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Abstract We prove that a regular category C is a Mal’tsev category if and only if a
strong form of the denormalised 3 × 3 Lemma holds true in C. In this version of the
3 × 3 Lemma, the vertical exact forks are replaced by pullbacks of regular epimorphisms
along arbitrary morphisms. The shape of the diagram it determines suggests to call it the
Cuboid Lemma. This new characterisation of regular categories that are Mal’tsev categories
(= 2-permutable) is similar to the one previously obtained for Goursat categories (= 3-
permutable). We also analyse the “relative” version of the Cuboid Lemma and extend our
results to that context.
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1 Introduction

One of the motivations to introduce the notion of a Mal’tsev category, already mentioned in
the classical article by A. Carboni, J. Lambek and M.C. Pedicchio [4], was the possibility of
establishing extended versions of homological diagram lemmas, such as the Snake Lemma,
in a non-pointed context. This idea was further pursued in the work of D. Bourn [2], who
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established an extended version of the 3×3 Lemma in any regular Mal’tsev category, called
the denormalised 3 × 3 Lemma. In general, in order to formulate this kind of result in a
non-pointed context, the short exact sequences are simply replaced by exact forks, i.e. by
diagrams of the form

Rf

f1 ��

f2

�� A
f �� �� B

where f is a regular epimorphism, and (Rf , f1, f2) is the kernel pair of f .
The validity of the denormalised 3 × 3 Lemma is actually equivalent to the property

of 3-permutability of the composition of equivalence relations [9, 15]: for all equivalence
relations R and S on the same object one has that

RSR = SRS.

Those regular categories having 3-permutable equivalence relations are called Goursat cate-
gories, and they were introduced in [3]. However, the regular categories having the Mal’tsev
property are precisely those that satisfy the stronger property of 2-permutability of the
composition of equivalence relations, namely

RS = SR.

These observations naturally led to the problem of determining whether there existed a
homological diagram lemma whose validity would characterise Mal’tsev categories among
regular ones, in the same way as the denormalised 3 × 3 Lemma characterises Goursat
categories. The present article answers this question: the Cuboid Lemma is a new diagram
lemma, stronger than the denormalised 3 × 3 Lemma, allowing one to obtain the desired
characterisation of Mal’tsev categories (Theorems 4.3 and 4.4). This result is obtained by
using the “calculus of relations” available in any regular category, much in the spirit of the
above mentioned article [4].

Our new observations can also be extended from the “absolute” context of regular cat-
egories to the wider context of “relative” regular categories [7, 12, 13]. Here, the role of
regular epimorphisms (for regular categories) is played by morphisms that belong to a
distinguished class E of regular epimorphisms. Relative regular categories give a suitable
setting to develop a “calculus of E-relations”: this makes it possible to extend the main
results obtained in a regular category to the “relative” context, by using exactly the same
proofs.

1.1 Structure of the Paper

In Section 2 we give the main background concerning regular categories and the calcu-
lus of relations. We revise some known properties of regular Mal’tsev categories and their
characterisation through the so-called regular pushouts in Section 3. We also include a new
characterisation of Mal’tsev categories through a suitable stability property of regular epi-
morphisms. In Section 4 we state the Cuboid Lemma and prove that it characterises re-
gular categories that are Mal’tsev categories. We conclude the article by extending the main
results of this paper to a relative context in Section 5.

2 Preliminaries

A finitely complete category C is said to be a regular category when any kernel pair has
a coequaliser and, moreover, regular epimorphisms are stable under pullbacks. In a regular
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category any morphism f : A → B has a factorisation f = m · p, where p is a reg-
ular epimorphism and m is a monomorphism. The corresponding (regular epimorphism,
monomorphism) factorisation system is then stable under pullbacks.

