω′ let (H ′, r ′) : B → B′ be another 1-morphism and
θ : (H, r) ⇒ (H ′, r ′) a 2-morphism in G-GrCat. It is enough to verify the following:

ω′
B′((θ#G)/G) = θω′

B.

For each P(x(a)) ∈ (B#G)/G we have

[ω′
B′((θ#G)/G)]P(x(a)) = ω′

B′((θ#G)/G)P (x(a)))

= ω′
B′(P ′((θ#G)(x(a))))

= ω′
B′(P ′(θx))

= ω′
B′(P ′(1)

(Hx)(arx ),(Hy)(ar′x ) (θx))

= θx

= θω′
B(P (x(a))).

8.5 Remaining Parts of the Proof of Theorem 7.5

Verification of (7.5) By definitions of ε and ε′ the the equality (7.5) is obvious.

Verification of (7.6) Let C ∈ G-Cat and let (P,ψ) : C → C/G be the canonical functor.
It is easy to see that we can define a natural isomorphism � : 1(C/G)#G → εCε′

C by

�((Px)(a)) := ψax

for all (Px)(a) ∈ (C/G)#G.

Verification of (7.7) By definitions of ω and ω′ the equality (7.7) is obvious.

Verification of (7.8) Let B ∈ G-GrCat and let (P,ψ) : B#G → (B#G)/G be the canon-
ical functor. It is not hard to see that we can define a natural isomorphism � : ωBω′

B →
1(B#G)/G by

�(P (x(a))) := ψa(x
(1))

for all P(x(a)) ∈ (B#G)/G.
The verifications that the pasting of Eq. 7.9 is equal to the identity and that the pasting

of Eq. 7.10 is equal to the identity are easy and are left to the reader.
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This finishes the proof of Theorem 7.5.

9 Equivalences in 2-Categories G-Cat and G-GrCat

To distinguish several kinds of equivalences (resp. isomorphisms) we call equivalences
(resp. isomorphisms) between categories category equivalences (resp. category isomor-
phisms). In this section we give characterizations of equivalences in the 2-categories G-Cat
and G-GrCat and examine relationships

(a) between G-equivariant functors that are category equivalences and equivalences in the
2-category G-Cat (see Theorem 9.1), and

(b) between degree-preserving functors that are category equivalences and equivalences
in the 2-category G-GrCat. (See Remark 9.7(2).)

Note that a category equivalence was characterized by a half of a pair of functors in mutually
reverse directions, namely a functor is a category equivalence if and only if it is a fully faith-
ful, dense functor. We give similar characterizations of equivalences in both 2-categories
G-Cat and G-GrCat.

9.1 Equivalences in G-Cat

First we characterize equivalences in G-Cat in the following theorem.

Theorem 9.1 Let (E, ρ) : C → C ′ be aG-equivariant functor inG-Cat. Then the following
are equivalent.

(1) (E, ρ) is an equivalence in G-Cat;
(2) E is fully faithful and dense (i.e., E is a category equivalence).

Thus what we called G-equivariant equivalences in earlier sections are exactly the
equivalences in G-Cat.

Proof (1) ⇒(2). This is trivial.
(2) ⇒(1). Assume that E is a category equivalence. Then E has a quasi-inverse F : C ′ →

C, which we may regard as a right adjoint to E, and hence there exist a counit ε : EF ⇒ 1C
and a unit η : 1C′ ⇒ FE, which are natural isomorphisms. Since (E, ρ) is G-equivariant,
ρa are natural isomorphisms for all a ∈ G. Therefore we can construct λ = (λa)a∈G by the
following commutative diagram:

By construction λa are natural isomorphisms for all a ∈ G.

Claim 1 (F, λ) : C ′ → C is a 1-morphism in G-Cat.



