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Abstract A two-degree-of-freedom (2DOF) vibration isolation structure with an inte-
grated geometric nonlinear inerter (NI) device is proposed. The device is integrated into
an inertial nonlinear energy sink (INES), and its vibration suppression performance is ex-
amined by the Runge-Kutta (RK) method and verified by the harmonic balance method
(HBM). The new isolator is compared with a traditional vibration isolator. The results
show a significant improvement in the vibration suppression performance. To investigate
the effects of the excitation amplitude and initial condition on the dynamics of the sys-
tem, a series of transmissibility-frequency response analyses are performed based on the
displacement transmissibility. The energy flow of the system is analyzed, and numerous
calculations reveal a series of ideal values for the energy sink in the NI-INES system. This
study provides new insights for the design of vibration isolators.
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1 Introduction

Vibration isolators are widely used in the field of engineering. Vibrations are harmful to
the human body[1]. When the vibration frequency is close to the frequency of human organs, it
can cause discomfort in the body. Therefore, vibration isolation[2–4] technology plays a crucial
role in ensuring comfort and safety. Housner et al.[5] and Tigli[6] formed a tuned mass damper
(TMD) for improved vibration suppression by adding damping to the additional mass. However,
the effective working bandwidth of the TMD is narrow. Igusa and Xu[7] and Zuo and Nayfeh[8]

expanded the working bandwidth of linear vibration isolators by increasing the number of
TMDs to form multiple TMDs, which improved the reliability of isolators and expanded their
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applications. In addition, Nagashima and Shinozaki[9] and Loh and Lin[10] studied active tuned
mass dampers (ATMDs). All of the studies mentioned above focused on linear isolators[11].

Carrella et al.[12] proposed that linear vibration isolators had a limited bandwidth for effec-
tive vibration isolation. The effectiveness of a vibration isolator in reducing vibrations decreases
when strong nonlinear vibrations occur. To address this issue, Roberson[13] proposed incorpo-
rating nonlinear devices into linear vibration isolators. At present, the two most effective types
of nonlinear isolators are quasi-zero stiffness isolators[14–15] and isolators with nonlinear en-
ergy sinks (NESs)[16–19]. Lu et al.[20–21] introduced a two-stage nonlinear vibration isolator
that had superior isolation performance compared with linear isolator. In the NES, energy
could be pumped unidirectionally into additional structures[22–24]. Zang et al.[25] introduced a
lever structure, which achieved a good vibration suppression effect even with a small additional
mass. Geng et al.[26] improved the energy absorption capacity of NES by using a piecewise
spring device. Dang et al.[27] proposed a more efficient vibration reducer, which used the uni-
directional force from ropes to make energy irreversibly flow into energy sinks. Savadkoohi et
al.[28], Lamarque et al.[29], and Georgiadis et al.[30] proposed a non-smooth NES, and studied
the target energy transfer (TET). Presently, nonlinear vibration isolators are used in various
engineering fields such as construction[31–33], machine tools[34–35], aircrafts[36–38], pipelines[39],
flywheels[40], beams[41–42], and energy harvesting[43–47].

Smith[48] proposed the concept of inerter, which was an inertial component that could pro-
vide large inertia with a small mass. Lazar et al.[49] proposed the use of an inerter-based device
to reduce the vibration in civil engineering structures. Kuhnert et al.[50] reviewed the history
of inerter’s development. This type of inerter, such as ballscrew[51] and fluid[52] inerters, is
important for the weight reduction of the vibration isolator. Zhang et al.[53] proposed to use
an inerter instead of mass in the NES, and the present paper is also inspired by their work.
In the field of nonlinear dynamics[54], nonlinear inerters (NIs) are also gaining attention. With
reference to the nonlinear damping arrangement proposed in Ref. [55], inerters can also adopt
similar arrangements. Moraes et al.[56] and Yang et al.[57] found that NIs might have a bene-
ficial effect on high-frequency systems and could soften the stiffness. Dang et al.[58] proposed
a dual-stage inerter-enhanced NES. Dong et al.[59] developed a joint device with an NI. In
Ref. [60], the authors proposed the idea of placing the inerter in a quadrilateral structure, and
an NI arrangement is also utilized in this paper.

