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Abstract Due to the importance of vibration effects on the functional accuracy of
mechanical systems, this research aims to develop a precise model of a nonlinearly vi-
brating single-link mobile flexible manipulator. The manipulator consists of an elastic
arm, a rotary motor, and a rigid carrier, and undergoes general in-plane rigid body mo-
tion along with elastic transverse deformation. To accurately model the elastic behavior,
Timoshenko’s beam theory is used to describe the flexible arm, which accounts for rotary
inertia and shear deformation effects. By applying Newton’s second law, the nonlinear
governing equations of motion for the manipulator are derived as a coupled system of
ordinary differential equations (ODEs) and partial differential equations (PDEs). Then,
the assumed mode method (AMM) is used to solve this nonlinear system of governing
equations with appropriate shape functions. The assumed modes can be obtained after
solving the characteristic equation of a Timoshenko beam with clamped boundary condi-
tions at one end and an attached mass/inertia at the other. In addition, the effect of the
transverse vibration of the inextensible arm on its axial behavior is investigated. Despite
the axial rigidity, the effect makes the rigid body dynamics invalid for the axial behavior of
the arm. Finally, numerical simulations are conducted to evaluate the performance of the
developed model, and the results are compared with those obtained by the finite element
approach. The comparison confirms the validity of the proposed dynamic model for the
system. According to the mentioned features, this model can be reliable for investigating
the system’s vibrational behavior and implementing vibration control algorithms.

Key words planar moving Timoshenko beam, non-rigid non-elastic axial effect, as-
sumed mode method (AMM), nonlinear motion analysis
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1 Introduction

Recently, the use of elastic manipulators in industrial applications has grown significantly
due to their lighter weight, higher energy efficiency, and higher payload-to-weight ratio com-
pared with rigid manipulators[1]. In addition to the mentioned features, elastic arms are safer
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to manipulate objects than rigid ones, making them increasingly developed in medicine, partic-
ularly in surgical grippers[2]. The application of axially moving piezoelectric nanobeams in self-
powered components of biomedical nanorobots is another example of applying elastic elements in
medical applications[3]. On the other hand, the need for relatively long arms in spacecraft[4] and
space explorations[5] due to reduced bending stiffness and increased deformations is equivalent
to using elastic manipulators. Despite the mentioned advantages, deformation and vibration
are among the issues that can disrupt the performance of flexible manipulators. Usually, the
accuracy of the tip point position and the velocity of manipulators is critical, which may be
disturbed in the presence of vibration. Overcoming such defects may face difficulties because
forces and torques are only available in joints, not at the tip points. This issue has motivated
researchers to seek ways to reduce vibrations and increase the functional accuracy of flexible
structures and manipulators through active[6] or passive[7] methods.

In general, robotic arms are modeled using beam governing theories because one of their
dimensions (axial direction) is much larger than the others. For Hookean materials, with the
assumption of small rotation angles, geometric and neutral axes coincidence, perpendicularity
of sections to the neutral axis after deformation, and ignoring Poisson’s effect, four well-known
models, i.e., the Euler-Bernoulli[8], Rayleigh[9], shear[10], and Timoshenko beam models, were
presented[11]. The Euler-Bernoulli theory has been dominantly used among the mentioned
models due to its more straightforward structure and better predictions for beams with large
slenderness ratios[12]. However, experimental tests have shown that the most accurate pre-
dictions among the four mentioned theories is Timoshenko’s approach because of its complete
configuration[13].

Modeling a continuous system such as a beam will result in partial differential equations
(PDEs) and several boundary conditions. The resulting PDEs will have analytical solutions
only under particular conditions. However, even if the theory used for the continuous system
is linear, due to the nonlinear geometry or special boundary conditions, it may be impossible
to solve the resulting PDEs using analytical methods. For this reason, reduced-order modeling
techniques, such as the assumed mode method (AMM), the finite difference method (FDM),
the finite element method (FEM), the lumped parameters method (LPM), and the differential
quadrature method (DQM), have been used to solve the governing equations of continuous
systems[12,14].

The dynamical model of single-link robotic manipulators has been widely used in research
related to vibration control. The mechanical arm was often mounted on a rotating base, and
its translational motion was not considered. A significant percentage of the manipulators have
been modeled using the Euler-Bernoulli theory[15–16], while models based on Timoshenko’s
approach[17–18] were relatively rare. The reduced-order modeling methods commonly used in
these studies include the AMM, FDM, FEM, and LPM.

