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Abstract We show that two known conditions which arose naturally in commu-
tator theory and in the theory of internal crossed modules coincide: every star-
multiplicative graph is multiplicative if and only if every two ef fective equivalence
relations commute as soon as their normalisations do. This answers a question asked
by George Janelidze.
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1 Introduction

The purpose of this work is to prove that for a semi-abelian category, the following
conditions are equivalent:

(SM) every star-multiplicative graph is an internal groupoid;
(SH) two equivalence relations commute if and only if their normalisations com-

mute.

The first condition comes from the study of internal crossed modules. In a semi-
abelian category A , the internal crossed modules introduced by Janelidze [12] form
a category which is equivalent to the category of internal groupoids in A . To
define a crossed module of groups, however, less structure is needed: a reflexive
graph equipped with a star-multiplication already determines a crossed module.
Nevertheless, there exist examples of semi-abelian categories where this is not true.
Thus the question arose under which conditions on A the star-multiplicative graphs
in A are internal groupoids.

The second condition was first considered by Bourn and Gran in [2]. On one
hand, there is the commutator of internal (effective) equivalence relations which was
introduced by Smith [20] in the context of Mal’tsev varieties and made categorical by
Pedicchio [19]. On the other hand, in the article [11], Huq introduced a commutator
for normal subobjects in a context which is roughly equivalent to that of semi-
abelian categories. This definition was further studied by several authors, see e.g.,
[2] and [1]. Since, in any semi-abelian category, there is a bijective correspondence
between the normal subobjects of an object and the effective equivalence relations
on it, it is natural to ask how the two concepts of commutator correspond to each
other. The answer is that commuting equivalence relations induce commuting normal
subobjects [2, Proposition 3.2], but in general, the concepts are not equivalent—not
even in a variety of �-groups, as the counterexample of digroups shows [1]. On the
other hand, it was shown in [10] that an equivalence relation R on an object A
commutes with the largest equivalence relation ∇A as soon as the normalisation k
of R is Huq-central, i.e., as soon as k commutes with the normalisation 1A of ∇A.
In fact, a result obtained by Gran says that any two equivalence relations of which
the normalisations commute and are jointly strongly epic, commute; see [9]. Finally,
in a category which is, for instance, pointed and strongly protomodular, any two
equivalence relations commute if and only if their normalisations commute [2].

We shall prove that (SH) and (SM) are equivalent conditions. We do this in two
steps: in the first section we work towards Theorem 2.3 which essentially states
that Condition (SH) may be restricted to a special class of effective equivalence
relations: those pairs of effective equivalence relations which are the kernel pairs
of the domain and codomain morphisms of a reflexive graph. Under this latter
condition Mantovani and Metere studied the relation between Peiffer graphs and
groupoids [18, Theorem 6.1]. We follow their intuition in Section 3, where we
prove that a reflexive graph carries a star-multiplication if and only if it is a Peiffer
graph if and only if the kernels of its domain and codomain morphisms commute
(Proposition 3.7). This is enough to obtain our main result, Theorem 3.8, which states
that (SM) is equivalent to (SH).
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2 The Smith is Huq Condition

We show that for a pointed protomodular category, the following two conditions are
equivalent:

(SH) two effective equivalence relations commute as soon as their normalisations
do;

(SH’) every reflexive graph of which the kernels of the domain and the codomain
morphisms commute is a groupoid.

Condition (SH) is the Smith is Huq condition in the title of this section; condition
(SH’) is well-known to hold, for instance, in the case of groups: recall the analysis of
crossed modules given in the final chapter of Mac Lane’s [16].

