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Abstract In this paper, after recounting the basic properties of perfect MV-algebras,
we explore the role of such algebras in localization issues. Further, we analyze some
logics that are based on Łukasiewicz connectives and are complete with respect to
linearly ordered perfect MV-algebras.
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1 Introduction

The class of MV-algebras arises as algebraic counterpart of the infinite valued
Łukasiewicz sentential calculus, as Boolean algebras did with respect to the classical
propositional logic. Due to the non-idempotency of the MV-algebraic conjunction,
unlike Boolean algebras, MV-algebras can be non-archimedean and can contains
elements x such that x � . . . � x (n times) is always greater than zero, for any
n > 0 (here � denotes the Łukasiewicz conjunction). In general, there are MV-
algebras which are not semisimple, i.e. the intersection of their maximal ideals (the
radical of A) is different from {0}. Non-zero elements from the radical of A are
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called infinitesimals. Perfect MV-algebras are those MV-algebras generated by their
infinitesimal elements or, equivalently, generated by their radical. Hence perfect
MV-algebras can be seen as extreme examples of non-archimedean MV-algebras.

An important example of a perfect MV-algebra is the subalgebra S of the
Lindenbaum algebra L of first order Łukasiewicz logic generated by the classes of
formulas which are valid but non-provable. Hence perfect MV-algebras are directly
connected with the very important phenomenon of incompleteness in Łukasiewicz
first order logic (see [3, 12]).

As it is well known, MV-algebras form a category which is equivalent to the
category of abelian lattice ordered groups (�-groups, for short) with strong unit [11].
This makes the interest in MV-algebras relevant outside the realm of logic. Let us
denote by � the functor implementing this equivalence. In particular each perfect
MV-algebra is associated with an abelian �-group with a strong unit. But, more
has been proved. Namely the category of perfect MV-algebras is equivalent to the
category of abelian �-groups, see ([9], Theorem 3.5, p.420). Let us denote by D the
functor implementing this equivalence. Hence D maps functorially each perfect MV-
algebra to an abelian �-group and vice versa, without the help of a strong unit. Here
a curious remark has to be made. Indeed the � functor maps a non-equational class,
the category of abelian �-groups with strong unit, to an equational class, the variety
of MV-algebras. On the other hand, the functor D maps an equational class, the
category of abelian �-groups, to a non-equational class, the category of perfect MV-
algebras. However, as a consequence of using the functor D, a surprising result was
proved showing the equivalence between the category of perfect MV-algebras with a
distinguished generator of the radical, whose morphisms preserve the distinguished
element, and the category of all MV-algebras, [4].

Perfect MV-algebras do not form a variety and contains non-simple subdirectly
irreducible MV-algebras. It is worth stressing that the variety generated by all perfect
MV-algebras is also generated by a single MV-chain, actually the MV-algebra C,
defined by Chang in [7]. The MV-algebra C is therefore a prototypical perfect MV-
algebra, and we shall see it plays a crucial role in the theory of perfect MV-algebras,
as well as in the variety it generates.

In a perfect MV-algebra all infinitesimals are localized in the unique maximal
ideal. This property is common to a larger class of MV-algebras, namely to local
MV-algebra, i.e., MV-algebras having just one maximal ideal. In this paper, after
recounting the basic properties of perfect MV-algebras, we explore the role of
these algebras in localization issues. We further analyze some logics based on
Łukasiewicz connectives, which are complete with respect to linearly ordered perfect
MV-algebras.

We summarize below the main results of the paper:

– We show that the class of perfect MV-algebras is a universal class;
– For a given MV-algebra A and a prime ideal P of A a local MV-algebra AP can

be canonically associated to A, actually AP is perfect.
– We show that for any subalgebra A′ of A, having P as maximal ideal, the

spectrum of A′/OP where OP is the intersection of all prime ideals contained
in P, is homeomorphic to a subspace of Spec(A).

– We show that there exists a natural presheaf of perfect MV-algebras associated
to each MV-algebra.
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– We describe an equivalence between an enriched category of MV-algebras
having as objects pairs (A, P) where A is an MV-algebra and P a prime ideal of
A, and the category of perfect MV-algebras, a full subcategory of MV-algebras,
via the canonical localization of A at P. This functor composed with the functor
D sending any MV-algebra to an abelian �-group gives an equivalence that arises
via the described localization at a prime.

– We describe two logical systems, based on the sentential Łukasiewicz calculus,
denoted by Lukp and ˜Lukp, respectively, for which completeness theorems can
be proved with respect to Chang’s MV-algebra C and with respect to all perfect
MV-chains, respectively.

2 Some Preliminary Notions

A structure A = (A, 0, 1,¬,�, ⊕) is an MV-algebra iff A satisfies the following
equations:

1. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);
2. x ⊕ y = y ⊕ x;
3. x ⊕ 0 = x;
4. x ⊕ 1 = 1;
5. ¬0 = 1;
6. ¬1 = 0;
7. x � y = ¬(¬x ⊕ ¬y);
8. ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

On A two new operations ∨ and ∧ are defined as follows: x ∨ y = ¬(¬x ⊕ y) ⊕ y
and x ∧ y = ¬(¬x � y) � y. The structure (A,∨, ∧, 0, 1) is a bounded distributive
lattice. We shall write x ≤ y iff x ∧ y = x. We say that an MV-algebra A is an
MV-chain when, as a lattice, A is linearly ordered. Boolean algebras are just the
MV-algebras obeying the additional equation x � x = x. For any MV-algebra A we
denote by B(A) = {x ∈ A | x � x = x} the biggest Boolean algebra contained in A.
We write nx instead of x ⊕ ... ⊕ x (n-times) and xn instead of x � ... � x (n-times).
The least integer for which nx = 1 is called the order of x. When such an integer
exists, we denote it by ord(x) and say that x has finite order, otherwise we say that x
has infinite order and write ord(x) = ∞.

