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Abstract Traditionally in natural duality theory the algebras carry no topology and
the objects on the dual side are structured Boolean spaces. Given a duality, one may
ask when the topology can be swapped to the other side to yield a partner duality
(or, better, a dual equivalence) between a category of topological algebras and a
category of structures. A prototype for this procedure is provided by the passage
from Priestley duality for bounded distributive lattices to Banaschewski duality for
ordered sets. Moreover, the partnership between these two dualities yields as a spin-
off a factorisation of the functor sending a bounded distributive lattice to its natural
extension, alias, in this case, the canonical extension or profinite completion. The
main theorem of this paper validates topology swapping as a uniform way to create
new dual adjunctions and dual equivalences: we prove that, for every finite algebra
of finite type, each dualising alter ego gives rise to a partner duality. We illustrate
the theorem via a variety of natural dualities, some classic and some less familiar.
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For lattice-based algebras this leads immediately, as in the Priestley–Banaschewski
example, to a concrete description of canonical extensions.
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1 Introduction

Priestley duality for the variety D of bounded distributive lattices sets up a dual
equivalence between D and the category of Priestley spaces, which we shall denote
by PT [36]. Banaschewski’s duality sets up a dual equivalence between the category
DT of Boolean topological distributive lattices and the category P of ordered sets [1].
These partner dualities are set up by hom-functors into a pair of structures: a
structure (with no topology) and a topological structure acting as its alter ego. Thus
the two dualities are related to one another by ‘topology swapping’: each can be
obtained from its partner by removing the topology from the alter ego and applying
it to the untopologised structure. This connection was revealed by Davey et al. [13],
in the context of an investigation of canonical extensions. Earlier, and providing the
initial impetus for [13], Haviar and Priestley [27] had used a similar technique to
derive new and very natural descriptions of canonical extensions for Stone algebras
and double Stone algebras. In this paper, building on work of Hoffmann [30],
Davey [10] and Davey et al. [16] we demonstrate that the above examples illustrate a
very general procedure that takes a duality and swaps the topology from the structure
side to the algebra side to obtain a new partner duality paired with the original
one. In many, but by no means all cases, one or both of the paired dualities will
be full, so providing a tight relationship between the four categories involved in the
partnership.

Our focus will be on paired dualities as a phenomenon within natural duality
theory. We do not pursue here the implications of the existence of such pairings
in the context of canonical extensions. We propose instead to discuss in a companion
paper the significance of our work for the algebraic and relational semantics for logics
modelled algebraically by finitely generated lattice-based varieties.

The stepping-off point for our presentation is the concept of the natural extension,
nA(A), of an algebra A in a prevariety A = ISP(M) generated by a family M
of finite algebras. This was introduced by Davey et al. [11]. They observed that
a multisorted natural duality between the class A = ISP(M) and a class XT of
Boolean topological structures can be used to simplify the description of the natural
extension [11, Theorem 4.3]. The natural extension nA(A) of an algebra A ∈ A
carries a Boolean topology and this enables us to view the natural extension as a
functor nA from A to a class AT of Boolean topological A-algebras.

We obtain a new, and widely applicable, topology-swapping theorem (TopSwap
Theorem 2.4). By applying this theorem along with basic results from the theory
of natural dualities and from the associated theory of standard topological quasi-
varieties, we obtain a hierarchy of increasingly rich results on natural extensions,
valid under progressively more stringent assumptions.
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(1) At the base level of the hierarchy, we obtain the natural extension functor
nA : A → AT as a composite of three functors—two hom-functors and a
forgetful functor—along with a duality between the category AT and a category
X of discrete structures.

(2) At the next level, we will seek to set up a dual equivalence between the category
AT and the category X.

(3) Finally, at the top level we have (first-order) descriptions of the topological
algebras in AT and of the structures in dually equivalent category X.

These levels are considered in turn in Sections 3, 4 and 5. When applied to lattice-
based algebras, the top level provides a rich environment within which the canonical
extension lives and has the potential to provide worthwhile algebraic and relational
semantics for an associated logic.

A natural duality for a prevariety of the form A = ISP(M) generated by a finite
family M of finite algebras will involve a dual category in which the objects are
multisorted topological structures with a sort for each algebra in the family M. To
keep our presentation as simple as possible, we concentrate on the case in which M
consists of a single algebra, but note along the way that the whole discussion extends
to the case where M is a finite set of finite algebras. The final example in Section 4
illustrates the multisorted case.

2 Natural Extensions via Natural Dualities

Davey et al. [11] defined the natural extension functor nA on the prevariety A =
ISP(M) generated by a (possibly infinite) family M of finite algebras. They proved
that the natural extension nA(A) is isomorphic to the A-profinite completion of A.
Combined with results of Harding [26] and Gouveia [25] on profinite completions,
it follows that if A is a finitely generated variety of lattice-based algebras, then the
natural extension agrees with the canonical extension in A. (A direct proof of this
fact, avoiding profinite completions, is given by Davey and Priestley [18, 19].) As
indicated above, we will restrict to the case where A := ISP(M) is the quasivariety
generated by a single finite algebra M. Nevertheless, we note that, modulo some
slightly cumbersome notation, our results extend to the case where A = ISP(M) is
the prevariety generated by a f inite family M of finite algebras.

Let M be a finite algebra. We shall associate with M two naturally defined
classes—a class A of algebras and a class AT of Boolean topological algebras.
As usual, the class A is the quasivariety A := ISP(M) generated by M. To define
the class AT we first let MT denote M equipped with the discrete topology, and
then define AT := IScP(MT), the class of isomorphic copies of topologically closed
subalgebras of powers of MT . We make A and AT into categories in the expected
way: the morphisms are the homomorphisms and the continuous homomorphisms,
respectively.

Let A ∈ A. We define a map eA: A → MA(A,M)

T by eA(a)(x) := x(a), for all a ∈ A
and x ∈ A(A, M). As A ∈ ISP(M), the homomorphism eA is an embedding (ignoring
the topology on the codomain). The natural extension nA(A) of A in A is then
defined to be the topological closure of eA(A) in MA(A,M)

T . Clearly nA(A) ∈ AT ,
and it is proved in [11] that nA : A → AT is the object half of a functor that is
independent of the choice of the generator M of the quasivariety A. The following
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theorem comes from [11] where it is established in greater generality. We refer to
[11] for the missing definitions and proofs.

Theorem 2.1 ([11, Theorems 3.6 and 3.8]) Let M be a f inite algebra, let A := ISP(M)

and let A ∈ A. The natural extension nA(A) of A is (isomorphic to) the A-prof inite
completion of A. If M is a lattice-based algebra, then nA(A) is a canonical extension
of A in A.