2.1 The Context

In this section we shall work in pointed protomodular categories. A category is
pointed when it has a zero object, i.e., an initial object that is also terminal. A pointed
category is Bourn protomodular [5] when it is finitely complete and the Split Short
Five Lemma holds: given a commutative diagram

K[ f ]
Ker f

��

k

��

A
f

��

a

��

B

b

��

s
��

K[ f ′]
Ker f ′

�� A′
f ′

�� B′,
s′

��

where b f = f ′a, s′b = as, f s = 1B and f ′s′ = 1B′ , the morphisms k and b being
isomorphisms implies that a is an isomorphism. (Note that s′ is equal to asb−1, so
we could avoid mentioning this morphism and the conditions on it.)

Lemma 2.1 Given a commutative diagram

K[ f ]
Ker f

��

k

��

A
f

��

a

��

B

b

��

s
��

K[ f ′]
Ker f ′

�� A′
f ′

�� B′,

such that f s = 1B, the morphism k is an isomorphism if and only if the right hand side
commutative square b f = f ′a is a pullback.

Given a split epimorphism and its kernel as in

K
k

�� A
f

�� B
s

��
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the morphism k and the section s are jointly strongly epic; hence k and s are jointly
epic (see [1, Lemma 3.1.22] or [3, Lemma 2.2]). For instance, such are the product
inclusions 〈1X , 0〉 : X → X × Y and 〈0, 1Y〉 : Y → X × Y.

2.2 Commuting Normal Monomorphisms

A coterminal pair of morphisms

X
k

�� A Y
l

��

commutes (in the sense of Huq) [2, 11] when there is a (necessarily unique) morphism
ϕ such that the diagram

X〈1X ,0〉
����

� k

���
��

X × Y ϕ �� A

Y
〈0,1Y 〉

�����
l

�����

is commutative.
We shall only consider the case where k and l are normal monomorphisms (i.e.,

kernels). We are particularly interested in the situation where they are the kernels of
the domain and codomain morphisms of a reflexive graph C = (C1, C0, d, c, e):

C1

d
��

c
�� C0,e�� de = ce = 1C0

and k = Kerd : X → C1, l = Ker c : Y → C1. Using Lemma 2.1 we may show that
when the kernels k and l of the morphisms d and c in a reflexive graph C =
(C1, C0, d, c, e) commute, their domains are isomorphic.

Lemma 2.2 Let k and l be induced by a ref lexive graph C as above. If k and l commute
then the following commutative squares are pullbacks.

X × Y
πX

��

ϕ

��

X

h=ck

��
C1

c
�� C0

X × Y
πY

��

ϕ

��

Y

dl

��
C1

d

�� C0

This makes X and Y isomorphic in a strong sense: there exist morphisms i : X → Y
and j: Y → X such that

ji = 1X , ij = 1Y , ckj = dl and ck = dli.
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Proof The left hand side diagram commutes because 〈1X , 0〉 and 〈0, 1Y〉 are jointly
epimorphic and moreover cϕ〈1X , 0〉 = ck = ckπX〈1X , 0〉 and

cϕ〈0, 1Y〉 = cl = 0 = ckπX〈0, 1Y〉.

It is a pullback by Lemma 2.1 since the induced morphism between the kernels of
πX and c is 1Y . Similarly the right hand side square is a pullback.

The morphism i : X → Y is obtained through the universal property of the
first pullback as follows. The equality ceck = ck = h1X gives rise to a morphism
ι : X → X × Y such that ϕι = eck and πX ι = 1X ; considering X × Y as a product
now, this ι is a pair 〈1X , i〉 : X → X × Y. Clearly,

dli = dlπY〈1X , i〉 = dϕ〈1X , i〉 = deck = ck.

Using the second pullback one obtains a morphism j: Y → X that satisfies ϕ〈 j, 1Y〉 =
edl, so that ckj = dl.

Now we only have to prove that i and j are mutually inverse. This again
follows from the universal properties of the pullbacks. Indeed, the morphisms
〈 j, ij〉 : Y → X × Y and 〈 j, 1Y〉 : Y → X × Y are both universally induced by the
equality cedl = ckj = hj, hence they are equal. Likewise, 〈1X , i〉 is equal to 〈 ji, i〉 so
that ji = 1X . ��

This result may be interpreted as follows: the two (a priori non-equivalent)
ways a reflexive graph can be normalised—mapping C to either ck : X → C0 or
dl : Y → C0—induce naturally isomorphic functors from the category of reflexive
graphs with commuting kernels to the category of objects over C0.