Example The unit interval of real numbers [0, 1] with operations defined by x ⊕ y =
min{1, x + y}, x � y = max{0, x + y − 1}, and ¬x = 1 − x is an MV-algebra. We shall
refer to this MV-algebra as [0, 1].

An ideal of an MV-algebra A is a non-empty subset I of A which is closed under
⊕ and such that if x ≤ y and y ∈ I then x ∈ I. A prime ideal P of A is an ideal of A
such that x ∧ y implies x ∈ P or y ∈ P. An ideal M of A is called maximal if M ⊆ I
implies I = A or I = M, where I an ideal of A. Let M be a maximal ideal of A, then
we say that M is supermaximal if A/M ∼= {0, 1}. The set of all prime ideals of A shall
be denoted by Spec(A). For each element x of an MV-algebra A the set

id(x) = {y ∈ A | y ≤ nx, for some n > 0}
is the ideal of A generated by x. Each proper ideal is contained in a maximal ideal.
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As MV-algebras form an equational class, the notions of MV-isomorphism,
quotient, subalgebra, product, etc., are just the particular cases of the corresponding
universal algebraic notions.

The intersection of all maximal ideals, the radical of A, will be denoted by
Rad(A).

An MV-algebra A such that Rad(A) = 0 is called semisimple. An MV-algebra A
is called simple if and only if A is non trivial and {0} is its only proper ideal. Every
simple MV-algebra is isomorphic to a subalgebra of [0, 1], (see, e.g., [8], Theorem
3.5.1, p. 70). Every non-zero element of a non trivial MV-algebra A has finite order
if and only if A is simple.

If for every element x of the MV-algebra A there is an integer n such that nx
is idempotent then A will be called hyperarchimedean. For all unexplained MV-
algebraic notions we refer the reader to [8].

Let X be a non-empty set. Then the set B = [0, 1]X of all [0, 1]-valued functions
over X, equipped with pointwise operations, is an MV-algebra. Up to isomorphism,
subalgebras of B provide the most general possible examples of semisimple MV-
algebras, (see, e.g., [1], Theorem 4.9, p. 486).

Let A be an MV-algebra, P ∈ Spec(A) and I an ideal of A. We shall use the
following notation:

• ωP(A) is the set of prime ideal of A contained in P, i.e. ωP(A) = {Q ∈ Spec(A) |
Q ⊆ P}.

• U(I) = {Q ∈ Spec(A) | I ⊆ Q}.
• 0P(A) = ⋂{Q | Q ∈ ωP(A)} so 0P(A) is an ideal in A
• If X ⊆ A by alg(X) we mean the subalgebra of A generated by X.

Recall that an MV-algebra is hypernormal iff ωM(A) is a chain for each maximal
ideal M of A. Equivalently, if each maximal ideal contains a unique minimal prime.

Definition 1 An MV-algebra A is local if A has a unique maximal ideal. The class of
all local MV-algebras will be denoted by Local.

It is also well known that for each x ∈ A, x is a member of a proper ideal, hence a
maximal ideal, if and only if the order of x is ∞.

It turns out that an MV-algebra A is local if and only if for every x ∈ A ord(x) < ∞
or ord(¬x) < ∞.

Definition 2 An MV-algebra A is called perfect if for every nonzero element x ∈ A
ord(x) = ∞ if and only if ord(¬x) < ∞. The class of all perfect MV-algebras will be
denoted by Perfect.

It is clear that the class of all MV-algebras is a variety, here denoted by MV.
For any subclass K of elements from MV, V(K) shall denote the subvariety of MV
generated by K. If K has just one element A then we also write V(A) for V(K).

Definition 3 Chang’s MV-algebra is defined on the set

C = {0, c, . . . , nc, . . . , 1 − nc, . . . , 1 − c, 1}
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by the following operations (consider 0 = 0c):

x ⊕ y =

⎧
⎪⎪⎨

⎪⎪⎩

(m − n)c if x = nc and y = mc
1 − (m − n)c if x = 1 − nc and y = mc and 0 < n < m
1 − (n − m)c if x = nc and y = 1 − mc and 0 < m < n
1 otherwise;

¬x =
{

1 − nc if x = nc
nc if x = 1 − nc

C is a linearly ordered MV-algebra, ord(nc) = ∞ and ord(1 − nc) < ∞ for every n.
So C is a perfect MV-algebra.

3 Some Pertinent Facts about Perfect MV-algebras

In this section we will recall some results concerning perfect MV-algebras which are
relevant to understand the role of perfect MV-algebras within the theory of MV-
algebras. Also we shall establish some new results about perfect MV-algebras that
we will use throughout the paper.

Definition 4 A proper ideal P of an MV-algebra A is called perfect if and only if for
every a ∈ A, an ∈ P for some n ∈ ω if and only if (¬a)m /∈ P for all m ∈ ω.

P is a perfect ideal if and only if A/P is a perfect MV-algebra.