In this article C will always denote a finitely complete regular category.
A relation R from A to B is a subobject 〈r1, r2〉 : R � A × B . The opposite relation,

denoted R◦, is the relation from B to A given by the subobject 〈r2, r1〉 : R � B × A. We
identify a morphism f : A → B with the relation 〈1A, f 〉 : A � A × B and write f ◦
for the opposite relation. Given another relation S from B to C, the composite relation of
R and S is a relation SR from A to C. With the above notation, we can write any relation
〈r1, r2〉 : R � A × B as R = r2r

◦
1 . The following properties are well known (see [3], for

instance); we collect them in a lemma for future references.

Lemma 2.1 Let f : A → B be any morphism in a regular category C. Then:

(1) ff ◦f = f and f ◦ff ◦ = f ◦;
(2) ff ◦ = 1B if and only if f is a regular epimorphism.

A relation R from an object A to A is called a relation on A. Such a relation is reflexive
if 1A � R, symmetric if R◦ � R, and transitive when RR � R. As usual, a relation R on
A is an equivalence relation when it is reflexive, symmetric and transitive. In particular, a
kernel pair 〈f1, f2〉 : Rf � A × A of a morphism f : A → B is an effective equivalence
relation, which can be written either as Rf = f ◦f , or as Rf = f2f

◦
1 , as mentioned above.

When f is a regular epimorphism, then f is the coequaliser of f1 and f2 and the diagram

Rf

f1 ��

f2

�� A
f �� �� B

is called an exact fork. Note that, if f = m ·p is the (regular epimorphism, monomorphism)
factorisation of an arbitrary morphism f , then Rf =Rp , so that an effective equivalence
relation is always the kernel pair of a regular epimorphism.

3 Regular Mal’tsev Categories

Recall that a finitely complete category C is called a Mal’tsev category when any reflexive
relation in C is an equivalence relation [3, 4]. The following well known characterisation of
regular Mal’tsev categories will be useful.

Proposition 3.1 A regular category C is a Mal’tsev category if and only if the composition
of effective equivalence relations on any object in C is commutative:

Rf Rg = RgRf

for any pair of regular epimorphisms f and g in C with the same domain.

Example 3.2 A variety of universal algebras is a Mal’tsev category if and only if its theory
has a ternary operationp(x, y, z) satisfying the identitiesp(x, y, y) = x and p(x, x, y) = y

[16]. Of course, the variety Grp of groups is a Mal’tsev category, as is any variety whose
theory contains a binary operation satisfying the group identities. Also the variety of quasi-
groups and the variety of Heyting algebras are Mal’tsev categories, as is the dual category
of an elementary topos. The category of topological groups is a regular Mal’tsev category,
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as is the category of Hausdorff groups [3]. If C is a finitely complete category, then the
category Grp(C) of internal groups in C is a Mal’tsev category.

There are many known characterisations of Mal’tsev categories (see [1], for instance,
and references therein). We shall now focus on the relationship with commutative diagrams
of the form

C
c �� ��

g

��

A

f

��
D

d
�� ��

t

��

B,

s

�� (1)

where f and g are split epimorphisms (f · s = 1B , g · t = 1D), f · c = d · g, s · d = c · t ,
and c and d are regular epimorphisms. A diagram as in (1) is always a pushout; it is called
a regular pushout [2] (alternatively, a double extension as in [10], that was inspired by [11])
when, moreover, the canonical morphism 〈g, c〉 : C � D ×B A to the pullback D ×B A of
d and f is a regular epimorphism.

Remark 3.3 The condition of being a regular pushout can be expressed in terms of the
calculus of relations: a commutative diagram of type (1) is a regular pushout if and only
if cg◦ = f ◦d or, equivalently, gc◦ = d◦f . Observe also that the vertical morphisms g

and f are split epimorphisms, so that they induce a split epimorphism from Rc to Rd .
Consequently, the image of Rc along g is Rd , which can be written as: g〈Rc〉 = Rd , i.e.
gc◦cg◦ = d◦d .