The NI-inertial nonlinear energy sink (INES) uses an inerter instead of the mass element
in the traditional NES structure and a geometric NI integrated into the inertial nonlinear
energy sink for superior vibration isolation. This paper is organized as follows. In Section 2, a
schematic diagram of the proposed structure is presented, and a dynamic model is developed.
In Section 3, numerical simulations with the Runge-Kutta (RK) method are validated against
the harmonic balance method (HBM), demonstrating the accuracy of the results. In Section 4,
the vibration suppression performance of the proposed system is evaluated, and multiple sets of
data are subjected to the dynamic analysis. In Section 5, the absorption efficiency of the energy
sink in the vibration suppression system is investigated, and the optimal parameter range is
provided. Finally, the obtained conclusions are presented in Section 6.

2 NI-INES system and modeling

The NI-INES is presented in Fig. 1(a). The spring k1 and the damping c1 connect the
primary mass M to the ground. Below the main mass, the damping c2 and the nonlinear stiffness
k2 are linked to three inerters by a T-shaped mechanism. The inerter has an inertia coefficient
b, with one end attached to the T-shaped mechanism and the other end grounded. The other
pair of inerters are horizontally arranged, with one end connected to the T-shaped mechanism
and the other end connected separately to the main mass, and their inertia coefficients are b/2.
The horizontally arranged inerters are shown in Fig. 1(b).
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Fig. 1 (a) NI-INES system and (b) NI model (color online)

The NI is subjected to a force analysis. As it is shown in Fig. 1(b), the two terminals of
inerters are connected by a hinge, while the other two ends are fixed. The force in the vertical
direction is F = 2f sin θ, and the force along the inerter direction is

f =
b

2
d(ẋ sin θ)

dτ
=

b

2

(
ẍ sin θ +

ẋ2L2

(L2 + x2)(
√

L2 + x2)

)
,

where
sin θ =

x√
L2 + x2

.

Substituting each component into the F equation yields

F = b
( x2ẍ

L2 + x2
+

L2xẋ2

(L2 + x2)2
)
. (1)

The Taylor expansion at x = 0 yields

F = b
(x2ẍ

L2
+ ẋ2x

( 1
L2

− 2x2

L4

))
. (2)

The dynamic equations of the NI-INES system are shown as follows:

mẍ1 = −k1(x1 − xe)− c1(ẋ1 − ẋe)− k2(x1 − x2)3

− c2(ẋ1 − ẋ2)− b
(
(ẍ1 − ẍ2)

(x1 − x2)2

L2

+ (ẋ1 − ẋ2)2(x1 − x2)
( 1

L2
− 2(x1 − x2)2

L4

))
, (3)

b(ẍ2 − ẍe) = k2(x1 − x2)3 + c2(ẋ1 − ẋ2) + b
(
(ẍ1 − ẍ2)

(x1 − x2)2

L2

+ (ẋ1 − ẋ2)2(x1 − x2)
( 1

L2
− 2(x1 − x2)2

L4

))
. (4)

The dimensionless equations can be derived as follows:

ẍ1 = −(x1 − xe)− 2ζ1(ẋ1 − ẋe)− κ(x1 − x2)3 − 2ζ2(ẋ1 − ẋ2)

− µ
(
(ẍ1 − ẍ2)

(x1 − x2)2

L2
+ (ẋ1 − ẋ2)2(x1 − x2)

( 1
L2

− 2(x1 − x2)2

L4

))
, (5)
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ẍ2 = ẍe +
κ

µ
(x1 − x2)3 +

2ζ2

µ
(ẋ1 − ẋ2)

+
(
(ẍ1 − ẍ2)

(x1 − x2)2

L2
+ (ẋ1 − ẋ2)2(x1 − x2)

( 1
L2

− 2(x1 − x2)2

L4

))
, (6)

where




ω0 =

√
k1

m
, ζ1 =

c1

2mω0
, ζ2 =

c2

2mω0
, κ =

k2

k1
,

µ =
b

m
, Ω =

ω

ω0
, t = ω0τ, T =

RMS(x)
RMS(A)

.