One usually views the elements of C1 as arrows between the elements of C0, so
that the morphism ϕ : X × Y → C1 is nothing but a partial composition on C1 which
sends a pair of arrows

· 0
α

�� ·
β

��

to its composite ϕ(α, β). The central question studied in this paper is under which
conditions such a partial composition extends to a composition on the entire graph.
To answer it, we shall need the concept of commuting effective equivalence relations
and its connection with commuting normal monomorphisms.

2.3 Commuting Effective Equivalence Relations

Consider a pair of equivalence relations (R, S) on a common object A

R

r0
��

r1

�� A�R�� �S �� S,

s0

��

s1
��
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and consider the induced pullback of r1 and s0.

R ×A S
πS

��

πR

��

S

s0

��
R

r1

�� A

(1)

The pair (R, S) commutes (in the sense of Smith) [2, 19, 20] when there is a
(necessarily unique) morphism θ such that the diagram

R〈1R,�Sr1〉
����

�
r0

���
��

R ×A S θ �� A

S
〈�Rs0,1S〉

�����
s1

�����

is commutative.
We shall only consider the case where R and S are effective equivalence relations

(i.e., kernel pairs). It is well-known that when for a span

C1
d

�����
c

���
��

C0 C′
0,

(2)

the kernel pairs R[d] and R[c] commute, this means that (d, c) carries an internal
pregroupoid structure [15]; briefly, any zigzag

· ·α
��

β
�� · ·

γ
��

in C1 may be composed to a single arrow θ(α, β, γ ), in such a way that θ(α, β, β) = α

and θ(β, β, γ ) = γ . In particular, a reflexive graph C = (C1, C0, d, c, e) is an internal
groupoid if and only if R[d] and R[c] commute: then θ(α, β, γ ) = α ◦ β−1 ◦ γ .

It is also well-known that when a pair (R, S) of (effective) equivalence relations
commutes, then so do their normalisations

X = K[r0]
k=r1Ker r0

�� A K[s0] = Y :
l=s1Ker s0

��

see [2, Proposition 3.2]. In particular, for any internal groupoid C the composition
on C restricts in such a way that the kernels of its domain and codomain morphisms
commute. The converse is not true: in general, it is not possible to extend the partial
composition on a reflexive graph which is given by its commuting kernels to a
composition on the entire graph which makes it into a groupoid. This is explained
by the following result (inspired by Lemma 2.1 in [14]), together with the fact that
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a pair of effective equivalence relations of which the normalisations commute need
not commute itself [1].

Theorem 2.3 For a pointed protomodular category, the following conditions are
equivalent:

(SH) two ef fective equivalence relations commute as soon as their normalisations
do;

(SH’) every ref lexive graph with commuting kernels of the domain and the
codomain morphisms is a groupoid.

Proof It is clear that (SH’) is just (SH) in the special case where the effective equiv-
alence relations considered are the kernel pairs of the domain and the codomain
morphisms of a reflexive graph. This special case implies the general case. Indeed, let
R = R[d] and S = R[c] be the effective equivalence relations induced by a span (2)
and assume that the normal monomorphisms k = Kerd and l = Ker c commute in the
sense of Huq. We have to prove that R and S commute in the sense of Smith, i.e., the
span (d, c) is a pregroupoid.

