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Abstract The notions of a cleft extension and a cross product with a Hopf algebroid
are introduced and studied. In particular it is shown that an extension (with a
Hopf algebroid H = (HL,HR)) is cleft if and only if it is HR-Galois and has
a normal basis property relative to the base ring L of HL. Cleft extensions are
identified as crossed products with invertible cocycles. The relationship between the
equivalence classes of crossed products and gauge transformations is established.
Strong connections in cleft extensions are classified and sufficient conditions are
derived for the Chern–Galois characters to be independent on the choice of strong
connections. The results concerning cleft extensions and crossed product are then
extended to the case of weak cleft extensions of Hopf algebroids hereby defined.
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1 Introduction

Cleft extensions of algebras by a Hopf algebra, or cleft Hopf comodule algebras, are
one of the simplest and best known examples of Hopf–Galois extensions. Indeed, by
[20, Theorem 9] a Hopf–Galois extension with the normal basis property is necessar-
ily a cleft extension. With geometric interpretation of Hopf–Galois extensions over
fields as non-commutative principal bundles, cleft extensions can be understood as
such principal bundles that every associated bundle is trivial. Motivated by examples
coming from non-commutative differential geometry, the notion of a Hopf–Galois
extension was generalised to a coalgebra-Galois extension in [15, 16]. Subsequently,
the notion of a cleft coalgebra extension was introduced in [12, p. 293], and most
comprehensively studied in terms of cleft entwining structures in [1, 19]. The latter
were extended further to weak entwining structures in [2, 3].

The aim of the present paper is to extend the theory of cleft extensions in a
different direction, in the first instance motivated by recent developments in the
theory of depth-2 and Frobenius ring extensions [21–23], in long term motivated
by the increasing interest in Galois-type extensions with Hopf algebroid symme-
tries [4, 8]. Thus we introduce and study basic properties of Hopf algebroid cleft
extensions. Very much as cleft extensions for Hopf algebras are an example and
a testing ground for more general Hopf–Galois extensions, also Hopf algebroid
cleft extensions provide one with a useful tool (or a toy model) for more general
Hopf algebroid extensions. In particular, as announced in [9], cleft extensions for
Hopf algebroids give a concrete illustration to the relative Chern–Galois theory. In
fact the current paper can be considered as a sequel to [9] in which the ideas and
results, announced in a few examples, are developed in detail and further extended.
Specifically, in Section 5, sufficient conditions for the existence of (strong connection
independent) relative Chern–Galois characters in Hopf algebroid cleft extensions
are stated.

The construction of Hopf algebroid cleft extensions, although motivated by
similar ideas, is significantly different from that of cleft Hopf algebra (or coalgebra)
extensions. One should remember that a Hopf algebroid involves two different
coring (and bialgebroid) structures on the same k-module. The interplay between
these intricate structures is an immanent feature of Hopf algebroid extensions. This
is already present in the notion of a convolution inverse (cf. Definition 3.1), which
relates two coring structures on the same k-module, but is perhaps most significant
in the characterisation of cleft extensions in terms of the Galois and normal basis
properties (cf. Theorem 3.12): a cleft H -extension is a Galois extension with respect
to the right bialgebroid HR but it has a normal basis property with respect to the left
bialgebroid HL.

In the standard Hopf algebra theory, cleft extensions of Hopf algebras are
examples of crossed products with Hopf algebras: indeed a cleft extension is
the same as a crossed product with an invertible cocycle (cf. [20, Theorem 11],
[6, Theorem 1.18]). Motivated by this correspondence, we also develop a general
theory of crossed products with bialgebroids and Hopf algebroids. In particular
this involves developing the notions of a measuring and a 2-cocycle, while to relate
different crossed products one needs to give meaning to gauge transformations and
equivalent crossed products. In parallel to the bialgebra case, we show in Theorem 4.7
that two crossed products are equivalent if and only if one is a gauge transform of
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the other. We then identify cleft extensions of Hopf algebroids with crossed products
with invertible cocycles (cf. Theorem 4.11 and Theorem 4.12). A generalisation of
this theory to the case of weak crossed products is then outlined in Appendix.

Finally, we would like to indicate that the cleft extensions of the present paper can
be placed in a broader context. A (weak) entwining structure (A, D, ψ) determines
a coring extension D of the canonical A-coring Cψ in the sense of [13]. The cleft
property of an entwining structure can be formulated as a feature of A as an
entwined module (i.e. a Cψ -comodule). Although it is not possible to find a cleft
entwining structure behind a cleft extension B ⊆ A of a Hopf algebroid H (with
left L-bialgebroid HL and right R-bialgebroid HR), there is still an associated coring
extension. Namely, the constituent L-coring in H is a right extension of the A-coring
C := A ⊗R HR, such that A is a C -comodule. Inspired by this observation, a unified
approach to all known notions of cleft extensions in terms of coring extensions is
developed in [11].

Notation Throughout this paper we work over an associative unital commutative
ring k. An algebra means an associative unital k-algebra. Unit elements are denoted
by 1 and multiplications by μ (or by 1R, μR if the algebra R needs to be specified).
Categories of left, right, and bimodules for an algebra R are denoted by RM, MR and
RMR, respectively. Their hom-sets are denoted by HomR,−(−,−)Hom−,R(−,−) and
HomR,R(−,−), respectively.

Categories of left and right comodules for a coring C are denoted by C M and
MC , respectively. For their hom-sets we write HomC ,−(−, −) and Hom−,C (−,−),
respectively.

2 Preliminaries

2.1 Bialgebroids

A bialgebroid [24, 27] can be considered as a generalisation of the notion of a
bialgebra to arbitrary (non-commutative) base algebras. A (left) bialgebroid over
a base algebra L consists of an L ⊗k Lop-ring structure (H, μ, η) and an L-coring
structure (H, γ, π) on the same k-module H. Denoting the restriction of the unit
map η : L ⊗k Lop → H toL ⊗k 1H (the so called source map) by s and its restriction
to 1H ⊗k Lop(the target map) by t, the bimodule structure of the L-coring is given by

lhl′ = s(l )t(l′)h, for all l, l′ ∈ L, h ∈ H.

The range of the coproduct is required to be in the Takeuchi product

H ×L H :=
{ ∑

i

hi⊗
L

h′
i ∈ H⊗

L
H

∣∣∣∣ ∑
i

hit(l )⊗
L

h′
i =

∑
i

hi⊗
L

h′
is(l ) ∀l ∈ L

}
,
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which is, indeed, an algebra by factor wise multiplication. The following compatibility
conditions are required between the L ⊗k Lop-ring and the L-coring structures.

γ (1H) = 1H⊗
L

1H, (2.1)

γ (hh′) = γ (h)γ (h′), (2.2)

π(1H) = 1L, (2.3)

π
(
hs(π(h′))

) = π(hh′), (2.4)

π
(
ht(π(h′))

) = π(hh′), (2.5)

for all h, h′ ∈ H.
The L-L bimodule structure of the coring underlying a left bialgebroid is defined

in terms of the multiplication by s(l ) and t(l ) on the left. Right bialgebroids are
defined analogously in terms of multiplications on the right. For more details we
refer to [23].

Thus a bialgebroid is given by the following data: k-algebras H and L, and maps
s (the source), t (the target), γ (the coproduct) and π (the counit). We write L =
(H, L, s, t, γ, π).

Note that if L = (H, L, s, t, γ, π) is a left bialgebroid, then so is the co-opposite
Lcop = (H, Lop, t, s, γ op, π), where Lop denotes the algebra that is isomorphic to L
as a k-module, with multiplication opposite to the one in L, and γ op : H → H ⊗Lop

H, h �→ h(2) ⊗Lop h(1) is the coproduct, opposite to γ : H → H ⊗L H, h �→ h(1) ⊗L

h(2). The opposite, L op = (Hop, L, t, s, γ, π) is a right bialgebroid.

2.2 Hopf Algebroids

Hopf algebroids with bijective antipodes have been introduced in [10]. In [7] the
definition was extended by relaxing the bijectivity of the antipode.

A Hopf algebroid consists of two (a left and a right) bialgebroid structures on
the same total algebra. The source and target maps of the left bialgebroid HL =
(H, L, sL, tL, γL, πL) and of the right bialgebroid HR = (H, R, sR, tR, γR, πR) are
related by the following axioms.

sL ◦ πL ◦ tR = tR, tL ◦ πL ◦ sR = sR and

sR ◦ πR ◦ tL = tL, tR ◦ πR ◦ sL = sL. (2.6)

These conditions imply that the left coproduct γL is R-R bilinear and the right
coproduct γR is L-L bilinear. Each coproduct is required to be left and right colinear
with respect to the other bialgebroid structure, i.e. the following axioms are imposed:

(
γL⊗

R
H

)
◦ γR =

(
H⊗

L
γR

)
◦ γL and

(
γR⊗

L
H

)
◦ γL =

(
H⊗

R
γL

)
◦ γR. (2.7)

An R ⊗k L-R ⊗k L bilinear map S : H → H, i.e. a k-linear map, such that

S (tL(l )htR(r)) = sR(r)S(h)sL(l ) and S (tR(r)htL(l )) = sL(l )S(h)sR(r), (2.8)
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for r ∈ R, l ∈ L and h ∈ H, is called an antipode if

μH ◦
(

S⊗
L

H
)

◦ γL = sR ◦ πR and μH ◦
(

H⊗
R

S
)

◦ γR = sL ◦ πL. (2.9)

For a Hopf algebroid we use the notation H = (HL,HR, S).
Since in a Hopf algebroid there are two coring structures present, we use two

versions of Sweedler’s index notation for coproducts. For any h ∈ H, we write
γR(h) = h(1) ⊗R h(2) (with upper indices) for the right coproduct and γL(h) = h(1) ⊗L

h(2) (with lower indices) for the left coproduct.

Remark 2.1 In the formulation of Hopf algebroid axioms, given in Eqs. 2.6, 2.7,
2.8 and 2.9, the left bialgebroid HL and the right bialgebroid HR play symmetric
roles. It turns out, however, that this set of axioms can slightly be reduced. Namely,
the second equality in Eq. 2.8 can be derived from the other axioms. This can be
seen by the following computation (and its symmetric version, in which the order of
multiplication and roles of HL and HR are interchanged). For l ∈ L and h ∈ H,

S(htL(l )) = S
(
tL

(
πL

(
h(2)

))
h(1)tL(l )

) = S
(
h(1)tL(l )

)
sL

(
πL

(
h(2)

))
= S

(
h(1)

)
sL

(
πL

(
h(2)sL(l )

)) = S
(
h(1)

)
h(2)

(1)sL(l )S
(

h(2)
(2)

)
= S

(
h(1)

(1)

)
h(1)

(2)sL(l )S
(
h(2)

) = sR
(
πR

(
h(1)

))
sL(l )S

(
h(2)

)
= sL(l )sR

(
πR

(
h(1)

))
S
(
h(2)

) = sL(l )S
(
h(2)tR

(
πR

(
h(1)

)))
= sL(l )S(h).

The first equality follows by the fact that πL is counit of γL and the last one follows
since πR is counit of γR. The second and the penultimate equalities follow by the first
equality in Eq. 2.8. The third equality follows by the bialgebroid axiom, requiring that
the range of γL is in the Takeuchi product H ×L H. The fourth equality follows by
Eqs. 2.9 and 2.6, as the latter implies – together with the left R-linearity of γR – that
γR(hsL(l )) = h(1)sL(l ) ⊗R h(2). The fifth equality is a consequence of the right HR-
colinearity of γL, i.e. Eq. 2.7. The sixth equality follows by Eq. 2.9, and the seventh
one follows by Eq. 2.6, implying sL(l )sR(r) = sR(r)sL(l ), for r ∈ R and l ∈ L.

It is proven in [7, Proposition 2.3] that the antipode of a Hopf algebroid is both
an anti-multiplicative map, i.e. S(hh′) = S(h′)S(h), for h, h′ ∈ H, and an anti-
comultiplicative map, i.e. S(h)(1) ⊗L S(h)(2)= S(h(2)) ⊗L S(h(1)) and S(h)(1) ⊗R

S(h)(2) = S(h(2)) ⊗R S(h(1)), for h ∈ H, (note the appearance of left and right coprod-
ucts in both formulae). The maps

πR ◦ tL : Lop → R and πL ◦ sR : R → Lop (2.10)

are inverse algebra isomorphisms.
Note that for a Hopf algebroid H =(HL,HR, S) also H op

cop =((HR)
op
cop,

(HL)
op
cop, S ) is a Hopf algebroid. If the antipode S is bijective, then also Hcop =

((HL)cop, (HR)cop, S−1) and H op = ((HR)op, (HL)op, S−1) are Hopf algebroids.

Convention Throughout, whenever it is said ‘Hopf algebroid H ,’ it is meant a Hopf
algebroid with all the structure modules and maps as in this section.
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2.3 Comodule Algebras for Bialgebroids

Let R = (H, R, s, t, γ, π) be a right bialgebroid and M a right R-comodule, that is,
a right comodule for the R-coring (H, γ, π). This means [17, 18.1] that M is a right
R-module and there exists a right R-linear coassociative and counital coaction, ρ :
M → M ⊗R H, m �→ m[0] ⊗R m[1] (note the upper Sweedler indices indicating the
involvement of a right bialgebroid). By the power of the bialgebroid structure, M can
be equipped with a unique left R-action such that the range of ρ is in the Takeuchi
product

M ×R H :=
{ ∑

i

mi⊗
R

hi ∈ M⊗
R

H

∣∣∣∣ ∑
i

rmi⊗
R

hi =
∑

i

mi⊗
R

t(r)hi ∀ r ∈ R

}
. (2.11)

The left R-multiplication in M takes the form since it commutes with the right
R-action, M becomes an R-R bimodule in this way

rm = m[0]π
(
t(r)m[1]) ≡ m[0]π

(
s(r)m[1]) , for all r ∈ R, m ∈ M. (2.12)

One checks that any R-colinear map is R-R bilinear. In particular the coaction
satisfies

ρ
(
rmr′) = m[0]⊗

R
s(r)m[1]s(r′), for all r, r′ ∈ R, m ∈ M. (2.13)

The category of right R-comodules is a monoidal category with a strict monoidal
functor to the category RMR of R-R bimodules [25, Proposition 5.6]. The R-action
and R-coaction on the tensor product of two comodules M and N are given by(

m⊗
R

n
)

· r = m⊗
R

nr,
(

m⊗
R

n
)[0] ⊗

R

(
m⊗

R
n
)[1] =

(
m[0]⊗

R
n[0]

)
⊗
R

m[1]n[1], (2.14)

for all r ∈ R, m ⊗R n ∈ M ⊗R N.
A right R-comodule algebra is a monoid in the monoidal category of right R-

comodules; hence, in particular, it is an R-ring.
The R-coring (H, γ, π), underlying a right R-bialgebroid R, possesses a grouplike

element 1H . The coinvariants of a right R-comodule M with respect to the grouplike
element 1H are the elements of

McoR =
{

m ∈ M
∣∣∣ m[0]⊗

R
m[1] = m⊗

R
1H

}
.

