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Abstract Basing ourselves on Janelidze and Kelly’s general notion of central exten-
sion, we study universal central extensions in the context of semi-abelian categories.
We consider a new fundamental condition on composition of central extensions and
give examples of categories which do, or do not, satisfy this condition.
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1 Introduction

In this article we explain how, using Janelidze and Kelly’s general notion of central
extension [19], the classical theory of universal central extensions may be considered
in the context of semi-abelian categories [20]. Our main point is that, while most of
the results valid for groups and Lie algebras (see, for instance, [23, 24]) generalise
without any difficulty to extensions, central with respect to a chosen Birkhoff
subcategory B of a semi-abelian category A, this setting turns out to be too weak for
some of the most basic results, valid in the classical examples, to hold—even when
B = Ab(A) is determined by the abelian objects in A.

We have to impose an additional condition which we chose to call the uni-
versal central extension condition (UCE), asking that for Ab(A)-central extensions
f : B → A and g : C → B also the composite extension f � g is Ab(A)-central, as
soon as B is an Ab(A)-perfect object. (Recall that in general, central extensions
need not compose.) Under condition (UCE) and, as it turns out, only then, standard
recognition results such as Theorem 5.4 hold. Furthermore, as Example 6.1 shows,
condition (UCE) is not automatic: there exist semi-abelian categories which do not
satisfy it. This immediately gives rise to the following question, which is not yet
fully answered in the present paper: When does condition (UCE) hold? We can give
examples and counterexamples, but thus far there is no elementary characterisation.
This problem—of finding good minimal hypotheses for condition (UCE)—is the
subject of current work-in-progress [16].

2 Basic Definitions and First Results

2.1 Semi-Abelian Categories

A category is semi-abelian when it is pointed, Barr exact and Bourn protomodular
with binary coproducts [20]. We recall that a pointed and regular category is Bourn
protomodular [5] if and only if the (Regular) Short Five Lemma holds: this means
that for any commutative diagram such as Eq. 1 below where f and f ′ are regular
epimorphisms, k and a being isomorphisms implies that b is an isomorphism. It is
well known that all varieties of �-groups [17] are semi-abelian categories.

Lemma 2.1 [5, 6] Consider a morphism of short exact sequences

Ker( f ′) � ��
ker( f ′)

��

k

��

B′
f ′ � ��

b

��

A′

a

��
Ker( f ) � ��

ker( f )

�� B
f

� �� A.

(1)

(1) The right hand side square f � b = a � f ′ is a pullback iff k is an isomorphism.
(2) The left hand side square ker( f ) � k = b � ker( f ′) is a pullback if f a is mono.
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The first statement implies that any pullback square between regular epimor-
phisms (that is, any square f � b = a � f ′ as in Eq. 1) is a pushout. It is also well
known that the regular image of a kernel is a kernel [20]. In any semi-abelian cate-
gory, classical homological lemma’s such as the Snake Lemma and the 3 × 3 Lemma
are valid; for further details and many other results we refer the reader to [4, 20].

2.2 Birkhoff Subcategories

The notion of central extension introduced in [19] is defined with respect to a chosen
subcategory B of the base category A: a Birkhoff subcategory B of a semi-abelian
category A is a full and reflective subcategory, closed under subobjects and regular
quotients. We denote the left adjoint by I : A → B and write the components of its
unit ηA : A → I(A). A Birkhoff subcategory of a variety of universal algebras is the
same thing as a subvariety. Throughout the text, we fix a Birkhoff subcategory B of
a semi-abelian category A.

2.3 Extensions and Central Extensions

An extension in A is a regular epimorphism. A morphism of extensions is a commu-
tative square between them, and thus we obtain the category Ext(A) of extensions
in A.

With respect to B ⊆ A, there are notions of trivial, normal and central extension.
An extension f : B → A in A is said to be trivial if and only if the induced square

B
f

��

ηB

��

A

ηA

��
I(B)

I( f )

�� I(A)

(2)

is a pullback. The extension f is normal if and only if one of the projections f0, f1 in
the kernel pair (B ×A B, f0, f1) of f is trivial. Finally, f is said to be central if and
only if there exists an extension g : C → A such that the pullback g∗( f ) of f along g
is trivial.