In the above equations, ω0 is the natural frequency of the main mass, ζ is the damping ratio,
κ is the stiffness ratio, µ is the ratio of the inertial coefficient to the main mass, Ω is the ratio
of the excitation frequency to the natural frequency, and t is the non-dimensional time. T is
the ratio of the root mean square displacement RMS(x) to the root mean square input RMS(A),
which is defined as transmissibility.

3 Analytical method and numerical validation

The first-order HBM is used in this analysis with an external excitation of xe = A cos(Ωt).
Assumptions are made about the solutions for x1 and x2 as follows:

x1 = a1 cos(Ωt) + b1 sin(Ωt), x2 = a2 cos(Ωt) + b2 sin(Ωt). (7)

Substitute Eq. (7) into Eqs. (5) and (6). The two equations are treated with a trigonometric
transformation that preserves the first harmonic term in both equations.





F1(a1, b1, a2, b2,Ω) cos(Ωt) + F2(a1, b1, a2, b2,Ω) sin(Ωt) = 0,

F3(a1, b1, a2, b2,Ω) cos(Ωt) + F4(a1, b1, a2, b2,Ω) sin(Ωt) = 0,

F (a1, b1, a2, b2,Ω) = (F1, F2, F3, F4)T = 0.

(8)

Next, we solve the equations by the pseudo-arc-length continuation method. The displace-
ment amplitude is expressed as

Ax1 =
√

a2
1 + b2

1, Ax2 =
√

a2
2 + b2

2, (9)

and the results are verified with the RK method. The parameters used in the analysis are based
on Ref. [49], and are shown in Table 1. The calculation results of the first two sets of parameters
show that the analytical and numerical solutions of the x1 and x2 transmissibility-frequency
curves are in good agreement. The rightward bending of the displacement transmissibility-
frequency curve observed in Fig. 2(c) is a characteristic feature of nonlinear systems known as
stiffness hardening.

Table 1 The first group of parameters

Parameter ζ1 ζ2 κ µ A L

Figures 2(a) and 2(b) 0.007 3 0.025 9 71 0.1 0.002 5 0.1

Figures 2(c) and 2(d) 0.007 3 0.025 9 110 1 0.005 0.5
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Fig. 2 Comparison of results obtained by the HBM and the RK method with the parameters listed in
Table 1: (a) and (c) magnitudes of the relative transmissibility of x1; (b) and (d) magnitudes
of the relative transmissibility of x2 (color online)

4 Vibration isolation performance and dynamic analysis

To verify the vibration suppression performance of the NI-INES, a comparison is made with
a single-degree-of-freedom (SDOF) passive isolator of the same primary mass as the NI-INES.
The system parameters are shown in Table 2.

Table 2 The second group of parameters

Parameter ζ1 ζ2 κ µ A L

Value 0.007 3 0.025 9 110 0.1 0.002 5 0.1

Figure 3 shows the results of the the transmissibility-frequency responses and time-displacement
curves in different systems and the wavelet transform spectrum of the NI-INES with the pa-
rameters listed in Table 2. From Fig. 3(a), it can be seen that the vibration near the resonance
frequency of the system is effectively reduced. This can also be seen in Fig. 3(b), where the dif-
ference in the amplitude between the SDOF passive isolator and the NI-INES system becomes
more pronounced as time increases when the excitation frequency of the external force is the
same as the natural frequency of the system. Eventually, the vibration of the NI-INES system
reaches a steady state, and is quasi-periodic, enhancing the energy dissipation of the INES.
The wavelet transform spectrum of the NI-INES system is shown in Fig. 3(c), which reveals
the dominant frequency of vibration. Overall, the system exhibits good vibration suppression
performance. The non-dimensional equation of the SDOF passive isolator is as follows:

ẍ1 = −(x1 − xe)− 2ζ1(ẋ1 − ẋe). (10)
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Fig. 3 (a) Comparison of the transmissibility-frequency responses in different systems. (b) Time-
displacement curves in different systems, where the blue-green line and grayish blue line
represent the SDOF and NI-INES, respectively. (c) Wavelet transform spectrum of the NI-
INES (color online)