It is straightforward to check that if A is a right R-comodule algebra, then its
coinvariants form a subalgebra B : = AcoR. In this case the algebra extension B ⊆ A
is termed a right R-extension.

A right R-extension B ⊆ A is a right R-Galois extension if the canonical map

canR : A⊗
B

A → A⊗
R

H, a⊗
B

a′ �→ aa′[0]⊗
R

a′[1], (2.15)

is bijective, i.e. the A-coring A ⊗R H with the coproduct A ⊗R γ , the counit A ⊗R π

and with the A-A bimodule structure a1(a ⊗R h)a2 = a1aa2
[0] ⊗R ha2

[1], is a Galois
coring [21].

Analogously, a right comodule N, with coaction n �→ n[0] ⊗L n[1] (note the lower
Sweedler indices indicating the involvement of a left bialgebroid), for the L-coring
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(H, γ, π), underlying a left bialgebroid L = (H, L, s, t, γ, π), can be equipped with
a left L-action

ln = n[0]π
(
n[1]s(l )

) ≡ n[0]π
(
n[1]t(l )

)
, for all l ∈ L, n ∈ N. (2.16)

The category of right L -comodules is a monoidal category with monoidal product,
the module tensor product over Lop. The right L-action and L -coaction on the
tensor product of two L -comodules M and N are(

m⊗
Lop

n
)

· l = ml⊗
Lop

n,
(

m⊗
Lop

n
)

[0] ⊗L
(

m⊗
Lop

n
)

[1]
=

(
m[0] ⊗

Lop
n[0]

)
⊗
L

m[1]n[1],

for all l ∈ L, m ⊗L n ∈ M ⊗L N. Right L -comodule algebras are defined as monoids
in the monoidal category of right L -comodules – hence they are, in particular, Lop-
rings. Coinvariants are defined with respect to the grouplike element 1H . An algebra
extension B ⊆ A is called a right L -extension if A is a right L -comodule algebra
and B = AcoL . A right L -extension B ⊆ A is said to be right L -Galois if the
canonical map

canL : A⊗
B

A → A⊗
L

H, a⊗
B

a′ �→ a[0]a′⊗
L

a[1], (2.17)

is bijective.
Right comodules for a left bialgebroid L are canonically identified with left

comodules for the co-opposite bialgebroid Lcop, thus resulting in a monoidal equiv-
alence Lcop M � ML . This identification leads to analogous notions of left comodule
algebras, left L -extensions and left L -Galois extensions.

2.4 Comodule Algebras for Hopf Algebroids

By the Hopf algebroid axioms (2.7), the total algebra H of a Hopf algebroid
H = (HL,HR, S ) is both an HL-HR bicomodule with coactions provided by the
coproducts γL and γR, and an HR-HL bicomodule with coactions γR and γL. That
is, in the terminology of [13], the coring underlying HR is a right extension of the
coring underlying HL, and vice versa. By [13, Theorem 2.6], this implies that there
exist unique k-additive functors U : MHR → MHL and V : MHL → MHR , such that
the forgetful functors FR : MHR → Mk and FL : MHL → Mk satisfy

FR = FL ◦ U and FL = FR ◦ V,

(meaning that U(M) or V(M) are equal to M as k-modules). Explicit forms of
functors between comodule categories corresponding to coring extensions can be
found in [13]. The application to the present situation gives that the functor U maps
a right HR-comodule M, with coaction m �→ m[0] ⊗R m[1], to the right L-module

ml = m[0]πR
(
tL(l )m[1]) ≡ πR(tL(l ))m, for all l ∈ L, m ∈ M, (2.18)

with right HL-coaction

m �→ m[0]πR
(
m[1]

(1)

)⊗
L

m[1]
(2), for all m ∈ M. (2.19)

On sets of comodule maps U acts as the identity function.
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Analogously, the functor V maps a right HL-comodule N, with coaction n �→
n[0] ⊗L n[1], to the right R-module

nr = n[0]πL
(
n[1]sR(r)

) ≡ πL(sR(r))n, for all r ∈ R, n ∈ N, (2.20)

with right HR-coaction

n �→ n[0]πL(n[1](1))⊗
R

n[1](2), for all n ∈ N. (2.21)

On sets of comodule maps V acts as the identity function.

Theorem 2.2 Let H = (HL,HR, S) be a Hopf algebroid. The functors U : MHR →
MHL in Eq. 2.18 and (2.19), and V : MHL → MHR in Eq. 2.20 and (2.21) are strict
monoidal inverse isomorphisms.

Proof In order to see that U is strict monoidal we compute the HL-comodule
structure on U(M ⊗R N), for two HR-comodules M and N, with respective coactions
m �→ m[0] ⊗R m[1] and n �→ n[0] ⊗R n[1].

The right L-module U(M ⊗R N) can be identified with U(M) ⊗Lop U(N) via the
algebra isomorphism (2.10). In view of Eq. 2.18, the right L-action on this module is
given by (

m⊗
R

n
)

l = πR(tL(l ))
(

m⊗
R

n
)

= πR(tL(l ))m⊗
R

n = ml⊗
R

n,

for all l∈ L and m ⊗R n∈ M ⊗R N. By (2.19), the right HL-coaction on U(M ⊗R N)

maps an element m ⊗R n to

(
m⊗

R
n
)[0]

πR

((
m⊗

R
n
)[1]

(1)

)
⊗
L

(
m⊗

R
n
)[1]

(2)
. (2.22)

In light of the form (2.14) of the HR-coaction on M ⊗R N and the bialgebroid axiom
(2.2), the expression (2.22) is equal to(

m[0]⊗
R

n[0]πR
(
m[1]

(1)n[1]
(1)

))⊗
L

m[1]
(2)n[1]

(2).

By the right bialgebroid analogue of axiom (2.5) and the fact that by construction
the range of the HR-coaction on N is in the Takeuchi product (cf. Eq. 2.11), the
expression (2.22) is equal to(

m[0]⊗
R
πR

(
m[1]

(1)

)
n[0]πR

(
n[1]

(1)

)) ⊗
L

m[1]
(2)n[1]

(2)

=
(

m[0]πR
(
m[1]

(1)

)⊗
R

n[0]πR
(
n[1]

(1)

)) ⊗
L

m[1]
(2)n[1]

(2). (2.23)

Using the canonical isomorphism of right L-modules, U(M ⊗R N) � U(M) ⊗Lop

U(N), and comparing Eq. 2.23 with (2.19), we conclude that theHL-coactions on
U(M ⊗R N) and on U(M) ⊗Lop U(N) are equal to each other, hence U is strict
monoidal. Let M be a right HR-comodule with coaction m �→ m[0] ⊗R m[1]. Using
the forms (2.16) of the left L-action on the right HL-comodule U(M) and Eq. 2.18
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of the right L-action on the right HR-comodule M, the left L-action on U(M) is
computed to be

L⊗
k

M → M, l⊗
k

m �→ lm = mπR(tL(l )). (2.24)

Hence applying Eq. 2.20, we can relate the right R-action on V
(
U(M)

)
to the left

L-action on U(M), and applying (2.24), also to the right R-action on M. After these
steps we arrive at the right R-action on V

(
U(M)

)
,

M⊗
k

R → M, m⊗
k

r �→ πL(sR(r))m = mπR
(
tL

(
πL(sR(r))

)) = mr,

which is equal to the right R-action on M. The last equality of the computation
follows by the Hopf algebroid axiom (2.6).

The right HR-coaction on V
(
U(M)

)
is computed using (2.21), Eq. 2.18 and (2.19).

It maps m ∈ M to

πR

(
tL

(
πL

(
m[1]

(2)
(1)

)))
m[0]πR

(
m[1]

(1)

)⊗
R

m[1]
(2)

(2)
. (2.25)

Using the Hopf algebroid axiom (2.7) and the form (2.12) of the left R-action on M,
the expression (2.25) can be simplified to

m[0]πR

(
tL

(
πL

(
m[1]

(2)

))
m[1]

(1)
(1)

sR

(
πR

(
m[1]

(1)
(2)

)))
⊗
R

m[2] = m[0]⊗
R

m[1],

where in the last step the counit property of πR, the counit property of πL, and the
counitality of the HR-coaction on M have been used. This proves that V ◦ U is the
identity functor on MHR . The identity U ◦ V = MHL is proven in a symmetric way.

�


The content of Theorem 2.2 and [13, Theorem 2.6] can be summarised in the
following commutative diagram of functors.

MHL

V
��

����
��

��
��

�
MHR

U

��

����������

Lop MLop

����
��

��
��

�

v
��

RMR

����
��

��
��u

��

Mk

The unlabeled functors are forgetful functors and u and v are restrictions of scalars
functors along the algebra isomorphisms (2.10). The functors U , V, u, v and the
forgetful functors MHR → RMR and MHL → Lop MLop are strict monoidal.

In view of Theorem 2.2, we do not distinguish between HR- and HL-comodules
in the case of a Hopf algebroid H : we call them simply H -comodules. For the HR-
coaction on a right H -comodule M we use Sweedler type index notation ρ : m �→
m[0] ⊗R m[1] (with upper indices) and for the corresponding HL-coaction we write
λ : m �→ m[0] ⊗L m[1] (with lower indices), for m ∈ M. Also, by an H -colinear map
we mean an HR- or, equivalently, an HL-colinear map. Note that in particular a right
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HR-coaction, being HR-colinear (i.e. coassociative), is also HL-colinear, and a right
HL-coaction is HR-colinear.

By the strict monoidality of the functors U and V, a right HR-comodule algebra
A is also a right HL-comodule algebra, and vice versa. Hence we can call A an H -
comodule algebra. It is, in particular, an R-ring and an Lop-ring. By Eq. 2.18, the unit
of the Lop-ring A can be expressed in terms of the unit ηR : R → A of the R-ring as

Lop → A, l �→ ηR ◦ πR ◦ tL.

Using explicit forms (2.19) and (2.21) of functors U and V, it is easy to see that
the HR-coinvariants and the HL-coinvariants of an H -comodule are the same. In
particular, an algebra extension B ⊆ A is a right HR-extension if and only if it is
a right HL-extension. The notions of right HR-Galois extensions and of right HL-
Galois extensions are known to coincide, however, only if the antipode of the Hopf
algebroid H is bijective [8, Lemma 3.3].

By applying the same arguments to the Hopf algebroid H op
cop and using the

identification of right comodules for a bialgebroid and left comodules for its co-
opposite, one derives analogous results for left comodules.

With the help of the antipode, to any left H -comodule M with HR-coaction m �→
m[−1] ⊗R m[0], one associates a right H -comodule M with HL-coaction

M → M⊗
L

H, m �→ m[0]⊗
L

S
(
m[−1]) , (2.26)

where the L-module structures are defined via the algebra isomorphisms (2.10). If
the antipode is bijective, then this results in an anti-monoidal isomorphism HR M �
M(HR)cop → MHL .

3 H -Cleft Extensions

Recall that to an L-ring A (with multiplication μ : A⊗L A → A and unit map
η : L → A) and an L-coring H (with comultiplication γ : H → H⊗L H and counit
π : H → L), one associates a convolution algebra HomL,L(H, A), with multiplica-
tion j � j ′ : = μ ◦ ( j ⊗L j ′) ◦ γ and unit η ◦ π . The first aim of this section is to
develop a generalisation of the notion of a convolution algebra and, in particular,
of a convolution inverse suitable for Hopf algebroids.This will make it possible to
interpret in particular the antipode of a Hopf algebroid as the convolution inverse of
the identity map.

As explained in Section 2.2, a Hopf algebroid is built on a k-module with two
coring structures. Although we are primarily interested in Hopf algebroids, in general
there is no need to put any special restrictions on these coring structures. Dually, one
can consider a k-module with ring structures over two different rings. In this more
general situation the convolution algebra (which is simply a k-linear category with a
single object) can be generalised to a Morita context (i.e. a k-linear category with two
objects). The notion of a convolution inverse is introduced within this convolution
category.

Let L and R be k-algebras and let H and A be k-modules. Assume that A is an
L-ring (with multiplication μL : A⊗L A → A and unit ηL : L → A) and an R-ring
(with multiplication μR : A⊗R A → A and unit ηR : R → A). Assume that A is an
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L-R and R-L bimodule with respect to the corresponding module structures, μL is
R-R bilinear and μR is L-L bilinear, and that

μL ◦
(

A⊗
L
μR

)
= μR ◦

(
μL⊗

R
A

)
, μR ◦

(
A⊗

R
μL

)
= μL ◦

(
μR⊗

L
A

)
. (3.1)

Dually, assume that H is an L-coring (with comultiplication γL : H → H⊗L H and
counit πL : H → L) and an R-coring (with comultiplication γR : H → H⊗R H and
counit πR : H → R). Assume further that H is an L-R and R-L bimodule with
respect to the corresponding module structures, such that γL is R-R bilinear, γR is
L-L bilinear and

(
H⊗

L
γR

)
◦ γL =

(
γL⊗

R
H

)
◦ γR,

(
H⊗

R
γL

)
◦ γR =

(
γR⊗

L
H

)
◦ γL. (3.2)

To the above data one associates a k-linear convolution category Conv(H, A) as
follows. Conv(H, A) has two objects, R and L, and morphisms

Conv(H, A)(P, Q) = HomQ,P(H, A), P, Q ∈ {L, R},

with composition �, defined for all φ ∈ HomP,Q(H, A) and ψ ∈ HomQ,S(H, A),
P, Q, S ∈ {L, R},

φ � ψ = μQ ◦
(
φ⊗

Q
ψ

)
◦ γQ ∈ HomP,S(H, A).

Note that the identity morphism inConv(H, A)(P, P) is ηP ◦ πP. The conditions (3.1)
and (3.2) together with coassociativity of the coproducts in H and associativity of
products in A ensure that the composition � is an associative operation.