We now wish to show how a natural duality for the quasivariety A leads to a simple
description of the maps α : A(A, M) → M that belong to nA(A). For this it would
suffice to work with the usual natural-duality setting (á la Clark and Davey [3]) in
which we have algebras on the discrete side and Boolean topological structures on
the other. Since we also want to show that nA factors in a natural way as a composite
of three functors, we need the more general setting (á la Hoffmann [30], Davey [10]
and Davey et al. [16]) in which structures are allowed on both the discrete and the
topological side. We briefly review the requisite theory and refer to [3, 10, 16, 30] for
the missing details.

Let M1 = 〈M; G1, H1, R1〉 and M2 = 〈M; G2, H2, R2〉 be finite structures on the
same underlying set. Here the Gi, Hi and Ri are respectively sets of finitary
operations, partial operations and relations on M. Assume that M2 is compatible
with M1, that is, each (n-ary) operation g ∈ G2 is a homomorphism from Mn

1 to M1,
for each (n-ary) partial operation h ∈ H2, the domain of h forms a substructure
dom(h) of Mn

1 and h is a homomorphism from dom(h) to M1, and each (n-ary) relation
r ∈ R2 forms a substructure of Mn

1 . The topological structure (M2)T obtained by
adding the discrete topology to M2 is denoted by M∼2 and is referred to as an alter
ego of M1. We define the category A := ISP(M1) of structures and the category
XT := IS

0
cP

+(M∼2) of Boolean topological structures. (Note that the class operator
P allows empty indexed products and so yields the total one-element structure while
P

+ does not, and that the operator S excludes the empty structure while S
0 includes

the empty structure when the type does not include nullary operations.)
There are naturally defined hom-functors D : A → XT and E : XT → A, given

on objects by

D(A) := A(A, M1) ≤ M∼ A
2 and E(X) := XT(X, M∼2) ≤ MA

1 ,

for all A ∈ A and all X ∈ XT . The evaluation maps

eA : A → ED(A) and εX : X → DE(X)

are always embeddings and 〈D, E, e, ε〉 is a dual adjunction between A and XT . We
say that M∼2 yields a duality on A if, for all A ∈ A, the map eA is an isomorphism,
that is, the only continuous homomorphisms α : A(A, M1) → M∼2 are the evaluations
maps eA(a), for a ∈ A. We also say that M∼2 dualises M1. If, in addition, εX is an
isomorphism, for all X ∈ XT , we say that M∼2 yields a full duality on A. If eA is an
isomorphism for all finite structures A in A, we say that M∼2 yields a finite-level duality
between A and XT . A finite-level duality such that εX is an isomorphism, for all finite
X ∈ XT , is referred to as a finite-level full duality between A and XT .

Since compatibility of structures is symmetric (see [10, Lemma 2.1] and [16,
Lemma 1.3]), we can swap the topology to the other side and repeat the construction
using the alter ego M∼1 of the structure M2. In order to have well-defined forgetful
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functors relative to the original dual adjunction between A = ISP(M1) and XT =
IS

0
cP

+(M∼2), we now define new categories AT := IScP(M∼1) of Boolean topological
structures and X := IS

0
P

+(M2) of structures. In this situation, our emphasis will be
on the category AT rather than on the category X, and our notation will reflect it.
We have hom-functors F : AT → X and G : X → AT , given on objects by

F(A) := AT(A, M∼1) ≤ MA
2 and G(X) := X(X, M2) ≤ M∼ X

1 ,

and evaluation maps eA: A → GF(A) and εX : X → FG(X), for all A ∈ AT and all
X ∈ X, giving rise to a new dual adjunction 〈F, G, e, ε〉 between AT and X. We refer
to 〈D, E, e, ε〉 and 〈F, G, e, ε〉 as paired adjunctions. (Here we use generic notation for
the evaluation maps arising in the two adjunctions; the precise definitions in each case
are clear from the context.) If eA: A → GF(A) is an isomorphism, for all A ∈ AT ,
then we say that M2 yields a duality on AT . (The terminology M∼1 yields a co-duality
on X is also used, but we will avoid this as we wish to place the emphasis on the
topological category AT .)

Remark 2.2 The decision whether to include or exclude empty structures and total
one-element structures is one of convenience and personal preference. All results
remain valid modulo small but sometimes annoying changes, like having to include
an empty nullary operation in order to get a strong duality—see the appendix to [16]
for a detailed discussion.

Now assume that M1 is an algebra (that is, H1 = R1 = ∅) and consider the
diagram of functors in Fig. 1 arising from the paired adjunction constructed above.
Here � : XT → X is the natural forgetful functor. We can now show how the natural
extension nA(A) of an algebra A ∈ A can be described via the paired adjunctions.
In all the examples presented below we shall see that, at a minimum, the conditions
for Theorem 2.3 are met. The theorem gives information about the natural extension
nA(A) for each A ∈ A in the quasivariety A of algebras under consideration. We
stress that to obtain this information, a duality, rather than a full duality, between A
and XT is involved, and that even a duality valid at the finite level will suffice.

Theorem 2.3 Let M1 be a f inite algebra and let M2 be a structure compatible with M1

and def ine A and XT as above. The following are equivalent:

(i) the outer square of Fig. 1 commutes, that is, nA(A) = G(D(A)�), for all A ∈ A;
(ii) nA(A) consists of all maps α : A(A, M1) → M that preserve the structure on

M2, for all A ∈ A;
(iii) M∼2 yields a f inite-level duality between A and XT .

Fig. 1 The paired adjunctions
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Moreover, if the type of M2 is f inite, then (i)–(iii) are equivalent to

(iv) M∼2 yields a duality between A and XT .

Proof Let A ∈ A. Since G(D(A)�) consists of all maps α : A(A, M1) → M that
preserve the structure on M2, the equivalence of (i) and (ii) is immediate.

By definition, the natural extension nA(A) of A is the topological closure of eA(A)

in the power M∼A(A,M1)
2 . Thus α : A(A, M1) → M belongs to nA(A) if and only if α

is locally an evaluation, that is, for every finite subset Y of A(A, M1), there exists
a ∈ A such that α�Y = eA(a)�Y . By Clark and Davey [3, Theorem 10.5.1] (see also
Pitkethly and Davey [35, Lemma 1.4.4]), α is locally an evaluation if and only it
preserves every finitary relation compatible with M1. Hence (ii) says precisely that,
for all A ∈ A, each map α : A(A, M1) → M that preserves the structure on M2 in
fact preserves every finitary compatible relation on M1. If A is finite, then the only
maps α : A(A, M1) → M that preserve every finitary compatible relation on M1 are
the evaluations (see [3, Theorem 2.3.1]). Hence (ii) implies (iii).