2-Categorical Cohen-Montgomery Duality 179

Indeed, let a, b ∈ G. It is enough to show the commutativity of the diagram:

This follows from the following commutative diagrams:

where the commutativity (∗) follows from the following commutative diagram:

In the above the symbol∼ stands for a functor that is uniquely determined in the diagram.
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Claim 2 ε : (E, ρ)(F, λ) ⇒ (1C, (1Aa )a∈G) is a 2-isomorphism in G-Cat.

Indeed, it is enough to show that ε is a 2-morphism in G-Cat, i.e., the following is
commutative:

This follows from the following commutative diagram:

Claim 3 η : (1C′ , (1A′
a
)a∈G) ⇒ (F, λ)(E, ρ) is a 2-isomorphism inc G-Cat.

Indeed, it is enough to show that η is a 2-morphism in G-Cat, i.e., the following is
commutative:

This follow from the following commutative diagram:

These three claims show that (E, ρ) is an equivalence in G-Cat.
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Remark 9.2 It is now trivial that the G-equivariant equivalence εC : C → (C/G)#G is an
equivalence in G-Cat by the theorem above.

9.2 Equivalences in G-GrCat

Next we characterize equivalences in G-GrCat. We first define necessary terminologies.

Definition 9.3 LetA be a category and B a G-graded category.

(1) Let E,F : A → B be functors. Then a natural transformation ε : E ⇒ F is called
homogeneous if εx : Ex → Fx are homogeneous in B for all x ∈ A0.

(2) Let S be a subclass of B0 and B′ a full subcategory of B with B′
0 = S . Then S (or B′)

is said to be homogeneously dense in B if for each x ∈ B0 there exists an x′ ∈ S such
that there exists a homogeneous isomorphism x → x′.

(3) A functor F : A → B is said to be homogeneously dense if the object class F(A0) is
homogeneously dense in B.

We give two examples of homogeneously dense subcategories, the latter will be used to
give an alternative proof of the fact that ωB : B → (B#G)/G is an equivalence in G-GrCat
in Remark 9.7(1).

Recall that a k-algebra A is called local if the sum of non-invertible elements is non-
invertible and that if A is local, then 0 and 1 are its only idempotents.

Example 9.4 Let B be a G-graded k-category and (P,ψ) : B#G → (B#G)/G be the
canonical functor.

(1) If B(x, x) are local k-algebras for all x ∈ B0, then any dense full subcategory B′ of B
is homogeneously dense.

(2) Let B′ be the full subcategory of (B#G)/G with B′
0 := ωB(B0) = {P(x(1)) | x ∈ B}

(see Definition 8.5). Then B′ is homogeneously dense in (B#G)/G. Hence ωB : B →
(B#G)/G is homogeneously dense.

Indeed, to show the statement (1) it is enough to show that if x ∼= y in B, then there exists a
homogeneous isomorphism inB(x, y). Now let f : x → y be an isomorphism inB. Wemay
assume that x �= 0. Write f and f −1 as finite sums: f = ∑

a∈G fa and f −1 = ∑
b∈G gb

with fa ∈ Ba(x, y) and gb ∈ Bb(y, x) for all a, b ∈ G. Then
∑

a,b∈G gbfa = 1x shows
that h := gbfa is an automorphism of x for some a, b ∈ G because B(x, x) is a local
algebra. Thus (h−1gb)fa = 1x and e := fa(h

−1gb) is an idempotent in B(x, x), and hence
e = 1x or e = 0. But (h−1gb)efa = 1x �= 0 shows that e �= 0. Hence fa : x → y is a
homogeneous isomorphism.

The statement (2) follows from the fact that ψa, x : P(x(1)) → P(x(a)) are homogeneous
isomorphisms of degree a in (B#G)/G for all x ∈ B0 and all a ∈ G (see proof of [1, p.
131, Claim 4] for degψa,x).

We now give a characterization of equivalences in the 2-category G-GrCat.

Theorem 9.5 Let (H, r) : B → A be a degree-preserving functor in G-GrCat. Then the
following are equivalent.