Definition 3.1 Let Conv(H, A) be a convolution category and let j be a morphism in
Conv(H, A). A retraction of j in Conv(H, A) is called a left convolution inverse of j
and a section of j in Conv(H, A) is called a right convolution inverse of j. If j is an
isomorphism in Conv(H, A), then it is said to be convolution invertible; its inverse is
called the convolution inverse of j and is denoted by jc.

Remark 3.2

(1) A k-linear category with a single object a can be identified with the k-algebra
End(a) of the morphisms in the category. In a similar manner, a k-linear
category with two objects a and b can be identified with a Morita context
as follows. The composition of morphisms makes k-modules Hom(a, b) and
Hom(b , a) bimodules for k-algebras End(a) and End(b). Furthermore, the
restriction of the composition to the map Hom(a, b)⊗

k
Hom(b, a) → End(b) is

an End(a)-balanced End(b)-bimodule map. That is, it is a composite of the
canonical epimorphism Hom(a, b) ⊗k Hom(b, a) → Hom(a, b) ⊗End(a) Hom
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(b, a), and an End(b)-bimodule map, Fa : Hom(a, b) ⊗End(a) Hom(b, a) →
End(b). Similarly, the map Hom(b, a)⊗

k
Hom(a, b) → End(a), obtained by re-

stricting the composition, factors through the canonical epimorphism and the
End(a)-bimodule map, Fb : Hom(b, a) ⊗End(b) Hom(a, b) → End(a). Using the
associativity of the composition of the morphisms in a category, one easily
checks that the 6-tuple (End(a), End(b), Hom(b , a), Hom(a, b), Fa, Fb ) is a
Morita context. Clearly, there is a category of this kind behind any Morita
context.
In particular, the convolution category Conv(H, A) can be identified
with a Morita context connecting convolution algebras HomL,L(H, A) and
HomR,R(H, A).

(2) In the case L = R, γL = γR, πL = πR, μR = μL, ηR = ηL, i.e. when there is one,
say, L-coring H and one, say, L-ring A, the convolution category Conv(H, A)

consists of a single object. The algebras in the corresponding Morita context
are both equal to the convolution algebra HomL,L(H, A), the bimodules are
the regular bimodules and the connecting homomorphisms are both equal to
the identity map of HomL,L(H, A). In a word: the Morita context reduces
to the convolution algebra. Thus an L-L bimodule map j is convolution
invertible in the sense of Definition 3.1 if and only if it is an invertible element
of the convolution algebra HomL,L(H, A).

(3) Conditions 3.1, imposed on the R-ring and L-ring structures of A, imply that the
underlying k-algebras are isomorphic via the map A � a �→ μR(a ⊗R ηL(1L)),
with the inverse a �→ μL(a ⊗L ηR(1R)).

(4) Conditions 3.2, imposed on the two coring structures of H, imply that theL-
coring H is a left (and right) extension of the R-coring H, while the R-coring
H is a right (and left) extension of the L-coring H, with the coactions given by
the coproducts, in the sense of [13].

We can now exemplify the contents of Definition 3.1 with the main case of interest,
whereby the coring structures on H constitute bialgebroids. Consider a right bialge-
broid HR = (H, R, sR, tR, γR, πR) and a left bialgebroid HL = (H, L, sL, tL, γL, πL)

on the same total algebra H, which satisfy conditions (2.6) and (2.7). In this situation,
compatibility conditions for coring structures on H in the definition of a convolution
category, including Eq. 3.2, are satisfied. For a target of convolution invertible maps
take an R⊗k L-ring A. In this case the unit maps ηR and ηL are obtained as the
restrictions of the unit map R⊗k L → A to R⊗k1L and to 1R⊗k L, respectively. There
is no need to distinguish between the products of A as an R-ring and as an L-ring,
so we write simply μA for the product in A, and it becomes clear from the context,
how this should be understood. Since we are dealing with a single product, it makes
sense to denote the action of μA on elements by juxtaposition. One immediately
checks that all the compatibility conditions between the L-, R-ring structures on A
in the definition of a convolution category are satisfied, in particular (3.1) follow by
the associativity of μA. All this means that, for two bialgebroids HL and HR on the
same total algebra H, such that Eqs. 2.6 and 2.7 hold, and an R⊗k L-ring A, there
is a convolution category Conv(H, A). We can now make explicit the contents of
Definition 3.1 in this case. This essentially means describing explicitly all the L-, and
R-actions involved.
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For left and right bialgebroids HL and HR on the same total algebra H, such that
Eqs. 2.6 and 2.7 hold, and an R⊗k L-ring A, a map j : H → A is an L-R bimodule
map provided

j (sL(l ) h sR(r)) = ηL(l ) j(h) ηR(r), for all l ∈ L, r ∈ R, h ∈ H. (3.3)

Similarly, j̃ : H → A is an R-L bimodule map if

j̃ (tL(l ) h tR(r)) = ηR(r) j̃(h)ηL(l ), for all l ∈ L, r ∈ R, h ∈ H. (3.4)

A right convolution inverse of j ∈ HomL,R(H, A) is a map j̃ ∈ HomR,L(H, A) such
that

μA ◦
(

j⊗
R

j̃
)

◦ γR = ηL ◦ πL. (3.5)

A left convolution inverse of j is a map ĵ ∈ HomR,L(H, A) such that

μA ◦
(

ĵ⊗
L

j
)

◦ γL = ηR ◦ πR. (3.6)

Obviously, by the associativity of the composition in Conv(H, A), if a map j : H →
A satisfying Eq. 3.3 has both left and right convolution inverses, then they coincide
and hence the convolution inverse of an L-R bimodule map j is unique.

Example 3.3 Let HL = (H, L, sL, tL, γL, πL) be a left bialgebroid and HR =
(H, R, sR, tR, γR, πR) be a right bialgebroid, on the same total algebra H. Assume
that the compatibility conditions (2.6) and (2.7) hold. Consider the R ⊗k L-ring struc-
ture on H, defined by the unit map R ⊗k L → H, r ⊗k l �→ sR(r)sL(l ) ≡ sL(l )sR(r).
It gives rise to a convolution category Conv(H, H). In light of Eq. 3.3, the identity
map of H is an element of Conv(H, H)(R, L). By Eqs. 3.4, 3.5 and 3.6, the identity
map possesses a convolution inverse S if and only if the first equality in Eqs. 2.8 and
2.9 hold true. Hence it follows by Remark 2.1 that (HL,HR, S) is a Hopf algebroid
if and only if S is convolution inverse of the identity map in Conv(H, H) (in the same
way as the antipode of a Hopf algebra H over a ring k is the inverse of the identity
map in the convolution algebra Endk(H)).

Example 3.4 Example 3.3 can be extended as follows. Take a Hopf algebroid H =
(HL,HR, S) and a left HL-module algebra B. (The role of B is played by the base
algebra L in Example 3.3.) The smash product algebra A : = B � H is defined as
the k-module B⊗L H with product

(b � h)
(
b ′

� h′) : = b
(
h(1) · b ′)

� h(2)h′,

(cf. [23, Section 2.3]). Here, the left L-module structure on H is given by the
multiplication by sL(l ) on the left. A is an R-ring with ηR(r) = 1B � sR(r) (and hence
an Lop-ring with unit l �→ 1B � tL(l )) and an L-ring with unit ηL(l ) = 1B � sL(l ).
Since the elements ηR(r) and ηL(l ) commute in A, for any r ∈ R and l ∈ L, A is an
R ⊗k L-ring.

The L-R bimodule map j : H → A, h �→ 1B � h is convolution invertible with the
inverse jc : H → A, h �→ 1B � S(h) (cf. Eq. 2.9).

The notion of a convolution inverse, once established, plays the fundamental role
in the definition of a cleft extension of a Hopf algebroid, which we describe presently.
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Let H be a Hopf algebroid and A a right H -comodule algebra. Then A is, in
particular, an R-ring. The unit of this R-ring, the algebra homomorphism R → A,
is denoted by ηR. The coinciding k-subalgebra of HR- and of HL-coinvariants in A
is denoted by B.

Assume that A is also an L-ring, with unit ηL : L → A, and B is an L-subring of
A. The latter implies that both the HR-coaction ρ A, and the HL-coaction λA are left
L-linear. Since ρ A is R-R bilinear (cf. Eq. 2.13),

ρ A (bηR(r)) = b⊗
R

sR(r) = ρ A (ηR(r)b) , for all r ∈ R, b ∈ B.

Thus it follows that B is in the commutant of the image of ηR.
Recall from Section 2.3 that any right H -colinear map j : H → A is right R-linear

in the sense of Eq. 3.3 and left R-linear in the sense that

j(sR(r)h) = ηR(r) j(h), (3.7)

for all r ∈ R and h ∈ H (cf. Eq. 2.12).

Definition 3.5 Let H be a Hopf algebroid and A a right H -comodule algebra.
Denote by ηR(r) = r · 1A = 1A · r the unit map of the corresponding R-ring structure
of A. Let B be the subalgebra of H -coinvariants in A. The extension B ⊆ A is called
H -cleft if

(a) A is an L-ring (with unit ηL : L → A) and B is an L-subring of A;
(b) There exists a convolution invertible left L-linear right H -colinear morphism

j : H → A.

A map j, satisfying condition (b), is called a cleaving map.

Condition (b) in Definition 3.5 means, in particular, that a cleaving map is L-R
bilinear in the sense of Eq. 3.3.

Example 3.6 Consider a smash product algebra A = B � H of Example 3.4. Sim-
ilarly to [8, Example 3.7], A is a right H -comodule algebra with HR-coaction
B ⊗L γR. The subalgebra of H -coinvariants in A is B � 1H . It is an L-subring
of A. Since the convolution invertible map j : H → A, h �→ 1B � h in Example 3.4
is right H -colinear, B ⊆ A is an H -cleft extension.

In particular, let N ⊆ M be a depth 2 (or D2, for short) extension of algebras
[23, Definition 3.1]. It has been proven in [23, Theorem 4.1] that the algebra
EndN,N(M) of N-N bilinear endomorphisms of M is a left bialgebroid and M is its
left module algebra. By [23, Corollary 4.5], the algebra End−N(M) of right N-linear
endomorphisms of M, with multiplication given by composition, is isomorphic to the
smash product algebra M � EndN,N(M).

If the D2 extension N ⊆ M is also a Frobenius extension, then EndN,N(M) is
a Hopf algebroid. Hence we can conclude that for any D2 Frobenius extension
N ⊆ M, the extension M ⊆ End−N(M) (where the inclusion is given by the left
multiplication) is a cleft extension of the Hopf algebroid EndN,N(M).
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Lemma 3.7 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension, with a
cleaving map j. Then

jc(tR(r) h) = jc(h) ηR(r), for all r ∈ R, h ∈ H. (3.8)

Proof Use the counit property of πL (in the first equality), right L-linearity of jc, i.e.
Eq. 3.4 (in the second one), the fact that, since B is an L-subring of A, the images
of ηL and of ηR commute in A (in the third one), the assumption that jc is right
convolution inverse of j, i.e. Eq. 3.5 (in the fourth one), the left R linearity of j,
i.e. Eq. 3.7 (in the fifth one), axiom (2.7) (in the sixth one), the identity γL(sR(r)h) =
h(1) ⊗L sR(r)h(2), for h ∈ H and r ∈ R, and the assumption that jc is a left convolution
inverse of j, i.e. Eq. 3.6 (in the seventh one), the left R-linearity of jc, i.e. Eq. 3.4 (in
the penultimate one) and the counit property of πR (in the last one) to compute

jc(h)ηR(r) = jc
(
tL

(
πL

(
h(2)

))
h(1)

)
ηR(r) = jc

(
h(1)

)
ηL

(
πL

(
h(2)

))
ηR(r)

= jc
(
h(1)

)
ηR(r)ηL

(
πL

(
h(2)

)) = jc
(
h(1)

)
ηR(r) j

(
h(2)

(1)
)

jc
(

h(2)
(2)

)
= jc

(
h(1)

)
j
(

sR(r)h(2)
(1)

)
jc

(
h(2)

(2)
)

= jc
(
h(1)

(1)

)
j
(
sR(r)h(1)

(2)

)
jc

(
h(2)

)
= ηR

(
πR(sR(r)h(1))

)
jc

(
h(2)

) = jc
(
h(2)tR

(
πR

(
sR(r)h(1)

))) = jc (tR(r)h) ,

for h ∈ H and r ∈ R. �


In the case of a Hopf algebra cleft extension, the convolution inverse of a
cleaving map is a right colinear map, where the right coaction in the Hopf algebra
is given by the coproduct followed by the antipode and a flip. In the case of a Hopf
algebroid there are two coactions, one for each constituent bialgebroid, related by
the isomorphism functors in Theorem 2.2. The following lemma shows the behaviour
of the convolution inverse of a cleaving map with respect to these right coactions.

Lemma 3.8 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension with a
cleaving map j. Then, for all h ∈ H,

ρ A (
jc(h)

) = jc (
h(2)

)⊗
R

S
(
h(1)

)
, (3.9)

and, equivalently,

λA (
jc(h)

) = jc (
h(2)

)⊗
L

S
(
h(1)

)
. (3.10)

Proof Combining the module map property of the antipode, S(tL(l )h) = S(h)sL(l ),
for all l ∈ L, h ∈ H, with the Hopf algebroid axiom sL = tR ◦ πR ◦ sL and using
Eq. 3.8, one shows that the expression on the right hand side of Eq. 3.9 belongs to
the appropriate R-module tensor product. Next using Eq. 3.4 one finds that it is an
element of the Takeuchi product A ×R H, defined in Eq. 2.11, i.e.