Proposition 5 The following hold:

(1) The only finite perfect MV-algebra is {0, 1};
(2) Every nonzero element in a perfect MV-algebra A �= B(A) generates a subal-

gebra isomorphic to the Chang MV-algebra C.
(3) Sudirectly irreducible MV-algebras in V(C) are all perfect MV-chains;
(4) V(Perfect) = V(C),
(5) Perfect = V(C) ∩ Local;
(6) A ∈ V(C) iff for every x ∈ A, 2x2 = (2x)2;
(7) A is perfect iff A = alg(Rad(A));
(8) A is perfect iff A = Rad(A) ∪ ¬(Rad(A)); further x ∈ Rad(A) iff ord(x) = ∞;
(9) Perfect is closed under homomorphic images and subalgebras;

(10) A is perfect iff any proper ideal of A is perfect iff {0} is a perfect ideal.

Proof Properties (1) and (2) are immediate consequences of order of elements in a
perfect MV-algebra.

The proof of properties (3), (4), (5), (6) and of (7), (8), (9), (10) can be found in [9]
and in [6], respectively. ��

Now we are going to show that the class of perfect MV-algebras is first order
definable.

Consider the following well formed formulas in the first order language of
MV-algebras containing the equality relation as predicate symbol, operations of
MV-algebras as functional symbols and 0 and 1 as constant symbols. Further denote
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by &, OR and ⇒ the classical propositional connectives. Let σ be the wff (∀x)(x2 ⊕
x2 = (x ⊕ x)2) and τ be the wff (∀x)(x2 = x ⇒ (x = 0 OR x = 1)). Then,

Proposition 6 Let A be an MV-algebra. Then the following are equivalent:

(1) A is perfect;
(2) A satisfies σ & τ .

Proof (1) ⇒ (2). Let A be a perfect MV-algebra. Then by Proposition 5(4), A ∈
V(C) hence (2) holds since Chang’s MV-algebra satisfies σ & τ .

(2) ⇒ (1). Assume A to be an MV-algebra satisfying the formula σ & τ , so x2 =
x implies x = 0 or x = 1. Hence B(A) = {0, 1} and A ∈ V(C). Hence, by Chang
Theorem (see [8, Theorem 1.3.3, p.20]), Theorem 5.1 in ([9] p.424) and Corollary
5.2 in ([9] p.425) (cfr Proposition 5(3)):

A ↪→
∏

P∈Spec(A)

A/P

where, for every P ∈ Spec(A), A/P is a perfect MV-chain. Assume A is not perfect.
Then there is z ∈ A such that z /∈ Rad(A) ∪ ¬(Rad(A)). Therefore, there are P, Q ∈
Spec(A) such that

z/P ∈ Rad(A/P) and z/Q ∈ ¬Rad(A/Q).

So we get 2(z2/P)=0/P and 2(z2/Q)=1/Q, that is 2z2 ∈ B(A) \ {0, 1}, contradicting
B(A) = {0, 1}. ��

Proposition 7 Let A be an MV-algebra and set

per(A) =
⋂

{J | J is a perfect ideal of A}.
Then per(A/per(A)) = 0.

Proof If A has no perfect ideals then per(A) = A. Let I/per(A) be a perfect ideal
in A/per(A). Consider the map

(A/per(A))/(I/per(A)) → A/I, with per(A) ⊆ I

given by (x/per(A))/(I/per(A)) → x/I. In order to prove that the above map is
well-defined suppose that (x/per(A))/(I/per(A)) = (y/per(A)) / (I/per(A)) so that
d((x/per(A)), (y/per(A))) ∈ I/per(A) where d(a, b) = (a¬ � b) ⊕ (¬a � b). Then
d(x, y)/per(A) ∈ I/per(A) and since per(A) ⊆ I we have d(x, y) ∈ I so the map is
well-defined. It is easy to check that the map is an epimorphism. As epimorphic image
of perfect MV-algebras are perfect we see that if I/per(A) is perfect in A/per(A),
then I is perfect in A. ��

Note that we are only interested in the case where A contains at least one
perfect ideal which we shall always assume. Call an MV-algebra A semi-perfect if
per(A) = {0}. Thus if per(A) = {0}, then A is a subdirect product of perfect MV-
algebras, hence, by Proposition 5(3), A ∈ V(C). Hence per(A) is a kind of “radical”
for perfect ideals and we shall characterize it.
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Proposition 8 Let A be an MV-algebra. Then

per(A) = id{2x2 � 2(¬x)2, (2x)2 � (2¬x)2 | x ∈ A}.

Proof If 2x2 = (2x)2 we obtain 2x2 � 2(¬x)2 = 0 and (2x)2 � (2¬x)2 = 0. Let

R = id{2x2 � 2(¬x)2, (2x)2 � (2¬x)2 | x ∈ A}.
If J ⊆ A is perfect, then since σ is satisfied on A/J, we see that R ⊆ J. Hence R ⊆
per(A). Now let P be a prime ideal of A with R ⊆ P. Then A/P is linearly ordered
and satisfies σ . Thus by a Proposition 5, A/P is perfect, and so P is a perfect ideal,
hence per(A) ⊆ P. Hence we have the closed set U(R) ⊆ U(per(A)). But from R ⊆
per(A) we have U(per(A)) ⊆ U(R). Therefore U(R) = U(per(A)) and we may infer
the claim of the proposition. ��

4 The Category of Perfect MV-algebras

Let P be the full subcategory of the category of MV-algebras whose objects are
perfect MV-algebras. Following [9], we can associate each perfect MV-algebra A
with an abelian �-group G = D(A) by the following construction: Let θ ⊆ Rad(A) ×
Rad(A) be defined by (x, y)θ(x′, y′) if and only if x ⊕ y′ = x′ ⊕ y. θ can be shown
to be a congruence and we set [x, y] ⊕ [x′, y′] = [x ⊕ x′, y ⊕ y′], where [x, y] denote
the congruence class of (x, y). Then D(A) = (Rad(A) × Rad(A)/θ,+, ≤, [0, 0]) is an
abelian �-group (where −[x, y] = [y, x]). It can be shown that this construction can
be extended to a functor between Perfect and the category of abelian �-groups, and
that the two categories are equivalent.