Now assume that M∼2 yields a finite-level duality on A. Let A ∈ A and let
α : A(A, M1) → M be a map that preserves the structure on M2. By the discussion
above, to prove (ii) it remains to show that α preserves every finitary compatible
relation on M1. Let r be an n-ary compatible relation on M1 and let r be the corre-
sponding subalgebra of Mn

1 . Assume that x1, . . . , xn ∈ A(A, M1) with (x1, . . . , xn) ∈
rA(A,M1). It follows that there is a well-defined homomorphism z : A → r given by
z(a) := (x1(a), . . . , xn(a)), for all a ∈ A. As D(z) : D(r) → D(A) is an XT-morphism
and α : D(A)� → M2 is an X-morphism, and since D(r) is finite, the composite
α ◦ D(z) : D(r) → M∼2 is an XT-morphism. As M∼2 yields a finite-level duality, there
exists c ∈ r with α ◦ D(z) = er(c), that is, α(u ◦ z) = u(c), for all u ∈ A(r, M1). Hence,
since xi = ρi ◦ z, for all i, where ρi : r → M1 is the i-th projection, we have

(α(x1), . . . , α(xn)) = (α(ρ1 ◦ z), . . . , α(ρn ◦ z))

= (ρ1(c), . . . , ρn(c))

= c ∈ r.

Hence α preserves r, whence (iii) implies (ii).
Finally, (iv) always implies (iii), and (iii) implies (iv) if the type of M∼2 is finite, by

the Duality Compactness Theorem [3, 2.2.11]. 	


We now show that if we add to Theorem 2.3 the assumption that the algebra M1

is of finite type, then whenever M2 yields a description of natural extensions in A,
it also yields a duality on the category AT within which the natural extensions live.
Note that the theorem holds not only when M1 is an algebra of finite type, but also
when it is a total structure of finite type, that is, M1 = 〈M; G1, R1〉 where G1 is a finite
set of total operations and R1 is a finite set of relations. The authors acknowledge
with thanks several conversations with Jane Pitkethly which led them to the proof of
this result.

TopSwap Theorem 2.4 Let M1 be a f inite total structure of f inite type, let M2 be a
structure compatible with M1 and def ine the categories A, AT , X and XT as above.
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(1) If M∼2 yields a f inite-level duality between A and XT , then M2 yields a duality
between AT and X.

(2) If M∼2 yields a f inite-level full duality between A and XT , then the adjunction
〈F, G, e, ε〉 is a dual equivalence between the categories AT and X.

Proof Let M′
2 be any structure that is compatible with M1, has M2 as a reduct

and fully dualises M1 at the finite level, and define the corresponding categories
X′ := IS

0
P

+(M′
2) and X′

T := IS
0
cP

+(M∼′
2), functors F′ : AT → X′ and G′ : X′ → AT

and evaluation maps e′
A : A → G′F′(A) and ε′

X : X → F′G′(X), for all A ∈ AT and
X ∈ X. (For example, we could take M′

2 = 〈M; Gω, Hω, Rω〉, where Gω, Hω and
Rω are respectively the sets of all finitary total operations, partial operations and
relations compatible with M1, in which case M∼′

2 is the strong brute force alter ego of
M1 and so yields a finite-level full duality between A and X′

T [16, Lemma 4.6].) By
the Sesqui Full Duality Theorem [10, 6.4], M∼1 yields a full duality between X′ and AT

and hence the adjunction 〈F′, G′, e′, ε′〉 is a dual equivalence between the categories
AT and X′. If M∼2 yields a finite-level full duality between A and XT , we may choose
M′

2 = M2 and conclude that the adjunction 〈F, G, e, ε〉 is a dual equivalence between
the categories AT and X, which establishes part (2) of the theorem.

We now turn our attention back to the structures M1 and M2 and the proof that
M2 yields a duality between AT and X. Let A ∈ AT . We must prove that every X-
morphism from AT(A, M∼1) to M2 is an evaluation. Let α : AT(A, M∼1) → M2 be an
X-morphism. As M∼1 yields a full duality between the categories X′ and AT , every
X′-morphism from AT(A, M∼1) to M′

2 is an evaluation, so it suffices to show that α

is an X′-morphism. The map α preserves a (partial) operation h in the type of M′
2

if and only if α preserves the relation graph(h), so it certainly suffices to show that
α preserves every compatible relation on M1. The following standard entailment
argument completes the proof.

Let s be an n-ary compatible relation on M1 and let s be the corresponding
substructure of Mn

1 . As M∼2 yields a finite level duality on A, the structure M∼2
entails every compatible relation on M1 and so entails s. By the Dual Entailment
Theorem [16, 3.6] (see also [3, Theorem 9.1.2]), there is a primitive positive formula
(∃u1, . . . , um) �(v1, . . . , vn, u1, . . . , um) in the language of M2 such that

s = { (a1, . . . , an) ∈ Mn | (∃c1, . . . , cm) M2 |= �(a1, . . . , an, c1, . . . , cm) } (1)

and there exist homomorphisms w1, . . . , wm : s → M1 such that A(s, M1) sat-
isfies �(ρ1, . . . , ρn, w1, . . . , wm), where ρi : s → M1 is the ith projection. Now let
(x1, . . . , xn) ∈ sAT(A,M∼1) and define continuous homomorphisms yi : A → M∼1 by

yi(a) := wi(x1(a), . . . , xn(a)).

Since A(s, M1) satisfies �(ρ1, . . . , ρn, w1, . . . , wm), it follows that A(A, M1) satisfies
�(x1, . . . , xn, y1, . . . , ym). As the formula �(v1, . . . , vn, u1, . . . , um) is a conjunct of
atomic formulæ in the language of M2 and α preserves the structure on M2, we
conclude that M2 satisfies �(α(x1), . . . , α(xn), α(y1), . . . , α(ym)). It follows by (1) that
(α(x1), . . . , α(xn)) ∈ s. Hence α preserves s, as required. 	


If M1 is an algebra of finite type and M∼2 yields a duality on A := ISP(M1), then
part (1) of this theorem tells us that, in addition, M2 yields a duality on AT :=
IScP

+(M1); we refer to these as paired dualities and say that the structure M2 yields
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paired dualities on A and AT . If M∼2 yields a full duality on A, then part (2) of the
theorem tells us that both of the dual adjunctions of Fig. 1 are dual equivalences, and
we refer to them as paired full dualities.