ηR(r) jc
(
h(2)

) ⊗
R

S
(
h(1)

) = jc
(
h(2)

) ⊗
R

tR(r)S
(
h(1)

)
,

for all r ∈ R, h ∈ H. A ×R H is an R ⊗k L-ring with factorwise multiplication and
unit maps

η×
R : R → A ×R H, r �→ 1A⊗

R
sR(r) and η×

L : L → A ×R H l �→ ηL(l )⊗
R

1H,
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such that ρ A : A → A ×R H is a homomorphism of R ⊗k L-rings. Furthermore, ρ A ◦
jc : H → A ×R H is the convolution inverse of ρ A ◦ j. We claim that the map

	̃ : H → A ×R H, h �→ jc
(
h(2)

) ⊗
R

S
(
h(1)

)
,

is a right convolution inverse of ρ A ◦ j.
Take any h ∈ H, l ∈ L and r ∈ R. By the Hopf algebroid identity γL(tL(l )htR(r)) =

h(1)tR(r) ⊗L tL(l )h(2), the module map property of the antipode, S(htR(r)) =
sR(r)S(h), and the right L-linearity of jc it follows that

	̃ (tL(l )htR(r)) = jc
(
tL(l )h(2)

)⊗
R

S
(
h(1)tR(r)

)
= jc

(
h(2)

)
ηL(l )⊗

R
sR(r)S

(
h(1)

) = η×
R(r)	̃(h)η×

L(l ),

that is, 	̃ satisfies Eq. 3.4. Using the right HR-colinearity of j and the coassociativity
of γR, one computes,[

μA×R H ◦
(
ρ A◦ j ⊗

R
	̃

)
◦ γR

]
(h) = j

(
h(1)

)
jc

(
h(2)(2)

(2)

)
⊗
R

h(2)(1)
S

(
h(2)(2)

(1)

)
= j

(
h(1)

)
jc

(
h(2)

(2)

) ⊗
R

h(2)
(1)

(1)
S

(
h(2)

(1)
(2)

)
= j

(
h(1)

)
jc

(
h(2)

(2)

) ⊗
R

sL
(
πL

(
h(2)

(1)

))
= j

(
h(1)

)
jc

(
h(2)

(2)

)
ηR

(
πR

(
sL

(
πL

(
h(2)

(1)

)))) ⊗
R

1H

= j
(
h(1)

)
jc

(
sL

(
πL

(
h(2)

(1)

))
h(2)

(2)

)⊗
R

1H

= j
(
h(1)

)
jc

(
h(2)

) ⊗
R

1H =ηL (πL(h))⊗
R

1H

= [
η×

L ◦ πL
]
(h),

where the second equality follows by the Hopf algebroid axiom (2.7), the third one by
the antipode axiom (2.9), the fourth one by the axiom sL = tR ◦ πR ◦ sL in Eq. 2.6, the
fifth one by Eq. 3.8 and the penultimate one by Eq. 3.5. This proves that 	̃ satisfies
Eq. 3.5, hence 	̃ is a right convolution inverse of ρ A ◦ j. In view of the uniqueness of
a convolution inverse this implies Eq. 3.9.

By Theorem 2.2, the right HR-colinearity of jc (i.e. property (3.9)) is equivalent
to its HL-colinearity (i.e. property (3.10)). �


Remark 3.9 Recall from Section 2.4 that if the antipode of a Hopf algebroid H is
bijective, then there exists an anti-monoidal isomorphism between the categories
of right H -comodules and right Hcop-comodules. Hence in this case, in light of
the explicit form (2.26) of the relation between the HL and (HR)cop-coactions,
an algebra extension B ⊆ A is a right H -extension if and only if Bop ⊆ Aop is
a right Hcop-extension. Furthermore, B ⊆ A is an H -cleft extension if and only
if Bop ⊆ Aop is an Hcop-cleft extension. Indeed, by Lemma 3.8, if j : H → A is a
cleaving map for the H -cleft extension B ⊆ A, then its convolution inverse jc is a
cleaving map for the Hcop-cleft extension Bop ⊆ Aop.

Our next aim is to prove that, in parallel to the Hopf algebra case, an H -cleft
extension can be equivalently characterised as a Galois extension with the normal
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basis property. This is the main result of this section. The main difference with the
Hopf algebra case is that a cleft H -extension is a Galois extension with respect to
the right bialgebroid HR but it has a normal basis property with respect to the left
bialgebroid HL. In preparation for this we state the following two lemmas.

Lemma 3.10 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension with a
cleaving map j. Then, for all a ∈ A, a[0] jc(a[1]) ∈ B.

Proof This is checked by applying ρ A to a[0] jc(a[1]), noting that ρ A is an algebra map
and jc satisfies Eq. 3.9, and then repeating the same steps as in the verification that
	̃ satisfies Eq. 3.5 in the proof of Lemma 3.8. �


Lemma 3.11 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension.Then the
inclusion B ⊆ A splits in the category of left B-modules. If, in addition, the antipode of
H is bijective, then the inclusion B ⊆ A splits also in the category of right B-modules.

Proof A left B-linear splitting of the inclusion B → A is given by the map

A → B, a �→ a[0] jc
(
a[1]) j (1H) , (3.11)

where j is a cleaving map. The element a[0] jc(a[1]) belongs to B for any a ∈ A by
Lemma 3.10 and j(1H) is an element of B by the colinearity of j and the unitality
of ρ A. The left B-linearity of the map (3.11) follows by the left B-linearity of ρ A.
Finally, for all b ∈ B,

b [0] jc(b [1]) j(1H) = b jc(1H) j(1H) = b ηR
(
πR(1H)

) = b ,

where the penultimate equality follows by the fact that jc is the convolution inverse
of j and the unitality of γL. If the antipode is bijective, then, by Remark 3.9, the map

A → B, a �→ jc (1H) j
(
S−1

(
a[1]

))
a[0],

is a right B-linear section of the inclusion B ⊆ A. �


Notice that B ⊗L H is a left B-module via the regular B-module structure of the
first tensor factor, and – since the coproducts γR and γL are left L-linear – also a right
H -comodule via the regular H - comodule structure of the second tensor factor.

Theorem 3.12 Let H be a Hopf algebroid and B ⊆ A a right H -extension. Then the
following statements are equivalent:

(1) B ⊆ A is an H -cleft extension.
(2) (a) The extension B ⊆ A is HR-Galois;

(b) A � B ⊗L H as left B-modules and right H -comodules.
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Proof

(1) ⇒ (2)(a) Suppose that B ⊆ A is a cleft H -extension with a cleaving map j and
consider the map


 : A⊗
R

H → A⊗
B

A, a⊗
R

h �→ ajc
(
h(1)

) ⊗
B

j
(
h(2)

)
.

By Eqs. 3.4 and 3.3, jc(h(1))⊗L j(h(2)) is a well defined element of
A⊗L A. Since B is an L-ring, 
 is a well defined map. We claim that

 is the inverse of the HR-canonical map (2.15). Take any a ⊗R h ∈
A ⊗R H and compute

canR

(



(
a⊗

R
h
))

= ajc
(
h(1)

)
j
(
h(2)

)[0] ⊗
R

j
(
h(2)

)[1]

= ajc
(
h(1)

)
j
(

h(2)
(1)

)
⊗
R

h(2)
(2)

= ajc
(
h(1)

(1)

)
j
(
h(1)

(2)

) ⊗
R

h(2)

= aηR
(
πR

(
h(1)

))⊗
R

h(2)

= a⊗
R

h(2)tR
(
πR

(
h(1)

)) = a⊗
R

h,

where the second equality follows by the right HR-colinearity of j, the
third one by Eq. 2.7, and the fourth one by Eq. 3.6. On the other hand,
for all a ⊗B a′ ∈ A ⊗B A,



(

canR

(
a⊗

B
a′

))
= aa′[0] jc

(
a′[1]

(1)

) ⊗
B

j
(
a′[1]

(2)

)
= aa′[0]

[0] jc
(

a′[0]
[1])⊗

B
j
(
a′[1]

)
= a⊗

B
a′[0]

[0] jc
(

a′[0]
[1]) j

(
a′[1]

)
= a⊗

B
a′[0] jc

(
a′[1]

(1)

)
j(a′[1]

(2))

= a⊗
B

a′[0]
ηR

(
πR(a′[1]

)
)

= a⊗
B

a′,

where the second and the fourth equalities follow by the right HL-
colinearity of ρ A, the third one by Lemma 3.10, the fifth one by Eq. 3.6
and the last one by the counitality of ρ A. Thus 
 is the inverse of the
canonical map, as claimed.

(1) ⇒ (2)(b) Given a cleaving map j, consider the left B-linear map

κ : A → B⊗
L

H, a �→ a[0][0] jc(a[0][1])⊗
L

a[1] = a[0] jc
(
a[1]

(1)

)⊗
L

a[1]
(2).

(3.12)

The equality of two forms of κ follows by the right HL-colinearity
of ρ A. Furthermore, Lemma 3.10 implies that the image of κ is
in B ⊗L H. In the opposite direction, define the left B-linear map
ν : B ⊗L H → A, b ⊗L h �→ b j(h), which is right H -colinear by the
right colinearity of a cleaving map and the left B-linearity of the
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coaction. The map ν is well defined in view of Eq. 3.3. For all b ⊗L h ∈
B ⊗L H,

κ
(
ν

(
b⊗

L
h
))

= b j(h)[0][0] jc
(

j(h)[0][1]
)

⊗
L

j(h)[1]

= b j
(

h(1)
(1)

)
jc

(
h(1)

(2)
)

⊗
L

h(2)

= bηL
(
πL

(
h(1)

))⊗
L

h(2) = b⊗
L

sL
(
πL

(
h(1)

))
h(2) = b⊗

L
h,

where the second equality follows by the H -colinearity of j, and the
third one by Eq. 3.5. On the other hand, Eq. 3.6 and the counitality of
ρ A imply, for all a ∈ A,

ν (κ(a)) = a[0] jc
(
a[1]

(1)

)
j
(
a[1]

(2)

) = a[0]ηR
(
πR

(
a[1])) = a.

This means that ν is the left B-linear right H -colinear inverse of κ ,
hence κ is the required isomorphism.

(2) ⇒ (1) Suppose that the canonical map (2.15) is bijective and write τ =
can−1

R (1A⊗
R
−) : H → A ⊗B A for the translation map. In explicit

calculations we use a Sweedler type notation, for all h ∈ H,τ(h) =
h{1} ⊗B h{2} (summation understood). Let κ : A → B ⊗L H be an
isomorphism of left B-modules and of right H -comodules and define
maps H → A

j := κ−1
(

1B⊗
L
−

)
, j̃ :=

[
A⊗

B

(
B⊗

L
πL

)
◦ κ

]
◦ τ.

We claim that j is a cleaving map and j̃ is its convolution inverse.
First note that since κ−1 is left B-linear, it is in particular left L-linear,
hence also j is left L-linear. Since κ−1 is also right H -colinear, so
is j. Furthermore, the canonical map is left A-linear, hence also left
R-linear. Therefore, its inverse is left R-linear, implying that, for all
h ∈ H and r ∈ R, τ(h tR(r)) = ηR(r)h{1} ⊗B h{2}. With this property of
the translation map at hand, one immediately finds that, for all h ∈ H
and r ∈ R, j̃(htR(r)) = ηR(r) j̃(h). On the other hand, by Eq. 2.13, for
all a, a′ ∈ A and r ∈ R, canR(a ⊗B ηR(r)a′) = aa′[0] ⊗R sR(r)a′[1]. This
implies that τ(sR(r) h) = h{1} ⊗B ηR(r)h{2}. Thus, in view of the Hopf
algebroid axiom tL = sR ◦ πR ◦ tL, one finds, for all h ∈ H and l ∈ L,

j̃ (tL(l ) h) =
[

A⊗
B

(
B⊗

L
πL

)
◦ κ

]
(τ (tL(l )h))

=
[

A⊗
B

(
B⊗

L
πL

)
◦ κ

] (
h{1}⊗

B
ηR (πR (tL(l ))) h{2}

)
.

Since κ is right HR-colinear, it is in particular left R-linear, where the
left R-module structure of B ⊗L H is given by r · (b ⊗L h) = b ⊗L

sR(r)h, (cf. Eq. 2.12). By the right L-linearity of πL and the axiom
tL = sR ◦ πR◦ tL, one therefore concludes that j̃(tL(l ) h) = j̃(h)ηL(l ),
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as required. This proves that j̃ satisfies Eq. 3.4. It remains to check
Eqs. 3.5 and 3.6:

μA ◦
(

j⊗
R

j̃
)

◦ γR = μA ◦
{

j⊗
R

[
A⊗

B

(
B⊗

L
πL

)
◦ κ

]
◦ τ

}
◦ γR

=
[

A⊗
B

(
B⊗

L
πL

)
◦ κ

]
◦ can−1

R ◦
(

j⊗
R

H
)

◦ γR

=
[

A⊗
B

(
B⊗

L
πL

)
◦ κ

]
◦ can−1

R ◦ ρ A ◦ j

=
[

A⊗
B

(
B⊗

L
πL

)
◦ κ

]
◦

(
1A⊗

B
j(−)

)
= ηL ◦ πL,

where the second equality follows by the left A-linearity of the
canonical map canR, hence of can−1

R , the third one by the right HR-
colinearity of j and the fourth one by the explicit form (2.15) of canR.
Furthermore,

μA ◦
(

j̃⊗
L

j
)

◦ γL = μA ◦
{[

A⊗
B

(
B⊗

L
πL

)
◦ κ

]
◦ τ⊗

L
j
}

◦ γL

= μA ◦
[

A⊗
B

(
B⊗

L
πL

)
◦ κ⊗

L
j
]

◦
(

A⊗
B
λA

)
◦ τ

= μA ◦
(

A⊗
B

B⊗
L
πL⊗

L
j
)

◦
(

A⊗
B

B⊗
L
γL

)
◦

(
A⊗

B
κ
)

◦ τ

= μA ◦
[

A⊗
B

(
B⊗

L
j
)

◦ κ
]

◦ τ = μA ◦ τ = ηR ◦ πR,

where the second equality follows by the HL-colinearity of τ , the
third one by the HL-colinearity of κ , the penultimate one by the left
B-linearity of κ and the last one by (A ⊗R πR) ◦ canR = μA and the
definition of the translation map τ . �


By Remark 3.9, the following ‘left handed version’ of Theorem 3.12 (1) ⇒ (2)(b)
can be formulated.

Corollary 3.13 Let H be a Hopf algebroid with a bijective antipode and B ⊆ A an
H -cleft extension with a cleaving map j. Then the right B-linear left H -colinear map

A→ H⊗
L

B, a �→ S−1
(
a[1]

)
(1)

⊗
L

j
(

S−1
(
a[1]

)
(2)

)
a[0] ≡ S−1

(
a[1])⊗

L
j
(
S−1

(
a[0][1]

))
a[0][0],

(3.13)

is an isomorphism.

The following is an immediate consequence of Theorem 3.12.

Corollary 3.14 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension. If H is
a projective left L-module, then A is a faithfully flat left B-module.