The regular categories that are Mal’tsev categories can be characterised through regular
pushouts, as it follows from the results of D. Bourn in [2]. For the reader’s convenience we
give a new simple proof of this fact that uses the calculus of relations, and is also suitable
to be extended to the “relative context” (see the last section).

Proposition 3.4 A regular category C is a Mal’tsev category if and only if any commutative
diagram of the form (1) is a regular pushout; equivalently:

f ◦d = cg◦.

Proof Suppose that C is a regular Mal’tsev category. Then:

f ◦d = cc◦f ◦d (c is a regular epimorphism; Lemma 2.1(2))
= cg◦d◦d (f · c = d · g)
= cg◦gc◦cg◦ (Rd = g〈Rc〉; see Remark 3.3)
= cc◦cg◦gg◦ (RgRc = RcRg , by Proposition 3.1)
= cg◦. (Lemma 2.1(1))
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Conversely, let us consider regular epimorphisms f : X � Y and g : X � Z. We want to
prove that RfRg = RgRf . For this we build the following diagram

Rf

f1

��
f2

��

γ �� �� g〈Rf 〉
r1

��
r2

��
X

f
����

g
�� �� Z

Y

that represents the regular image g〈Rf 〉 of Rf along g. It is easy to see that g〈Rf 〉 is a
reflexive relation, so that we get two commutative diagrams of type (1). By assumption one
then has the equalities: (A) f2γ

◦ = g◦r2 and (B) γf ◦
1 = r◦1g. Accordingly:

RfRg = f2f
◦
1 g

◦g
= f2γ

◦r◦1g (g · f1 = r1 · γ )
= g◦r2r

◦
1g (A)

= g◦r2γf
◦
1 (B)

= g◦gf2f
◦
1 (r2 · γ = g · f2)

= RgRf .

As first observed by D. Bourn [2], regular Mal’tsev categories have a strong stability
property for regular epimorphisms. Again, we give a new simple proof here to make the
paper self-contained.

Lemma 3.5 Let C be a regular Mal’tsev category. Consider a commutative diagram

W ×D C

k

��

γ

�����������
v �� Y ×B A

h

���
�
�
�
�
�

α

�����������

C

g

��

c �� �� A

f

��

W

j

��

δ ������������
w �� ������������ Y

i

���
�
�
�
�
�

β
���

�
�

�
�

D

t

��

d
�� �� B,

s

��

(2)

where the front square is of the form (1), β ·w = d · δ, w is a regular epimorphism,
(W ×D C, k, γ ) and (Y ×B A, h, α) are pullbacks. Then the comparison morphism
v : W ×D C → Y ×B A is also a regular epimorphism.
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Proof The exterior rectangle in the commutative diagram

W ×D C
γ ��

k

��

C

g

��

c �� �� A

f

��
W

��

δ
�� D

��

d
�� �� B

��

is such that the comparison arrow 〈k, c · γ 〉 : W ×D C → W ×B A to the pullback of d · δ
along f is a regular epimorphism, as a “composite” of a pullback with a regular pushout.
Accordingly, the exterior rectangle in the commutative diagram

W ×D C
v ��

k

��

Y ×B A

h

��

α �� A

f

��
W

��

w
�� �� Y

��

β
�� B.

��

has the property that 〈k, α · v〉 : W ×D C → W ×B A is a regular epimorphism. From the
fact that the right hand square is a pullback and that w is a regular epimorphism it then
easily follows that the arrow v is a regular epimorphism, as desired.

We now show that the property considered in Lemma 3.5 actually characterises the
regular categories which are Mal’tsev categories.

Proposition 3.6 Let C be a regular category. The following conditions are equivalent:

(a) C is a Mal’tsev category;
(b) for any commutative cube (2), the comparison morphism v : W ×D C → Y ×B A is a

regular epimorphism.