By reviewing related references, a limited number of studies have addressed the issue of
flexible mobile manipulators. A vibration analysis of a Timoshenko beam clamped to a moving
base has been studied in Ref. [19]. The study focused on extracting natural frequencies and
mode shapes of a Timoshenko beam with a tip payload located vertically on a moving base.
In Refs. [20]–[21], the vibration control of a moving vehicle-mounted flexible manipulator was
studied. The dynamical modeling and vibrational behavior assessment of a soft-link underwater
manipulator on a rigid vehicle were investigated in Ref. [22]. In Ref. [23], the dynamical modeling
of a mobile manipulator with viscoelastic links and revolute-prismatic joints was considered.
Lastly, another mobile robot with two Euler-Bernoulli cooperative manipulators and revolute-
prismatic joints was studied in Ref. [24].

As can be understood from the review of existing literature, there is a strong need for an
accurate model that can predict the nonlinear behavior of flexible mobile manipulators. In this
research, a nonlinear dynamical model of a mobile rigid-elastic Newtonian mechanics system
based on the AMM approach is derived, simulated, and compared with the FEM strategy.
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Timoshenko’s theory is used in the deriving process due to its acceptable accuracy. Another
critical issue is the effect of the transverse deformations on the axial behavior. Although the
studied arm is supposed to be inextensible, the transverse vibrations of the arm strongly affect
its axial behavior, which to the authors’ knowledge, has yet to be investigated separately in
the general planar motion of a Newtonian mechanics systems including the Timoshenko beam.
Therefore, the main innovative aspects of this study can be outlined as follows.

The study develops an efficient, accurate, and reliable dynamic model of flexible mobile
manipulators that can be used for behavioral identification and vibration control. Usually,
elastic models are necessary in control algorithms to achieve acceptable accuracy in vibration
control. For example, the authors recently proposed a control algorithm called optimal rigid-
elastic interaction control (OREIC) to control the vibrations of a moving structure carrying
a Timoshenko beam[6]. However, these control algorithms usually contain high computational
complexity. Thus, it is necessary to ensure that the obtained model of the system is as simple as
possible while still being accurate. Therefore, this research presents a much simpler dynamical
model than any relevant one available in the literature.

In this research, the correctness and accuracy of the extracted model obtained using the
AMM are compared with the FEM in a step-by-step manner, and the results indicate excellent
accuracy.

To the best of the authors’ knowledge, the effect of the transverse behavior on the axial
performance of axially-rigid Timoshenko beams has not been investigated, especially in the
general planar motion. Therefore, the effect is studied in detail during the extraction of the
dynamic model of the system.

The remainder of this paper is organized as follows. Section 2 provides discussion on the fun-
damentals of Timoshenko beam modeling as preliminaries. Section 3 addresses the kinematics,
kinetics, and reduced-order modeling of the system. Section 4 presents numerical simulations,
and discusses and verifies the results. Finally, the study is concluded in Section 5.

2 Preliminaries

2.1 Frequency equation
Consider a straight elastic beam of length `, cross-sectional area A, and cross-sectional area

moment of inertia I with a linear isotropic material of density %, Young’s modulus E, and
shear modulus G. In addition to the mentioned parameters, depending on the cross-sectional
geometry and Poisson’s ratio of the material, a physical coefficient named the shear correction
factor κ can be calculated for the beam[25]. According to Timoshenko’s theory, the governing
equations of motion for such a beam under no-loading conditions can be expressed as[26]

∂

∂ξ

(
κGA(ξ)

(∂w(ξ, t)
∂ξ

− φ(ξ, t)
))

− %A(ξ)
∂2w(ξ, t)

∂t2
= 0, (1)

∂

∂ξ

(
EI(ξ)

∂φ(ξ, t)
∂ξ

)
+ κGA(ξ)

(∂w(ξ, t)
∂ξ

− φ(ξ, t)
)
− %I(ξ)

∂2φ(ξ, t)
∂t2

= 0, (2)

where ξ is the spatial variable, t is time, w (ξ, t) : [0, `] × [0,+∞) → R is the transverse
displacement, and φ (ξ, t) : [0, `]× [0,+∞) → R is the rotation of the beam section due to the
bending moment.