Proof By Theorem 3.12 (1) ⇒ (2)(b), A � B ⊗L H as left B-modules. Since H is
projective as a left L-module, A is projective as a left B-module. Together with
Lemma 3.11 this implies the claim. �
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If the antipode of a Hopf algebroid H is bijective, then, by [8, Lemma 3.3], an
extension B ⊆ A is a right HR-Galois extension if and only if it is a right HL-Galois
extension. By [8, Lemma 4.1], this is further equivalent to the left HR-Galois and
also to the left HL-Galois property of the extension. Hence repeating the steps in
the proof of [9, Proposition 4.1], we conclude that Lemma 3.11, Theorem 3.12 and
Remark 3.9 imply the following

Corollary 3.15 Let H be a Hopf algebroid with a bijective antipode and B ⊆ A an
H -cleft extension. Then A is an R-relative injective right and left HR-comodule, and
an L-relative injective left and right HL-comodule.

4 Crossed Products with Hopf Algebroids

One of the main results in the theory of cleft extensions of Hopf algebras is the
equivalent characterisation of such extensions as crossed product algebras with an
invertible cocycle (cf. [20, Theorem 11] [6, Theorem 1.18]). The aim of this section is
to derive such a characterisation for Hopf algebroid cleft extensions. First we need
to develop a suitable theory of crossed products, generalising that of [20] and [5]. We
start by extending the notion of a measuring [26, p. 139].

Definition 4.1 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring with
unit map ι : L → B. L measures B if there exits a k-linear map, called a measuring,
H ⊗k B → B, h ⊗k b �→ h · b such that, for all h ∈ H, l ∈ L, b , b ′ ∈ B,

(a) h · 1B = ι
(
π(h)

)
;

(b)
(
t(l )h

) · b = (h · b)ι(l ) and
(
s(l )h

) · b = ι(l )(h · b);
(c) h · (b b ′) = (h(1) · b)(h(2) · b ′).

Note that condition (b) means simply that a measuring is an L-L bimodule map,
where H is viewed as an L-L bimodule via the left multiplication by s and t. A left
L -module algebra B is measured by L with a measuring provided by the left H-
multiplication in B.

Definition 4.2 Let L = (H, L, s, t, γ, π) be a left bialgebroid and ι : L → B an L-
ring, measured by L . A B-valued 2-cocycle σ on L is a k-linear map H ⊗Lop H → B
(where the right and left Lop-module structures on H are given by right and left
multiplication by t(l ), respectively) satisfying

(a) σ(s(l )h, k) = ι(l )σ (h, k) and σ(t(l )h, k) = σ(h, k)ι(l );
(b) (h(1) · ι(l )) σ (h(2), k) = σ(h, s(l )k);
(c) σ(1, h) = ι

(
π(h)

) = σ(h, 1);
(d) [h(1) · σ(k(1), m(1))] σ(h(2), k(2)m(2)) = σ(h(1), k(1)) σ (h(2)k(2), m),

for all h, k, m ∈ H, l ∈ L.
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An L -measured L-ring B is called a σ -twisted left L -module if a 2-cocycle σ

satisfies

(e) 1H · b = b ,
(f) [h(1) · (k(1) · b)] σ(h(2), k(2)) = σ(h(1), k(1)) (h(2)k(2) · b),

for all h, k ∈ H, b ∈ B.

Conditions (c) in Definition 4.2 determine the normalisation of σ and (d) is a
cocycle condition. These have the same form as corresponding conditions in the
bialgebra case. Conditions (a) determine the module map properties of σ while (b)
ensures that σ is properly L-balanced; both are needed for (d) (and (f)) to make
sense. Condition (e) sates that a measuring is a weak action (cf. [5, Definition 1.1]).

Similarly to the bialgebra case, the map σ(h, h′) := ι
(
π(h h′)

)
is a (trivial) cocycle

for an L -measured L-ring B with unit ι, provided that the measuring restricts to
the action on L, h · ι(l ) = ι

(
π(hs(l ))

)
, for h ∈ H and l ∈ L. A twisted left L -module

corresponding to this trivial cocycle σ is simply a left L -module algebra.

Proposition 4.3 Let L = (H, L, s, t, γ, π) be a left bialgebroid and ι : L → B an L-
ring, measured by L . Let σ : H ⊗Lop H → B be a map, satisfying properties (a)
and (b) in Definition 4.2. Consider the k-module B ⊗L H, where the left L-module
structure on H is given by multiplication by s(l ) on the left. B ⊗L H is an associative
algebra with unit 1B ⊗L 1H and product

(
B⊗

L
H

)
⊗

k

(
B⊗

L
H

)
→

(
B⊗

L
H

)
,(

b⊗
L

h
)

⊗
k

(
b ′⊗

L
h′

)
�→ b

(
h(1) ·b ′) σ

(
h(2), h′

(1)

)⊗
L

h(3)h′
(2), (4.1)

if and only if σ is a cocycle and B is a σ -twisted L -module. The resulting associative
algebra is called a crossed product of B with L and is denoted by B#σL .

Note that the smash product algebra in Example 3.4 is a crossed product with a
trivial cocycle.

Proof The element 1B#1H is a left unit if and only if

b #h = (1H · b) σ
(
1H, h(1)

)
#h(2), for all b #h ∈ B⊗

L
H. (4.2)

If σ(1H, h) = ι
(
π(h)

)
and 1H · b = b , then Eq. 4.2 obviously holds. On the other

hand, applying B ⊗L π to Eq. 4.2 we arrive at the identity

b ι (π(h)) = (1H · b) σ (1H, h) , for all b ∈ B, h ∈ H. (4.3)

Setting b = 1B in Eq. 4.3 we obtain σ(1H, h) = ι
(
π(h)

)
, and setting h = 1H we get

1H · b = b . Analogously, the condition that 1B#1H is a right unit is equivalent to
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the condition σ(h, 1H) = ι
(
π(h)

)
, for all h ∈ H. The associative law for product (4.1)

reads, for all h, k, m ∈ H, a, b , c ∈ B,

a
(
h(1) · b

)
σ

(
h(2), k(1)

) (
h(3)k(2) · c

)
σ

(
h(4)k(3), m(1)

)
#h(5)k(4)m(2)

= a
(
h(1) · b

) [
h(2) · (

k(1) · c
)] [

h(3) · σ
(
k(2), m(1)

)]
σ(h(4), k(3)m(2))#h(5)k(4)m(3).

(4.4)

If σ is a cocycle and B is a σ -twisted module, then Eq. 4.4 obviously holds. Note that,
for all h, k ∈ H,

σ
(
h(1), k(1)

)
ι
(
π(h(2)k(2))

) = σ(h, k). (4.5)

Applying B ⊗L π to Eq. 4.4, using Eq. 4.5 and setting a = 1B = b , we arrive at

σ
(
h(1), k(1)

) (
h(2)k(2) ·c

)
σ

(
h(3)k(3),m

)=[
h(1) ·

(
k(1) ·c

)
σ

(
k(2),m(1)

)]
σ(h(2), k(3)m(2)).

(4.6)

Setting c = 1B in Eq. 4.6 we derive the cocycle condition Definition 4.2 (d), while
setting m = 1H in Eq. 4.6 we obtain Definition 4.2 (f). �


Theorem 4.4 Let L = (H, L, s, t, γ, π) be a left bialgebroid and ι : L → B an L-ring.
View A = B ⊗L H as a left B-module and a right L -comodule in canonical ways (i.e.
the left B-multiplication is given by product in B and the right L -coaction is B ⊗L γ ,
with the L-actions on H given by the left multiplication by s and t). ThenA is a right
L -comodule algebra with unit 1B ⊗L 1H and a left B-linear product if and only if A
is a crossed product algebra as in Proposition 4.3.

Proof The definition of the product in B#σL immediately implies that B#σL is a
right L -comodule algebra with a left B-linear multiplication. Conversely, suppose
that A has the required L -comodule algebra structure. Then, in particular, A is an
Lop-ring via Lop → A, l �→ 1B ⊗L t(l ). We use the hom-tensor relation

Hom−L
B−

((
B⊗

L
H

)
⊗
Lop

(
B⊗

L
H

)
, B⊗

L
H

)
� HomL,L

(
H⊗

Lop

(
B⊗

L
H

)
, B

)
(4.7)

and the L -colinearity of the product in A, to view the multiplication in A as an L-L
bilinear map H ⊗Lop (B ⊗L H) → B. For any b ∈ B and h ∈ H, define

h · b :=
(

B⊗
L
π

) ((
1B⊗

L
h
) (

b⊗
L

1H

))
. (4.8)

By (4.7), the above definition implies that, conversely,(
1B⊗

L
h
) (

b⊗
L

1H

)
= h(1) ·b ⊗

L
h(2). (4.9)

Now, the assumption that 1B ⊗L 1H is the unit in A implies condition (a) in
Definition 4.1. The conditions (b) follow by the right L-linearity and the left B-
linearity of the product respectively (remember that every right L -comodule map
is necessarily right L-linear). The condition (c) follows by the associativity of the
product. Thus B is measured by L with measuring (4.8).



454 Appl Categor Struct (2006) 14:431–469

Next, for all h, h′ ∈ H, define

σ(h, h′) :=
(

B⊗
L
π

) ((
1B⊗

L
h
) (

1B⊗
L

h′
))

. (4.10)

Then, by (4.7),

(
1B⊗

L
h
) (

1B⊗
L

h′
)

= σ
(
h(1), h′

(1)

)⊗
L

h(2)h′
(2). (4.11)

Since A is an Lop-ring, Eq. 4.10 defines a k-linear map σ : H ⊗Lop H → B. The
conditions (a) in Definition 4.2 follow by the left B-linearity and the right L-linearity
of the product respectively. To check condition (b), take any h, k ∈ H and l ∈ L, and
compute

(
h(1) · ι(l )

)
σ

(
h(2), k

) =
(

B⊗
L
π

) [(
1B⊗

L
h
) (

ι(l )⊗
L

1H

) (
1B⊗

L
k
)]

=
(

B⊗
L
π

) [(
1B⊗

L
h
) (

1B⊗
L

s(l )k
)]

= σ (h, s(l )k) ,

where the first and last equalities follow by the definitions of the measuring and σ

and Eqs. 4.9, 4.11, and the left B-linearity of the product. Finally, for all b , b ′ ∈ B,
h, h′ ∈ H, (

b⊗
L

h
) (

b ′⊗
L

h′
)

= b
[(

1B⊗
L

h
) (

b ′⊗
L

1H

) (
1B⊗

L
h′

)]
= b

(
h(1) · b ′) [(

1B⊗
L

h(2)

) (
1B⊗

L
h′

)]
= b

(
h(1) · b ′) σ

(
h(2), h′

(1)

) ⊗
L

h(3)h′
(2),

where we have used the left B-linearity of the product and Eqs. 4.9 and 4.11.
Proposition 4.3 yields the assertion. �


Corollary 4.5 Given a crossed product B#σL and a convolution invertible map χ ∈
HomL,L (H, B) such that χ(1H) = 1B, define, for all h, k ∈ H and b ∈ B,

h ·χ b := χ
(
h(1)

) (
h(2) · b

)
χ c (

h(3)

)
, (4.12)

σχ(h, k) := χ
(
h(1)

) (
h(2) · χ(k(1))

)
σ

(
h(3), k(2)

)
χ c (

h(4)k(3)

)
. (4.13)

Then B is a σχ -twisted L -module with measuring (4.12). The corresponding crossed
product B#σχ L is called a gauge transform of B#σL .

Proof Any convolution invertible map χ ∈ HomL,L (H, B) defines a left B-module
right L -comodule automorphism 
 of B ⊗L H, by



(

b⊗
L

h
)

= bχ
(
h(1)

) ⊗
L

h(2), 
−1
(

b⊗
L

h
)

= bχ c (
h(1)

) ⊗
L

h(2). (4.14)

If χ(1H) = 1B, then 
(1H ⊗L 1B) = 1H ⊗L 1B. We can use this isomorphism to
induce a new right L -comodule algebra structure on B ⊗L H(with unit 1H ⊗L 1B)
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from that of B#σL . In view of Theorem 4.4, this necessarily is a crossed product with
the measuring and cocycle given by Eqs. 4.8 and 4.10, i.e., for all b ∈ B and h, k ∈ H,

h ·χ b =
(

B⊗
L
π

) (

−1

(



(
1B⊗

L
h
)



(

b⊗
L

1H

)))
,

σ χ (h, k) =
(

B⊗
L
π

) (

−1

(

(1B⊗

L
h)
(1B⊗

L
k)

))
,

where the product is computed in B#σL . One easily checks that these have the form
stated in Eqs. 4.12 and 4.13. �


Definition 4.6 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring.
Crossed products B#σL and B#σ̄L are said to be equivalent if there exists a left
B-module isomorphism of right L -comodule algebras B#σ̄L → B#σL .

Theorem 4.7 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring.
Crossed products B#σL and B#σ̄L are equivalent if and only if B#σ̄L is a gauge
transform of B#σL .

Proof In view of the hom-tensor relation Hom−L
B− (B ⊗L H, B ⊗L H) �

HomL,L(H, B), there is a bijective correspondence between left B-module
right L -comodule isomorphisms 
 : B#σ̄L → B#σL and convolution invertible
maps χ ∈ HomL,L(H, B). This correspondence is given by Eq. 4.14 in one direction
and by χ(h) = (B ⊗L π)(
(1B ⊗L h)) in the other. If 
 is also an algebra map,
then χ(1H) = 1B and, following the same line of argument as in the proof of
Corollary 4.5, one finds that the measuring corresponding to σ̄ is given by h ·χ b
and that σ̄ = σχ . Conversely, given χ and corresponding (by Eq. 4.14) isomorphism

 : B#σχ L → B#σL , one can compute, for all b , b ′ ∈ B, h, h′ ∈ H,



(
(b #σχ h)

(
b ′#σχ h′)) = b

(
h(1) ·χ b ′) σχ

(
h(2), h′

(1)

)
χ

(
h(3)h′

(2)

)
#σ h(4)h′

(3)

= bχ
(
h(1)

) (
h(2) ·b ′) (

h(3) ·χ
(
h′

(1)

))
σ

(
h(4), h′

(2)

)
#σ h(5)h′

(3)

= bχ
(
h(1)

)
(h(2) ·

(
b ′χ

(
h′

(1)

))
σ

(
h(3), h′

(2)

)
#σ h(4)h′

(3)

= 
 (b #σχ h)

(
b ′#σχ h′) ,

where the second equality follows by the fact that χ c is the convolution inverse of χ

and the counit axiom, and the third equality follows by property (c) in Definition 4.1.
This proves that 
 is an algebra map, hence the crossed product algebras B#σχ L and
B#σL are mutually equivalent. �


Next we establish what is meant by an invertible cocycle in this generalised
context.