Proof (a) ⇒ (b) by Lemma 3.5.
(b) ⇒ (a) Consider a commutative diagram of the type (1). It induces the commutative cube

C

g

��

������
��

������
��

v �� D ×B A

h

���
�
�
�
�
�

α

�����������

C

g

��

c �� �� A

f

��

D

t

��

��
��

��
��

��
��

��
��

D

i

���
�
�
�
�
�

d
������������

D

t

��

d
�� �� B,

s

��

where the right hand face is the pullback of d and f . By assumption, v = 〈g, c〉 is a regular
epimorphism, and then C is a Mal’tsev category by Proposition 3.4.

4 The Cuboid Lemma

In this section we use the characterisation of Mal’tsev categories given in Proposition 3.6 to
explore a stronger form of the (denormalised) 3 × 3 Lemma [2, 15]. This follows the same
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line of research as in [9], where the so-called Goursat pushouts were used to show that a
regular category C is a Goursat category if and only if the 3 × 3 Lemma holds true in C.

Recall that the 3 × 3 Lemma states the following: given a commutative diagram in C of
the form

Rḡ

ḡ1

��
ḡ2

��

t2

��
t1 ��

Rg

g1

��

g2

��

v �� Rf

f1

��

f2

��
Rc

c2
��

c1 ��

ḡ

����

A

g

����

c �� �� C

f

����
S

s2
��

s1 ��
B

d
�� D

(3)

where the columns are exact (forks), as well as the middle row, then the upper row is exact
if and only if the lower row is exact.

Following the analogous terminology introduced in [14], the 3×3 Lemma can be decom-
posed into two weaker formulations: the Upper 3 × 3 Lemma, stating that the exactness of
the lower row implies the exactness of the upper row, and the Lower 3 × 3 Lemma, stating
that the exactness of the upper row implies the exactness of the lower row. It was shown
in [9] (Proposition 1), that these two (apparently) weaker formulations are equivalent to
each other, and they are also equivalent to the 3 × 3 Lemma: all these formulations provide
characterisations of regular Goursat categories (we refer the interested reader also to [8] for
further developments).

By replacing the kernel pairs in the three exact columns of (3) with pullbacks of regular
epimorphisms along arbitrary morphisms, we get a “three dimensional version” of the 3×3
Lemma. Since these vertical exact forks are replaced by squares, horizontally we should
now take 4 “forks” (instead of 3), two of which are then required to be exact forks. This
gives rise to a diagram whose external part is a cuboid, and this explains the terminology
adopted for the following property.

4.1 The Upper Cuboid Lemma

Let C be a regular category, and consider any commutative diagram in C

T

k̄
������
��

��

t1 ��
t2

��

γ̄

���
��

��
��

��
��

� V

k
����	

	
	

v ��

γ

��




















 X

h
�����

�
�

α

���
��

��
��

��
��

��

Rw

w1 ���������������
w2

���������������

δ̄

���
��

��
��

��
��

��
W

w �� ��������������

δ

���
�

�
�

�
�

� Y

β

��














Rc

ḡ

������
��

��

c1 ��
c2

�� C
g

				��
��

��
c

�� �� A
f

				��
��

��

S
s1 ��
s2

�� D
d

�� B,

(4)
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where the three diamonds are pullbacks of regular epimorphisms along arbitrary morphisms
and the two middle rows are exact forks. Then the Upper Cuboid Lemma holds true in C if,
for any commutative diagram (4), the upper row is exact whenever the lower row is exact.

Remark 4.1. Of course, the validity of the Upper Cuboid Lemma is stronger than that of the
Upper 3× 3 Lemma. Indeed, the Upper 3× 3 Lemma is simply obtained as the special case
of the Upper Cuboid Lemma where one takes the same regular epimorphism twice to build
the pullbacks in diagram (4). As we shall prove in Theorem 4.4, the validity of the Upper
Cuboid Lemma characterises the regular categories that are Mal’tsev categories.