Proposition 9 The following statements hold:

(1) {0, 1} is a terminal and an initial object of P ;
(2) P has pull-backs;
(3) P has arbitrary products.

Proof

(1). Follows from the equivalence with the category of abelian �-groups.
(2). Suppose now we have morphisms in P , f : A → X ← B : g. Let 〈A, B〉 =

{(a, b) ∈ A × B | f (a) = g(b)}. It is easy to see that this set is a perfect MV-
subalgebra of A × B. Suppose for some perfect MV-algebra Y we have maps
α : Y → A, β : Y → B such that fα = gβ. Define h : Y → 〈A, B〉 by h(y) =
(α(y), β(y)). Then π1h = f, π2h = g. It follows that 〈A, B〉 is the pull-back of f
along g.

(3). Follows from the equivalence with the category of abelian �-groups. We
give here a direct construction. Obviously the direct product of two or more
perfect MV-algebras need not be perfect, but they always contain a perfect
subalgebra. Let {Ai}i∈I be a family of MV-algebras, and let A = �i∈I Ai be
the direct product. By the pseudo-diagonal of A is meant the set of all a ∈ A
such that ord(ai) = ord(a j) for all i, j ∈ I. Note that in a perfect MV-algebra
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each element has order 2 or order infinite. In this case the pseudo-diagonal
is a perfect MV-algebra. Another way to look at the pseudo-diagonal is as
follows. In the product �i∈I consider the ideal R = {a | ai ∈ Rad(Ai), i ∈ I}.
Then alg(R) = R ∪ ¬R is a perfect subalgebra of the product �i∈I Ai. When all
the Ai are perfect this subalgebra is the pseudo-diagonal. In the case that I = ∅
then �i∈I Ai = {∅} and we set alg{∅} = {0, 1}. It is straightforward to show that
the pseudo-diagonal of a family of perfect MV-algebras is indeed the product
in the category P . ��

For notation we shall write pδi∈I Aifor the pseudo-diagonal of �i∈I Ai. We shall
show later that the pseudo-diagonal will allow us to define a presheaf of perfect
algebras on Spec(A) for any MV-algebra A.

5 Localization

In some cases all the elements of infinite order can be “localized” into one maximal
ideal. Evidently, in such an MV-algebra there can only be one maximal ideal. Such
an MV-algebra is then local.

In [2] a type of localization at a prime ideal of an MV-algebra was introduced.
The motive for that was related to the Going Up and Going Down Theorems for
MV-algebras. In this work we wish to examine and expand this idea of localization
to study how the localized algebras relate to the original algebra.

We also wish our notion of localization to parallel as closely as possible the
situation in commutative rings.

In our case the localizations will be homomorphic images of subalgebras. More-
over, unlike the ring situation, there will be more than one localization at a given
prime. We want, therefore, our localizations at a prime P of an MV-algebra A to
satisfy the following conditions:

(1) P, or the image of P, is the unique maximal ideal in the localization,
(2) elements in the localization not in the image of P generate improper ideals,
(3) the prime ideal space of the localization be homeomorphic to the subspace of

prime ideals of A contained in P.

Proposition 10 Let P ∈ Spec(A) and let I be an ideal of A such that 0P(A) ⊆ I. Then
I ⊆ P or P ⊆ I.

Proof Suppose not. Then there are x, y ∈ A such that x ∈ I \ P, y ∈ P \ I. Then x �
¬y ∈ I \ P; for if x � ¬y ∈ P, then (x � ¬y) ⊕ y ∈ P and so x ∨ y ∈ P which implies
x ∈ P. Similarly ¬x � y ∈ P \ I. Now let Q be a prime ideal contained in P. Then
x � ¬y �∈ Q. Hence ¬x � y ∈ Q. Since Q is arbitrary in ωP(A) we may infer that
¬x � y ∈ 0P, thus ¬x � y ∈ I which is impossible. ��

Let A be an MV-algebra and P a prime ideal of A. Let

L(P) = {A′ | A′ is a subalgebra of A and P is maximal in A′}.
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Then we have:

Proposition 11 The following statements hold:

(1) L(P) �= ∅;
(2) alg(P) is the only element in L(P) in which P is supermaximal.

Proof Given a prime ideal P ⊆ A, consider the subalgebra AP generated by P. We
know that alg(P) = P ∪ ¬P where ¬P = {¬x | x ∈ P}. Clearly P is an ideal in alg(P)

and if x ∈ alg(P), x �∈ P, then ¬x ∈ P. Therefore we see that P is a maximal ideal in
alg(P), in fact, a supermaximal ideal. Hence L(P) is non-empty.

If P is supermaximal in A′ ∈ L(P), we must have A′ = alg(P). For otherwise there
is an x ∈ A′ with x /∈ P and x /∈ ¬P. Hence x ∧ ¬x �∈ P which is impossible since P
is supermaximal in A′. Therefore alg(P) is the only element of L(P) in which P is
supermaximal. ��

We must point out, however, that alg(P), indeed any A′ ∈ L(P), may have
maximal ideals other than P. To obtain a local algebra we must filter out any other
maximal ideals.