Clearly, every normal extension is central; in the present context, the converse also
holds, and thus the concepts of normal and central extension coincide. Furthermore,
a split epimorphism is a trivial extension if and only if it is central [19, Theorem 4.8].
Finally, central extensions are pullback-stable [19, Proposition 4.3].

Since we shall often be considering several Birkhoff subcategories of a given
category at the same time, we usually indicate which one we mean by prefixing, as in
“B-central”, “I-trivial”, etc.

2.4 Perfect Objects

An object P of A is called perfect when I(P) is the zero object 0 of B. If f : B → A
is an extension and B is B-perfect then so is A, because the reflector I preserves
regular epimorphisms, and a regular quotient of zero is zero.
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Lemma 2.2 Let P be a B-perfect object and f : B → A an extension.

(1) If f is B-trivial then the map

Hom(P, f ) = f � (−) : Hom(P, B) → Hom(P, A)

is a bijection;
(2) if f is B-central then Hom(P, f ) is an injection.

If Hom(P, f ) is an injection for every B-trivial extension f then P is B-perfect.

Proof The extension f being B-trivial means that the square Eq. 2 is a pullback. If
b 0, b 1 : P → B are morphisms such that f � b 0 = f � b 1, then b 0 is equal to b 1 by the
uniqueness in the universal property of this pullback: indeed also ηB � b 0 = I(b 0) �
ηP = 0 = I(b 1) � ηP = ηB � b 1. Thus we see that Hom(P, f ) is injective. This map is
also surjective, since any morphism a : P → A is such that ηA � a = I(a) � ηP = 0 =
I( f ) � 0 and thus induces a morphism b : P → B for which f � b = a.

Statement 2 follows from 1 because the functor Hom(P,−) preserves kernel pairs,
and a map is an injection if and only if its kernel pair projections are bijections.

As to the converse: the morphism !I(P) : I(P) → 0 is a B-trivial extension; since
!I(P) � ηP = 0 =!I(P) � 0, the assumption implies that ηP is zero, which means that P is
B-perfect. ��

2.5 Universal Central Extensions

For any object A of A, let CentrB(A) or CentrI(A) denote the category of all
B-central extensions of A: the full subcategory of the slice category (A ↓ A)

determined by the central extensions. A (weakly) initial object of this category
CentrB(A) is called a (weakly) universal central extension of A. A B-central exten-
sion u : U → A is weakly universal when for every B-central extension f : B → A
there exists a morphism f from u to f , that is, such that f � f = u. Furthermore,
u is universal when this induced morphism f is unique. Note also that, up to
isomorphism, an object admits at most one universal B-central extension.

Lemma 2.3 If u : U → A is a universal B-central extension then the objects U and A
are B-perfect.

Proof Since the first projection πA : A × I(U) → A is a trivial extension, by Section
2.3 it is central. By the hypothesis that u is universal, there exists just one morphism
〈u, v〉 : U → A × I(U) such that πA � 〈u, v〉 = u. But then 0 : U → I(U) is equal to
ηU : U → I(U), and I(U) = 0. Since a regular quotient of a perfect object is perfect,
this implies that both U and A are B-perfect. ��

Proposition 2.4 Let A be a semi-abelian category and B a Birkhof f subcategory of
A. Let u : U → A be a B-central extension. Between the following conditions, the
implications 1 ⇔ 2 ⇔ 3 ⇒ 4 ⇔ 5 hold:

(1) U is B-perfect and every B-central extension of U splits;
(2) U is B-perfect and projective with respect to all B-central extensions;
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(3) for every B-central extension f : B → A, the map

Hom(U, f ) : Hom(U, B) → Hom(U, A)

is a bijection;
(4) U is B-perfect and u is a weakly universal B-central extension;
(5) u is a universal B-central extension.

Proof Suppose that 1 holds. To prove 2, let f : B → A be a B-central extension
and g : U → A a morphism. Then the pullback g∗( f ) : B → U of f along g is still
B-central; hence g∗( f ) admits a splitting s : U → B, and ( f ∗(g)) � s is the required
morphism g → f . Conversely, given a B-central extension f : B → U , the projectiv-
ity of U yields a morphism s : U → B such that f � s = 1U .