For a uniform beam with a homogenous material, Eqs. (1) and (2) can be decoupled as
follows:

∂4w(ξ, t)
∂ξ4

−
( %

E
+

%

κG

)∂4w(ξ, t)
∂ξ2∂t2

+
%2

κGE

∂4w(ξ, t)
∂t4

+
%A
EI

∂2w(ξ, t)
∂t2

= 0, (3)

∂4φ(ξ, t)
∂ξ4

−
( %

E
+

%

κG

)∂4φ(ξ, t)
∂ξ2∂t2

+
%2

κGE

∂4φ(ξ, t)
∂t4

+
%A
EI

∂2φ(ξ, t)
∂t2

= 0. (4)
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In order to solve these equations, it is supposed that there are harmonic solutions as
w(ξ, t) = W (ξ)eiωt and φ(ξ, t) = Φ(ξ)eiωt, in which W (ξ) : [0, `] → R and Φ(ξ) : [0, `] → R
are the eigenfunctions of the system satisfying both the governing equations and the boundary
conditions, ω is the eigenfrequency or the square root of the eigenvalue, and i is the imaginary
unit. Use the following definitions:

r2 , I
A , ζ , E

κG
, ω̂2 ,

√
%A
EI ω. (5)

Then, the problem of Eqs. (3) and (4) can be rearranged as boundary value problems,

d4W (ξ)
dξ4

+ (1 + ζ)r4ω̂4 d2W (ξ)
dξ2

+ (ζr4ω̂8 − ω̂4)W (ξ) = 0, (6)

d4Φ(ξ)
dξ4

+ (1 + ζ)r4ω̂4 d2Φ(ξ)
dξ2

+ (ζr4ω̂8 − ω̂4)Φ(ξ) = 0. (7)

The characteristic equations of Eqs. (6) and (7) contain four roots γ1, γ2, γ3, and γ4 as
follows:





γ1 = −ω̂

√
−

(1 + ζ

2

)
r2ω̂2 −

√(1− ζ

2

)2

r4ω̂4 + 1,

γ2 = ω̂

√
−

(1 + ζ

2

)
r2ω̂2 −

√(1− ζ

2

)2

r4ω̂4 + 1,

γ3 = −ω̂

√
−

(1 + ζ

2

)
r2ω̂2 +

√(1− ζ

2

)2

r4ω̂4 + 1,

γ4 = ω̂

√
−

(1 + ζ

2

)
r2ω̂2 +

√(1− ζ

2

)2

r4ω̂4 + 1.

(8)

Assume ω̂ 6= 0. It is obvious that γ1 and γ2 are the imaginary conjugate roots such that
using the definition

α , ω̂

√
(1 + ζ

2

)
r2ω̂2 +

√(1− ζ

2

)2

r4ω̂4 + 1, (9)

they can be described as γ1 = −iα and γ2 = +iα. However, in the case of γ3 and γ4, two
different situations are possible. If ω̂ < 1

r 4√ζ
, or ω <

√
κGA
%I , γ3 and γ4 become two real

symmetric roots such that using the definition

β , ω̂

√
−

(1 + ζ

2

)
r2ω̂2 +

√(1− ζ

2

)2

r4ω̂4 + 1, (10)

they can be expressed as γ3 = −β and γ4 = +β. In the case of ω >
√

κGA
%I , they become two

imaginary conjugate roots such that using the definition

β′ , ω̂

√
(1 + ζ

2

)
r2ω̂2 −

√(1− ζ

2

)2

r4ω̂4 + 1, (11)

they can be presented as γ3 = −iβ′ and γ4 = +iβ′. The cut-off frequency ω0 =
√

κGA
%I is

called the critical frequency[27], and higher eigenfrequencies of the system are known as the
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second spectrum of frequencies[19]. Therefore, for the case of ω <
√

κGA
%I , the eigenfunctions

are combinations of harmonic and hyperbolic functions such as
{

W (ξ) = C1 sin(αξ) + C2 cos(αξ) + C3 sinh(βξ) + C4 cosh(βξ),

Φ(ξ) = D1 sin(αξ) +D2 cos(αξ) +D3 sinh(βξ) +D4 cosh(βξ).
(12)

In the second spectrum, the eigenfunctions of the system are full-harmonic as follows[27]:
{

W ′(ξ) = C′1 sin(αξ) + C′2 cos(αξ) + C′3 sin(β′ξ) + C′4 cos(β′ξ),

Φ′(ξ) = D′1 sin(αξ) +D′2 cos(αξ) +D′3 sin(β′ξ) +D′4 cos(β′ξ).
(13)

Considering Eqs. (1) and (2), the definitions provided as follows:

λ1 , ζr2ω̂4 − α2

α
, λ2 , ζr2ω̂4 + β2

β
, λ′1 , ζr2ω̂4 − α2

α
, λ′2 , ζr2ω̂4 − β′2

β′
, (14)





A11 = − m0

%Aζr2ω̂4 sin(α`) + (α + λ1) cos(α`)− m0

%A
λ1

λ2
ζr2ω̂4 sinh(β`)