Based on Table 2, the NI-INES system is studied, and the obtained results are shown in
Fig. 4. Figure 4(a) shows that the peak of the displacement transmissibility gradually decreases
with the increase in the main structure damping, which is consistent with our expectations.
Figure 4(b) shows that the peak of the displacement transmissibility gradually increases with
the increase in ζ2, which is opposite to the case of ζ1 that we have discussed. For the INES
damping, bigger is not always better. It can be seen from Fig. 4(b) that the resonance peak of the
system near the intrinsic frequency bends downward when ζ2 = 0.017, and the dynamic behavior
becomes more complicated and the displacement transmissibility-frequency graph undergoes the
knotting phenomenon when ζ2 is further reduced to 0.01. Meanwhile, the system transitions
from the steady state to the unstable state. The formation of a knot indicates that the vibrating
system is in a non-stationary state, and any small change in its state may lead to an extreme
response when the system is very sensitive to the changes in the parameters. Figure 4(c)
shows that the displacement transmissibility-frequency response curve of the system shows a
decreasing trend when the stiffness ratio increases. When κ increases to 300, the system has a
sharp peak near Ω = 0.925 and a protruding peak on the right side near Ω = 0.9. Meanwhile,
the system is in an unstable state, and the resonance peak shows a tendency to move to the left
when the stiffness ratio increases. In Fig. 4(d), when the inertia coefficient of the inerter is very
small, e.g., µ = 0.01, the system is close to the SDOF passive isolator, and the INES loses the
role of energy absorption. When µ = 0.1, the system has the best vibration suppression effect.
With the increase in µ, the vibration suppression effect of the system decreases, indicating
that there is an optimal value of the ratio of the inertia coefficient to the main mass of the
system. After obtaining a larger value of µ, the inertia coefficient is several times larger than
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the main mass. Although the inertia coefficient is larger, the total mass is still smaller owing to
the characteristics of the inertia vessel itself. When µ = 10, we can see that the displacement
transmissibility-frequency response curve bends to the left, and the resonance region is more
significantly suppressed. In Fig. 4(e), as the excitation amplitude A increases, the displacement
transmissibility-frequency response curve shows the same trend as in Fig. 4(c). Initially, as the
excitation amplitude A increases, the displacement transmissibility-frequency response curve
gradually decreases. When A = 0.004, the system undergoes a sudden mutation near Ω = 0.925,
and the displacement transmissibility increases significantly. At this time, the system is in an
unstable state. As the excitation amplitude A increases, the resonance peak gradually moves
to the left.
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Fig. 4 Transmissibility-frequency responses under fixed parameters in Table 2 except variable ζ1 (a),
variable ζ2 (b), variable κ (c), variable µ (d), and variable A (e) (color online)

From Fig. 4(d), it can be seen that when µ is taken to be larger, there is an interesting
phenomenon that the displacement transmissibility-frequency curve bends to the left. To con-
duct a parametric study of the NI-INES system with different parameters, µ is set to 15, while
the other parameters remain the same as in Table 2. In Fig. 5(a), when the damping of the
primary mass is small, the displacement transmissibility-frequency curve bends to the left, and
knotting occurs. The vibration suppression effect is not outstanding at this time, but as the
damping is further increased, the vibration suppression effect gradually strengthens and the
knotting phenomenon disappears. The peak of the curve is not at the natural frequency of the
system, but on its left side. When ζ1 is 0.3, the value of the displacement transmissibility ratio
is less than 2, indicating a good vibration suppression effect. In Fig. 5(b), as the damping of
the INES increases, the displacement transmissibility-frequency curve shows a similar situation
to that in Fig. 5(a). When the damping is small, the curve bends to the left, and knotting
occurs around Ω = 0.8. As ζ2 increases, the peak gradually decreases. When ζ2 is 0.1, the
knotting phenomenon disappears, and the system tends to be stable. Figure 5(c) explores the
effect of stiffness on the system. It can be seen from the figure that as the nonlinear stiffness
increases, the peak of the displacement transmissibility-frequency curve gradually increases,
and the system’s resonance peak moves from the left of the natural frequency to the right. The
knotting node gradually moves to the right, and the knotting ring shrinks. Figure 5(d) shows
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that the main reason for the leftward bending of the displacement transmissibility-frequency
curve is the value of µ. The larger the value of µ is, the greater the curvature of the curve
moves to the left, and the more knotting occurs. In Fig. 5(e), as the excitation amplitude A
increases, the peak of the curve gradually moves to the right and decreases. When A is 0.03,
the peak of the curve rises, and a larger knotting ring is produced. It can be noted that near
the natural frequency, the displacement transmission ratio is less than 1, and near Ω = 0.13,
the displacement transmission ratio is close to 0, indicating that most of the internal energy of
the system is dissipated by damping and that there is only a small amount of kinetic energy at
the primary mass.
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Fig. 5 Transmissibility-frequency responses under fixed parameters in Table 2 except µ = 15 and
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µ = 15 and variable A (e) (color online)