Conditions 2 and 3 are equivalent by Lemma 2.2.
Condition 3 implies condition 5: given a B-central extension f : B → A of A,

there exists a unique morphism f : U → B that satisfies f � f = u.
Finally, 4 and 5 are equivalent by Lemmas 2.2 and 2.3. ��

Remark 2.5 To prove that condition 4 implies 3 we would require U itself to admit a
universal B-central extension, which need not be the case in the present context. In
fact, even if such a universal B-central extension of U does exist, then the above five
conditions may or may not be equivalent: see Section 5.

3 Constructing Universal Central Extensions

Our aim is now to prove that every perfect object admits a universal central
extension. To do so, we need to assume that the surrounding category has enough
projectives: they will give us weakly universal central extensions.

3.1 Commutators and Centralisation

The kernel μ of the unit η of I : A → B gives rise to a “zero-dimensional” com-
mutator: for any object A of A, the bottom row in Eq. 3 is a short exact sequence
in A; hence A is an object of B if and only if [A, A]B = 0. On the other hand, an
object A of A is B-perfect precisely when [A, A]B = A. This construction defines
a functor [−,−]B : A → A and a natural transformation μ : [−,−]B ⇒ 1A. The
functor [−,−]B preserves regular epimorphisms; we recall the argument. Given a
regular epimorphism f : B → A, by the Birkhoff property, the induced square of
regular epimorphisms on the right

0 �� [B, B]B � ��
μB

��

[ f, f ]B
��

B

f
���

ηB � �� I(B)

I( f )
���

�� 0

0 �� [A, A]B � ��
μA

�� A
ηA

� �� I(A) �� 0

(3)

is a pushout—which is equivalent to [ f, f ]B being regular epic [12, Corollary 5.7].
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Lemma 2.1 implies that an extension f : B → A is B-central if and only if either
one of the morphisms [ f0, f0]B, [ f1, f1]B is an isomorphism, which, because they have
a common splitting, happens exactly when they coincide, [ f0, f0]B = [ f1, f1]B. Hence
the kernel [K, B]B of [ f0, f0]B measures how far f is from being central: indeed, f
is B-central if and only if [K, B]B is zero.

[K, B]B
���

ker[ f0, f0]B
��

� ��

��

0 �� [B ×A B, B ×A B]B � ��
μB×A B

��

[ f0, f0]B
���

[ f1, f1]B
���

B ×A B

f0
���

f1
���

ηB×A B� �� I(B ×A B)

I( f )0
���

I( f )1
���

�� 0

0 �� [B, B]B � ��
μB

�� B
ηB

� �� I(B) �� 0

Remark 3.1 This explains, for instance, why a sub-extension of a central extension is
central. It is worth recalling here that a morphism of extensions (b , a)

B′

f ′
���

b
�� B

f
���

A′
a

�� A

is a monomorphism if and only if b is.

The “one-dimensional” commutator [K, B]B may be considered as a normal
subobject of B via the composite μB � [ f1, f1]B � ker[ f0, f0]B : [K, B]B → B (see
the diagram above). Thus we obtain the left adjoint I1 : Ext(A) → CExtB(A),
where CExtB(A) is the full reflective subcategory of Ext(A) determined by the
B-central extensions. Given an extension f : B → A with kernel K, its centralisation
I1( f ) : B/[K, B]B → A is obtained through the diagram with exact rows

0 �� [K, B]B � �� ��

���

B
� ��

f
���

B
[K,B]B

��

I1( f )
���

0

0 � �� �� A A �� 0.

3.2 Existence of a Weakly Universal Central Extension

We say that A has weakly universal central extensions (for some Birkhoff subcate-
gory B of A) when every object of A admits a weakly universal B-central extension.
This happens, for instance, when A has enough (regular) projectives, so that for any
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object A of A, there exists a regular epimorphism f : B → A with B projective, a
(projective) presentation of A.

Lemma 3.2 If the category A is semi-abelian with enough projectives then it has
weakly universal central extensions for any Birkhoff subcategory B.