Remark 2.5 Several remarks should be made about this theorem.

(i) It is natural to seek generalisations of this theorem and ask: if M1 and M2 are
compatible structures and M∼2 yields a duality on A := ISP(M1), does it follow
that M2 yields a duality on AT := IScP(M∼1)? By Example 5.4 of Davey [10],
in the presence of partial operations in the type of M1, the answer in general
is no.

(ii) In applications where M1 is a lattice-based algebra, the assumption that M1

be of finite type is not a real restriction. Every finite lattice-based algebra is
term equivalent to an algebra of finite type since every clone on a finite set
that contains a near-unanimity function is finitely generated (see, for example,
Szendrei [40, Corollary 1.26]).

(iii) The astute reader will have noticed that there was no mention of named
constants in the TopSwap Theorem, while the Sesqui Full Duality Theorem [10,
6.4], which is used in the proof of the TopSwap Theorem, requires that the
algebra M1 has named constants. We can avoid this technical requirement as
we have intentionally excluded the empty structure from the class AT .

(iv) There is an obvious multisorted variant of the TopSwap Theorem that applies
when we replace the total structure M1 by a set M1 = {M1, . . . , Mk} of finite
algebras and replace the structure M2 by a k-sorted structure M2 compatible
with M1. See the preamble to Example 4.6 below for a brief discussion of
multisorted structures and dualities and [3, Section 7.1] and [11] for more
details.

The remainder of the paper consists of a catalogue of examples of the application
of Theorem 2.3 and the TopSwap Theorem. We will progressively work our way up
the hierarchy described in the introduction.

3 The Base Level: Paired Adjunctions

In this section we concentrate on examples of algebras M1 where a dualising alter
ego M∼2 is known but

(a) there is no fully dualising alter ego, or
(b) there is a known fully dualising alter ego but it is more complex than M∼2, or
(c) it is not known if there is a fully dualising alter ego.

In each case, an application of Theorem 2.3 yields a description, for each algebra
A ∈ ISP(M1), of the natural extension nA(A) and hence, via Theorem 2.1, of the A-
profinite completion of A, and, in the lattice-based case, of the canonical extension
of A. Then an application of part (1) of the TopSwap Theorem shows that we have
paired dualities on A and AT .

Example 3.1 Our first example, originating with Hyndman and Willard [31], falls
under (a) above. Consider the unary algebra 31 = 〈{0, 1, 2}; u, d〉 where u(0) =
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1, u(1) = u(2) = 2 and d(2) = 1, d(1) = d(0) = 0. Since u and d are endomorph-
isms of the three-element lattice 3 = 〈{0, 1, 2}; ∨,∧〉 with 0 < 1 < 2, the Lattice
Endomorphism Theorem [7] (see also [35, 2.1.2]) implies that the alter ego 3∼′

2 =
〈{0, 1, 2}; ∨,∧, R6,T〉 dualises 31, where R6 is the set of all 6-ary compatible
relations on 31. Hyndman and Willard proved that the simpler alter ego 3∼2 =
〈{0, 1, 2}; ∨,∧, r, s,T〉 also dualises 31, where r and s are given by

r = { (x, y) | x � y & (x, y) �= (0, 2) }, and

s = { (x, y, z, w) | x � y � z � w & (x = y or z = w) }.

The relation r can be interpreted as the set of order-preserving maps from 2 to
3 excluding the map onto {0, 2} or as the directed, looped path of length 2. The
relation s can be interpreted as the set of order-preserving maps from 4 to 3 excluding
the map corresponding to (0, 1, 1, 2). By Theorem 2.3 and part (1) of the TopSwap
Theorem, the natural extension nA(A) of an algebra A in ISP(31) consists of all
lattice homomorphisms α : A(A, 31) → 3 that preserve r and s, and 32 yields paired
dualities on A and AT .

Example 3.2 This next, classic, example falls under category (b). It is typical of
situations in which there is a duality with no partial operations in the alter ego, but
where the alter ego needs to be augmented with partial endomorphisms to achieve a
full duality.

Let n1 be the n-element chain regarded as a Heyting algebra. Then the class
L(n) := ISP(n1) is a variety of relative Stone algebras and every proper subvariety
of the variety of relative Stone algebras is of this form (Hecht and Katriňák [29]).
Davey [8, 9] proved that n∼2 := 〈n; End(n1),T〉 dualises n1. This duality has played a
seminal role in the general theory and is re-proved several times in the Clark–Davey
text [3]. For n � 4, the duality is not full, but can be upgraded to a full duality at the
expense of adding the partial endomorphisms to the type of n∼2 (Clark and Davey [3,
Theorem 4.2.3]). By Theorems 2.1 and 2.3, the Heyting algebra consisting of all maps
α : L(n)

(A, n1) → n that preserve the action of End(n1) is the natural extension of A
and hence is both the profinite completion and a canonical extension of A, for each
A ∈ L(n). By part (1) of the TopSwap Theorem, End(n1) yields paired dualities on
L(n) and L

(n)

T .

Example 3.3 We now give an example from category (c). The semilattice-
based algebra S1 = 〈{0, 1, 2}; ∧, u, d〉 is obtained by adding the operation of the
three-element semilattice 3∧ = 〈{0, 1, 2}; ∧〉, with 0 < 1 < 2, to the algebra 31 of
Example 3.1. Since u and d are endomorphisms of the 3∧, the Semilattice-
Based Duality Theorem of Davey et al. [15, 3.3] implies that the alter ego S∼2 =
〈{0, 1, 2}; ∧, R4,T〉 dualises S1, where R4 is the set of all 4-ary compatible relations
on S1. Theorem 2.3 now supplies a description of nA(A) for each A ∈ A := ISP(S1)

and the TopSwap Theorem provides paired dualities. (Whether the algebra S1 is fully
dualisable has not been studied.)
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4 The Next Level: Paired Full Dualities

We now move up to examples where there is a known full duality, at least at the finite
level.

Example 4.1 The TopSwap Theorem subsumes the results for particular categories
that were its forerunners. The Priestley and Banaschewski dualities are paired full
dualities, and were, as in Theorem 2.3, used by Davey et al. [13] to recapture the
description of the canonical extension of a bounded distributive lattice originally
given by Gehrke and Jónsson [23]. Similarly, Haviar and Priestley [27] used dualities
arising as in the TopSwap Theorem to describe the canonical extensions of Stone
algebras and of double Stone algebras.