+ λ1

( β

λ2
− 1

)
cosh(β`),

A12 = − m0

%Aζr2ω̂4 cos(α`)− (α + λ1) sin(α`) +
m0

%Aζr2ω̂4 cosh(β`)− (β − λ2) sinh(β`),

A21 =λ1α sin(α`) +
J0

%Aλ1ω̂
4 cos(α`) + λ1β sinh(β`)− J0

%Aλ1ω̂
4 cosh(β`),

A22 =λ1α cos(α`)− J0

%Aλ1ω̂
4 sin(α`)− λ2β cosh(β`) +

J0

%Aλ2ω̂
4 sinh(β`),

A′11 = − m0

%Aζr2ω̂4 sin(α`) + (α + λ′1) cos(α`) +
m0

%A
λ′1
λ′2

ζr2ω̂4 sin(β′`)

− λ′1
( β′

λ′2
− 1

)
cos(β′`),

A′12 = − m0

%Aζr2ω̂4 cos(α`)− (α + λ′1) sin(α`) +
m0

%Aζr2ω̂4 cos(β′`) + (β′ + λ′2) sin(β′`),

A′21 =λ′1α sin(α`) +
J0

%Aλ′1ω̂
4 cos(α`)− λ′1β

′ sin(β′`)− J0

%Aλ′1ω̂
4 cos(β′`),

A′22 =λ′1α cos(α`)− J0

%Aλ′1ω̂
4 sin(α`)− λ′2β

′ cos(β′`) +
J0

%Aλ′2ω̂
4 sin(β′`),

(15)

the clamped boundary condition at ξ = 0, and a rigid tip mass m0 with the moment of inertia
J0 at ξ = `, the frequency equations of the system can be expressed as follows:

A11A22 − A12A21 = 0, (16)
A′11A

′
22 − A′12A

′
21 = 0. (17)

After solving the frequency equations, the nth natural frequency of the system can be
obtained as ωn, and using the subscript n for other related parameters, the eigenfunctions of
the first and second spectra of the system can be expressed as





Wn(ξ) = Cn

(
sin(αnξ)− A21n

A22n

cos(αnξ) +
λ1n

λ2n

sinh(βnξ) +
A21n

A22n

cosh(βnξ)
)
,

Φn(ξ) = Cn

(
− A21n

A22n

λ1n sin(αnξ)− λ1n cos(αnξ) +
A21n

A22n

λ2n sinh(βnξ)

+ λ1n
cosh(βnξ)

)
,

(18)
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where n = 1, 2, · · · ,N.




W ′
n(ξ) = C′n

(
sin(αnξ)− A′21n

A′22n

cos(αnξ)− λ′1n

λ′2n

sin(β′nξ) +
A′21n

A′22n

cos(β′nξ)
)
,

Φ′n(ξ) = C′n
(
− A′21n

A′22n

λ′1n
sin(αnξ)− λ′1n

cos(αnξ) +
A′21n

A′22n

λ′2n
sin(β′nξ)

+ λ′1n
cos(β′nξ)

)
,

(19)

where n = N + 1,N + 2, · · · . N is the number of elements in the set of the first spectrum of
frequencies, and ωN denotes the greatest natural frequency in this set.
2.2 Orthogonality of eigenfunctions

Consider a Timoshenko beam with the arbitrary axial mass and inertia distributions ofM(ξ)
and J (ξ), respectively. Timoshenko’s model for such a beam under no-loading conditions can
be expressed in a matrix form as follows:




∂

∂ξ

(
κGA(ξ)

∂(·)
∂ξ

) ∂

∂ξ
(κGA(ξ)(·))

κGA(ξ)
∂(·)
∂ξ

∂

∂ξ

(
EI(ξ)

∂(·)
∂ξ

)
− κGA(ξ)(·)




[
w(ξ, t)
φ(ξ, t)

]

−
[M(ξ) 0

0 J (ξ)

]



∂2w(ξ, t)
∂t2

∂2φ(ξ, t)
∂t2


 = 0. (20)

It is important to note that in Eq. (20), upon multiplying the first square matrix with the
subsequent vector, w(ξ, t) and φ(ξ, t) are replaced with the symbol (·).

Remark 1 The arbitrary distributions of axial mass and inertia addressed in Eq. (20) could
involve local concentrated mass and inertia. As an example, for a uniform homogeneous beam
clamped at ξ = 0, with an attached rigid body of mass m0 and inertia J0 at ξ = `, the mass
and inertia distributions can be expressed as M(ξ) = %A+m0δ(ξ−`) and J = %I+J0δ(ξ−`),
respectively, in which δ(ξ − `) refers to Dirac’s delta function at the point ξ = `.