(1) (H, r) is an equivalence in G-GrCat.
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(2) H : B → A is a category equivalence with a quasi-inverse I as a left adjoint both
of whose counit ε : IH ⇒ 1A and unit η : 1B ⇒ HI are homogeneous natural
isomorphisms.

(3) H is fully faithful and homogeneously dense.

In (2), I is made into a quasi-inverse (I, s) of (H, r) with ε the counit and η the unit in a
unique way. The degree adjuster s is given by

s = (sx)x∈A0 with sx := (deg ηx)
−1 r−1

Ix ∈ G for allx ∈ A0. (9.1)

Proof (2)⇒(1). Assume the statement (2). Set tx := deg εx for all x ∈ B0, and t ′x := deg ηx

for all x ∈ A0. Define s as in Eq. 9.1, i.e., sx := t ′x
−1

r−1
Ix ∈ G for all x ∈ A0.

Claim 1 (I, s) : A → B is a 1-morphism in G-GrCat.

Indeed, let x, y ∈ A0, a ∈ G and f ∈ Aa(x, y). It is enough to show that

If ∈ Bs−1
y asx (Ix, Iy). Since η is a natural transformation we have HIf = ηyf η−1

x ∈
At ′y (y,HIy)Aa(x, y)At ′x

−1
(HIx, x) ⊆ At ′yat ′x −1(HIx,HIy). SinceH is fully faithful, H

induces a bijection B(Ix, Iy) → A(HIx,HIy), which also induces bijections

Bb(Ix, Iy) → ArIy
−1b rIx (HIx,HIy)

for all b ∈ G. Applying this to b with rIy
−1brIx = t ′yat ′x

−1, we have

If ∈ BrIy t ′yat ′x
−1

r−1
Ix (Ix, Iy) = Bs−1

y asx (Ix, Iy).

Claim 2 ε : (I, s)(H, r) ⇒ (1B, 1) is a 2-isomorphism in G-GrCat.

Indeed, it is enough to show that ε is a 2-morphism in G-GrCat. This is equivalent to
saying that tx = rxsHx for all x ∈ B0 because (I, s)(H, r) = (IH, (rxsHx)x∈B0). Let x ∈
B0. Then since (Hεx)(ηHx) = 1Hx , we have 1 = deg(Hεx) deg(ηHx) = r−1

x txrIHxt
′
Hx .

Hence rxsHx = rxt
′
Hx

−1
r−1
IHx = rxr

−1
x tx = tx , as desired.

Claim 3 η : (1A, 1) ⇒ (H, r)(I, s) is a 2-isomorphism in G-GrCat.

Indeed, it is enough to show that η is a 2-morphism in G-GrCat. This is equivalent to
saying that t ′x = r−1

Ix s−1
x for all x ∈ A0 because (H, r)(I, s) = (HI, (sxrIx)x∈A0). By

definition r−1
Ix s−1

x = r−1
Ix rIx t

′
x = t ′x , as desired.

These three claims show that (H, r) is an equivalence in G-GrCat. By looking at the
proof of Claim 3, we see that the degree adjuster s of I is uniquely determined as in Eq. 9.1
by η and r .

(1) ⇒(3). Assume the statement (1), and let (I, s) be a quasi-inverse of (H, r) with 2-
isomorphisms ε : (I, s)(H, r) ⇒ 1B and η : 1A ⇒ (H, r)(I, s). Then H(B0) ⊇ HI (A0),
and the latter is homogeneously dense in A because η : 1A ⇒ HI is a homogeneous
natural isomorphism.