Definition 4.8 Let L = (H, L, s, t, γ, π) be a left bialgebroid and ι : L → B an L-
ring, measured by L . A B-valued 2-cocycle σ on L is invertible if there exists a
k-linear map σ̃ : H ⊗L H → B (where the right and left L-module structures on H
are given by right and left multiplication by s(l ), respectively) satisfying

(a) σ̃ (s(l )h, k) = ι(l )σ̃ (h, k) and σ̃ (t(l )h, k) = σ̃ (h, k)ι(l );
(b) σ̃ (h(1), k)(h(2) · ι(l )) = σ̃ (h, t(l )k);
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(c) σ(h(1), k(1)) σ̃ (h(2), k(2)) = h · (k · 1B) and σ̃ (h(1), k(1)) σ (h(2), k(2)) = hk · 1B,

for all h, k ∈ H and l ∈ L. A map σ̃ is called an inverse of σ .

Again, conditions (a) and (b) are needed so that the inverse property (c) can be
stated. In the case L is a bialgebra over a ring L = k, conditions (a) and (b) are
satisfied automatically. The following two lemmas explore the nature of cocycles and
their inverses.

Lemma 4.9 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B anL-ring with unit
ι : L → B. Assume that L measures B and σ is an invertible B-valued 2-cocycle
on L . Then an inverse σ̃ of σ is unique and normalised, i.e., for all h ∈ H,

σ̃ (1H, h) = ι (π(h)) = σ̃ (h, 1H) .

Proof Note that, if σ̃ is an inverse of σ , then, for all h, k ∈ H,

ι
(
π(h(1)k(1))

)
σ̃ (h(2), k(2)) = σ̃ (h, k). (4.15)

Using this identity and Definition 4.8 (c), one finds that

σ̃ (h, k) = σ̃
(
h(1), k(1)

) [
h(2) · (

k(2) · 1B
)]

. (4.16)

Now suppose that σ̂ is another inverse of σ . Then replacing the expression in square
brackets in Eq. 4.16 by the first of equations in Definition 4.8 (c) for σ̂ , using the
second of equations Definition 4.8 (c) for σ̃ , and finally using Eq. 4.15 for σ̂ , one
finds that σ̃ = σ̂ . Hence the inverse of a cocycle is unique.

Use Eq. 4.15, Definition 4.2 and Definition 4.8 (c) to compute, for all h ∈ H,

σ̃ (1H, h) = ι
(
π(h(1))

)
σ̃ (1H, h(2)) = σ(1H, h(1))σ̃ (1H, h(2))

= [1H · (h · 1B)]σ(1H, 1H) = σ(1H, s(π(h))) = ι
(
π(h)

)
.

The proof of the other identity is similar. �


Lemma 4.10 Let L = (H, L, s, t, γ, π) be a left bialgebroid, B an L-ring, measured
by L , and σ an invertible B-valued 2-cocycle on L with the inverse σ̃ . For all
h, k, m ∈ H,

(a) h · σ(k, m) = σ(h(1), k(1))σ (h(2)k(2), m(1))σ̃ (h(3), k(3)m(2)),
(b) h · σ̃ (k, m) = σ(h(1), k(1)m(1))σ̃ (h(2)k(2), m(2))σ̃ (h(3), k(3)).

Proof

(a) Denote the unit map of the L-ring B by ι : L → B. In view of Eq. 4.5 and with
the help of properties (c) and (a) in Definition 4.1 and (c) in Definition 4.8, we
can compute, for all h, k, m ∈ H,

h · σ(k, m) = h · [
σ

(
k(1), m(1)

)
ι
(
π

(
k(2)m(2)

))]
= [

h(1) · σ
(
k(1), m(1)

)] [
h(2) · (

k(2)m(2) · 1B
)]

= [
h(1) · σ

(
k(1), m(1)

)]
σ

(
h(2), k(2)m(2)

)
σ̃

(
h(3), k(3)m(3)

)
= σ

(
h(1), k(1)

)
σ

(
h(2)k(2), m(1)

)
σ̃

(
h(3), k(3)m(2)

)
,

where the last equality follows by property (d) in Definition 4.2.



Appl Categor Struct (2006) 14:431–469 457

(b) Use part (a), Eq. 4.5 and Definition 4.8 (c) to find that, for all h, k, m ∈ H,[
h(1) · σ

(
k(1), m(1)

)]
σ

(
h(2), k(2)m(2)

)
σ̃

(
h(3)k(3), m(3)

)
σ̃

(
h(4), k(4)

)
= σ

(
h(1), k(1)

) [
h(2)k(2) · (m · 1B)

]
σ̃

(
h(3), k(3)

)
.

By Definitions 4.1 and 4.2, σ(h, s(π(m))) = h · (m · 1B)), for all h, m ∈ H. Hence
conditions (d) in Definition 4.2 and (c) in Definition 4.8 allow us to develop the right
hand side of the above equality further to arrive at the equation[

h(1) · σ
(
k(1), m(1)

)]
σ

(
h(2), k(2)m(2)

)
σ̃

(
h(3)k(3), m(3)

)
σ̃

(
h(4), k(4)

) = h·[k·(m·1B)
]
.

(4.17)

Therefore

h · σ̃ (k, m) = h · {
σ̃

(
k(1), m(1)

) [
k(2) · (

m(2) · 1B
)]}

= [
h(1) · σ̃

(
k(1), m(1)

)] {h(2) · [
k(2) · (

m(2) · 1B
)]}

= [
h(1) · σ̃

(
k(1), m(1)

)] [
h(2) · σ

(
k(2), m(2)

)]
×σ

(
h(3), k(3)m(3)

)
σ̃

(
h(4)k(4), m(4)

)
σ̃

(
h(5), k(5)

)
= [

h(1) · (
k(1)m(1) · 1B

)]
σ

(
h(2), k(2)m(2)

)
σ̃

(
h(3)k(3), m(3)

)
σ̃

(
h(4), k(4)

)
= σ

(
h(1), k(1)m(1)

)
σ̃

(
h(2)k(2), m(2)

)
σ̃

(
h(3), k(3)

)
,

where the first equality follows by Eq. 4.16, the second one by property (c) in
Definition 4.1 and the third one by Eq. 4.17. The penultimate equality follows by
property (c) in Definition 4.1 and(c) in Definition 4.8. The last equality follows by
conditions (a) in Definition 4.1 and (b) in Definition 4.2. �


Take a Hopf algebroid H , an HL-measured L-ring B and a cocycle σ . Then
the crossed product B#σHL is an R-ring with unit map ηR : r �→ 1B#sR(r) and an
L-ring with unit map ηL : l �→ 1B#sL(l ) = ι(l )#1H, where ι : L → B denotes the unit
map of the L-ring B. It is also a right H -comodule with HR-coaction B ⊗L γR (and
corresponding right HL-coaction B ⊗L γL). The coinvariants are the elements of
the form b #1H for b ∈ B, hence they form an L-subring, isomorphic to B. Therefore,
B ⊆ B#σHL is a right H -extension, and it is natural to ask whether this extension is
cleft.

Theorem 4.11 Let H be a Hopf algebroid and B#σHL a crossed product of an HL-
measured L-ring B. If the cocycle σ is invertible, then the extension B ⊆ B#σHL is
H -cleft.

Proof We claim that the map j : H → B#σHL, h �→ 1B#h is a cleaving map with the
convolution inverse

jc(h) = σ̃
(
S(h(1))(1), h(2)

)
#S

(
h(1)

)
(2)

= σ̃
(
S

(
h(2)

(1)

)
, h(2)

(2)

)
#S

(
h(1)

)
.

The two forms of jc are equivalent by the anti-comultiplicativity of S and the left HR-
colinearity of γL. Using the definitions of a cocycle and its inverse, and in particular,
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the module and normalisation properties of σ and σ̃ , one verifies that j and jc have
the required L-, R-module properties (3.3) and (3.4). Next, take any h ∈ H and
compute

jc
(
h(1)

)
j
(
h(2)

) = σ̃
(
S(h(1))(1), h(2)

)
σ

(
S

(
h(1)

)
(2)

, h(3)

)
#S

(
h(1)

)
(3)

h(4)

= 1B#S
(
h(1)

)
h(2) = 1B#sR (πR(h)) = ηR (πR(h)) ,

where the second equality follows by condition (c) in Definition 4.8, condition (a)
in Definition 4.1 and the counit property of πL. The third equality follows by the
antipode axiom (2.9). The proof of the identity (3.5) is slightly more involved:

j
(
h(1)

)
jc

(
h(2)

)
=

[
h(1)

(1) · σ̃
(

S
(
h(2)

(1)

)
(1)

, h(2)
(2)

)]
σ

(
h(1)

(2), S
(
h(2)

(1)

)
(2)

)
#h(1)

(3)S
(
h(2)

(1)

)
(3)

= σ
(

h(1)
(1), S

(
h(2)

(1)

)
(1)

h(2)
(2)

)
σ̃

(
h(1)

(2)S
(
h(2)

(1)

)
(2)

, h(2)
(3)

)
#h(1)

(3)S
(
h(2)

(1)

)
(3)

= σ
(
h(1)

(1), S
(
h(4)

(1)

)
h(4)

(2)

)
σ̃

(
h(1)

(2)S
(
h(3)

)
, h(4)

(3)

)
#h(1)

(3)S
(
h(2)

)
= σ̃

(
sL

(
πL

(
h(1)

(1)sR
(
πR

(
h(4)

(1)

))))
h(1)

(2)S
(
h(3)

)
, h(4)

(2)

)
#h(1)

(3)S
(
h(2)

)
= σ̃

(
h(1)

(1)S
(
h(3)sR

(
πR

(
h(4)

(1)

)))
, h(4)

(2)

)
#h(1)

(2)S
(
h(2)

)
= σ̃

(
h(1)

(1)S
(
h(3)

(1)

)
, h(3)

(2)

)
#h(1)

(2)S
(
h(2)

)
= σ̃

(
h(1)S

(
h(2)

(3)
)

, h(3)

)
#h(2)

(1)S
(

h(2)
(2)

)
= σ̃

(
tL

(
πL

(
h(2)

(1)
))

h(1)S
(

h(2)
(2)

)
, h(3)

)
#1H

= σ̃
(

h(1)
(1)S

(
h(1)

(2)
)

, h(2)

)
#1H = σ̃ (1H, h)#1H = ηL (πL(h)) ,

where the second equality follows by Lemma 4.10 (b), condition (c) in Definition 4.8,
condition (a) in Definition 4.1, condition (a) in Definition 4.8 and the counit property
of πL. The third equality follows by the anti-comultiplicativity of S and Eq. 2.7.
The fourth one follows by the antipode axiom (2.9), the fact that the domain of σ

is H ⊗Lop H (i.e. σ(htL(l ), k) = σ(h, tL(l )k) for h, k ∈ H, l ∈ L), the normalisation
of cocycles (condition (c) in Definition 4.2) and the left L-linearity of σ̃ in the
first argument (condition (a) in Definition 4.8). In the fifth step the Hopf algebroid
identity πL(hsR(r)) = πL(hS(sR(r))), implying sL

(
πL(h(1)sR(r))

)
h(2) = hS

(
sR(r)

)
, for

h ∈ H and r ∈ R, has been used together with the anti-multiplicativity of S. The sixth
and seventh equalities follow by the coassociativity and HL-colinearity of γR and
the counit property of πR. The eighth equality follows by the antipode axiom (2.9)
and the right L-linearity of σ̃ . The ninth one follows by axiom (2.7) and the counit
property of πL. The penultimate equality follows by axiom (2.9) and the fact that the
domain of σ̃ is H ⊗L H (i.e. σ̃ (hsL(l ), k) = σ̃ (h, sL(l )k) for h, k ∈ H, l ∈ L). The last
equality follows by Lemma 4.9. �


The final aim of this section is to prove that any cleft extension is necessarily
isomorphic to a crossed product with an invertible cocycle.

Theorem 4.12 If B ⊆ A is an H -cleft extension, then there exists an invertible cocycle
σ and a left B-module right H -comodule algebra isomorphism A → B#σHL.
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Proof For an H -cleft extension B ⊆ A the cleaving map j takes the unit element
of H to an invertible element of B (with the inverse jc(1H)). Thus, without the loss
of generality, we can assume that a cleaving map j is normalised, i.e. j(1H) = 1A =
jc(1H). By Theorem 3.12, A is isomorphic to B ⊗L H as a left B-module and a right
H -comodule. We can use this isomorphism to induce a comodule algebra structure
on B ⊗L H. By Theorem 4.4, the induced algebra structure is necessarily a crossed
product B#σHL. In view of the definitions of the map κ and its inverse in the proof of
Theorem 3.12 (1) ⇒ (2)(b), the measuring and cocycle can be read off Eqs. 4.8 and
4.10, respectively, and come out as

h · b = j
(
h(1)

)
bjc

(
h(2)

)
, σ (h, k) = j

(
h(1)

)
j
(
k(1)

)
jc

(
h(2)k(2)

)
. (4.18)

We only need to prove that the cocycle σ is invertible. Define

σ̃ : H⊗
L

H → B, h⊗
L

k �→ j
(
h(1)k(1)

)
jc

(
k(2)

)
jc

(
h(2)

)
. (4.19)

The map (4.19) is well defined by Eqs. 3.3 and 3.4, on one hand, and by Eqs. 3.4,
3.8 and the property that the range of the coproduct of a right bialgebroid is in the
Takeuchi product, on the other hand. The proof that σ̃ is the inverse of the cocycle
σ is done by a routine calculation and is left to the reader. �


Combining Theorem 4.7 with Theorem 4.12, we can fully describe the relationship
between different cleaving maps for the same cleft extension.