If one thinks of the “elements” of the object C1 as arrows d(α)
α

��c(α) then R
and S consist of pairs

· · α
��

β
�� · and ·

γ
�� · ·δ
�� ,

respectively. Forming the pullback (1) of r1 and s0 we obtain a reflexive graph

R ×C1 S

dom=r0πR
��

cod=s1πS

�� C1.〈�R,�S〉�� (3)

An element of R ×C1 S is a triple

· ·α
��

β
�� · ·

γ
��

considered as an arrow β with domain α = dom(α, β, γ ) = r0πR(α, β, γ ) and
codomain γ = cod(α, β, γ ) = s1πS(α, β, γ ). The kernels dom and cod commute be-
cause so do k and l: the needed morphism

K[dom] × K[cod] → R ×C1 S

takes a pair

(
· ·0
��

β
�� · ·

γ
�� , · ·δ

��
ε

�� · ·0
��

)

in the product K[dom] × K[cod] and maps it to the element

· ·δ
��

ϕ(β,ε)
�� · ·

γ
��
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of R ×C1 S. The hypothesis that (SH’) holds now implies that this reflexive graph is
a groupoid. This, in turn, establishes a pregroupoid structure on the span (d, c): the
required morphism θ : R ×C1 S → C1 is determined by

(
· ·

γ
��

θ(α,β,γ )
�� · ·α
��

)
=

(
· ·

β
��

α
�� · ·α
��

)
◦

(
· ·

γ
��

γ
�� · ·

β
��

)

where the composition takes place in the groupoid (3). Indeed, in this groupoid

(β, β, β) ◦ (γ, γ, β) = (γ, γ, β)

so that θ(β, β, γ ) = γ . Likewise, θ(α, β, β) = α. ��

Condition (SH) is sometimes called the Smith is Huq property. It is known to hold
in quite diverse situations: in pointed and strongly protomodular categories (by [2];
see also [1] and [8]) and in pointed and action accessible categories (as explained
in [18]; see also [4]). This condition is also weaker than the ref lected admissibility
condition studied in [17].

Remark 2.4 As explained to us by Tomas Everaert, the condition (SH) may be
replaced by its non-effective version

(SH”) two equivalence relations commute as soon as their normalisations do,

using the same proof, even when the category is not Barr exact. Then the kernels
should be replaced by normal monomorphisms in the sense of Bourn [6].

3 Star-Multiplication

In this section we show that, in a semi-abelian category, three types of (uniquely
determined) structure on a reflexive graph C = (C1, C0, d, c, e) coincide: a reflexive
graph C is star-multiplicative if and only if it is Peif fer if and only if the kernels of d
and c commute (Proposition 3.7). This allows us to prove Theorem 3.8 which states
that a semi-abelian category has the Smith is Huq property if and only if every star-
multiplicative graph is a groupoid.

3.1 The Context

A category is semi-abelian [13] when it is pointed, Bourn protomodular and Barr
exact with binary coproducts. Barr exact means that every internal equivalence rela-
tion is effective (i.e., it is a kernel pair) and the category is regular: finitely complete
with pullback-stable regular epimorphisms and coequalisers of effective equivalence
relations. A homological category is pointed, regular and protomodular [1].

In a homological category regular epimorphisms (coequalisers), strong epi-
morphisms and normal epimorphisms (cokernels) coincide, and every morphism
f : A → B may be factored as a regular epimorphism A → I[ f ] followed by a
monomorphism Im f : I[ f ] → B. The monomorphism Im f is the image of f . A mor-
phism f is proper when it has a normal image, i.e., Im f is a normal monomorphism.
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In a semi-abelian category, the direct image Im (pm) of a normal monomorphism m
along a regular epimorphism p is always a normal monomorphism (condition (SA*6)
in [13]).

We need the following strengthening of Lemma 2.1; see [1] or [7, Proposition 7].

Lemma 3.1 In a homological category, given a commutative diagram

K[ f ]
Ker f

��

k

��

A
f

��

a

��

B

b

��
K[ f ′]

Ker f ′
�� A′

f ′
�� B′

where f is a regular epimorphism, the morphism k is an isomorphism if and only if
the right hand side square b f = f ′a is a pullback.