That L(P) can have one or infinitely many members is illustrated in the following
example. Let �[0, 1] be a non-trivial ultrapower of the MV-algebra [0, 1], and let C
be the Chang MV-algebra. Set A = �[0, 1] × C. Let P = 0 × C; then P is prime in
A, alg(P) = {0, 1} × C. But for any subalgebra S ⊆ [0, 1] ⊆ �[0, 1], P is maximal
in S × C. On the other hand, if Q = �[0, 1] × 0, then Q is prime in A but the only
subalgebra of A in which Q is maximal is alg(Q) = �[0, 1] × {0, 1}.

Proposition 12 Let A′ ∈ L(P). Then A′/0P(A) is a local MV-algebra with maximal
ideal P/0P(A).

Proof Let x/0P(A) �∈ P/0P(A), x ∈ A′. Then x �∈ P; since P is maximal in A′ there
is an n with (¬x)n ∈ P. Hence (¬x)n/0P(A) ∈ P/0P(A) and so P/0P(A) is a maximal
ideal of A′/0P(A). Now let I/0P(A) be any ideal in A′/0P(A). We can assume
without loss of generality that I/0P(A) is prime. Thus I is prime in A′. By the [2,
Proposition 2, p.94] there is a prime ideal Q of A such that I = Q ∩ A′. Hence
0P(A) ⊆ Q. By Proposition 10, P ⊆ Q or Q ⊆ P. The former implies that P ⊆ I, the
latter that I ⊆ P. Consequently we have either P/0P(A) = I/0P(A) or I/0P(A) ⊆
P/0P(A). ��

Proposition 13 The MV-algebra AP = alg(P)/0P(A) is the unique perfect MV-
algebra with maximal ideal P/0P(A).

Proof Let a ∈ alg(P)/0P(A) and assume a/0P(A) has infinite order. Since alg(P)/

0P(A) is local we must have ord(¬a) < ∞. Conversely, suppose that ord(¬a) < ∞.
Then ¬a �∈ P. As P is supermaximal in alg(P) (Proposition 11), it follows that a ∈ P
and so a/0P(A) ∈ P/0P(A). Therefore ord(a) = ∞. So alg(P)/0P(A) is perfect.

It is clear that we have a natural injection AP = alg(P)/0P(A) → A′/0P(A) for
each A′ ∈ L, in general if A′, A′′ ∈ L(P), A′ ⊆ A′′, then there is a natural injection
A′/0P(A) → A"/0P(A).
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Suppose now that for some A′ ∈ L(P), A′/0P(A) is perfect with maximal ideal
P/0P(A). We have that alg(P)/0P(A) embeds into A′/0P(A). Let x ∈ A′. If x/0P(A)

has infinite order, then x/0P(A) ∈ P/0P(A). Thus for some y ∈ P, y/0P(A) =
x/0P(A) which implies that x ∈ P, hence x ∈ alg(P). Since alg(P) ⊆ A′ we may infer
that A′ = alg(P). ��

We shall call AP the canonical localization of A at the prime ideal P. We shall call
the local MV-algebras A′/0P(A), with A′ ∈ L(P), the localization of A at P relative
to A′.

The following lemma is evident.

Lemma 14 Let I ⊆ P ∈ Spec(A). Then

i) for all prime ideals Q ∈ ωP(A) we have I ⊆ Q iff (I + 0P(A))/0P(A) ⊆
Q/0P(A);

ii) if I ⊆ P is an ideal of A′ ∈ L(P), then I is an ideal of A.

Theorem 15 (Localization Theorem) Let A be an MV-algebra and P a prime ideal
of A. Then for any A′ ∈ L(P) there is a natural bijection between ωP(A) = {Q ∈
Spec(A) | Q ⊆ P} and Spec(A′/0P(A)).

Proof For any Q ∈ ωP(A), 0P(A) ⊆ Q. Thus we can define a map Q → Q/0P(A)

that is evidently injective. If Q/0P(A) ∈ Spec(A′/0P(A)) then Q ∈ Spec(A′) and
Q ⊆ P or P ⊆ Q by Proposition 10. Now P ⊆ Q implies P = Q since P is maximal
in A′; thus in either case we have Q ∈ Spec(A′), Q ⊆ P. By ([2], Corollary to
Proposition 2, p. 94) there is a prime ideal Qo ⊆ A with Q = Qo ∩ A′. Hence
0P(A) ⊆ Qo and so Qo ⊆ P or P ⊆ Qo. The former gives Q = Qo ∩ P ∩ A′ = Qo.
The latter gives P ⊆ Qo ∩ A′ = Q. In either cases we see that Q ∈ Spec(A). Thus
the map Q → Q/0P(A) is onto. ��

Consider ωP(A) as a subspace of Spec(A), where the open sets are all of the form
U(J) = {Q ∈ Spec(A) | J �⊆ Q}, where J any ideal of A.

Proposition 16 ωP(A) is homeomorphic to Spec(A′/0P(A)).