Considering Eq. (20) and using separation of variables strategy, for any pair of distinct

vectors of eigenfunctions
[
Wm(ξ) Φm(ξ)

]T

and
[
Wn(ξ) Φn(ξ)

]T

, we can obtain

∫ `

0

[
Wm(ξ) Φm(ξ)

] [M(ξ) 0
0 J (ξ)

] [
Wn(ξ)
Φn(ξ)

]
dξ = 0. (21)

Equation (21) represents the first form of eigenfunction orthogonality of the Timoshenko
beam. The second form for m 6= n can be obtained as follows:

∫ `

0

[
Wm(ξ) Φm(ξ)

]



d
dξ

(
κGA(ξ)

d(·)
dξ

)
− d

dξ

(
κGA(ξ)(·)

)

κGA(ξ)
d(·)
dξ

d
dξ

(
EI(ξ)

d(·)
dξ

− κGA(ξ)(·)
)




×
[
Wn(ξ)
Φn(ξ)

]
dξ = 0. (22)

Remark 2 If the two coefficients Cn and C′n in Eqs. (18) and (19) are chosen such that the
relationship

∫ `

0

[
Wn(ξ) Φn(ξ)

] [M(ξ) 0
0 J (ξ)

] [
Wn(ξ)
Φn(ξ)

]
dξ = 1 (23)
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holds for any natural mode of the system, then the sequence of eigenfunction vectors [Wn(ξ)
Φn(ξ)]T (n = 1, 2, · · · ) will be an orthonormal set of eigenfunctions. In such a situation, for
n = m, we can obtain

∫ `

0

[
Wn(ξ) Φn(ξ)

]



d
dξ

(
κ(ξ)G(ξ)A(ξ)

d(·)
dξ

)
− d

dξ
(κ(ξ)G(ξ)A(ξ)(·))

κ(ξ)G(ξ)A(ξ)
d(·)
dξ

d
dξ

(E(ξ)I(ξ)
d(·)
dξ

− κ(ξ)G(ξ)A(ξ)(·))




×
[
Wn(ξ)
Φn(ξ)

]
dξ = −ω2

n. (24)

3 Dynamical modeling

3.1 Configuration and kinematics
Figure 1 illustrates a schematic configuration of a planar mobile single-link flexible manip-

ulator positioned on a horizontal plane. The system consists of a rigid carrier of mass mc,
restricted to translate in the plane without rotation under the action of horizontal and vertical
applying forces Fx(t) and Fy(t). A rotary motor of mass mm and shaft moment of inertia Jm

is also mounted on the rigid carrier. A torque τθ(t) is exerted on the output shaft of the motor,
which makes it rotate along with its clamped flexible Timoshenko arm. In order to manipulate
objects, an approximately dimensionless rigid end-effector of mass me and moment of inertia
Je is attached to the arm as a tip mass/inertia.

Two coordinate systems are utilized to describe the rigid body motion and flexible behavior,
i.e., an inertial reference frame “xOy” and a moving-rotating reference frame “IO′II”. The
moving-rotating reference frame, originating at the shaft center, follows all types of shaft motion.
It is evident that the beam section at ξ = 0 is always perpendicular to the I-axis of the moving-
rotating frame, and the transverse deformations of the beam are described with respect to this
axis. Suppose that the horizontal and vertical components of the carrier position are expressed
as xc(t) and yc(t), respectively. In that case, the acceleration of each point on the beam’s
neutral axis can be obtained as follows:

∂2r(ξ, t)
∂t2

= aI(ξ, t)eI + aII(ξ, t)eII, (25)

where eI and eII refer to the unit vectors in the I-, and II-directions, respectively, and aI and

 End-effector

Vibrating Timoshenko arm

Rigid carrier

Rotary motor

φ(ξ,t)

w(ξ,t)
θ(t)

τθ(t)

I

II ξ

Fy(t)

Fx(t)

x

y

O

O'
yc(t)

xc(t)

Fig. 1 Schematic configuration of a planar mobile single-link flexible manipulator (color online)
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aII can be calculated by

aI(ξ, t) = −w(ξ, t)θ̈(t)− 2θ̇(t)
∂w(ξ, t)

∂t
− ξθ̇2(t) + ẍc(t) cos(θ(t)) + ÿc(t) sin(θ(t)), (26)

aII(ξ, t) =
∂2w(ξ, t)

∂t2
+ ξθ̈(t)− w(ξ, t)θ̇2(t)− ẍc(t) sin(θ(t)) + ÿc(t) cos(θ(t)). (27)