Proof For all A of A, the category CentrB(A) has a weakly initial object:
given a projective presentation f : B → A with kernel K, its centralisation
I1( f ) : B/[K, B]B → A is weakly initial. Indeed, any B-central extension g : C → A
induces a map I1( f ) → g in CentrB(A), because the object B is projective. ��

3.3 Baer Invariants

Let A be an object of A and f : B → A a projective presentation with kernel K. The
induced objects

[B, B]B
[K, B]B and

K ∧ [B, B]B
[K, B]B

are independent of the chosen projective presentation of A as explained for instance
in [12]. The object (K ∧ [B, B]B)/[K, B]B is called (the Hopf formula for) the second
homology object of A (with coefficients in B) and is written H2(A, I). We write
U(A, I) for the object [B, B]B/[K, B]B and H1(A, I) for I(A).

The objects H2(A, I) and H1(A, I) are genuine homology objects: if A is a semi-
abelian monadic category then they may be computed using comonadic homology as
in [13], and in any case, they fit into the homology theory worked out in [11].

The Baer invariants from Section 3.3 may also be considered for all weakly
universal B-central extensions of an object A. Since, for any weakly universal
B-central extension f : B → A with kernel K, the commutator [K, B]B is zero, this
implies that the objects

[B, B]B and K ∧ [B, B]B
are independent of the chosen weakly universal central extension of A. (Here, as
in [18], the Hopf formula becomes H2(A, I) = K ∧ [B, B]B; also note that U(A, I) =
[B, B]B.)

3.4 The Perfect Subobject

When there are weakly universal central extensions, any central extension of a
perfect object contains a subobject with a perfect domain. We prove this in two steps:
first for weakly universal central extensions, then in general. This implies that any
perfect object admits a universal central extension when weakly universal central
extensions exist—a general version of Proposition 4.1 in [15].

Lemma 3.3 Suppose A is a semi-abelian category with a Birkhof f subcategory B.
Then any weakly universal B-central extension of a B-perfect object contains a
subobject with a B-perfect domain.
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Proof Let f : B → A be a weakly universal B-central extension of a B-perfect
object A. Since μA is an isomorphism and [ f, f ]B is a regular epimorphism, the
morphism f � μB = μA � [ f, f ]B in the induced diagram with exact rows

0 �� K ∧ [B, B]B � �� ��
���

��

[B, B]B
���

μB

��

f◦μB � �� A �� 0

0 �� K
� �� �� B

f

� �� A �� 0

is also a regular epimorphism. The extension f � μB is B-central as a subobject of
the B-central extension f ; its weak universality is clear. By Section 3.3 the object
[B, B]B is B-perfect, because the B-central extensions f � μB and f are both weakly
universal, so that [B, B]B ∼= [[B, B]B, [B, B]B]B. ��

Lemma 3.4 Let A be a semi-abelian category with weakly universal central extensions
for a Birkhof f subcategory B of A. If f : B → A is a B-central extension of a B-perfect
object A, then [B, B]B is also B-perfect.

Proof The object B admits a weakly universal B-central extension v : V → B; then
the centralisation w : W → A of the resulting composite f � v is a weakly universal
B-central extension. Indeed, given any B-central extension g : C → A, there is a
factorisation f ∗(g) : V → B ×A C of v through the pullback f ∗(g) : B ×A C → B
of g along f , and then the composite (g∗( f )) � ( f ∗(g)) : V → C yields the needed
morphism w → g by the universal property of the centralisation functor.

The arrow W → B universally induced by v is regular epic, hence so is its
restriction [W, W]B → [B, B]B; but a regular quotient of a perfect object is perfect.

��

Theorem 3.5 Let A be a semi-abelian category with enough projectives and B a
Birkhof f subcategory of A. An object A of A is B-perfect if and only if it admits
a universal B-central extension. Moreover, this universal B-central extension may be
chosen in such a way that it occurs in a short exact sequence

0 �� H2(A, I) � �� �� U(A, I)
uI

A � �� A �� 0.