It would be erroneous to give the impression that, in the context of distributive-
lattice-based algebras, the TopSwap Theorem does no more than provide a unified
treatment of examples previously investigated in a more ad hoc way. There are many
dualities in the literature known to be full, and so in particular full at the finite level,
and to which the theorem applies. We mention for example varieties of MV and BL
algebras generated by chains (Niederkorn [33], Di Nola and Niederkorn [22]), as well
as the varieties of Kleene algebras and De Morgan algebras whose partner dualities
were already available as applications of the theorems in Section 6 of Davey [10,
page 25].

There is one general situation in which fullness can immediately be guaranteed
and which encompasses both the MV and Kleene examples mentioned above.
Assume that M1 is a finite lattice-based algebra such that each subalgebra of M1

is subdirectly irreducible and the only homomorphisms between subalgebras of
M1 are identity maps. Then the standard NU Duality Theorem [3, 2.3.4] already
supplies a strong, and hence full, duality on A = ISP(M1) without a need to upgrade.
(In fact, this observation is a special case of the characterisation of finite algebras
with a purely relational, strongly dualising alter ego—see Pitkethly and Davey [35,
Theorem A.7.8].) Therefore any alter ego M∼2 of M1 for which G2 = H2 = ∅ and
R2 = S(M2

1), or a subset thereof which entails every element of S(M2
1), brings A

within the scope of part (2) of the TopSwap Theorem.
We now provide one novel example to which part (2) of the TopSwap Theorem

applies in the manner described above.

Example 4.2 We shall enrich Example 3.1 further by forming the distributive-lattice-
based algebra L1 = 〈{0, 1, 2}; ∨, ∧, u, d〉, where ∨ and ∧ are the operations of the
three-element lattice 3. The NU Duality Theorem [3, 2.3.4] implies that the alter
ego L∼′

2 = 〈{0, 1, 2}; R2,T〉 dualises L1, where R2 is the set of all binary compatible
relations on L1. A simple analysis of the subalgebras of L2

1 shows that the simpler
alter ego L∼2 = 〈{0, 1, 2};�,∼,T〉 dualises L1, where � is the order relation on 3
and ∼ = {0, 1, 2}2 \ {(0, 2), (2, 0)} is the binary relation that also arises in the natural
duality for Kleene algebras—see for example [3, 4.3.9]. (In fact, this duality is
optimal: neither relation can be removed without destroying the duality.) Since L1

is simple, has no proper subalgebras and no non-identity endomorphisms, we deduce
that this duality is strong and therefore full, and that part (2) of the TopSwap
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Theorem applies. In particular the functors F : AT → X and G : X → AT yield a
dual equivalence between the categories AT := IScP(L∼1) and X := IS

0
P

+(L2).

Example 4.3 We end this collection of distributive-lattice-based examples with one
in which the starting finite-level duality does not lift to a full duality between A
and XT . Let D1 = 〈{0, d, 1}; ∨,∧, 0, 1〉 be the three-element bounded lattice. Thus,
D := ISP(D1) is the class of all bounded distributive lattices. Davey et al. [14] proved
that the alter ego D∼2 := 〈{0, d, 1}; f, g, h,T〉, where f , g and h are as given in Fig. 2,
yields a duality between D and the category XT := IS

0
cP

+(D∼2) that is full at the finite
level but not full.

By part (2) of the TopSwap Theorem, we may swap the topology from D∼2
to D1 and conclude that the hom-functors induced by D2 and its alter ego
D∼1 = 〈{0, d, 1}; ∨,∧, 0, 1,T〉 give rise to a dual equivalence between the category
DT = IScP(D∼1) of Boolean topological distributive lattices and the category X :=
IS

0
P

+(D2).
It should be noted that Davey et al. [12] have shown that the dualities on D that

are full at the finite level form a lattice of cardinality the continuum with the duality
given by D∼2 as it bottom element.

Example 4.4 We turn now to an example of a finite lattice-based algebra whose
underlying lattice in non-distributive. Fix k ≥ 2 and let M1 := 〈M; ∨,∧,′ , 0, 1〉 be
the orthomodular lattice of height 2 with 2k atoms, where k � 2. The underlying
lattice of M1 is a non-distributive, modular lattice. Haviar et al. [28] exhibited the
Pixley term for the variety MOk := ISP(M1) and applied the Arithmetic Strong
Duality Theorem [3, 3.3.11] to show that M∼2 := 〈M; Aut(M1), h,T〉 fully dualises
M1, where h is the partial endomorphism of M1 given by 0 �→ 0, a �→ 0, a′ �→ 1 and
1 �→ 1, for some fixed a ∈ M \ {0, 1}. Once again, Theorem 2.1 and 2.3 and part (2) of
the TopSwap Theorem yield paired full dualities and a description of the canonical
extension of an orthomodular lattice A in MOk.

Of course, the TopSwap Theorem may be applied to algebras that are not lattice
based to yield descriptions of the natural extension and therefore, by Theorem 2.1,
of the profinite completion. The following example will be familiar to all students of
linear algebra.

Example 4.5 Let F = 〈F; +, 0, {λa | a ∈ F}〉 be a finite field F = 〈F; +, ·, 0, 1〉 re-
garded as a one-dimensional vector space over itself; here λa is left multiplication

f 0

d

1

g 0

d

1

h
(0,0)

(0,d)

(d,1)

(1,1)

0

d

1

Fig. 2 The operations f , g and h
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by a. Then A := ISP(F) consists of all vector spaces over F, the corresponding topo-
logical category AT = IScP

+(F∼) consists of all Boolean topological vector spaces
over F, and F∼ yields a full duality between A and AT ; see the Clark–Davey text [3,
Theorem 4.4.4] for details. In this case, as in the case of every self-dualising finite
algebra, the functors F and G are identical to the functors E and D, respectively.
Theorem 2.3 now reveals that the conventional double dual A(A(A, F), F) of a
vector space A over F is precisely the natural extension nA(A) of A.

We close this section with a brief excursion into the world of multisorted dualities.
Multisorted piggyback dualities arise naturally when studying the variety V :=
HSP(M) generated by a finite distributive-lattice-based algebra M. If ISP(M) fails
to be a variety, then we cannot get a single-sorted duality for the variety based
on M. Thanks to Jònsson’s Lemma, we can write V as ISP(M), for some finite
set of (subdirectly irreducible) algebras M. Then the Piggyback Duality Theorem
of Davey and Priestley [17] (see [3, Theorem 7.2.1]) guarantees that there is a
multisorted duality for V (based on M) given by binary multisorted relations. The
multisorted versions of Theorem 2.3 and part (1) of the TopSwap Theorem can be
applied to varieties for which multisorted piggyback dualities have been worked out:
for example, finitely generated varieties of Ockham algebras [17], and double MS-
algebras [39], and more generally, Cornish algebras [38], and distributive lattices with
a quantifier [37].