3.2 Kinetics of flexible arm
A differential element of the Timoshenko beam of length dξ, axial mass distribution M(ξ),

and axial moment of inertia distribution J (ξ) under the action of axial force P (ξ, t), shear force
V (ξ, t), and bending moment M(ξ, t) is shown in Fig. 2. Using Newton’s second law and the
kinematics of the neutral axis represented in Eq. (27), the governing equation of motion for the
element in the transverse direction can be presented as[28]

∂

∂ξ

(
κ(ξ)G(ξ)A(ξ)

(∂w(ξ, t)
∂ξ

− φ(ξ, t)
))

−M(ξ)aII(ξ, t) = 0. (28)

For the rotation of the beam elements, using the Newton-Euler laws, we can obtain[28]

∂

∂ξ

(
EI(ξ)

∂φ(ξ, t)
∂ξ

)
+ κGA(ξ)

(∂w(ξ, t)
∂ξ

− φ(ξ, t)
)
− J (ξ)

(
θ̈(t) +

∂2φ(ξ, t)
∂t2

)
= 0. (29)

Finally, the governing equation for the axial direction can be obtained in an exact differential
form and solved as follows:

P (ξ, t) = P (0, t) +
∫ ξ

0

M(ξ)aI(ξ, t)dξ. (30)

w(ξ+dξ,t)

φ(ξ+dξ,t)

V(ξ+dξ,t)

P(ξ+dξ,t)M(ξ+dξ,t)

ξ+dξ

w(ξ,t)
I

II

P(ξ,t)

O'

θ(t)

φ(ξ,t)

ξ

M(ξ,t)

V(ξ,t)

Fig. 2 A differential element of the flexible Timoshenko arm in the moving-rotating reference frame
(color online)

3.3 Kinetics of rigid components
The free body diagrams (FBDs) of the carrier, motor, and arm are illustrated in Fig. 3.

According to Fig. 3, the governing equations of the rigid carrier and motor can be presented as

(mc + mm)ẍc(t) = P (0, t) cos(θ(t))− V (0, t) sin(θ(t)) + Fx(t), (31)
(mc + mm)ÿc(t) = P (0, t) sin(θ(t)) + V (0, t) sin(θ(t)) + Fy(t), (32)

Jmθ̈(t) = M(0, t) + τθ(t), (33)
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Fig. 3 FBDs of the rigid carrier, rotary motor, and flexible arm (color online)

where V (0, t) and M(0, t) can be calculated according to Timoshenko’s theory[28]. Additionally,
taking into account Eq. (30) and utilizing the boundary condition P (`, t) = 0, we can derive

P (0, t) = −
∫ `

0

M(ξ)aI(ξ, t)dξ. (34)

Remark 4 In this study, the transverse and bending deformations of the beam are taken
into account, while the axial deformation is neglected. Therefore, it can be concluded that
according to the axial rigidity of the beam, the assumption of rigid body dynamics holds true
in the axial direction. This means that “the net axial force acting on the arm in the axial
direction equals its mass times the axial acceleration of its mass center.” This expression can
be formulated as

P̃ (0, t) = −
( ∫ `

0

M(ξ)dξ
)
aI(χ, t), (35)

in which P̃ (0, t) refers to the axial force acting on the beam with the assumption of rigid
body dynamics, and χ is the axial component of the beam mass center in the moving-rotating
reference frame. However, it is crucial to note that while the beam is assumed to be rigid in the
axial direction, its axial acceleration does not contain only axial effects but also the effects of
transverse deformation. The improper use of P̃ (0, t) instead of P (0, t) can result in a significant
error in predicting the system’s behavior, which will be further discussed in the simulations.
3.4 Reduced-order modeling

In this study, the AMM approach is used to describe the vibrational behavior of the flexible
arm. In this regard, considering the eigenfunctions Wn(ξ) and Φn(ξ) (n = 1, 2, · · · ), it is
assumed that the elastic behavior of the beam is expandable as

w(ξ, t) =
∞∑

n=1

Wn(ξ)qn(t), φ(ξ, t) =
∞∑

n=1

Φn(ξ)qn(t), (36)

in which qn(t) is a time-dependent generalized coordinate.
According to the selected coordinates and degrees of freedom considered for the system, it

is clear that the clamped boundary condition rules at the point ξ = 0. If the mass and mass
moment of inertia of the end-effector are considered in the mass and inertia distribution as
M(ξ) = %A(ξ) + meδ(ξ − `) and J (ξ) = %I(ξ) + Jeδ(ξ − `), respectively, it can be concluded
that the arm is free at ξ = `.