We first consider a “split version” of the (Upper) Cuboid Lemma to better explore the
connection with diagrams of the form (2).

4.2 The Split Cuboid Lemma

Let C be a regular category, and consider a commutative diagram in C

T

k̄

����
��

��

t1 ��
t2

��

γ̄

���
��

��
��

��
��

� V

k

��	
	

	
v ��

γ

��




















 X

h

���
�

�

α

���
��

��
��

��
��

��

Rw

j̄



������ w1 ���������������
w2

���������������

δ̄

���
��

��
��

��
��

��
W

j



	
	

	 w �� ��������������

δ

���
�

�
�

�
�

� Y

i



�
�

�

β

��














Rc

ḡ

����
��

��

c1 ��
c2

�� C
g

		��
��

��
c

�� �� A
f

		��
��

��

S

t̄



������ s1 ��
s2

�� D
t

��������
d

�� B,
s

��������

(5)

where the three diamonds are pullbacks of split epimorphisms along arbitrary morphisms
and the two middle rows are exact forks. The Split Cuboid Lemma holds true in C if, for any
commutative diagram (5), the the upper row is exact if and only if the lower row is exact.

Note that t1, t2, s1 and s2 are just parallel morphisms with no common splitting initially
required. However, by the commutativity of the diagram, s1 and s2 do actually have a com-
mon splitting ḡ · 〈1C, 1C〉 · t . The commutativity of the diagram also implies that d is a
regular epimorphism, that d · s1 = d · s2 since ḡ is an epimorphism and, moreover, that
v · t1 = v · t2, because the pair of morphisms (h, α) is jointly monomorphic.

Remark 4.2. Observe that the existence of the split epimorphism ḡ implies that we always
have S = Rd , i.e. the lower row is necessarily exact. Indeed, let φ : S → Rd be the canon-
ical arrow induced by the universal property of Rd thanks to the equality d · s1 = d · s2.
This arrow φ is a monomorphism since S is a relation (the pair of arrows (c1 · t, c2 · t)
is jointly monic by assumption). But φ is also a split epimorphism, since φ · g is a split
epimorphism. Accordingly, the arrow φ : S → Rd is an isomorphism. Consequently, the
Split Cuboid Lemma is actually equivalent to the (apparently weaker) Upper Split Cuboid
Lemma, asserting that the upper row in diagram (5) is exact whenever the lower row is exact.
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We are now ready to state our main results:

Theorem 4.3 Let C be a regular category. The following conditions are equivalent:

(a) C is a Mal’tsev category;
(b) the Split Cuboid Lemma holds true in C;
(c) the Upper Split Cuboid Lemma holds true in C.

Proof (a) ⇒ (b) From the exactness of the lower row in diagram (5), one clearly has that
T = Rv , since S = Rd and “kernel pairs commute with pullbacks”. Consequently, to
prove the exactness of the upper row, it suffices to show that v is a regular epimorphism.
The right cube of diagram (5) is of the form (2), and v is then a regular epimorphism by
Proposition 3.6. This shows that the upper row is exact as well. Conversely, the fact that the
lower row is always exact has been proved in Remark 4.2.
(b) ⇒ (c) Trivial.
(c) ⇒ (a) Consider a diagram of the form (2) and take the kernel pairs of c, d and w. We
get an induced split epimorphism ḡ : Rc → Rd , with splitting t̄ , and an induced morphism
δ̄ : Rw → Rd . We obtain a diagram of the form (5) by defining (T , k̄, γ̄ ) as the pullback
of ḡ and δ̄. Applying the Upper Split Cuboid Lemma to this diagram, we conclude that the
upper row is exact and, consequently, v is a regular epimorphism. By Proposition 3.6, C is
a Mal’tsev category.

The announced characterisation of Mal’tsev categories in terms of the validity of the
Upper Cuboid Lemma can then be given:

Theorem 4.4 Let C be a regular category. The following conditions are equivalent:

(a) C is a Mal’tsev category;
(b) the Upper Cuboid Lemma holds true in C.