Then, more complex dynamical phenomena are investigated, where parameters listed in
Table 2 are adopted except µ = 1 and L = 0.5, and the results are shown in Figs. 6–8. Figure 6
shows the bifurcation diagram of the main structure with respect to the excitation A, Fig. 7
shows the time domain plots and the amplitude spectra, and Fig. 8 shows the phase portraits
and the Poincaré maps. In Figs. 6–8, the initial perturbations ∆x1(0), ∆x2(0), ∆ẋ1(0), and
∆ẋ2(0) are 0 at the moment t = 0 unless otherwise states.

0.20

0.15

0.10

0.05

0.00

−0.05

−0.10

−0.15

x
1

0.00 0.02 0.04
A

0.06 0.08 0.10

Fig. 6 Global bifurcation chart with external excitation (color online)



Geometrically nonlinear inerter for vibration suppression 1879

0.03

0.02

0.01

0.00

0.01

0.02

0.03

x
1

(a) Time history, A  =0.002 5
t

0.030

0.025

0.020

0.015

0.010

0.005

0 1 2 3 4

A
m

p
li
tu

d
e

(b) Amplitude spectrum, A =0.002 5
Ω

0.06

0.04

0.02

0.00

0.02

0.04

0.06

x
1

(c) Time history, A =0.014
t

0.06

0.05

0.04

0.03

0.02

0.01

0

A
m

p
li
tu

d
e

1 2 3 4

(d) Amplitude spectrum, A  =0.014
Ω

0.15

0.10

0.05

0.00

0.05

0.10

0.15

x
1

(e) Time history, A =0.04
t

0.06

0.04

0.02

0

A
m

p
li
tu

d
e

1 2

(f) Amplitude spectrum, A =0.04
Ω

3 4

0.15

0.10

0.05

0.00

0.05

0.10

0.15

x
1

(g) Time history, A =0.084
t

0.12

0.10

0.08

0.06

0.04

0.02

0 1

A
m

p
li
tu

d
e

2 3 4

(h) Amplitude spectrum, A =0.084
Ω

0.02

0.01

0.00

0.01

0.02

x
1

2 000 2 100 2 200 2 300 2 400 2 500

2 000 2 100 2 200 2 300 2 400 2 500

2 000 2 100 2 200 2 300 2 400 2 500

2 000 2 100 2 200 2 300 2 400 2 500

2 000 2 100 2 200 2 300 2 400 2 500

(i) Time history, A =0.002 5, ∆x1(0) =0.096
t

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0 1

A
m

p
li
tu

d
e

2 3

(j) Amplitude spectrum, A =0.002 5, ∆x1(0) =0.096
Ω

4

Fig. 7 Results of the time history and amplitude spectrum under different parameters (color online)