(3) ⇒(2). Assume the statement (3). We can imitate the proof of (iii) ⇒(ii) in [10, p. 93,
Theorem 1] to construct a quasi-inverse I : A → B as a left adjoint to H and a pair of a
counit ε : IH ⇒ 1B and a unit η : 1A ⇒ HI . Here we just give definitions of them. Then
it is enough to show that both ε and η are homogeneous natural isomorphisms.
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Definition of I and η Let x ∈ A0. Since H is homogeneously dense, there exists a
yx ∈ B0 such that there is a homogeneous isomorphism ηx : x → Hyx . Choose a pair
(yx, ηx) once for all x, and define Ix := yx . Then ηx : x → HIx is a homogeneous
isomorphism, and define η := (ηx)x∈A0 .

Let f ∈ A(x, x′). we define If as follows. Since H is fully faithful, H induces a
bijection HIx,Ix′ : B(Ix, Ix′) → A(HIx,HIx′). Then define If := H−1

Ix,Ix′(ηx′f η−1
x ) as

in the following diagram:

Definition of ε Let y ∈ B0. Then Hy ∈ A0, and ηHy ∈ A(Hy,HIHy). H induces a
bijection HIHy, y : B(IHy, y) → A(HIHy,Hy). Then define εy := H−1

IHy, y(η
−1
Hy).

Then the same proof as in [10, p. 93] works (or it is straightforward) to show that I is a
left adjoint functor to H with the unit η : 1A → HI and the counit ε := (εy)y∈B0 : IH ⇒
1B.

Now by definition η is a homogeneous natural isomorphism. It remains to show that εy

are homogeneous isomorphisms for all y ∈ B0. Since ηHy is a homogeneous isomorphism,
so is η−1

Hy ∈ A(HIHy, Hy). Set a := deg ηHy . Since (H, r) is a degree-preserving functor,
the bijection HIHy, y induces a bijection

Brya r−1
IHy (IHy, y) → Aa(HIHy,Hy) � η−1

Hy.

Hence εy = H−1
IHy, y(η

−1
Hy) ∈ Bryb r−1

IHy (IHy, y) and is a homogeneous isomorphism.

The following is immediate by Theorem 9.5.

Corollary 9.6 Let (H, r) : B → A be a 1-morphism in G-GrCat. Then the following are
equivalent.

(1) (H, r) is an isomorphism in G-GrCat.
(2) H : B → A is a category isomorphism.

If this is the case, then the inverse of (H, r) is given by

(H, r)−1 = (H−1, (r−1
H−1x

)x∈A0).

Remark 9.7 Let B ∈ G-GrCat0.

(1) Theorem 9.5 and Example 9.4(2) give an immediate alternative proof of the fact that
ωB : B → (B#G)/G is an equivalence in G-GrCat.

(2) Also by Theorem 9.5, a degree-preserving functor (H, r) : A → B in G-GrCat
with H a category equivalence is an equivalence in G-GrCat if and only if H is
homogeneously dense. In particular, if B(x, x) are local algebras for all x ∈ B0,
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then all degree-preserving functors that are category equivalences are equivalences in
G-GrCat by Example 9.4(1).

Next we will give one more characterization of an equivalence in G-GrCat using the
composite of degree preserving functors which are surjective, bijective and injective on
objects. First we add necessary terminologies.

Definition 9.8 Let B be a G-graded category.

(1) For each x, y ∈ B, we say that x and y are homogeneously isomorphic (and write
x ∼=H y) if there exists a homogeneous isomorphism x → y. Since the set of homo-
geneous isomorphisms in B is closed under composition and taking inverses, the
relation ∼=H on B0 is an equivalence relation, whose equivalence classes are called
homogeneous isoclasses.

(2) Let B′ be a full subcategory of B. Then B′ is called a homogeneous skeleton of B if B′
0

forms a complete set of representatives of homogeneous isoclasses in B0. Note that B′
is homogeneously dense in B if and only if it contains a homogeneous skeleton of B.

Lemma 9.9 Let B ∈ G-GrCat0. If B′ is a homogeneously dense full subcategory of B, then
the inclusion functor S : B′ ↪→ B induces an equivalence (S, 1) : B′ → B in G-GrCat.