Substituting Eq. (36) into Eq. (20) and applying the AMM approach with the consideration
of the orthogonality property, we can evaluate the flexible behavior of the system. This, along
with Eqs. (31)–(33), constitutes the assumed mode model for the planar mobile single-link
flexible Timoshenko manipulator.
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4 Simulation results, discussion, and verification

In this section, the numerical simulation results will be presented, and the performance and
accuracy of the proposed model will be examined. Commercial software (Student version of
ANSYS 2023R1 Mechanical APDL, Ansys Inc.) is utilized to check the FEM-based validity of
the model. In this regard, the arm can be modeled using the BEAM188 3-D 2-Node Timo-
shenko’s theory-based beam element, and the concentrated mass/inertia can be modeled using
the MASS21 structural mass element.

In the current simulations, it is assumed that the flexible arm has a uniform rectangular
cross section and is made of a homogeneous material. In this case, considering Poisson’s ratio of
the material ν, the shear correction factor κ for such a section can be calculated as follows[25]:

κ =
10(1 + ν)
12 + 11ν

. (37)

The physical, mechanical, and geometrical specifications of the system components, includ-
ing the flexible arm, carrier, motor, and end-effector, are listed in Table 1.

Table 1 Physical, mechanical, and geometrical specifications of the mobile single-link flexible ma-
nipulator

Symbol Description Value Unit

` Arm length 2 m
A Cross-sectional area (20× 10−3)× (20× 10−3) m2

I Cross-sectional area moment of inertia 1
12
× (20× 10−3)× (20× 10−3)3 m4

% Mass density of beam material 2 710 kg/m2

E Young’s modulus of beam material 70.5× 109 Pa
G Shear modulus of beam material 27× 109 Pa
ν Poisson’s ratio of beam material 0.31 –
κ Shear correction factor 0.85 –

mc Carrier mass 5 kg
mm Motor mass 5 kg
Jm Mass moment of inertia of motor shaft 2 kg ·m2

me Mass of end-effector 2 kg
Je Mass moment of inertia of end-effector 0.5 kg ·m2

4.1 Modal analysis
The natural frequencies of an arm clamped at one end with an attached mass/inertia at the

other are calculated analytically regarding the specifications listed in Table 1. To evaluate and
validate the resulting values, the natural frequencies of the mentioned system are also calculated
using the FEM, and the results of both methods are listed in Table 2 for the first five natural
frequencies. Table 2 indicates that there is a small error percentage for the calculated natural
frequencies.

Table 2 Comparison of the first five natural frequencies obtained from the analytical method accord-
ing to Eq. (16) and the FEM analysis in the commercial software ANSYS 2023R1 Mechanical
APDL

Mode number Analytical method/Hz FEM analysis/Hz Error/%

1 1.786 9 1.787 5 0.04
2 9.073 8 9.074 0 0.00
3 29.810 8 29.810 7 0.00
4 74.990 2 74.989 3 0.00
5 143.887 2 143.884 1 0.00

In the following, the orthonormal eigenfunctions are obtained using Eqs. (18) and compared
with the results using the FEM. The comparison of these results for the first six mode shapes
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is shown in Fig. 4 for transverse mode shapes and Fig. 5 for rotational mode shapes.
Remark 5 According to the relationship ω0 =

√
κGA
%I , a cut-off frequency value equal to

80 217 is obtained on the scale of Hz, which is considered very large concerning the first five
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natural frequencies. Considering both analytical (such as the mode superposition technique)
and approximate methods (such as the AMM), only a limited number of the first eigenfunctions
of the system are used. Therefore, the calculation of the eigenfunctions of the second spectrum
is not necessary.
4.2 Transient analysis

The transient analysis of the system under the effect of external loads is carried out for
further evaluation. It is assumed that the system is initially at rest, and its other initial
conditions are in accord with the data in Table 3. Also, external loadings are considered in a
harmonic form, and their patterns are presented in Table 4. For comparison, an FEM analysis
with a mesh size of 1 cm for the elastic arm has been carried out using the commercial software
ANSYS 2023R1 Mechanical APDL.