We shall sketch the ideas behind multisorted piggyback dualities as developed by
Davey and Priestley [17] and refer to [3, Chapter 7], [17] and [11] for the missing
details. Since the examples we wish to discuss, namely varieties of Ockham algebras
generated by a finite subdirectly irreducible algebra, require a dual structure which
is k-sorted, for k � 2, we shall restrict our discussion of multisorted dualities to the
2-sorted case.

So let us consider a class A := ISP(M1), where M1 = {M0, M1} with M0 and M1

finite algebras of common type each having a bounded distributive lattice reduct.
The Multisorted Piggyback Duality Theorem (see [3, 7.2.1]) tells us that there is a
duality between the quasivariety A := ISP(M1) and a category X := IS

0
cP

+(M∼ 2).
The structure M∼ 2 is a discretely topologised 2-sorted structure

M∼ 2 = 〈M0 ∪ M1; G, R,T〉,
where G = ⋃{A(Mi, M j) | i, j ∈ {0, 1}} (so G is a 2-sorted version of an endomorph-
ism monoid End(M)) and R is a certain set of binary relations with each r ∈ R
forming a subalgebra of Mi × M j, for some i, j ∈ {0, 1}. Thus, the 2-sorted structure
M2 = 〈M0 ∪ M1; G, R〉 is compatible with M1 in an obvious sense. The proof of
the cited theorem exploits Priestley duality for D—recall that, by assumption, the
algebras in A have a bounded distributive lattice reduct.

The multisorted version of Theorem 2.3 immediately yields a description of the
natural extension nA(A) of an algebra A ∈ A as the set of all 2-sorted maps from
A(A, M0) ∪ A(A, M1) to M0 ∪ M1 that preserve the maps in G and the relations
in R. Likewise, part (1) of the multisorted version of the TopSwap Theorem tells
us that M2 yields a multisorted duality between AT := IScP({M∼0, M∼1}) and X :=
IS

0
P

+(M2). (We remark that a proof quite different from that presented for the
multisorted version of the TopSwap Theorem is also available. This exploits the
fact that topology-swapping is known to be valid for Priestley duality, yielding
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the Banaschewski duality. The argument used to prove the Multisorted Piggyback
Duality Theorem can then easily be adapted so that piggybacking is carried out over
the latter duality; this gives the same result as the specialisation of the TopSwap
Theorem.)

In general, the duality given by the Multisorted Piggyback Duality Theorem is not
full and hence part (2) of the TopSwap Theorem does not apply. The duality can
always be upgraded to a strong (and therefore full) duality; see Clark and Davey [3,
Theorem 7.1.2] and Davey and Talukder [20, Section 4]. Perhaps, however, of most
interest are instances in which no upgrading, by the addition of suitable partial
operations, is necessary to achieve fullness. Hence, in the example below, we shall
concentrate on the situation where the piggyback duality is already full.

Example 4.6 We recall that the variety O of Ockham algebras consists of algebras
A = 〈A; ∨,∧, 0, 1,∼〉, where 〈A; ∨,∧, 0, 1〉 is a bounded distributive lattice and
∼ is a dual endomorphism that interchanges 0 and 1. (See Blyth and Varlet [2]
for background on Ockham algebras.) Under this umbrella come in particular the
varieties M (De Morgan algebras), K (Kleene algebras) and S (Stone algebras)
which have provided important test case examples for natural duality theory from its
earliest days. Dualities for these, and subsequently for other finitely generated sub-
varieties and subquasivarieties of O, were profitably used, for example, to describe
free algebras and coproducts. A number of these dualities are in fact full, though
the issue of fullness was not addressed when they first appeared in the literature; at
the time the necessary methodology of strong dualities was not available. We shall
concentrate here on dualities which are full.

Let M be a finite subdirectly irreducible algebra in O and let V = HSP(M) be
the variety generated by M. It is well known that V = ISP(M), where M = {M, M1}
with M1 a particular homomorphic image of M. In this case, the set R of relations
required by the Piggyback Duality Theorem has size 4 (see [17, Theorem 3.7] and [3,
Theorem 7.5.5]). The conditions under which the piggyback duality for V is already
full are most conveniently expressed in terms of the restricted Priestley duality for O,
as it applies in particular to M and M1. See Clark and Davey [3, Chapter 7], Davey
and Priestley [17] and Goldberg [24] for proofs of all claims made below.

The dual of a finite Ockham algebra under restricted Birkhoff–Priestley duality is
a finite ordered set (which can be taken to be the set of join-irreducible elements of
the algebra), equipped with an order-reversing map g and the discrete topology T;
such a structure is a (finite) Ockham space. Goldberg’s characterisation of the
finite subdirectly irreducible Ockham algebras [24, Proposition 2.5] tells us that the
Ockham space dual to the generating algebra M takes the form X = 〈X;�, g,T〉,
where X = { gk(e) | k � 0 }, for some e ∈ X. Let |X| = m and let n be the least k such
that gk(e) = gm(e). Then {gn(e), gn+1(e), . . . , gm−1(e)} is called the loop of X. The dual
of the algebra M1 is the substructure X1 of X generated by g(e). Thus, either X is a
loop, in which case X = X1, or X1 = X \ {e}.

If V = ISP(M), then we may choose to ignore the algebra M1 and use a (single-
sorted) duality based on M. Building on work of Goldberg [24], Davey and Priest-
ley [17, Corollary 3.11] show that V = ISP(M) if and only if one of the following
conditions holds:

(a) X is an antichain;
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(b) m � 2 and X is isomorphic to the Ockham space Y1 in Fig. 3 or its order-
theoretic dual;

(c) m � 4, n � 1, m � n + 3 and X is isomorphic to the Ockham space Y2 in Fig. 3
or its order-theoretic dual;

(d) X1 is a loop (including the case that X = X1 is a loop).