Proof If an object admits a universal B-central extension then it is B-perfect by
Lemma 2.3. Conversely, let f : B → A be a weakly universal central extension of
a B-perfect object A (Lemma 3.2). Then by Lemma 3.3 it admits a (weakly universal
central) subobject with a B-perfect domain. By Proposition 2.4, this subobject is also
universal. The shape of the short exact sequence follows from Section 3.3. ��

Proposition 3.6 Let A be a semi-abelian category with enough projectives and B a
Birkhof f subcategory of A. If f : B → A is a B-central extension with a B-perfect
domain B, then f is a quotient of a universal B-central extension.
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Proof The construction in the proof of Theorem 3.5 may be adapted to the given ex-
tension f in such a way that the resulting morphism u → f is a regular epimorphism.
We take a projective presentation p : P → B and use the composite f � p : P → A
as a projective presentation of A. After centralisation we obtain a weakly universal
B-central extension v : V → A as in Lemma 3.2 and a regular epic comparison
v → f . Using that B is B-perfect, passing to the perfect subobject as in Lemma 3.4
gives us the needed universal B-central extension u : U → A together with the
induced comparison morphism v → f . This morphism is still a regular epimorphism
by the Birkhoff property of B (see Section 3.1). ��

3.5 Universal Central Extensions and Abelianisation

It is worth remarking here that a universal B-central extension is always central in an
absolute sense, namely, with respect to the abelianisation functor ab : A → Ab(A).
Here Ab(A) is the Birkhoff subcategory of A consisting of all objects that admit an
internal abelian group structure; see, for instance, [7].

Proposition 3.7 Let A be a semi-abelian category and B a Birkhof f subcategory of A.
If f : B → A is a B-central extension with a B-perfect domain B, then f is Ab(A)-
central. In particular, universal B-central extensions are always Ab(A)-central.

Proof We have B ∼= [B, B]B since B is B-perfect; [B, B]B ∼= [B ×A B, B ×A B]B
because f is B-central. Hence the diagonal B → B ×A B, being isomorphic to

μB : [B ×A B, B ×A B]B → B ×A B,

is a kernel. By Proposition 3.1 in [7], this implies that f is Ab(A)-central. Finally, if
f : B → A is a universal B-central extension then B is B-perfect. ��

4 Nested Birkhoff Subcategories

We now consider the situation where a Birkhoff subcategory B of a semi-abelian
category A has a further Birkhoff subcategory C so that they form a chain of nested
semi-abelian categories with enough projectives, C ⊂ B ⊂ A. For instance, C could be
Ab(A) as in Theorem 5.4 below. Then there is a commutative triangle of left adjoint
functors (all right adjoints are inclusions):

A
I

��

JI ���
��

��
��

B

J����
��

��
�

C

(4)

Lemma 4.1 Under the given circumstances,

(1) an object of B is J-perfect if and only if it is J I-perfect;
(2) an extension in B is J-central if and only if it is J I-central;
(3) an extension of A is B-central as soon as it is J I-central.
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Proof If B is an object of B then J(B) = JI(B), which proves the first statement. As
for the second statement, an extension f : B → A in B is J-central if and only if the
square in the diagram on the left

B ×A B
f0 � ��

ηJ
B×A B ���

B
f � ��

ηJ
B���

A

J(B ×A B)
J( f0)

� �� J(B)

B ×A B
f0 � ��

ηJI
B×A B ���

B

ηJI
B���

JI(B ×A B)
JI( f0)

� �� JI(B)

is a pullback in B. Now the inclusion of B into A preserves and reflects all limits
and moreover J( f0) = JI( f0), so that f being J-central is equivalent to f being
JI-central. The third statement follows from the fact that I preserves the pullback
on the right above for any JI-central extension f in A. ��

Lemma 4.2 For any object B of B, the reflection from A to B restricts to an adjunction

CentrJI(B)

I
��

⊥ CentrJ(B).

⊃
��

Hence the functor I preserves universal central extensions:

I
(
uJI

B : U(B, JI) → B
) ∼= (

uJ
B : U(B, J) → B

)
,

for any J-perfect object B.

Proof First of all, by Lemma 4.1(2), the category CentrJ(B) ⊂ (B ↓ B) is a subcate-
gory of CentrJI(B) ⊂ (A ↓ B).