3.2 Star-Multiplicative Graphs

A reflexive graph C = (C1, C0, d, c, e) is star-multiplicative [12] when there is a
(necessarily unique) morphism

ς : C1 ×C0 X → X

such that ς〈k, 0〉 = 1X and ς〈eck, 1X〉 = 1X . Here the square

C1 ×C0 X

π0

��

π1
�� X

h=ck

��
C1

d

�� C0

is a pullback. A star-multiplication takes a composable pair of arrows

· ·α
�� 0

β
��

and sends it to their composite ς(α, β).

3.3 Peiffer Graphs

A reflexive graph C = (C1, C0, d, c, e) is Peiffer when there is a (necessarily unique)
morphism

ω : X × X → C1
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such that ω〈1X , 0〉 = k and ω〈1X , 1X〉 = eck. (This definition is not the original one
given in [18], but it is equivalent to it in the present context; see [18, Theorem 5.3].)
The structure ω sends a composable pair of arrows

· 0
β

��
α

�� ·
to the composite ω(α, β)—which should be considered as α ◦ β−1.

In [18] these two structures are shown to be equivalent; we recall the argument.

Proposition 3.2 A ref lexive graph C = (C1, C0, d, c, e) in a pointed protomodular
category is star-multiplicative if and only if it is Peif fer.

Proof Given ς : C1 ×C0 X → X put ω = π0〈ς, π1〉−1; conversely, given
ω : X × X → C1 put ς = π0〈ω, π1〉−1. Notations are as above. The inverse
morphisms exist by the Split Short Five Lemma. ��

Now we work towards an equivalence with reflexive graphs of which the kernel
of the domain morphism commutes with the kernel of the codomain morphism. In
Lemma 3.6 we need the surrounding category to be semi-abelian.

Lemma 3.3 ([18], Theorem 5.3) Any Peif fer graph C induces commutative squares

X × X

(i)ω

��

π1
�� X

h=ck

��
C1

d

�� C0

and

X × X

(ii)ω

��

π0
�� X

h=ck

��
C1

c
�� C0.

Furthermore, the square (i) is a pullback.

Proof The morphisms 〈1X , 0〉 and 〈1X , 1X〉 are jointly epic and

dω〈1X , 0〉 = dk = 0 = hπ1〈1X , 0〉,
dω〈1X , 1X〉 = deck = ck = hπ1〈1X , 1X〉,
cω〈1X , 0〉 = ck = ckπ0〈1X , 0〉

and

cω〈1X , 1X〉 = ceck = ck = hπ0〈1X , 1X〉
so that the two squares commute. Taking kernels horizontally in (i) induces the
identity morphism 1X ; hence the square is a pullback by Lemma 2.1. ��

Lemma 3.4 Let g : X × X → A be a morphism with g〈0, 1X〉 = 0 and write g0 =
g〈1X , 0〉. Then g = g0π0, so that g〈1X , 1X〉 = g0.
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Proof The morphism g is uniquely determined by the equalities g〈0, 1X〉 = 0 and
g〈1X , 0〉 = g0. Since also g0π0〈0, 1X〉 = 0 and g0π0〈1X , 0〉 = g0 we have that g = g0π0.

��

Lemma 3.5 For any Peif fer graph C, the morphism c is the cokernel of the composite
ω〈0, 1X〉 : X → C1.

Proof First note that cω〈0, 1X〉 = 0 by commutativity of the square (ii) in
Lemma 3.3. Consider f : C1 → A with fω〈0, 1X〉 = 0; we claim that the morphism
f e : C0 → A satisfies f ec = f . Indeed, by Lemma 3.4 the equalities fω〈0, 1X〉 = 0
and fω〈1X , 0〉 = f k imply fω〈1X , 1X〉 = f k, so that f eck = f k. Since also f ece =
f e and k and e are jointly epic we may conclude that f ec = f . ��

Lemma 3.6 For any Peif fer graph C in a semi-abelian category the induced commu-
tative square (ii) from Lemma 3.3 is a pullback.