Corollary 4.13 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension with a
(non-necessarily unital)cleaving map j : H → A. Then a map j′ : H → A is a cleaving
map if and only if there exists a convolution invertible L-L bilinear map χ : H → B,
such that

j ′(h) = χ
(
h(1)

)
j
(
h(2)

)
, for all h ∈ H. (4.20)

Proof If j is a cleaving map and χ ∈ HomL,L(H, A) is convolution invertible, then
Eq. 4.20 obviously defines a cleaving map. In order to prove the converse claim,
suppose first that both j and j′ are normalised as in the proof of Theorem 4.12. By
Theorem 4.12, the crossed products corresponding to j and j′ are isomorphic to A via
left B-module right H -comodule algebra maps, hence they are equivalent to each
other. The isomorphism, obtained from combining the maps ν (for j′) with κ (for
j) in the proof of Theorem 3.12 (1) ⇒ (2)(b), explicitly comes out as 
 : b ⊗L h �→
b j′(h(1)

(1)) jc(h(1)
(2)) ⊗L h(2). Then, by Theorem 4.7, the existence of 
 is equivalent

to the existence of a normalised convolution invertible map χ ∈ HomL,L(H, B),
χ(h) = j′(h(1)) jc(h(2)). Using the right HL-colinearity of γR and the fact that jc is
a left convolution inverse of j, one finds, for all h ∈ H, χ(h(1)) j(h(2)) = j′(h), i.e.
Eq. 4.20 holds. Allowing for j, j′ to be non-unital is equivalent to not requiring that
χ be normalised. �


5 The Relative Chern–Galois Character for H -Cleft Extensions

The aim of this section is to give a complete description of strong connections in a
cleft extension B ⊆ A of a Hopf algebroid H = (HL,HR, S) (over rings L and R)
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and to find criteria for the existence and independence on the strong connection
of the corresponding relative Chern–Galois characters introduced and computed
in [9].

Begin with a right H -extension B ⊆ A and suppose that T is a subalgebra of
B. Then A is called an (HR, T)-projective left B-module provided there exists a left
B-linear, right HR-colinear section αT of the multiplication map B ⊗T A → A. To
consider the most general case possible, we make no assumptions on a ring T (but,
possibly, the most natural choice for T is the base algebra L).

Lemma 5.1 Let H be a Hopf algebroid and B ⊆ A an H -cleft extension. Then A is
an (HR, L)-projective left B-module.

Proof The map α̃L : B ⊗L H → B ⊗L B ⊗L H, b ⊗L h �→ b ⊗L 1B ⊗L h is a left
B-linear right H -colinear splitting of the product map b ⊗L b ′ ⊗L h �→ bb ′ ⊗L h.
By Theorem 3.12, A � B ⊗L H as left B-modules and right H -comodules, hence
there is a corresponding splitting αL of the B-product map in A. Explicitly,

αL =
(

B⊗
L
κ−1

)
◦ α̃L ◦ κ, a �→ a[0][0] jc

(
a[0][1])⊗

L
j
(
a[1]

) = a[0] jc
(
a[1]

(1)

) ⊗
L

j
(
a[1]

(2)

)
,

where κ is the isomorphism (3.12) in the proof of Theorem 3.12 and j is a cleaving
map with the convolution inverse jc. �


Any right H -comodule algebra A with HR-coaction ρ A gives rise to an entwin-
ing map (over R) ψ : H ⊗R A → A ⊗R H, h ⊗R a �→ a[0] ⊗R ha[1]. The map ψ is
bijective, provided the antipode S is bijective (cf. [8, Lemma 4.1]), and then the
corresponding left HR-coaction on A is

Aρ : A → H⊗
R

A, a �→ S−1 (
a[1]

) ⊗
R

a[0] (5.1)

(compare with (2.26)). Thus, following [9, Definition 3.4], if B ⊆ A is a right
H -extension and T is a subalgebra of B, then a left and right HR-comodule map
�T : H → A ⊗T A is a strong T-connection provided that c̃anT

(
�T(h)

) = 1A ⊗R h,
for all h ∈ H, where the map

c̃anT : A⊗
T

A → A⊗
R

H, a⊗
T

a′ �→ aa′[0]⊗
R

a′[1], (5.2)

is well defined by the left T-linearity of ρ A. The HR-coactions in A ⊗T A are A ⊗T

ρ A and Aρ ⊗T A, with Aρ given in (5.1). The first observation is that a cleft extension
comes equipped with a strong L-connection.

Theorem 5.2 Let H be a Hopf algebroid with a bijective antipode and B ⊆ A an
H -cleft extension with a cleaving map j. Then the map

�L : H → A⊗
L

A, h �→ jc (
h(1)

)⊗
L

j
(
h(2)

)
, (5.3)

is a strong L-connection.

Proof By Theorem 3.12, B ⊆ A is a Galois HR-extension, which is (HR, L)-
projective by Lemma 5.1. Thus the existence of a strong connection follows by [9,
Theorem 3.7]. Using the explicit forms of the inverse of the canonical HR-Galois
map in the proof of Theorem 3.12 and of αL in the proof of Lemma 5.1, following
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the proof of [9, Theorem 3.7] one arrives at the form of a strong L-connection
in (5.3). �


The full classification of strong T-connections in a cleft extension is described in
the following

Theorem 5.3 Let H be a Hopf algebroid with a bijective antipode and B ⊆ A an
H -cleft extension, and let T be a subalgebra of B. Write μB for the multiplication
map B ⊗T B → B. Strong T-connections in B ⊆ A are in bijective correspondence
with L-L bilinear maps f : H → B ⊗T B such that μB ◦ f = ηL ◦ πL.

Proof Let j be a cleaving map and jc its convolution inverse. By Theorem 2.2,
Theorem 3.12 and Corollary 3.13, there is a chain of isomorphisms

HomHR,HR

(
H, A⊗

T
A

)
� HomHL,HL

(
H, H⊗

L
B⊗

T
B⊗

L
H

)
� HomL,L

(
H, B⊗

T
B

)
,

where the last isomorphism is ϕ �→ (πL ⊗L B ⊗T B ⊗L πL) ◦ ϕ (cf. [17, 18.10 (1) and
18.11 (1)]). In view of the explicit form of the isomorphism κ : A → B ⊗L H in (3.12)
and its left-handed version (3.13), we thus obtain:

HomHR,HR

(
H, A⊗

T
A

)
� �T �→ [

f : h �→ j(h(1))�T(h(2)) jc(h(3))
]
, (5.4)

and its inverse

HomL,L

(
H, B⊗

T
B

)
� f �→ [

�T : h �→ jc
(
h(1)

)
f
(
h(2)

)
j
(
h(3)

)]
. (5.5)

If �T is a strong T-connection, then μA ◦ �T = ηR ◦ πR, where μA : A ⊗T A → A is
the product map in A. This implies that for the corresponding f in (5.4), μB ◦ f =
ηL ◦ πL. Conversely, suppose that f has this property, write f (h) = h{1} ⊗T h{2} for
all h ∈ H, and compute

c̃anT (�T(h)) = jc
(
h(1)

)
h(2)

{1}h(2)
{2} j

(
h(3)

)[0] ⊗
R

j
(
h(3)

)[1]

= jc
(
h(1)

)
ηL

(
πL

(
h(2)

))
j
(

h(3)
(1)

)
⊗
R

h(3)
(2)

= jc
(
h(1)

)
j
(

h(2)
(1)

)
⊗
R

h(2)
(2) = jc

(
h(1)

(1)

)
j
(
h(1)

(2)

) ⊗
R

h(2)

= ηR
(
πR

(
h(1)

))⊗
R

h(2) = 1A⊗
R

h,

where the first equality follows by (5.2) and the fact that the range of f is in
B ⊗T B. The second equality follows by the hypothesis μB ◦ f = ηL ◦ πL and the
right H -colinearity of j. The third one follows by the left L-linearity of j (i.e. Eq. 3.3)
and the counit property of πL. The fourth equality follows by the left HL-colinearity
of γR. In the penultimate step we used that jc is a left convolution inverse of j, i.e.
Eq. 3.6. This means that �T given in (5.5) is a strong T-connection and completes the
proof of the theorem. �


Take a bijective entwining structure (A, C, ψ)R over a non-commutative base
algebra R and consider a T-flat entwined extension B ⊆ A in the sense of [9,
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Definition 5.2] (T is a subalgebra of B). Given a strong T-connection in B ⊆ A,
one constructs a family of maps of Abelian groups from the Grothendieck group of
C-comodules to the even T-relative cyclic homology groups of B (cf. [9, Theorem
5.4]). This family of maps is termed the T-relative Chern–Galois character. Comodule
algebras for Hopf algebroids (with bijective antipodes) provide examples of (bijec-
tive) entwining structures over non-commutative bases, hence the general theory
worked out in [9] can be applied to such algebras. In particular, the components
of the T-relative Chern–Galois characters, corresponding to strong T-connections in
Theorem 5.3 for a T-flat cleft extension of a Hopf algebroid with bijective antipode,
have been computed in [9, Example 5.6].

It is important to note, however, that the T-relative Chern–Galois character, a
priori, depends on the choice of a strong T-connection. Its independence is proven
in [9, Theorem 5.14], under the assumption that the T-flat entwined extension B ⊆ A
enjoys the following properties:

(a) A is a locally projective right T-module;
(b) The extension B ⊆ A splits as a B-T bimodule.

In the remainder of this section we analyse the meaning of these conditions and of the
T-flatness in the case of cleft Hopf algebroid extensions. In this way we find sufficient
conditions for the existence and the strong-connection-independence of the relative
Chern–Galois character computed in [9, Example 5.6].

Definition 5.4 Let B ⊆ A be a right extension of a Hopf algebroid H with a bijective
antipode and let T be a subalgebra of B. View A as a left HR-comodule with coaction
(5.1). A left total T-integral is a left HR-colinear map ϑ : H → A such that ϑ(H) ⊆
AT := { a ∈ A | ta = at ∀t ∈ T } and ϑ(1H) = 1A.

For example, the convolution inverse of a normalised cleaving map is a left total
k-integral by Lemma 3.8.

By arguments similar to those used to prove Lemma 3.10, any left total T-integral
ϑ determines a B-T bilinear section of the extension B ⊆ A,

a �→ a[0]ϑ
(
a[1]) . (5.6)

The next proposition shows that, for a cleft extension of a Hopf algebroid with a
bijective antipode, this is a one-to-one correspondence.

Proposition 5.5 Let B ⊆ A be a cleft extension of a Hopf algebroid H with a bijective
antipode, and let T be a subalgebra of B. Then B-T bilinear sections of the extension
B ⊆ A are in bijective correspondence with left total T-integrals in B ⊆ A.

Proof Let j be a cleaving map for B ⊆ A. In terms of j we construct the inverse of
the map associating to a left total T-integral ϑ the section (5.6). To a B-T bilinear
section ϕ, associate the map

ϑ : H → A, h �→ jc
(
h(1)

)
ϕ

(
j
(
h(2)

))
. (5.7)

Since j(1H) is an element of B, ϑ(1H) = jc(1H) j(1H)ϕ(1A) = 1A. The left
HR-colinearity of ϑ follows by the left HR-colinearity of γL and jc, and the fact that
the range of ϕ is equal to B. It remains to check that the range of ϑ is in AT . Note
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that by its left B-linearity, ϕ is determined by the left L-linear map ϕ ◦ j : H → B.
Indeed, for all a ∈ A,

ϕ(a) = ϕ
(
a[0] jc

(
a[1]

(1)

)
j
(
a[1]

(2)

)) = ϕ
(
a[0][0] jc

(
a[0][1]) j

(
a[1]

))
= a[0][0] jc

(
a[0][1])ϕ

(
j
(
a[1]

))
,

where in the last equality Lemma 3.10 has been used. Hence the right T-linearity of
ϕ is equivalent to

a[0]t jc
(
a[1]

(1)

)
ϕ

(
j
(
a[1]

(2)

)) = ϕ(a)t, for all a ∈ A and t ∈ T. (5.8)

Take any h ∈ H and apply Eq. 5.8 to a = j(h). By the right HR-colinearity of j,

j
(
h(1)

)
t jc

(
h(2)

(1)

)
ϕ

(
h(2)

(2)

) = ϕ( j(h))t.

Hence

ϑ(h)t = jc
(
h(1)

)
j
(

h(2)
(1)

)
t jc

(
h(2)

(2)
(1)

)
ϕ

(
j
(

h(2)
(2)

(2)

))
= ηR

(
πR

(
h(1)

))
tϑ

(
h(2)

) = tϑ(h),

where the second equality follows by the Hopf algebroid axiom (2.7) and the last one
follows by the fact that the elements of B (and hence, in particular, the elements of T)
commute with ηR(r), for r ∈ R, and by the left R-linearity of ϑ . It is checked by
a routine computation that the map, associating to a B-T bilinear section ϕ of the
inclusion B ⊆ A the left total T-integral (5.7), is the inverse of the map, associating
to the left total T-integral ϑ the B-T bilinear section (5.6). �


For a cleft extension B ⊆ A of a Hopf algebroid H with a bijective antipode,
consider the B-B bilinear map,

A → A⊗
R

H, a �→ a[0]⊗
R

a[1] − a⊗
R

1H,

where A ⊗R H is a B-B bimodule via the first tensorand. For any subalgebra T of
B this map projects to the map υT : A/[A, T] → A/[A, T] ⊗R H, where [A, T] ={∑

k(aktk − tkak) | ak ∈ A, tk ∈ T
}

is a right R-submodule of A. Following
[9, Definition 5.2], the extension B ⊆ A is said to be T-flat if B and A are flat left
and right T-modules and the obvious map

B/[B, T] → ker υT , [b ]B �→ [b ]A, (5.9)

(where [ ]B denotes the equivalence class in B/[B, T] and [ ]A denotes the equiva-
lence class in A/[A, T]) is an isomorphism.

Proposition 5.6 Let H be a Hopf algebroid with a bijective antipode. A cleft
H -extension B ⊆ A which splits as a B-T bimodule for some subalgebra T of B,
is T-flat if and only if A is a flat left and right T-module.

Proof Since a direct summand of a flat module is flat, it suffices to prove that
the existence of a B-T bimodule splitting of the inclusion, i.e. the existence of
a left total T-integral, implies that the map (5.9) is an isomorphism. In order to
prove injectivity of the map in (5.9), choose b ∈ B such that [b ]A = 0. This means
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the existence of finite sets {ak} in A and {tk} in T such that b = ∑
k(aktk − tkak).

Applying a B-T bilinear section ϕ of the extension B ⊆ A to this identity, we obtain
b = ∑

k(ϕ(ak)tk − tkϕ(ak)), hence [b ]B = 0. In order to prove the surjectivity of the
map (5.9), choose a ∈ A such that υT([a]A) = 0. This means the existence of finite
sets {ak} in A, {hk} in H and {tk} in T such that

a[0]⊗
R

a[1] − a⊗
R

1H =
∑

k

(
aktk⊗

R
hk − tkak⊗

R
hk

)
. (5.10)

By Proposition 5.5, there is a left total T-integral ϑ in B ⊆ A. Apply μA ◦ (A ⊗R ϑ)

to Eq. 5.10 to obtain

a[0]ϑ(a[1]) − a =
∑

k

(akϑ(hk)tk − tkakϑ(hk)) .