The characterisation of finite subdirectly irreducible Ockham algebras implies
that every non-trivial subalgebra of M is subdirectly irreducible. In addition, we
note that M has no one-element subalgebras. The NU Strong Duality Theorem [3,
3.3.9] implies that a (single-sorted) piggyback duality for ISP(M) can be converted
to a full (in fact strong) duality by the addition of a set of partial endomorphisms
of M. Likewise, the Multisorted NU Strong Duality Theorem [3, 7.1.2] implies that
a 2-sorted piggyback duality for HSP(M) can be converted to a full duality by the
addition of a set of partial maps of the form h : A → M j, where A is a subalgebra
of Mi for some Mi, M j ∈ {M, M1}. If every such partial operation extends to a total
operation, then the additional partial operations are not required, as their total
extensions are already in the set G, and the original piggyback duality is already
strong and therefore full. The Unary Total Structure Theorem [3, 6.2.4], and its
multisorted variant, tell us that this is equivalent to the injectivity of M in the single-
sorted case and to the injectivity of both M and M1 in the 2-sorted case. The following
characterisation of when this happens is due to Goldberg [24]—see the discussion of
injectivity in [24, Section 4], and [24, Theorem 4.17] in particular.

(1) Assume that V = ISP(M). Then M is injective in V and consequently the single-
sorted piggyback duality for V is strong and therefore full.

(2) Assume that V � ISP(M). Then the following are equivalent:

(i) the 2-sorted piggyback duality for V is strong and therefore full,
(ii) both M and M1 are injective in V,

(iii) (a) e is comparable with gk(e), for some k > 0, or
(b) e is not comparable with gi(e), for all i > 0 and there exists k, 	 ∈ N

such that gk(e) < g(e) < g	(e).

These conditions on the Ockham space X dual to M are quite restrictive. Never-
theless (1) is satisfied in the case of M, S, K and also the much studied enveloping
variety of MS algebras (see Blyth and Varlet [2]), and conditions (1) and (2) indicate
that there is a large collection of varieties V of Ockham algebras for which the

Y1. . .

Y2. . . . . .

Fig. 3 The Ockham spaces Y1 and Y2
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single-sorted or 2-sorted piggyback duality is full. In each such case, we may apply
part (2) of the TopSwap Theorem to yield a dual equivalence between VT and a
class of multisorted structures. We do not discuss further the varieties meeting the
conditions for a full piggyback duality and nor, in the next section, do we consider
the axiomatisation of the dual category. To address these issues we would need to
venture into specialised aspects of Ockham algebra dualities inappropriate for this
paper.

5 The Top Level: Axiomatised Dual Categories

Assume that we have paired full dualities arising from a finite algebra M1 and a
compatible structure M2 via the TopSwap Theorem. The duality between AT :=
IScP(M∼1) and X := IS

0
P

+(M2) is likely to be of maximum use when studying and
applying natural/canonical extensions if we have an axiomatisation, preferably first
order, for both categories.

The class X certainly has a first-order axiomatisation: as it is closed under the class
operators I, S

0 and P
+, it is a universal Horn class and so is of the form X = Mod0(
),

for some set 
 of universal Horn sentences. (Here Mod0(
) denotes the class of
possibly empty models of 
.) The topological class AT is more of a problem—it
need not equal the class ModBt(
) of Boolean topological models of 
 for any set

 of first-order sentences. This bad behaviour occurs, for example, if we choose
M1 = 〈{0, d, 1}; f, g〉, where f and g are the unary operations in Example 4.3 [6,
Theorems 8.1, 8.8 and 8.10]. Much effort has been expended in finding first-order
axiomatisations of classes of the form IScP(M∼), where M = 〈M; G, H, R〉 is a finite
structure, or in proving that no such axiomatisation exists: see, for example, [4–
6, 21, 41–43].

We would like to start from a full duality between the quasivariety A = ISP(M1)

of algebras and the category XT = IS
0
cP

+(M∼2) of Boolean topological structures,
with a known first-order axiomatisation of A and a known (not necessarily first-
order) axiomatisation of XT . We then apply the TopSwap Theorem to yield the
dual equivalence 〈F, G, e, ε〉 between AT and X and, in an ideal situation, would
like to convert the axiomatisations of A and XT into axiomatisations of AT and X,
respectively. This is not always possible. Nevertheless, as observed in Davey [10],
earlier results on transferring axiomatisations ([4, Theorem 4.3 and Remark 6.9]
and more generally [6, Theorem 2.13]) can often be applied to achieve the desired
outcome. We state the first result in the case that M1 is a finite algebra, but note that
it holds whenever M1 is a finite total structure, that is, H = ∅.

Proposition 5.1 ([10, Theorem 3.2]) Let M1 be a f inite algebra and def ine A :=
ISP(M1) and AT := IScP(M∼1). Assume that A is closed under forming homomorphic
images (whence A is the variety generated by M1) and that A is congruence distribu-
tive. If 
 is a set of quasi-equations such that A = Mod(
), then AT = ModBt(
).

This result applies, for example, whenever M1 is a lattice-based algebra such
that HSP(M1) = ISP(M1). When applied to the two-element lattice, 2, it tells us
that IScP(2∼) is the class consisting of all Boolean topological distributive lattices,
a result first proved by Numakura [34]. We turn now to the problem of transferring



598 B.A. Davey et al.

a possibly non-first-order axiomatisation of XT to a first-order axiomatisation of X.
The following two observations come from Davey [10].

Proposition 5.2 ([10, 3.4]) Let M2 = 〈M; G, H, R〉 be a f inite structure and def ine
X := IS

0
P

+(M2) and XT := IS
0
cP

+(M∼2). Let 
 be a set of universal Horn sentences
of type 〈G, H, R〉. Assume that every f initely generated model of 
 is f inite and that
[XT]fin = [Mod0

Bt(
)]fin. Then X = Mod0(
).

Proposition 5.3 ([10, 3.5]) Let M2 = 〈M; G, H, R〉 be a f inite structure and def ine
X := IS

0
P

+(M2) and XT := IS
0
cP

+(M∼2). Let 
0 and 
1 be sets of universal Horn
sentences of type 〈G, H, R〉 and let � be some possibly topological condition. Assume
that the f inite models of 
0 ∪ 
1 are precisely the f inite models of 
0 ∪ � and that
every f initely generated model of 
0 ∪ 
1 is f inite. Then X = Mod0(
), where 
 :=

0 ∪ 
1.

In many examples, X |= � is the statement that X = 〈X;�,T〉 is a Priestley space,
in which case the natural choice for 
1 is the axioms for an ordered set.

Example 5.4 Propositions 5.1 and either 5.2 or 5.3 may be applied in tandem to many
of the examples presented in Section 4 to yield axiomatisations of the classes AT

and X from known axiomatisations of A and XT . Their application to distributive
lattices, Stone algebras, double Stone algebras, Kleene algebras and De Morgan
algebras is discussed in Davey [10, 7.2–7.4].