Proof Let O ⊆ ωP(A), and let O′ = {Q/0P(A) | Q ∈ O}; then O = {Q | Q/0P(A) ∈
O′}. Thus we need only show that O is open in ωP(A) iff O′ is open in
Spec(A′/0P(A)). Clearly O = ωP(A) iff O′ = Spec(A′/0P(A)). Thus we can assume
O, O′ are proper subsets of ωP(A), Spec(AP), respectively. Suppose then O is open
in ωP(A). Thus, O = U(I) ∩ ωP(A) for some ideal I of A. O proper implies that
I ⊆ P. By Lemma 14, O′ = U(I′), where I′ = (I + 0P(A)(A))/0P(A). Hence O′ is
open. Conversely, suppose O′ is open so that O′ = U(I′) for some proper ideal I′ of
Spec(A′/0P(A)). Then I′ = I/0P(A) for some proper ideal I of A′ with 0P(A) ⊆ I.
As P is maximal in A′, we have I ⊆ P. By Lemma 14 above, item ii), we see that I
is an ideal of A. Moreover, I = I + 0P(A), so by the lemma above, item i) we have
O = U(I) ∩ ωP(A) and is open in ωP(A). Therefore the bijection Q ↔ Q/0P(A)

between ωP(A) and Spec(A′/0P(A)) is a homeomorphism. ��
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Let us examine the special case where the localizations are with respect to a
maximal ideal M ⊆ A. In this case L(M) also has a unique maximal element, namely
A. Thus we have a maximal localization at M, namely A/0M. We also have the
minimal localization AM. We shall eventually show there are localizations at M
intermediate between these two extremes.

First let us examine some properties of the localizations AP and how they relate
to the MV-algebra A.

Proposition 17 Let A be an MV-algebra and P a prime ideal of A. Then the following
are equivalent:

(1) AP is MV-chain;
(2) 0P(A) is a minimal prime ideal of alg(P).

Proof Let us assume that AP is an MV-chain. Then 0P(A) is prime in alg(P). Hence
the prime ideals of A under P form a chain and so 0P(A) is prime in A, in fact a
minimal prime. Conversely, assume that 0P(A) is a minimal prime ideal of A, then
ωP(A) is a chain and P is totally ordered too. Hence AP is a perfect MV-chain. ��

Proposition 18 AP is an MV-chain for all P iff A is hypernormal.

Proof Suppose that A is hypernormal. Then clearly for each maximal ideal M and
prime P ⊆ M, 0M = 0P(A) is a minimal prime. Thus 0P(A) is prime in alg(P), hence
AP is linearly ordered. Conversely, if AP is an MV-chain for all P ∈ Spec(A), then
in particular, AM is linearly ordered. By Proposition 17, 0M is a minimal prime of A.
It follows that ωM(A) is a chain and so A is hypernormal. ��

We can ask if the same proposition is true for other members of L(P).

Proposition 19 For A′ ∈ L(P), the localization at P relative to A′ is linear iff A is
hypernormal.

Proof Let A′ ∈ L(P) and suppose that A′/0P(A) is linear. Then 0P(A) is a prime
ideal in A′. Thus the prime ideals of A under P form a chain, hence 0P(A) is prime
in A. Clearly it is a minimal prime. ��

Corollary 20 If one localization at P is linear, then all localizations at P are linear.

Let us now consider the case where the localization AP is simple.

Proposition 21 AP = {0, 1} iff P is a minimal prime.

Proof Let AP = {0, 1}. Then 0P(A) must be a maximal ideal of alg(P). Since
0P(A) ⊆ P ⊆ alg(P), we see that 0P(A) = P so that 0P(A) is a maximal ideal in
alg(P). But P is supermaximal in alg(P), hence AP = {0, 1}.

Now 0P(A) = P implies that P is a minimal prime of A. Conversely, suppose that
P is a minimal prime. Then ωP(A) = {P} and so 0P(A) = P. It now follows that
AP = {0, 1}. ��
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Corollary 22 A is hyperarchimedean iff AP = {0, 1} for all primes P.

We see from the preceding corollary that in general it is not possible to recover A
from the localizations AP.

Suppose now we have a localization A′/0P(A), A′ ∈ L(P), such that A′/0P(A) is
simple. We must have that 0P(A) is a maximal ideal in A′. Since 0P(A) ⊆ P we see
that 0P(A) = P. Again we have that P is a minimal prime of A. Even though P is a
maximal ideal of A′, it can be not super-maximal, thus we cannot conclude in general
that A′/0P(A) = {0, 1}. We evidently have,

Proposition 23 For A′ ∈ L(P), A′/0P(A) is simple iff P is a minimal prime. Also
AP = {0, 1}. Moreover, if A′/0P(A) is simple for one A′ ∈ L(P), then all localizations
at P are simple.

6 Other Categories of Perfect MV-algebras

Let MV∗ denote the category whose objects are pairs (A, P) where A is an MV-
algebra, P a prime ideal of A, and whose morphisms (A, P) → (A′, P′) are MV-
homomorphisms f : A → A′ such that f −1(P′) ⊆ P. It is easy to verify that MV∗ is
a category.

Proposition 24 The categories P and MV∗ are equivalent.