Proof Taking kernels vertically gives rise to the reflexive graph

K[ω]
π ′

0
��

π ′
1

�� K[h];���

Since (i) is a pullback, the morphism π ′
1, and hence also π ′

0, is an isomorphism.
It follows by Lemma 3.1 that the top square in the vertical regular epi-mono
factorisation

X
〈0,1X 〉

�� X × X

����

π0
�� X

����

X
Ker c

��

(iii)i

��

I[ω]
��
Imω

��

c
�� I[h]

��
Im h

��
Y

Ker c

�� C1
c

�� C0

of (ii) is a pullback. Taking kernels to the left induces morphisms as indicated. We
have to show that i is an isomorphism.

Being a composite h = ck of a normal monomorphism with a regular epimor-
phism, the morphism h is proper, i.e., its image Im h is a normal monomorphism.
Since the square (i) is a pullback, ω is also proper, so that Imω is a normal
monomorphism. The morphism Im h being mono implies that the square (iii) is
a pullback. Since both Imω and Ker c are normal monomorphisms, this implies that
the diagonal of (iii)—the morphism ω〈0, 1X〉—is also a normal monomorphism.
Lemma 3.5 tells us that c is its cokernel, so that ω〈0, 1X〉 is the kernel of c. This
means that i is an isomorphism, and the square (ii) is a pullback by Lemma 2.1. ��
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Proposition 3.7 For a ref lexive graph C = (C1, C0, d, c, e) in a semi-abelian category,
the following three conditions are equivalent:

1. C is star-multiplicative;
2. C is Peif fer;
3. Kerd and Ker c commute.

Proof Conditions 1. and 2. are equivalent by Proposition 3.2. If C is Peiffer then
Kerd and Ker c commute. Indeed, by Lemma 3.6 we can put ϕ = ω since ω〈0, 1X〉 is
the kernel l of c. Conversely, if Condition 3. holds then by Lemma 2.2 we have

ι = 〈1X , i〉 : X → X × Y

such that ϕι = eck. Now ω = ϕ(1 × i) : X × X → C1 is a Peiffer structure on
C because ω〈1X , 0〉 = ϕ(1X × i)〈1X , 0〉 = ϕ〈1X , 0〉 = k and ω〈1X , 1X〉 = ϕ(1X ×
i)〈1X , 1X〉 = ϕι = eck. ��

Theorem 3.8 For a semi-abelian category, the following conditions are equivalent:

(SM) every star-multiplicative graph is multiplicative;
(SH) two (ef fective) equivalence relations commute if and only if their normalisa-

tions commute.

Proof We already explained above that one implication of (SH) always holds by [1,
Proposition 2.7.7]. Hence by Theorem 2.3 we may replace the second condition with

(SH’) every reflexive graph with commuting kernels of the domain and the
codomain morphisms is a groupoid.

The result now follows from Proposition 3.7 and the fact that in a semi-abelian
category, multiplicative graphs (i.e., categories) and groupoids coincide. ��

Note that Lemma 3.6 is the only place where we use that the underlying category
is semi-abelian rather than pointed protomodular. This suggests an extension of the
concept of Peiffer graph to pointed protomodular categories, where the pullback
property of square (ii) in Lemma 3.3 becomes an axiom. (Or, equivalently, in the
homological case, the morphism ω〈0, 1X〉 is demanded to be a normal monomor-
phism.) The concept of star-multiplicative graph allows a similar modification, where
now one asks that the morphism of reflexive graphs

C1 ×C0 X

π1

��
ς

��

π0
�� C1

d

��
c

��
X

h

��

		

C0

		

is not just a discrete cofibration (i.e., the square hπ1 = dπ0 is a pullback) but also a
discrete fibration (hς = cπ0 is a pullback). These definitions extend Theorem 3.8 to
the pointed protomodular context.
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