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Abstract We decompose the weighted subobject commutator of M. Gran, G. Janelidze and
A. Ursini as a join of a binary and a ternary commutator.
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1 Introduction

In their article [6], M. Gran, G. Janelidze and A. Ursini introduce a weighted normal com-
mutator which, depending on the chosen weight, captures classical commutators such as
the Huq commutator [1, 3, 9] and the Smith commutator [1, 4, 14, 15]. It is constructed as
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the normal closure of a so-called weighted subobject commutator. We show how this latter
commutator may be decomposed as a join of a binary and a ternary commutator [7, 8] defi-
ned in terms of co-smash products [5]. We moreover explain that the corresponding concept
of weighted centrality of arrows can be expressed in terms of the admissibility of certain
diagrams in the first author’s sense [12].

2 The Weighted Subobject Commutator

In a finitely cocomplete homological category [1, 10], a weighted cospan is a triple of
morphisms

W

w

��
X x

�� D Yy
��

(A)

in which (x, y) plays the role of cospan and w is the weight. Consider the pullback

W + Y 〈
1W
0

〉

���
��

��
��

�

(W +X)×W (W + Y)

π2

���������

π1 ���
��

��
��

W

W +X

〈
1W
0

〉

����������

and the induced outer diagram

W +X

〈
1W+X,ιW ◦

〈
1W
0

〉〉

��

〈
w
x

〉
��������������������������� (W + X)×W (W + Y)

ϕ

��

W + Y

〈
ιW ◦

〈
1W
0

〉
,1W+Y

〉

��

〈
w
y

〉
���������������������������

D.

In [6] the morphisms x and y are said to commute over w if and only if there exists a dotted
arrow ϕ (called an internal multiplication) such that the above diagram is commutative.

As explained in [6], taking W = 0 captures commuting pairs in the Huq sense (x and y

commute over 0 if and only if they Huq-commute), and w = 1D captures centralising equiv-
alence relations in the Smith sense (the respective normalisations x and y of two equivalence
relations R and S on D commute over 1D if and only if R and S Smith-commute).

Now consider the canonical comparison morphism
〈
ιW ιW
ιX 0
0 ιY

〉
: W +X + Y → (W +X)×W (W + Y)

which, being a regular epimorphism [6] as the comparison between a sum and a product in
the category of points over an object W in a regular Mal’tsev category, induces a short exact
sequence

0 �� K
� �� �� W +X + Y

〈
ιW ιW
ιX 0
0 ιY

〉

� �� (W + X)×W (W + Y) �� 0. (B)
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The (W,w)-weighted subobject commutator κ : [(X, x), (Y, y)](W,w) → D of x and y is
the direct image of K along the induced arrow to D as in

K
� �� ��

���

W +X + Y
〈
w
x
y

〉

��[(X, x), (Y, y)](W,w)
��

κ
�� D.

It is clear from the exactness of the above sequence that x and y commute over w if and
only if [(X, x), (Y, y)](W,w) vanishes.

The normal closure of κ is called the (W,w)-weighted normal commutator of x and y

and denoted by N[(X, x), (Y, y)](W,w).

3 Admissibility

In order to analyse the weighted subobject commutator in terms of the binary and ter-
nary commutators considered in [7, 8], we pass via an intermediate notion from [12]. An
admissibility diagram is a diagram of shape

A
f ��

α
���

��
��

��
� B

r
��

s
��

β

��

C
g��

γ
		��

��
��

��

D

(C)

with f � r = 1B = g � s and α � r = β = γ � s. Note that by taking the pullback of f with
g, any admissibility diagram such as (C) may be extended to

C

e2		��
��

�
g ���

��
��

γ




A×B C

π2
�������

π1 ���
��

��
B

r		��
��

�

s
�������

β �� D

A

f
�������

e1
�������

α

��

in which the pullback square is a double split epimorphism.
The triple (α, β, γ ) is said to be admissible with respect to (f, r, g, s) if there is a

(necessarily unique) morphism ϕ : A×B C → D such that ϕ � e1 = α and ϕ � e2 = γ .

4 Commuting Pairs in Terms of Admissibility

It is immediately clear from the definitions that the morphisms x and y commute over
w if and only if the triple

(〈
w
x

〉
, w,

〈
w
y

〉)
is admissible with respect to the quadruple(〈 1W

0

〉
, ιW ,

〈 1W
0

〉
, ιW

)
as in the diagram

W +X

〈
1W
0

〉

��

〈
w
x

〉
���

��
��

��
��

� W
ιW

��
ιW

��

w

��

W + Y

〈
1W
0

〉

��

〈
w
y

〉
		��

��
��

��
��

D.