Proof Let A be an MV-algebra, P a prime ideal of A and AP is the (perfect) localiza-
tion of A at P. Let F be a map F : MV∗ → P defined as follows: by F(A, P) = AP.
If f is a morphism (A, P) → (A′, P′), f induces a morphism f∗ : AP → A′

P′ by
x/0P(A)(A) → f (x)/0P′(A′). To see that this is well-defined suppose that x/0P(A) =
y/0P(A), x, y ∈ AP. Let Q′ ⊆ P′, Q′ prime in A′. Then F−1(Q′) ⊆ f −1(P′) ⊆ P. But
f −1(Q′) ∈ Spec(A) and therefore 0P(A)(A) ⊆ f −1(Q′). Now d(x, y) ∈ 0P(A)(A).
Hence d(x, y) ∈ f −1(Q′) and so d( f (x), f (y)) ∈ Q′. Since A′ was an arbitrary prime
ideal contained in P′ we may infer that d( f (x), f (y)) ∈ 0P′(A′) and so f (x)/0P′(A′) =
f (y)/0P(A)(A′). We also have an obvious functor G : P → MV∗ given by A →
(A, M) where M is the unique maximal ideal of A. Clearly F ◦ G is the identity
on P . ��

We can modify the preceding result to make it a bit more general. To this end
let Loc denote the category of local MV-algebras and MV-homomorphisms. Let
MV∗∗ be the category whose objects are triples (A, A′, P) where A is an MV-
algebra, A′ a subalgebra, P ∈ Spec(A) and P a maximal ideal in A′. The morphism
(A, A′, P) → (A1, A′

1, P1) are MV-homomorphism f : A → A1 such that f (A′) ⊆
A′

1 and f −1(P1) ⊆ P. It is easy to see this is a category.

Proposition 25 The categories Loc and MV∗∗ are equivalent.
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Proof We have a functor H : MV∗∗ → Loc, H(A, A′, P) = A′/0P(A) as in
Proposition 24. Similarly we have a functor J : Loc → MV∗∗ by sending A to
(A, A, M) where M is the unique maximal ideal in A. Again we have H ◦ J the
identity on Loc. ��

That products exist in P gives rise to a natural pre-sheaf of perfect MV-algebras
associated with each MV-algebra. To see this let A be an MV-algebra and let X =
Spec(A) endowed with the Zariski topology. Let O(X) be the category of open sets
of X; we have an arrow U → V if and only if U ⊆ V. Thus in the opposite category,
O(X)op, we have an arrow V → U if and only if U ⊆ V. For each U ∈ O(X) let
AU = pδP∈U AP. Thus we have a map F : O(X)op → P,F(U) = AU .

Proposition 26 F is a pre-sheaf of perfect MV-algebras.

Proof We note that F(∅) = {0, 1}. We claim this is a functor. Indeed suppose
that U ⊆ V. Then in O(X)op we have V → U , hence a map AV → AU given by
restriction. That is 〈aP〉P∈V → 〈aP〉P∈U . All the necessary conditions are met to show
that indeed F is a functor and therefore a pre-sheaf of perfect MV-algebras. ��

7 Logics of Perfect MV-algebras

Let Luk denote the Łukasiewicz propositional logic with usual axioms and rule of
inference, [10].

Consider the axiomatic extension Lukp of propositional Łukasiewicz logic, ob-
tained by adding to the system Luk the following axiom schema:

(2α2) ↔ (2α)2.

Evaluation of formulas of Lukp is defined as usual, with Łukasiewicz connectives
interpreted by MV-algebraic operations. We shall use the same symbols for denoting
connectives and their interpretations.

Proposition 27 A wff of Lukp is valid on all perfect MV-chains iff it is provable in
Lukp.

Proof It is straightforward to show that if α is a theorem in this new system, then α

is valid on all perfect MV-algebras. Indeed axioms of Lukp are valid on all perfect
MV-algebras and modus ponens keeps this validity.

Conversely, the Lindenbaum algebra, Lindp, of Lukp, satisfies [α]2 ⊕ [α]2 =
(2[α])2, that is, it satisfies σ , hence Lindp ∈ MV(C). Now let α be a wff of Lukp and
suppose that α is valid on all perfect MV-chains. Suppose that α is not provable in
Lukp; then [α] �= 1, and so [¬α] �= 0. Since Lindp is semi-perfect (see Proposition 5)
there is a prime ideal J with [¬α] /∈ J. Moreover J is a perfect ideal. So in Lindp/J we
have that [¬α]/J �= 0, that is [α]/J �= 1. From this we may infer that α is not valid on
the perfect MV-chain Lindp/J via the assignment v → [v]/J for each propositional
variable v. ��
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Let us consider now first order theories. As we said in Proposition 6, the class of
perfect MV-algebras is first order definable. We further have the following result,
concerning semi-perfect MV-algebras:

Let Lsp be a classical first-order logic with inequality, whose language contains
function symbols ⊕, ¬ and constant symbol 0. We take as axioms the axioms of
first-order logic plus the axioms for MV-algebras, and finally the formula ∀x(2(x)2 =
(2x)2).

Theorem 28 A wff is provable in Lsp iff it is valid on all semi-perfect MV-algebras iff
is valid on C.

Proof By proposition 5, since Chang’s MV-algebra C satisfies equation 2(x)2 = (2x)2

then semi-perfect MV-algebras, as members of the variety V(Perfect) = V(C), satisfy
2(x)2 = (2x)2.
Claim 1 An MV-equation α = 1 holds on C iff it holds on all perfect MV-chains.

Indeed any model of the language Lsp will be a semi-perfect MV-algebra.
Now take any MV-polynomial α(x1, . . . , αn). Consider the first order wff

∀x1 · · · ∀xn(α(x1, . . . , αn) = ¬0). Suppose that this formula holds on all models of
Lsp. Then it clearly holds on C. Conversely, suppose it holds on C. Then it holds on
the universal class, generated by C. But if A is any semi-perfect algebra, we know
A ∈ V(C), (see [9]), and so the formula will hold on A. In particular, if the formula
holds on C it will hold on all perfect MV-chains.