Proof (a) ⇒ (b) Suppose that the lower row in diagram (4) is exact. Then v is a reg-
ular epimorphism if and only if the following diagram gives the (regular epimorphism,
monomorphism) factorisation of the morphism 〈w · k, c · γ 〉

V v ��
��

〈k,γ 〉
��

X
��

〈h,α〉
��

W × C
w×c

�� �� Y ×A.

This translates into having the equality cγ k◦w◦ = αh◦ or, equivalently, the equal-
ity cg◦δw◦ = f ◦β , since the middle and the right diamonds of (4) are pullbacks (see
Remark 3.3). This latter can be proved as follows:

f ◦β = cc◦f ◦βww◦ (c, w are a regular epimorphisms; Lemma 2.1(2))
= cg◦d◦dδw◦ (f · c = d · g, β ·w = d · δ)
= cg◦gc◦cg◦δw◦ (S = Rd = g〈Rc〉)
= cc◦cg◦gg◦δw◦ (RgRc = RcRg , by Proposition 3.1)
= cg◦δw◦. (Lemma 2.1(1))

(b) ⇒ (a) This implication is obvious by Theorem 4.3 and the fact that the validity of the
Upper Cuboid Lemma implies the one of the Upper Split Cuboid Lemma.
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5 The Relative Context

In this section we briefly analyse the so-called “relative context” introduced by T. Janelidze
[12], and verify that our results easily extend from the “absolute context” considered in the
previous sections to the relative one.

We begin by recalling the notion of a relative regular category as defined by J. Goedecke
and T. Janelidze [7, 13]. As in the previous sections, we shall always assume that the base
category is finitely complete.

A relative regular category is a pair (A,E), where A is a finitely complete category and
E is a class of regular epimorphisms in A such that:

(E1) E contains all isomorphisms;
(E2) the pullback of a morphism in E belongs to E ;
(E3) E is closed under composition;
(E4) if f and g · f ∈ E , then g ∈ E ;
(F) if a morphism factors as f = e · m, with e ∈ E and m a monomorphism, then it

also factors (essentially uniquely) as f = m′ · e′, where m′ is a monomorphism and
e′ ∈ E .

Given a finitely complete category A that admits coequalisers of kernel pairs and E the class
of all regular epimorphisms in A, then (A,E) is a relative regular category if and only if A
is a regular category: this context is usually referred to as the “absolute context”.

In the extension from the absolute to the relative context one replaces the regular epi-
morphisms with morphisms that belong to E . As shown in [12] (see also [7]), relative
regular categories provide the appropriate setting to develop a suitable calculus of E-
relations. Recall that an E-relation R from A to B is a subobject 〈r1, r2〉 : R � A × B

such that r1, r2 ∈ E . We can identify a morphism f : A → B in E with the E-relation
〈1A, f 〉 : A � A×B . The definition of the composition of E-relations can be given exactly
as in the absolute case, and the properties gathered in Section 2 all extend to E-relations
for relative regular categories. However, for the relative version of Lemma 2.1 we require
f : A → B to belong to E : accordingly, the relative version of Lemma 2.1(2) should simply
state that, for any f ∈ E , one has the equality ff ◦ = 1B (since the arrows in E are regular
epimorphisms).

To extend our results to the relative case, we should consider:

– equivalence E-relations: E-relations which are equivalence relations;
– E-effective equivalence E-relations: E-relations given by kernel pairs of

morphisms in E ;
– E-exact forks: exact forks whose coequaliser belongs to E .