Suppose that g : C → B is a JI-central extension. Applying the functor I, we
obtain the extension I(g) = g � ηI

C : I(C) → B, which is JI-central as a quotient of g.
Being an extension in B, I(g) is J-central by Lemma 4.1(2).

Finally, as any left adjoint functor, I preserves initial objects. ��

Proposition 4.3 Suppose that C ⊂ B ⊂ A is a chain of inclusions of Birkhof f subcat-
egories (with the left adjoints written as in Eq. 4) of a semi-abelian category A. If B is
a J-perfect object of B then we have the exact sequence

0 �� [U(B, JI), U(B, JI)]B � �� �� H2(B, JI) � �� H2(B, J) �� 0,

and uJI
B = uJ

B if and only if [U(B, JI), U(B, JI)]B is zero.

Proof By Lemma 4.2 and Theorem 3.5, if B is a J-perfect object of B then the
comparison morphism between the induced universal central extensions gives rise
to the 3 × 3 diagram in Fig. 1. ��
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Fig. 1 Proof of Proposition 4.3

5 The Universal Central Extension Condition

We now prove a classical recognition result for universal B-central extensions. To do
so, we shall need thatA satisfies the universal central extension condition (UCE) (see
Definition 5.1 below). We show that this condition is not only sufficient but in some
sense also necessary (Proposition 5.5). We shall moreover ask that B contains Ab(A),
so that we may suitably reduce the given situation to the case of abelianisation.
The examples in Section 6.1 explain why these conditions are not automatically
satisfied. The main result we work towards is Theorem 5.4, which says that a
B-central extension u : U → A is universal if and only if H1(U, I) = H2(U, I) = 0.

Definition 5.1 Let A be a semi-abelian category with enough projectives. We say
that A satisfies condition (UCE) when the following holds: if B is an Ab(A)-
perfect object, and f : B → A and g : C → B are Ab(A)-central extensions, then the
extension f � g is Ab(A)-central.

Lemma 5.2 Let A be a semi-abelian category with enough projectives satisfying condi-
tion (UCE) and B a Birkhof f subcategory of A that contains Ab(A). If u : U → A is a
B-central extension and v : V → U is a universal B-central extension then the extension
u � v is B-central.

Proof By Proposition 3.7 both u and v are Ab(A)-central. Moreover, since Ab(A) is
contained in the Birkhoff subcategory B of A, the objects U , V and A are Ab(A)-
perfect. Now by condition (UCE), the composite u � v : V → A is also Ab(A)-central.
Again using that B is bigger than Ab(A) we see that u � v : V → A is a B-central
extension (cf. Lemma 4.1(3)). ��

Under the given assumptions, u � v is in fact universal, as shown in Proposition 5.5.

Proposition 5.3 Let A be a semi-abelian category with enough projectives satisfying
condition (UCE) and B a Birkhof f subcategory of A that contains Ab(A). Then
in Proposition 2.4, condition 4 implies condition 1. Hence a B-central extension
u : U → A is universal if and only if its domain U is B-perfect and projective with
respect to all B-central extensions.

Proof Suppose that u : U → A is a universal B-central extension; we have to prove
that every B-central extension of U splits. By Theorem 3.5, U admits a universal
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B-central extension v : V → U . It suffices to prove that this v is a split epimorphism.
By Lemma 5.2, the composite u � v is B-central. The weak B-universality of u now
yields a morphism s : U → V such that u � v � s = u. But also u � 1U = u, so that
v � s = 1U by the B-universality of u, and the universal B-central extension v splits.
The result follows. ��

Theorem 5.4 Let A be a semi-abelian category with enough projectives satisfying
condition (UCE) and B a Birkhof f subcategory of A containing Ab(A). A B-central
extension u : U → A is universal if and only if H1(U, I) and H2(U, I) are zero.

Proof

⇒ If u : U → A is a universal B-central extension then by Proposition 5.3 we
have H1(U, I) = I(U) = 0 and U is projective with respect to all B-central
extensions. This implies that 1U : U → U is a universal B-central extension of U .
Theorem 3.5 now tells us that H2(U, I) = 0.