Proof Note that B′ is again a G-graded category by setting B′a(x, y) := Ba(x, y) for all
x, y ∈ B′

0 and all a ∈ G, and hence (S, 1) : B′ → B is a degree-preserving functor. Then
the assertion following by Theorem 9.5.

Proposition 9.10 Let (H, r) : B → A be a degree-preserving functor in G-GrCat. Then
the following are equivalent.

(1) (H, r) is an equivalence in G-GrCat.
(2) There exist homogeneously dense full subcategories B′ and A′ of B and A, respec-

tively and a homogeneous natural isomorphism

ζ : (H, r) ⇒ (S′, 1)(H ′, r ′)(N, s),

where S : B′ ↪→ B and S′ : A′ ↪→ A are inclusion functors, and (N, s) is a quasi-
inverse of the equivalence (S, 1) in G-GrCat.

Proof (2) ⇒(1). This immediately follows by Theorem 9.5.
(1) ⇒(2). Assume the statement (1). Then there exist degree-preserving functors

(H, r) : B → A and (I, s) : A → B, and 2-isomorphisms ε : (I, s)(H, r) ⇒ (1B, 1) and
η : (1B, 1) ⇒ (H, r)(I, s) in G-GrCat. Let B′ be a homogeneous skeleton of B. Then B′
is homogeneously dense in B. Let A′ be the full subcategory of A with A′

0 := H(B′
0).

Then we claim that A′ is a homogeneous skeleton of A. Indeed, let x ∈ A0. Then by con-
struction there exist an x′ ∈ B′ and a homogeneous isomorphism f : Ix → x′ in B. Hence
we have homogeneous isomorphisms x

ηx−→ HIx
Hf−→ Hx′ in A. Thus x ∼=H Hx′ ∈ A′

0,
which shows that A′ is homogeneously dense in A. Next assume that there exists a homo-
geneous isomorphism g : Hx → Hy for some x, y ∈ B′

0. Then we have homogeneous
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isomorphisms x
εx←− IHx

Ig−→ IHy
εy−→ y. Thus x ∼=H y, and hence x = y. As a

consequence
x �= y impliesHx �∼=H Hy. (9.2)

This proves the claim. Now let S : B′ ↪→ B and S′ : A′ ↪→ A be inclusion functors,
and as in the proof of Theorem 9.5 construct a quasi-inverse (N, s) of the equiva-
lence (S, 1) in G-GrCat as a left adjoint with a counit 11B′ : NS = 1B′ and a unit
ν : 1B ⇒ SN . Then sx = (deg νx)

−1 for all x ∈ B0. The implication (9.2) also shows
that H induces a bijection B′

0 → A′
0. As H is fully faithful, H induces a category

isomorphism H ′ : B′ → A′ that satisfies S′H ′ = HS. Let r ′ be the restriction of r

to B′
0. Then (H ′, r ′) : B′ → A′ is a degree-preserving functor, which turns out to be

an isomorphism in G-GrCat by Corollary 9.6. Now ζ := Hν is a homogeneous nat-
ural isomorphism H ⇒ HSN = S ′H ′N . It remains to show that ζ is a 2-morphism
(H, r) ⇒ (S′, 1)(H ′, r ′)(N, s) = (S′H ′N, (sxr

′
Nx)x∈B0) in G-GrCat. For this it is enough

to show that degHνx = (sxr
′
Nx)

−1rx for all x ∈ B0. Now since deg νx = s−1
x and

νx : x → SNx = Nx, we have degHνx = r−1
Nxs

−1
x rx = (sxr

′
Nx)

−1rx , as desired.

The following is immediate by Proposition 9.10 and Lemma 9.9.

Corollary 9.11 Let B,A ∈ G-GrCat0. Then the following are equivalent.

(1) B � A in G-GrCat.
(2) There exist homogeneously dense full subcategories B′ and A′ of B and A, respec-

tively such that B′ ∼= A′ in G-GrCat.
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