Example 5.5 As mentioned in Example 3.2, the variety L(n) of relative Stone alge-
bras generated by the n-element chain has a full duality given by the endomorphisms
and partial endomorphisms of n. An axiomatisation of the dual category is known
only for n = 2, 3, 4. As L(2) is term equivalent to Boolean algebras, its dual category
is simply Boolean spaces and no axioms are required. Hecht and Katriňák [29]
proved that a Heyting algebra belongs to L(3) if and only if it satisfies the identity

(x0 → x1) ∨ (x1 → x2) ∨ (x2 → x3) = 1. (2)

A full duality for L(3) = ISP(31) is given by 3∼2 := 〈{0, d, 1}; g,T〉, where g : 0 �→ 0,
d �→ 1, 1 �→ 1 is the map from Example 4.3 above [3, Theorem 4.2.3]. It is easily
seen that X

(3)

T := IS
0
cP

+(3∼2) is precisely the class of Boolean topological structures
〈X; g,T〉 such that g is a retraction, and so is axiomatised by the equation g(g(x)) =
g(x). It follows at once from Propositions 5.1 and 5.2 that L

(3)

T is the class of Boolean
topological Heyting algebras satisfying the identity (2) and X(3) is the class of all
unars 〈X; g〉 satisfying the identity g(g(x)) = g(x).

A full duality for L(4) necessarily involves partial operations. Such a duality with
an axiomatisation of the dual category was given by Davey and Talukder [21]. The
application of Propositions 5.1 and 5.2 to this duality is discussed in Davey [10, 7.4–
7.5].

Example 5.6 Recall that in Example 4.3 we represented the class of bounded
distributive lattices as D := ISP(D1), where D1 = 〈{0, d, 1}; ∨,∧, 0, 1〉 is the three-
element bounded lattice, and that XT := IS

0
cP

+(D∼2) is generated by the alter ego
D∼2 := 〈{0, d, 1}; f, g, h,T〉, with f , g and h given in Fig. 2. The application of
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Propositions 5.1 to D tells us the now familiar fact that DT := IScP(D1) is the class
of Boolean topological bounded distributive lattices. Davey et al. [14] axiomatised
the class XT in the following non-first-order way. Assume that X is a Boolean
topological structure of the same type as D∼2 and define PX := 〈PX;�,T〉, where
PX := fix( f ) ⊆ X, the relation � is defined on PX by

u � v ⇐⇒ (∃x ∈ X) f (x) = u & g(x) = v,

and T is the relative topology from X. They first prove that 〈PX;�〉 is an ordered set
provided X satisfies the following quasi-equations:

(1) g( f (x)) = f ( f (x)) = f (x) and f (g(x)) = g(g(x)) = g(x),
(2) f (x) = x ⇐⇒ g(x) = x, that is, fix( f ) = fix(g),
(3) [ f (x) = g(y) & f (y) = g(x)] =⇒ x = y,
(4) [ f (x) = f (y) & g(x) = g(y)] =⇒ x = y,
(5) (x, y) ∈ dom(h) ⇐⇒ g(x) = f (y),
(6) (x, y) ∈ dom(h) =⇒ f (h(x, y)) = f (x) & g(h(x, y)) = g(y).

They then prove that X belongs to XT if and only if it satisfies quasi-equations (1)–(6)
as well as the following topological condition:

(7) for each pair x, y of distinct points in PX there exists a clopen down-set U of
PX containing exactly one of x and y.

Since (7) always holds at the finite level, we can now apply Proposition 5.3 with 
0 =
{(1), (2), (3), (4), (5), (6)}, � = (7) and 
1 = ∅. Hence X = Mod0(
0).

Example 5.7 Johansen [32] establishes three interesting dualities. We will concen-
trate on two of them. In both cases, a full (in fact strong) duality is established
between a class A of distributive-lattice-based algebras and a very natural class XT

of Boolean topological relational structures. Then a topology swap is performed to
yield a full duality between X and AT . An axiomatisation of the class AT is also
given. As the quasivariety A is not a variety, Proposition 5.1 does not apply and
the axiomatisation of AT requires topological methods. (To be consistent with our
earlier examples, we will adopt a different notation from that used in [32].)

Let Q1 := 〈{0, d, 1}; ∨,∧, k, 0, d, 1〉, where 〈{0, d, 1}; ∨,∧〉 is a lattice with order
0 < d < 1, and k is given by 0 �→ 0, d �→ 1 and 1 �→ d. Let Q2 := 〈{0, d, 1};�〉, where
� := {0, d, 1}2 \ {(d, 0), (1, 0)}. See Fig. 4 for drawings of both Q1 and Q2. Then Q2

is a quasi-ordered set and, as observed in [32], it is easy to see that Q := IS
0
P(Q2) is

the class of all quasi-ordered sets.
Johansen [32] shows that Q∼2

strongly and therefore fully dualises Q1 and then
applies the Two-for-One Strong Duality Theorem [10, 6.9] to conclude that Q∼1

yields
a dual equivalence between the class Q of quasi-ordered sets and the class AT :=

Fig. 4 The algebra Q1 and the
quasi-ordered set Q2

Q1 0

d

1

Q2

0

d 1
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1
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E1 E2

Fig. 5 The algebra E1 and equivalence-relationed set E2

IScP(Q∼1
). Of course Q is axiomatised by the usual axioms for a quasi-order, and

Johansen [32, Lemma 3.11 and Remark 3.12] shows that AT and its non-topological
cousin A := ISP(Q1) are axiomatised by the equations for bounded distributive
lattices plus six equations and one quasi-equation involving k. By Theorem 2.3, the
natural extension and therefore the canonical extension of an algebra A ∈ A is very
simply described as the algebra consisting of all quasi-order-preserving maps from
A(A, Q1) to Q2.

Now let E1 := 〈{0, d, 1}; ∨,∧, k, ∗, 0, d, 1〉 be the algebra obtained by adding the
unary operation ∗ of pseudocomplementation to the algebra Q1, and define E2 :=
〈{0, d, 1};≡〉, where ≡ is the equivalence relation corresponding to the partition { 0 |
d, 1}. See Fig. 5 for drawings of both E1 and E2.

Using the same approach as for quasi-ordered sets, Johansen [32, Lemma 5.1]
shows that E∼1 yields a dual equivalence between the category E := IS

0
P(E2) of

equivalence-relationed sets and the category BT := IScP(E∼1), and then proves that
both BT and B := ISP(E1) are axiomatised by the quasi-equations that axiomatise
QT and Q along with two additional equations involving ∗. Again, Theorem 2.3
yields a very simple description of the natural extension and therefore the canonical
extension of an algebra A ∈ B as the algebra consisting of all equivalence-preserving
maps from B(A, E1) to E2.
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