The E-image of an E-relation R along a morphism f ∈ E is given by the monomorphism
in the (E , monomorphism) factorisation of (f × f ) · 〈r1, r2〉

R
ϕ ��

��

〈r1,r2〉
��

S
��

〈s1,s2〉
��

A×A
f×f

�� B × B,

which exists by axiom (F) of the definition of a relative regular category; we write f 〈R〉 =
S. As in the absolute case, the relation f 〈R〉 is reflexive (or symmetric) whenever R is
reflexive (or symmetric).
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Let us then consider a diagram (of type (1))

C
c �� ��

g

��

A

f

��
D

d
�� ��

t

��

B

s

�� (6)

in a relative regular category, where f, c, g and d now belong to E . It is called an E-regular
pushout when the induced morphism 〈g, c〉 : C � D×B A also belongs to E . In the context
of a relative regular category (A,E) the property that any diagram (6) in A is an E-regular
pushout will be called the E-Mal’tsev axiom in what follows. This axiom has already been
studied by T. Everaert, J. Goedecke, T. Janelidze and T. Van der Linden in [5, 6], and is
similar to the E-Goursat axiom introduced in [7] by J. Goedecke and T. Janelidze.

Remark also that the notion of an E-Mal’tsev category had essentially been introduced
in T. Janelidze’s PhD doctoral dissertation [12] (see Theorem 2.3.6 therein, for instance),
even though the term E-Mal’tsev had not been explicitly used there. As in the absolute
case (Proposition 3.1), these categories can be characterised by the commutativity of the
composition of E-effective equivalence E-relations.

The statements from Remark 3.3 extend to the relative context by Theorem 2.10 of [13]
and Lemmas 1.9 and 1.11 of [7]. We also obtain relative versions of Propositions 3.4 and
3.6 with the same proofs, which have been written on purpose in a way that can be now
“understood” in the relative context:

Proposition 5.1 A relative regular category (A,E) satisfies the E-Mal’tsev axiom if and
only if

Rf Rg = RgRf

for any pair of arrows f and g in E with the same domain.

Proposition 5.2 Let (A,E) be a relative regular category. The following conditions are
equivalent:

(a) the E-Mal’tsev axiom holds true in A;
(b) (A,E) has the property that for any commutative cube (2), with f, g, c, d,w ∈ E , the

induced morphism v : W ×D C → Y ×B A belongs to E .

5.1 The Relative Cuboid Lemmas

Let (A, E) be a relative regular category. Consider a commutative diagram (5) (resp. (4))
where the three diamonds are pullbacks of split (resp. regular) epimorphisms which belong
to E along arbitrary morphisms and the two middle rows are E-exact. Then the upper row
is E-exact if and only if (resp. whenever) the lower row is E-exact.

With the same proof as in the absolute case, we obtain:

Theorem 5.3 Let (A, E) be a relative regular category. The following conditions are
equivalent:

(a) the E-Mal’tsev axiom holds true in A;
(b) the Relative (Upper) Split Cuboid Lemma holds true in A;
(c) the Relative Upper Cuboid Lemma holds true in A.
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(1991)
12. Janelidze, T.: Foundation of relative non-abelian homological algebra, Ph.D. Thesis, University of Cape

Town (2009)
13. Janelidze, T.: Relative semi-abelian categories, Appl. Categ. Struct. 17, 373–386 (2009)
14. Janelidze, Z.: The pointed subobject functor, 3 × 3 lemmas and subtractivity of spans. Th. Appl. Categ.

23, 221–242 (2010)
15. Lack, S.: The 3-by-3 lemma for regular Goursat categories. Homology Homotopy Appl. 6(1), 1–3 (2004)
16. Smith, J.D.H.: Mal’cev Varieties, Lecture Notes in Math, vol. 554 (1976)


	The Cuboid Lemma and Mal'tsev Categories
	Abstract
	Introduction
	Structure of the Paper

	Preliminaries
	Regular Mal'tsev Categories
	The Cuboid Lemma
	The Upper Cuboid Lemma
	The Split Cuboid Lemma

	The Relative Context
	The Relative Cuboid Lemmas

	Acknowledgments
	References