Table 3 Position-related initial conditions of the system considered in the transient analysis, where
the system is assumed to be at rest at the beginning of the motion

Initial condition Description Value Unit

xc(0) Horizontal position of the carrier at the beginning 0 m
yc(0) Vertical position of the carrier at the beginning 0 m
θ(0) Angular position of the shaft at the beginning 45 deg

w(ξ, 0) Initial transverse deflection of the arm 0 m
φ(ξ, 0) Initial rotation of the beam sections due to bending 0 rad

Table 4 Specification of the external harmonic loadings applied to the system

External excitation Amplitude Frequency/Hz Pattern Unit

Fx(t) 5 2 5 sin(4πt) N
Fy(t) 5 3 5 sin(6πt) N
τθ(t) 5 4 5 sin(8πt) N ·m

The time histories of the horizontal, vertical, and angular positions of different system points
are shown in Figs. 6–8, respectively. In each figure, the segment (a) belongs to the response
of the system at ξ = 0, which represents the location of the carrier, the motor, and the initial
section of the elastic arm. The segments (b), (c), and (d) are related to ξ = `

4 , ξ = `
2 , and

ξ = 3`
4 , respectively, and the segment (e) shows the behavior of the system at ξ = `, which

corresponds to the end section of the arm and the end-effector. By examining Figs. 6–8 and
comparing the results with the FEM, one can understand the high accuracy of the extracted
model of the system.

In addition to the general in-plane motion, the elastic deformations of the system, including
the transverse deflection of Timoshenko’s arm and the rotation of its sections due to bending, are
studied. The results are presented in Figs. 9 and 10, respectively. In each figure, the segments
(a), (b), and (c) belong to ξ = `

4 , ξ = `
2 , and 3`

4 , respectively, and the segment (d) belongs to
the end section ξ = `, which represents the location of the end-effector. Figures 9 and 10 show
that the proposed model is capable of highly accurate predictions, not only for the general rigid
body motion of the system but also for its elastic behavior. Additionally, as illustrated in Fig. 9,
the elastic arm undergoes a relatively large transverse deformation compared with its length,
such that according to Fig. 9(d), the deflection amount in ξ = ` reaches about approximately
80mm. However, according to Fig. 10, the rotation of the sections remains less than 4.5 degrees.
Despite the large lateral deformations, the linearity assumption for the elastic behavior of the
arm is always valid.

The error analyses for the horizontal, vertical, and angular positions of different points
are shown in Figs. 11(a), 11(b), and 11(c), respectively. According to these figures, it can be
seen that the proposed model shows a comparatively small error compared with the FEM.
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Specifically, according to Fig. 11(a), the error for the horizontal position is less than 0.08%. In
addition, according to Figs. 11(b) and 11(c), the errors for the vertical and angular positions
are both maintained below 0.15%.
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4.3 Number of assumed mode
To assess the effect of the number of assumed modes N on the accuracy of the results, a

series of simulations with 1 to 7 modes are performed. Figure 12 shows the time histories of
the error of horizontal, vertical, and angular positions of ξ = `

4 , ξ = `
2 , and ξ = ` with respect

to the FEM analysis. According to this figure, the error generally decreases as the number of
modes increases. To achieve an error less than 3% in all situations, it is sufficient to use only
the first three assumed modes. In fact, by solving a third-order problem based on the proposed
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model, it is possible to predict the elastic behavior of the system with an error less than 3%
when compared with a 200th-order finite element model.
4.4 Study on rigid body dynamics assumption

As discussed in Remark 4, despite the rigidity of the arm in the axial direction, due to
the transverse elasticity of the beam, modeling errors can occur when describing the axial
reaction concerning Eq. (35). The system response considering Eq. (35) is shown in Fig. 13. The
horizontal, vertical, and angular positions of the system at ξ = 0 are depicted in Figs. 13(a),
13(b), and 13(c), respectively, while the transverse displacement and rotation of the section due
to bending at ξ = ` are shown in Figs. 13(d) and 13(e), respectively. As shown in the figure,
although the use of Eq. (35) for modeling does not seriously affect the angular position and
elastic deformations, it results in a significant error in the horizontal and vertical positions of
the system.

5 Conclusions

The main objective of this study is to propose an accurate model for a nonlinearly vibrating
mobile single-link manipulator with a Timoshenko arm. In this manner, the AMM approach
is considered to solve the model after obtaining a hybrid PDE-ODE model of the system using
Newton’s second law. The natural mode shapes of a clamped Timoshenko beam with an
attached tip mass/inertia are used as assumed modes of the nonlinear system to improve the
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accuracy. Then, the transient analysis of the system under the action of external excitations is
performed to evaluate the validity of the extracted model. The FEM analysis using commercial
software is conducted to validate the proposed model, and the results are compared. The results
illustrate that a high-accuracy model of the system can be obtained at a lower computational
cost compared with the FEM using a limited number of assumed modes. Additionally, the effect
of transverse deformations on the axial behavior of the arm is first discussed theoretically and
then confirmed using appropriate numerical simulations. Despite the axial rigidity, the rigid
body dynamics assumption in the axial direction is not valid, and leads to significant modeling
errors.
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