1880 Yuyang SONG, Liqun CHEN, and Tianzhi YANG

0.03

0.02

0.01

0.00

0.01

0.02

0.03 0.01 0.01 0.03

(a)  Phase portrait, A=0.002 5
x1 x1

0.030

0.025

0.020

0.015

0.010
0.03 0.02 0.01

(b) Poincaré map, A=0.002 5
0.06

0.04

0.02

0.00

0.02

0.04

0.06 0.02 0.02 0.06

(c) Phase portrait, A =0.014

0.052

0.050

0.048

0.046

0.044
0.03 0.02 0.01 0.00 0.01

(d) Poincaré map, A =0.014
x1x1

0.15

0.10

0.05

0.00

0.05

0.10

(e) Phase portrait, A =0.04

x1

0.15

0.10

0.05

0.00

0.05
0.05

(f) Poincaré map, A =0.04

x1

0.00 0.05

0.10

0.05

0.00

0.05

0.10
0.15 0.05

(g) Phase portrait, A=0.084 
x1 x1

0.05 0.15

0.14

0.12

0.10

0.08

0.06

0.04

0.02 0.01 0.00 0.01

(h) Poincaré map, A=0.084
0.015

0.010

0.005

0.000

0.005

0.010

0.015

(i) Phase portrait, A =0.002 5, ∆x1(0) =0.096 

0.04

0.03

0.02

0.01

0.00

0.01

0.02
0.020.04

(j) Poincaré map, A =0.002 5, ∆x1(0)=0.096
x1x1

0.00 0.020.02 0.01 0.00 0.020.01

0.15 0.05 0.05 0.15

x
1

x
1

x
1

x
1

x
1

x
1

x
1

x
1

x
1

x
1

Fig. 8 Results of the phase portrait and Poincaré map under different parameters (color online)
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From Fig. 6, it can be seen that the system is stable when the excitation amplitude is
small, and the stability of the system changes as the excitation amplitude A increases. Figures
7 and 8 show that the system exhibits a steady periodic motion with a main frequency of
1 when A = 0.002 5, transitions from a steady periodic motion to a chaotic motion when
A = 0.014 (indicating bifurcation behavior), and exhibits a more apparent chaotic motion when
A = 0.04. From Fig. 7, it can also be seen that there is a strongly modulated response, and the
system’s vibration exhibits more frequency superposition. The complexity of the motion can
also be observed from the phase portrait (see Fig. 8). This vibration mode is more conducive to
dissipating damping energy and improving system efficiency. When the excitation amplitude
further increases, e.g., A = 0.084, the system transitions back from chaotic motion to steady
periodic motion. Comparing Figs. 7(a), 7(b), 8(a), and 8(b) with Figs. 7(i), 7(j), 8(i), and 8(j),
we can note that a perturbation of ∆x1(0) = 0.096 added to the mass causes the system to
transition from a steady periodic motion to a quasi-periodic motion, which is a characteristic
instability of nonlinear systems. This indicates that small differences in the initial conditions
can lead to large-scale differences in the results.

5 Energy analysis

The analysis of energy flow plays a crucial role in vibration isolation systems. By changing
the system parameters, the optimal value of energy absorption by the energy sink in the NI-
INES system can be investigated. The energy existing in the main structure will also be greatly
reduced when the majority of the damping in the energy sink is dissipated, which will improve
the vibration suppression effect. The following formula can be used to describe energy:

Win = T1 + V1 + W1 + V2 + W2 + Wb1 + Wb2, (11)

where Win represents the energy possessed by the NI-INES system at a certain moment. T1

refers to the kinetic energy of the main mass, V1 is the potential energy of the main structure
spring, and W1 is the energy consumed by the main structure damping. Similarly, V2 and W2

are the spring potential energy and the damping energy consumed by the INES, respectively.
Wb1 represents the energy of the two horizontally arranged NIs, while Wb2 is the energy of the
vertically arranged inerter. Inerters are not energy dissipating components, so they can only
temporarily store energy. The expressions for each part are shown as follows:





T1 =
1
2
ẋ2

1, V1 =
1
2
(x1 −A cos(Ωt))2, W1 =

∫ t

0

ζ1(ẋ1 + ΩA sin(Ωt))2dt,

V2 =
1
4
k(x2 − x1)4, W2 =

∫ t

0

ζ2(ẋ2 − ẋ1)2dt,

Wb1 =
1
2
µ(ẋ2 − ẋ1)2

(x2 − x1)2

L2 + (x2 − x1)2
, Wb2 =

1
2
µ(ẋ2 − ẋ1)2.