⇐ The object U is B-perfect because I(U) = H1(U, I) = 0; since H2(U, I) is also
zero, the universal B-central extension uI

U : U(U, I) → U of U induced by
Theorem 3.5 is an isomorphism. Proposition 5.3 now implies that U ∼= U(U, I)
is projective with respect to all B-central extensions. Another application of
Proposition 5.3 shows that u is also a universal B-central extension. ��

Proposition 5.5 Let A be a semi-abelian category with enough projectives satisfying
condition (UCE) and B a Birkhof f subcategory of A that contains Ab(A). Let
f : B → A and g : C → B be B-central extensions. Then the composite f � g is a
universal B-central extension if and only if g is.

Proof First note that when g is a universal B-central extension then f � g is B-central
by Lemma 5.2. The central extensions f � g and g have the same domain, and by
Proposition 5.3 their universality only depends on a property of this domain. ��

Proposition 5.3 has the following partial converse, which shows that in
some sense condition (UCE) is necessary: if we want that conditions 1–5 in
Proposition 2.4 are equivalent, independently of the chosen Birkhoff subcategory
B with Ab(A) ⊂ B ⊂ A, then the category A must satisfy condition (UCE). See also
Remark 6.2.

Proposition 5.6 Let A be a semi-abelian category with enough projectives and B a
Birkhof f subcategory of A containing Ab(A). If in Proposition 2.4 conditions 1–5
are equivalent, then the following holds: if B is a B-perfect object, and f : B → A
and g : C → B are B-central extensions, then the extension f � g is B-central. If, in
particular, this happens for B = Ab(A), then A satisf ies condition (UCE).

Proof Let B be a B-perfect object and consider B-central extensions f : B → A
and g : C → B. Let u : B → A be a universal B-central extension. Then by
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Proposition 3.6 the uniquely induced comparison morphism f : u → f is a regular
epimorphism. Pulling back g along f as in

C ×B U

f
���

g

� �� U�� u � ��

f
���

A

C
g

� �� B
f

� �� A

we obtain a splitting for g through Proposition 2.4. Now the composite u � g is a
B-central extension because its pullback u∗(u � g) along u is a B-trivial extension, as a
composite of two B-trivial extensions (Section 2.3). Since f is a regular epimorphism
by regularity of A, the composite f � g is a quotient of the B-central extension u � g,
hence is also B-central. ��

Condition (UCE) allows us to obtain the following refinement of Proposition 4.3.

Proposition 5.7 Suppose that A satisfies condition (UCE) and consider a chain of
inclusions of Birkhof f subcategories Ab(A) ⊂ C ⊂ B ⊂ A with left adjoints as in
Eq. 4. If B is a J-perfect object of B then uJI

U(B,J) = ηI
U(B,JI) and

[U(B, JI), U(B, JI)]B ∼= H2(U(B, J), JI).

Hence uJI
B = uJ

B if f ηI
U(B,JI) is an isomorphism if f H2(U(B, J), JI) is zero.

Proof In view of Remark 3.1, ηI
U(B,JI) is JI-central as a subobject of uJI

B ; hence
Proposition 5.5 implies that it is a universal JI-central extension of U(B, J). The
result now follows from Theorem 3.5. ��

6 Examples

As mentioned in the introduction, our theory is based on the cases of groups (with
respect to abelian groups) and Lie algebras over a field � (with respect to �-vector
spaces). It captures results in [14, 21] for �-Leibniz algebras (with respect to �-vector
spaces) and gives new results when considering the reflection from Leib� to Lie�
(cf. Section 4). The chain of reflections PXMod → XMod → AbXMod from pre-
crossed modules to crossed modules to abelian crossed modules also corresponds
to the situation considered in Section 4. Thus we regain results in [1–3, 8].

Via Proposition 5.6, the very existence of working theories already shows that in
those examples condition (UCE) holds; and it is easy to find further examples. Thus
for the rest of the paper we focus on giving counterexamples.

6.1 Two Counterexamples

Our first counterexample is borrowed from [9]. It shows that a category—here the
category NAAlg

�
of non-associative algebras over a field �, which is a variety of
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�-groups—can be semi-abelian without having to satisfy condition (UCE). This
means that NAAlg

�
does not quite match the picture sketched in Section 5.