(D)
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5 Admissibility in Terms of Commuting Pairs

Consider a diagram (C) and the induced weighted cospan

B

β

��
X = Ker(f )

α◦ker(f )
�� D Ker(g) = Y.

γ ◦ker(g)
��

We claim that the triple (α, β, γ ) is admissible with respect to (f, r, g, s) if and only if
x = α � ker(f ) and y = γ � ker(g) commute over w = β : W = B → D. To see this, it
suffices to compare Diagram (C) with the induced Diagram (D). In fact there is a regular
epimorphism of admissibility diagrams from the latter to the former which keeps D fixed
and makes

B +X

〈
1B
0

〉

��

〈
r

ker(f )
〉

���

B
ιB

��
ιB

�� B + Y

〈
1B
0

〉

��

〈
s

ker(g)
〉

���
A

f ��
B

r
��

s
�� C

g��

commute. This already proves the “only if” in our claim. For the “if” suppose that x and y

commute over β . For the induced arrow

ϕ : (B +X)×B (B + Y) → D

to factor over the regular epimorphism
〈 r

ker(f )
〉 ×B

〈 s
ker(g)

〉 : (B +X)×B (B + Y) → A×B C,

we only need that it vanishes on Ker
(〈 r

ker(f )
〉) × Ker

(〈 s
ker(g)

〉)
. This does indeed happen,

because

ϕ � (
ker

(〈 r
ker(f )

〉) × ker
(〈 s

ker(g)
〉)) � 〈1, 0〉 = ϕ � 〈

1B+X, ιB � 〈 1B
0

〉〉 � ker
(〈 r

ker(f )
〉)

= 〈
β
x

〉 � ker
(〈 r

ker(f )
〉)

= α � 〈 r
ker(f )

〉 � ker
(〈 r

ker(f )
〉)

is trivial. Similarly, one can check that the arrow

ϕ � (
ker

(〈 r
ker(f )

〉) × ker
(〈 s

ker(g)
〉)) � 〈0, 1〉

is trivial.

6 Binary and Ternary Higgins Commutators

If k : K → X and l : L → X are subobjects of an object X in a finitely cocomplete homo-
logical category, then the (Higgins) commutator [K,L] ≤ X is the image of the induced
morphism

K � L
� ��ιK,L �� K + L

〈
k
l

〉

�� X,
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where
K � L = Ker

(〈
1K 0
0 1L

〉
: K + L → K × L

)
.

As explained in [6], the Higgins commutator is another special case of the weighted
subobject commutator recalled above. This commutator was first introduced in [7, 11].
Higher-order versions of it exist and are studied in [7, 8].

The object K � L, as K � L �M below, is an example of a co-smash product [5]. It is
worth recalling from [11] that it may be computed as the intersection K	L ∧ L	K, where
the object K	L from [2] is the kernel in the split exact sequence

0 �� K	L
� �� �� K + L

〈
1K
0

〉
� ��
K ��

ιK
�� 0.

Furthermore, also the sequence

0 �� K � L
� �� �� K	L

� ��
L ���� 0 (E)

is split exact.
If m : M → X is another subobject of X, then the ternary (Higgins) commutator

[K,L,M] � X is defined as the image of the composite

K � L �M
� ��ιK,L,M �� K + L+M

〈
k
l
m

〉

�� X,

where ιK,L,M is the kernel of the morphism

K + L+M

〈
iK iK 0
iL 0 iL
0 iM iM

〉

�� (K + L)× (K +M)× (L+M).

It is well known that co-smash products are not associative, in general; furthermore, ternary
co-smash products or commutators need not be decomposable into iterated binary ones:
see [5, 7, 8].

Theorem 1 Consider a weighted cospan (A) such that x and y are normal monomorphisms
(= kernels) in a finitely cocomplete homological category. Then x and y commute over w
precisely when the commutators [X, Y ] and [X,Y, Im(w)] vanish.

Proof First of all we show that x and y coincide with the images of
〈
w
x

〉 � ker
(〈 1W

0

〉)
and

〈
w
y

〉�ker
(〈 1W

0

〉)
, respectively, as in (D). To see this, we consider the diagram with short exact

rows
X

ιX

��

ηWX


0 �� W	X

ξ

��

� ��
κB,X

�� W +X

〈
1W
0

〉
� ��

〈
w
x

〉

��

W

d◦w
��

�� 0

0 �� X
� ��

x
�� D

d

� �� D0 �� 0.