This proves that [a]A = [a[0]ϑ(a[1])]A. Since a[0]ϑ(a[1]) is an element of B, [a]A

belongs to the image of the map (5.9). �


Combining Proposition 5.5 and Proposition 5.6 with [9, Theorem 5.14] we obtain

Corollary 5.7 Let B ⊆ A be a cleft extension of a Hopf algebroid with a bijective
antipode and let T be a subalgebra of B. Assume that:

(a) A is a flat left T-module and a locally projective right T-module;
(b) There exists a left total T-integral for the extension B ⊆ A;
(c) There exists a strong T-connection.

Then there exists a T-relative Chern–Galois character, independent on the choice of
the strong T-connection in (c).

We close the section with some examples of Hopf algebroid cleft extensions, in
which there exist (strong-connection-independent) relative Chern–Galois characters.

Example 5.8 Let B ⊆ A be a cleft extension of a Hopf algebroid with a bijective
antipode and T a separable k-subalgebra of B. In light of [9, Proposition 3.2 (1)],
since B ⊆ A splits as a left B-module by Lemma 3.11, it splits as a B-T bimodule.
The corresponding total T-integral ϑ in B ⊆ A is

ϑ(h) =
∑

i

ei jc(h) j(1H)ei,

where
∑

i ei ⊗k ei ∈ T ⊗k T is a separability idempotent. Therefore, if A is a flat
left T-module and a locally projective right T-module and there exists a strong
T-connection �T , then there exists a corresponding T-relative Chern–Galois char-
acter which is independent of �T .

Example 5.9 The base algebra R of a Hopf algebroid H is a right H -comodule
algebra with HR-coaction sR. It follows by [7, Theorem 3.2] that a Hopf algebroid H
with a bijective antipode is coseparable (as an L- or, equivalently, as an R-coring) if
and only if there exists a left total k-integral λ for the H -extension I ⊆ R, where I
is the H -coinvariant subalgebra of R, I = { r ∈ R | sR(r) = tR(r) }. Note that if H is
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a coseparable Hopf algebroid, then any right H -extension B ⊆ A is split as a B-B
bimodule by the map

A → B, a �→ a[0]ηR
(
λ

(
a[1])) .

Let B ⊆ A be a cleft extension of a coseparable Hopf algebroid with a bijective
antipode and T a subalgebra of B. Then there is a left total T-integral ϑ = ηR ◦ λ. If
A is a locally projective right T-module and a flat left T-module and there exists a
strong T-connection �T , then the corresponding T-relative Chern–Galois character
is independent of �T .
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sions. Her work is supported by the Hungarian Scientific Research Fund OTKA T 043 15 9 and the
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Appendix: Weak Cleft Extensions and Weak Crossed Products

Many of the results described in Sections 3, 4 and 5 (e.g. Lemma 3.11, Corollary 3.14,
Corollary 3.15 or Theorem 5.2, Corollary 5.7) remain valid if the right H -extension
B ⊆ A is an HR-Galois extension but, instead Theorem 3.12 (2)(b), A is only a direct
summand of B ⊗L H as a left B-module and as a right H -comodule. Such extensions
can be studied along the same lines as in Sections 3, 4 and 5. In this appendix we
present the results of such studies; we give no proofs as these are very similar to the
proofs of corresponding results in preceding sections.

Motivated by the forthcoming analogue of Theorem 3.12 (Theorem A.2), we
introduce the following weakening of Definition 3.5.

Definition A.1 Let H be a Hopf algebroid. A right H -extension B ⊆ A is weak
cleft if

(a) in addition to its canonical R-ring structure, A possesses an L-ring structure
and B is an L-subring of A;

(b) there exists a left L-linear right H -colinear morphism j : H → A, with left
convolution inverse jw, which is right H -colinear in the sense of identities (3.8)
and (3.9).

A map j, satisfying condition (b), is called a weak cleaving map.

Note that in the situation described in Definition A.1, the assumption that jw

satisfies Eq. 3.9 implies that the image of the map A → A, a �→ a[0] jw(a[1]) is
contained in B. Hence a weak H -cleft extension B ⊆ A is split by the left B-linear
map (3.11) after replacing jc with jw.

Theorem A.2 Let H be a Hopf algebroid and B ⊆ A a right H -extension. Then the
following statements are equivalent:

(1) B ⊆ A is a weak H -cleft extension.
(2) (a) The extension B ⊆ A is HR-Galois;

(b) A is a direct summand of B ⊗L H as a left B-module and right H -
comodule.
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In particular, Theorem A.2 implies that if H is projective as a left L-module,
then, for any weak cleft H -extension B ⊆ A, A is a faithfully flat left B-module.

Recall that in Section 4 we applied a (unnormalised) gauge transformation to a
general cleaving map in order to normalise it as j(1H) = 1B = jc(1H). However, in
the case when j possesses a left convolution inverse jw only, there is no guarantee
for j(1H) to be an invertible element of B. Hence it can not be gauge transformed to
the unit element in general. The need to describe this more general situation leads to
the following generalisations of Definitions 4.1 and 4.2.

Definition A.3 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring. L
weakly measures B if there exits a k-linear map, termed a weak measuring, H ⊗k

B → B, h ⊗k b �→ h · b that satisfies properties (b) and (c) in Definition 4.1.

Definition A.4 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring,
weakly measured by L . A B-valued weak 2-cocycle σ on L is a k-linear map
H ⊗Lop H → B (where the right and left Lop-module structures on H are given by
right and left multiplication by t(l ), respectively) satisfying properties (a), (b) and (d)
in Definition 4.2 and, in addition, for all h, k ∈ H,

σ(h(1), k(1))(h(2)k(2) · 1B) = σ(h, k). (5.11)

A weakly L -measured L-ring B is called a σ -twisted left L -module if a weak
2-cocycle σ satisfies property (f) in Definition 4.2 and there exist elements x and
x̃ in B such that, for all b ∈ B and h ∈ H,

x̃x = 1B and xb x̃ = 1H · b ,

σ (1H, h) = x(h · 1B) and σ(h, 1H) = h · x.

It is easy to see that a B-valued 2-cocycle is also a weak 2-cocycle. If the L-ring B
is a σ -twisted L -module for a 2-cocycle σ , then it is a σ -twisted L -module also in
the weaker sense of Definition A.4 with x = 1B = x̃.

Recall from [18, p. 39] that, for a non-unital ring A, an element e ∈ A such that,
for all a ∈ A, ea = ae = ae2 is called a preunit. Proposition 4.3 can be extended to the
case of weak cocycles as follows.

Proposition A.5 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring,
weakly measured by L . Let σ : H ⊗Lop H → B be a map that satisfies properties (a)
and (b) in Definition 4.2 and condition (5.11) in Definition A.4. Consider the k-module
B ⊗L H in Proposition 4.3, and the following assertions.

(a) B ⊗L H is an associative (possibly non-unital)algebra with multiplication (4.1).
(b) There exists ỹ ∈ B such that ỹσ(1H, h) = h · 1B, for all h ∈ H, and ỹ ⊗L 1H is

a preunit for the algebra in part (a) (henceA := {(b ⊗L h)(ỹ ⊗L 1H) | b ⊗L h ∈
B ⊗L H} is a right L -comodule algebra with coinvariant subalgebra {(b ⊗L

1H)(ỹ ⊗L 1H) | b ∈ B}).
(c) The map B → AcoL ,b �→ (b ỹ ⊗L 1H)(ỹ ⊗L 1H) is an algebra isomorphism.

These assertions hold if and only if σ is a weak 2-cocycle and B is a σ -twisted left
L -module. In this case A is called a weak crossed product of B with L with respect
to the weak 2-cocycle σ .
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Our next task is to characterise equivalent weak crossed products, in analogy with
Theorem 4.7.

Definition A.6 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring.
Weak crossed product algebras of B with L are said to be equivalent if they are
isomorphic via a left B-linear isomorphism of right L -comodule algebras.

Note that a (left B-linear right L -colinear) isomorphism of weak crossed product
algebras of B with L in Definition A.5 needs not extend to the (non-unital) algebra
B ⊗L H. The following lemma extends Corollary 4.5.

Lemma A.7 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring, weakly
measured by L . Let σ be a weak 2-cocycle, such that B is a σ -twisted left L -module.
Let χ and χ̃ be morphisms in HomL,L(H, B) such that, for all h ∈ H,

χ̃(h(1))χ(h(2)) = h · 1B and (5.12)

χ̃(h(1))χ(h(2))χ̃(h(3)) = χ̃(h), χ(h(1))χ̃(h(2))χ(h(3)) = χ(h). (5.13)

Then Eq. 4.12 defines a weak measuring of L on B and Eq. 4.13 defines a weak 2-
cocycle σχ , such that B is a σχ -twisted left L -module.

A pair χ, χ̃ ∈ HomL,L(H, B), satisfying Eqs. 5.12 and 5.13, is called a gauge trans-
formation of the weak crossed product of B with L . Gauge transformations form
a groupoid, with multiplication, the convolution product � in the first component,
and its opposite in the second one. The left unit of a gauge transformation (χ, χ̃) is
(χ � χ̃ , χ � χ̃) and its right unit is (χ̃ � χ, χ̃ � χ). The inverse of (χ, χ̃) is (χ̃ , χ).

Theorem A.8 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring. Two
weak crossed products of B with L are equivalent if and only if they are related by a
gauge transformation.

In order to make connection between weak crossed products and weak cleft
extensions, the notion of invertible weak 2-cocycles is needed.

Definition A.9 Let L = (H, L, s, t, γ, π) be a left bialgebroid and B an L-ring
weakly measured by L . An inverse of a B-valued weak 2-cocycle σ on L is a k-
linear map, σ̃ : H ⊗L H → B (where the right and left L-module structures on H
are given by right and left multiplication by s(l ), respectively) satisfying properties
(a), (b) and (c) in Definition 4.8 and, in addition, for all h, k ∈ H,

(
h(1)k(1) · 1B

)
σ̃

(
h(2), k(2)

) = σ̃ (h, k).

If σ is a 2-cocycle in the sense of Definition 4.2 (in particular the measuring
satisfies also property (a) in Definition 4.1), then Definition A.9 is equivalent to
Definition 4.8. By an argument similar to the proof of Lemma 4.9, the convolution
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inverse of a weak 2-cocycle is unique, provided it exists. A generalisation of Theo-
rems 4.11 and 4.12 is given in the following

Theorem A.10 Let H be a Hopf algebroid. A right H -extension B ⊆ A is weak H -
cleft if and only if A is isomorphic to a weak crossed product of B with the constituent
left bialgebroid HL of H , with respect to an invertible weak 2-cocycle.

Analogously to Corollary 4.13, Theorems A.10 and A.8 lead to the following

Corollary A.11 Let H be a Hopf algebroid and B ⊆ A a weakH -cleft extension.
Let j : H → A be a weak cleaving map with left convolution inverse jw, satisfying
conditions (3.8) and (3.9). Then the map h · b : = j(h(1))b jw(h(2)), for all b ∈ B
and h ∈ H, is a weak measuring of the constituent left bialgebroid HL on B. A
map j′ : H → A is a weak cleaving map if and only if there exist morphisms χ, χ̃ ∈
HomL,L(H, B), satisfying Eqs. 5.12 and 5.13, in terms of which j′ : h �→ χ(h(1)) j(h(2)).

Let H be a Hopf algebroid with a bijective antipode and let B ⊆ A be a weak
H -cleft extension and T a k-subalgebra of B. Let j be a weak cleaving map with a
left convolution inverse jw, satisfying conditions (3.8) and (3.9). Any morphism f ∈
HomL,L(H, B ⊗T B) such that, for all h ∈ H, μB

(
f (h)

) = j(h(1)) jw(h(2)), determines
a strongT-connection via (5.5). Conversely, any strong T-connection is of this form
(though the correspondence (5.5) is not bijective in the weak case).

Any B-T bimodule section of a weak cleft Hopf algebroid extension B ⊆ A, for
a subalgebraT of B, corresponds to a left total T-integral via (5.6) (although the
correspondence between B-T sections and total integrals is not bijective in the weak
case). Hence Corollary 5.7 is valid without modification for weak cleft extensions of
Hopf algebroids with bijective antipode.

A weak Hopf algebra (W,�, ε, S) determines a Hopf algebroid W with con-
stituent left bialgebroid WL over the ‘left’ subalgebra WL of W, right bialgebroid
WR over the ‘right’ subalgebra W R, and antipode S. The category of right comodules
for the coalgebra (W,�, ε) is isomorphic to the category of right W -comodules as
a monoidal category. As a consequence, also the respective notions of comodule
algebras and of coinvariants are equivalent (cf. [14]). Let A be a right W- (or,
equivalently, W -) comodule algebra with coinvariants B. By [3, Theorem 2.11], the
extension B ⊆ A is W-cleft (i.e. the corresponding weak entwining structure is cleft
in the sense of [2, Definition 1.9]) if and only if it is W-Galois and A is a direct
summand of B ⊗k W as a left B module right W-comodule. By [8, Example 3.5]
theW-Galois property is equivalent to the WR-Galois property, hence Theorem A.2
implies that any weak W -cleft extension is weak W-cleft (but not conversely).

References

1. Abuhlail, J.: Morita contexts for corings and equivalences. In: Caenepeel, S., Van Oystaeyen,
F. (eds.) Hopf Algebras in Noncommutative Geometry and Physics. Lecture Notes in Pure and
Appl. Math., vol. 239, pp. 1–19. Marcel Dekker, New York (2005)

2. Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Rodríguez Raposo,
A.B.: Weak C-cleft extensions, weak entwining structures and weak Hopf algebras. J. Algebra
284, 679–704 (2005)



Appl Categor Struct (2006) 14:431–469 469

3. Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Rodríguez Raposo,
A.B.: Weak C-cleft extensions and weak Galois extensions. J. Algebra 299, 276–293 (2006)

4. Bálint, I., Szlachányi, K.: Finitary Galois extensions over non-commutative bases. J. Algebra 296,
520–560 (2006)

5. Blattner, R.J., Cohen, M., Montgomery, S.: Crossed products and inner actions of Hopf algebras.
Trans. Amer. Math. Soc. 298, 671–711 (1986)

6. Blattner, R.J., Montgomery, S.: Crossed products and Galois extensions of Hopf algebras. Pacific
J. Math. 137, 37–54 (1989)

7. Böhm, G.: Integral theory for Hopf algebroids. Alg. Rep. Theory 8(4), 563–599 (2005)
8. Böhm, G.: Galois theory for Hopf algebroids. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 51, 233–262

(2005)
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