Now let α be a wff of Lsp that is valid on C. Then the corresponding formula ∀α,
the universal closure of α, will hold on C when C is considered a model of Lsp. Thus
the formula will hold on all perfect MV-chains considered as models of Lsp. From
this we see that the MV-polynomial α will hold on all perfect MV-chains. ��

In the next result we consider first-order Łukasiewicz logic. Here, for sake of
completeness we describe such a logic and provide a notion of model for it.

Definition 29 Let L be a language containing symbols of variables v0, v1, . . ., logical
symbols →, ¬; predicate symbols R0, R1, . . .; a quantifier symbol ∃; improper sym-
bols (, ); and a function d : N → N, N = {0, 1, 2, ...}.

The set of well-formed formulas of L, W F F, is defined as usual, as follows: atomic
formulas, Rn(vi1 , vi2 , ..., vid(n)

) are in W F F. If α, β ∈ W F F so are (α → β) and ¬α. If
α ∈ W F F and x is a variable then (∃x)α is in W F F.

Definition 30 Let A be an MV-algebra and X a nonempty set. An {A, X} − model is
a system 〈A, X, (Fn)n∈N〉 such that for each n ∈ N there is a function Fn : Xd(n) → A.

An {A, X} − model is linear if A is an MV-chain, is canonical if A ⊆ [0, 1]. Given
an {A, X} − model 〈A, X, (Fn)n∈N〉, an assignment is a function f : Var → X, with
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Var = {v0, v1, . . .}, i.e., Var is the set of variables of L. If f is an assignment, v ∈ Var,
x ∈ X, then fvx is the assignment

fvx(vi) =
{

f (vi), if vi �= v

x, if vi = v.

If S ⊆ A we define

∑
S =

{
least upper bound of S in A (if it exists)
A, otherwise.

Given M = 〈A, X, (Fn)n∈N〉 we assign values to each α ∈ W F F. We define, therefore
a function

Val(α,M, f ) : W F F → A,

where f is an M-assignment inductively defined by the following conditions:

(1) Val(Rn(vi1 , vi2 , ..., vid(n)
),M, f ) = Fn( f (vi1), f (vi2), ..., f (vid(n)

));
(2) Assuming Val defined for α ∈ W F F, then

Val(¬α,M, f ) =
{

¬Val(α,M, f ) if Val(α,M, f ) ∈ A

A, otherwise;

(3) Assuming Val defined for α, β ∈ W F F, then

Val(α → β,M, f ) =

⎧
⎪⎨

⎪⎩

¬Val(α,M, f ) ⊕ Val(β,M, f ),

provided both Val(α,M, f ), Val(β,M, f ) ∈ A

A, otherwise;

(4) Val((∃v)α,M, f ) = ∑
x∈X Val(α,M, fvx).

Call an M-assignment an interpretation if Val(α,M, f ) ∈ A for all α ∈ W F F. Let
β0, β1, ... be an enumeration of all β ∈ W F F of the form βn = (∃v j)αn. For each
n, m ≥ 0, let β(n, m) be defined in the following way starting from αn:

(1) let v be the first variable not occurring in αn;
(2) replace all bounded occurrences of vm in αn by v;
(3) replace all free occurrences of v j in αn by vm.

The axioms of L include all the axioms for Łukasiewicz propositional logic, and
we have modus ponens, so we can form the Lindenbaum MV-algebra L. An element
from L shall be denoted by [α], with α a formula from L.

Theorem 31 In L,
∑

m∈N
[β(n, m)] exists and equals [βn].

Proof See ([5, Proposition 8, p.13] and [3]). ��

An ideal I in L is said to preserve sums if for any n, if [β(n, m)] ∈ I for all m, then∑
m∈N

[β(n, m)] ∈ I.



150 L.P. Belluce, et al.

Theorem 32 Let [α], [β] ∈ L, [α] /∈ id([β]). Then there is an ideal P of L such that

(1) [β] ∈ P;
(2) P is maximal with respect to not containing [α], so P is prime;
(3) P preserves the sums [βn] for all n ∈ N.

Proof See ([5, Proposition 9, p. 13] and [3]). ��

Theorem 33 Suppose ord([β]) = ∞. Then there is a maximal ideal M of L such that
[β] ∈ M and M preserves the sums [βn] for all n ∈ N.

Proof See ([5, Corollary 10, p.14] and [3]). ��

Let L be first order Łukasiewicz logic. Then we know what it means for a first
order formula to be valid on the class of perfect MV-chains.

Let ValFormp denote the class of all wff valid on all perfect MV-chains. We can
ask is this set axiomatizable?

Add to L the axiom schema, 2α2 ↔ (2α)2 and denote the resulting system by ˜Lukp.
Then we have,

Proposition 34 A wff α of ˜Lukp is provable, in ˜Lukp, iff α is valid on all perfect MV-
chains.

Proof In the Lindenbaum algebra of L, [L] we have a dense set of prime ideals
P that preserve ∃. Since the axioms of ˜Lukp include the axioms of L, the same is

true of the Lindenbaum algebra [˜Lukp]. But the latter algebra is now semi-perfect.
Consequently each of the prime ideals of this algebra is perfect. From this it follows
that if α is valid on all perfect MV-chains and not provable in ˜Lukp, then in [˜Lukp],
[α] �= 1, hence ¬[α] �= 0. Thus for some prime ideal P of the dense set we have ¬[α] �∈
P and so in [˜Lukp]/P we have [α]/P �= 1. But evaluation on [˜Lukp]/P of α will result
in the value [α]/P. ��
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