(12)

In order to investigate the absorption capability of the additional structural energy sink, we
define the absorption efficiency of the energy sink as

η =
W2

Win
× 100%,

where Win represents the input energy. The three-dimensional and two-dimensional plots in
Fig. 9 are calculated by using the parameters listed in Table 2. From Fig. 9(a), it can be seen
that the damping dissipation energy of the INES changes significantly with both the inertia
ratio µ and the excitation amplitude A. However, it can be observed that the INES exhibits a
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Fig. 9 Diagrams of energy absorbed in the INES under fixed parameters in Table 2 except variable
µ and A (a), variable κ and A (b), and variable ζ1 and ζ2 (c) (color online)

good energy absorption efficiency when µ is small and within a given range of A, which greatly
reduces the energy present in the main structure and plays a role in absorbing vibrations. As µ
increases, the energy absorption efficiency decreases, and a wavy pattern appears. In some blue
regions, the efficiency of the energy sink is very low. In Fig. 9(b), the areas with good energy
absorption are mainly distributed along the diagonal line. The efficiency η in most regions
is above 80%, which is related to the small values of µ in Table 2 and is consistent with the
phenomenon in Fig. 9(a). In Fig. 9(c), the areas with good performance are concentrated in
the direction where ζ1 and ζ2 are small. As ζ1 and ζ2 increase, η decreases along the sloping
direction. Therefore, it is not better to take a larger value of damping, and there should be a
more reasonable range.

It can be seen from Fig. 9 that the value of µ has a large effect on the effect of energy
absorption in the energy sink. Based on the parameters in Table 2, a multiparametric analysis
is performed under the condition where µ = 1, A = 0.005, L = 0.5, and the rest of the
parameters are consistent with those in Fig. 9. In Fig. 10(a), it can be seen that when µ is
small, there is a peak in the range of 0–5. Initially, as µ increases, the energy absorption
efficiency of the energy sink rises rapidly from about 10% to about 90% and then decreases
slowly. When the value of µ is larger, the energy absorption efficiency of the energy sink stays
at a low level. It can be seen that there is an optimal value of µ for this set of parameters. In
Fig. 10(b), when the excitation amplitude A takes a small value, it can be seen that the energy
absorption efficiency is below 70%. With the increase in A and the change in κ, the fluctuation
of the energy absorption rate is more complicated, and the overall maintains at about 80%.
However, there are some blue points in the distribution with lower absorption efficiency. From
Fig. 10(b), it can also be seen that there is also a more stable semi-ring-shaped region for the
energy absorption rate. In Fig. 10(c), it can be seen that the absorption efficiency of the energy
sink is good when ζ1 is small and ζ2 is large. As ζ1 increases while ζ2 decreases, the energy
absorption rate decreases along the slope direction. It can be found that the energy absorption
rate is lower when ζ2 is small, regardless of the value of ζ1.

6 Conclusions

This paper proposes a new isolator, i.e., NI-INES. The movement of the vibration isolator
is predicted by using the RK method and the HBM. The vibration suppression of the system
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is evaluated by using the displacement transmissibility, and is compared with a conventional
SDOF vibration suppression device. A better vibration suppression effect can be seen from the
transmissibility-frequency response plot and the time-domain plot. By changing the parameters
of the system, multiple sets of transmissibility-frequency response analyses are performed on
the system. It can be seen that when the coefficient of the inerter is taken to be larger, the
phenomenon of softening stiffness occurs, and the curve bends toward the low frequency region.
At the intrinsic frequency of the system, the effect of the excitation amplitude on the dynamics
of the system is investigated. As the excitation amplitude increases, the vibration of the main
structure changes from steady-state periodic motion to chaotic motion, and bifurcation behavior
is expected to occur. The system is very sensitive to the initial conditions, which is an important
sign of a nonlinear system. Finally, several sets of energy analyses on the system parameters
are carried out to investigate the efficiency of the INES in absorbing energy and to give better
parameter intervals. To summarize the results of this paper, the complex dynamical behavior
of the new NI-INES structure is investigated, and the preferred parameter interval for energy
absorption in NESs is analyzed from the energy point of view. This study provides new insights
into the design of vibration isolation.
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