It is clear that
〈 1W

0

〉� ιX = 0 induces the factorisation ηWX of ιX over the kernel κB,X of
〈 1W

0

〉
.

Similarly, since
d � 〈

w
x

〉 � κB,X = d � w � 〈 1W
0

〉 � κB,X
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is trivial we obtain the dotted factorisation ξ . Now

x � ξ � ηWX = 〈
w
x

〉 � κB,X � ηWX = 〈
w
x

〉 � ιX = x,

so ξ � ηWX = 1X because x is a monomorphism. In particular, ξ is a regular epimorphism. It
follows that x is the image of

〈
w
x

〉 � κB,X .
We know from the above discussion that x and y commute over w precisely when the

triple
(〈

w
x

〉
, w,

〈
w
y

〉)
is admissible with respect to

(〈 1W
0

〉
, ιW ,

〈 1W
0

〉
, ιW

)
. Lemma 4.5 in [8]

now tells us that this happens if and only if the commutators [X, Y ] and [X, Y, Im(w)]
vanish.

Via Theorem 4.6 in [8] we now recover the known result that the Smith is Huq condi-
tion [13] holds if and only if, for any given cospan of normal monomorphisms (x, y), the
property of commuting over w is independent of the chosen weight w making (x, y,w) a
weighted cospan.

We also see that the (W,w)-weighted normal commutator N[(X, x), (Y, y)](W,w) of x
and y is the normal closure of [X,Y ] ∨ [X, Y, Im(w)] in D, since these two normal sub-
objects satisfy the same universal property. We shall, however, not insist further on this,
because we can obtain the following refinement (Theorem 2).

Lemma 1 If X, Y , and W are objects in a finitely cocomplete homological category, then
there is a decomposition

(X + Y) �W ∼= (
(X � Y �W)� (X �W)

)
� (Y �W).

More precisely, there exists an object V and split short exact sequences

0 �� V
� �� �� (X + Y) �W

� ��
Y �W ���� 0

and

0 �� X � Y �W
� �� �� V

� ��
X �W ���� 0.

Proof This Lemma 2.12 in [8], a result which was first obtained by M. Hartl and B.
Loiseau.

Theorem 2 Given a weighted cospan (A) in a finitely cocomplete homological category,
the (W,w)-weighted subobject commutator of monomorphisms x and y decomposes as

[(X, x), (Y, y)](W,w) = [X,Y ] ∨ [X, Y, Im(w)].

Proof We decompose the kernel K of the short exact sequence (B) into a join of the co-
smash products X�Y and X�Y �W considered as subobjects of K. The result then follows
from Corollary 2.14 in [7]. Indeed, the image of the composite

X � Y �W → W + X + Y → D
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is [X,Y, Im(w)], which is a subobject of [(X, x), (Y, y)](W,w). It is easily seen that also
[X,Y ] ≤ [(X, x), (Y, y)](W,w) and that these two inclusions are jointly regular epic.

Consider the cube of solid split epimorphisms

K

��

� �� ���		

		

(W + X)	Y

��

�		

		

�� W	Y

��

�		

		
(W + Y)	X

��

		

� �� �� W + X + Y ��

��

		��
��

��
W + Y

��

		��
��

��

W	X

��

� �� �� W + X ��

��

W

��

X � Y
� �� ���		

		

X	Y�		

		

�� Y

Y	X

		

� �� �� X + Y ��

		��
��

��
Y

		��
��

��
�

X X �� 0

which, taking kernels horizontally, yields two 3 × 3 diagrams (or, equivalently, a 3 × 3
diagram of vertical split epimorphisms). Note that the bottom one has X�Y , and the top one
K, in its back left corner. It suffices to prove that, taking kernels vertically now, we obtain
the split exact sequence

0 �� X � Y �W
� �� �� K

� ��
X � Y ���� 0

in the back left corner of the induced 3× 3× 3 diagram. Taking vertical kernels of the front
and middle sections of the diagram above, we already obtain a morphism

0 �� U

��

� �� �� (X + Y)	W
� ��

��

Y	W

��

���� 0

0 �� X �W
� �� �� X	W

� ��
W ���� 0

of short exact sequences. Using (E) we see that the sequence

0 �� U
� �� �� (X + Y) �W

� ��
Y �W ���� 0

is split exact. Noting that V in Lemma 1 is the object U , we see that the co-smash product
X �Y �W must coincide with the kernel of U → X �W , which we already know coincides
with the needed kernel of K → X � Y .
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