We must also emphasise that condition (UCE) by itself is not yet strong enough to
yield results such as Proposition 5.3 or Theorem 5.4, unless Ab(A) is contained in B.
Example 6.3, which explains this, was offered to us by George Peschke. It describes
a universal B-central extension u : U → A such that H2(U, I) is not trivial—and
indeed one of the assumptions of Theorem 5.4 is violated: the Birkhoff subcategory B
of the (semi-)abelian category A which we shall consider is strictly smaller than
Ab(A).

Example 6.1 A non-associative algebra A is a vector space over a field � equipped
with a bilinear operation [·, ·] : A × A → A. Unlike for Leibniz or Lie algebras
(or for associative ones), the bracket need not satisfy any additional conditions. We
write NAAlg

�
for the category of non-associative algebras over � and remark that

it coincides with the category of Hom-Leibniz algebras of which the twisting map
is trivial (α = 0 in the notations of [9, 22]) and with the category of magmas in the
monoidal category (Vect�,⊗,�). Note that Leib�, and hence also Lie� and Vect�,
are subvarieties of NAAlg

�
. Furthermore, an algebra is abelian if and only if it has

a trivial bracket, so precisely when it “belongs to” Vect�. It is easily seen that an
extension f : B → A in NAAlg

�
is Vect�-central if and only if its kernel is contained

in the centre of B, the object Z (B) = {z ∈ B | [z, b ] = 0 = [b , z] for all b ∈ B}.
In [9] the following situation is considered: morphisms g : C → B and f : B → A

where as vector spaces, A, B and C are 2-, 3- and 4-dimensional with respective bases
{a1, a2}, {b 1, b 2, b 3} and {c1, c2, c3, c4}. Their brackets are generated by

[a2, a1] = a2, [a2, a2] = a1

[b 2, b 2] = b 1, [b 3, b 2] = b 3, [b 3, b 3] = b 2

[c3, c2] = c1, [c3, c3] = c2, [c4, c3] = c4 [c4, c4] = c3

and zero elsewhere. The algebras B and A are Vect�-perfect because [B, B] = B.
The morphism of non-associative algebras f sends (b 1, b 2, b 3) to (0, a1, a2) and
g sends (c1, c2, c3, c4) to (0, b 1, b 2, b 3). The kernel of f is generated by b 1 and
thus equal to the centre Z (B) of B. Hence f is Vect�-central. Likewise, Ker(g) is
generated by c1 and thus equal to Z (C), so that g is Vect�-central. On the other
hand, the kernel of f � g contains c2, so that f � g cannot be Vect�-central.

Remark 6.2 Combining Example 6.1 with Proposition 5.6 we obtain a contradiction
with the statement of Proposition 6.3 in [10]. It entails the equivalence of all
conditions in Proposition 2.4, which would mean that the category of Hom-Leibniz
algebras over � satisfies condition (UCE). We know, however, that already its
subvariety NAAlg

�
does not, which through Lemma 4.1 leads to a clash. It appears

that the proof given in [10] does not explain the second half of the “necessary
condition”.

Example 6.3 Let C be the infinite cyclic group (with its generator written c ∈ C) and
R = �[C] the integral group-ring over C. We take A to be the (abelian) category
RMod of modules over R, so that Ab(A) = A and condition (UCE) holds. We
consider its full subcategory B of all R-modules with a trivial C-action; it is clearly
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Birkhoff in A, and its reflector is determined by tensoring with the trivial R-module
�, so that I(M) = �⊗R M for any R-module M.

Now consider a prime number p �= 2 and let M be the R-module
∨

k�1 Mk,
where Mk for k � 1 is the abelian group �pk = �/pk� equipped with the C-action

c · m = (1 − p) · m.

Note that a natural inclusion of R-modules Mk → Mk+1 is given by

(l + pk
�) �→ (p · l + pk+1

�).

Then it may be checked that H2(M, I) = H2(C, M) ∼= �p �= 0, while M is B-
perfect, and u : M → M : m �→ p · m is a universal B-central extension.
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