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Abstract The harmonic balance method (HBM) is one of the most widely used meth-
ods in solving nonlinear vibration problems, and its accuracy and computational efficiency
largely depend on the number of the harmonics selected. The adaptive harmonic balance
(AHB) method is an improved HBM method. This paper presents a modified AHB
method with the asymptotic harmonic selection (AHS) procedure. This new harmonic
selection procedure selects harmonics from the frequency spectra of nonlinear terms in-
stead of estimating the contribution of each harmonic to the whole nonlinear response, by
which the additional calculation is avoided. A modified continuation method is proposed
to deal with the variable size of nonlinear algebraic equations at different values of path
parameters, and then all solution branches of the amplitude-frequency response are ob-
tained. Numerical experiments are carried out to verify the performance of the AHB-AHS
method. Five typical nonlinear dynamic equations with different types of nonlinearities
and excitations are chosen as the illustrative examples. Compared with the classical HBM
and Runge-Kutta methods, the proposed AHB-AHS method is of higher accuracy and
better convergence. The AHB-AHS method proposed in this paper has the potential to
investigate the nonlinear vibrations of complex high-dimensional nonlinear systems.
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1 Introduction

In practical applications, solving nonlinear dynamic equations is a significant part of non-
linear vibration analysis. The mathematical methods can be mainly divided into two parts,
i.e., time domain methods and frequency domain methods. Time-domain methods, e.g., the
Runge-Kutta method, the Euler method, and the collocation methods[1–3], are widely used to
obtain transient responses and steady-state responses, but they are usually time-consuming, es-
pecially in high-dimension problems. Frequency domain methods can only provide steady-state
responses, but they have great advantages in the calculation efficiency. For most vibration prob-
lems, the vibration of engineering systems performs as steady-state responses during operation
since transient response decays rapidly due to damping. Therefore, in these cases, frequency
domain methods are more suitable than time-domain methods for the vibration characteristics
analysis[4–5].

The harmonic balance method (HBM) is a typical frequency-domain method that has been
widely used to treat many different types of nonlinearities[6–9]. By representing periodic re-
sponses as truncated Fourier series with a set of harmonics, the nonlinear ordinary differential
equations in the time domain are transformed into nonlinear algebraic equations in the fre-
quency domain. Then, the approximate analytical solutions can be obtained by solving the
above algebraic equations. The bounds of the solution error can be estimated[10]. Therefore,
the HBM is more computationally efficient than direct integration methods for getting peri-
odic responses[11]. In order to handle different nonlinear problems, several improvements have
been made to modify the HBM. The incremental harmonic balance (IHB) method is developed
to analyze parametric instability problems[12–15]. The fast Fourier transform (FFT) is used
to improve HBM to avoid repeated calculation of intermediate variables[16–17]. The alternat-
ing frequency/time domain (AFT) methods provide an alternative way to calculate periodic
responses, and have been widely used in many nonlinear vibration analyses[18–23]. Equipped
with continuation such as the arc-length method, the unstable solution can be obtained by the
HBM[24–26]. Moreover, the HBM can predict the chaos[7] and be extended to treat large-scale
nonlinear systems[27].

Despite the obvious advantages of the HBM, the size of nonlinear algebraic equations is
related to the product of the number of the degree of freedom (DOF) as well as the number
of harmonics. As a result, the HBM can produce enormous nonlinear algebraic equations
when solving high-dimension systems or multi-frequency forced systems, which increases the
computing time significantly. Generally, some harmonics contribute less to the exact nonlinear
response. If they can be recognized and ignored in advance, the size of nonlinear algebraic
equations can be decreased, and then the computing efficiency can be improved. Therefore, a
method known as the adaptive harmonic balance (AHB) method is proposed, which can select
the necessary harmonics for a given accuracy[11].

The AHB method was first proposed by Gullapalli and Gourary[28] in 2000. The nodal
residual norm was used to estimate the contribution of the harmonics, based on which a se-
ries of advanced AHB methods were presented[29–34]. Maple et al.[29–30] introduced a new
AHB method by examining the fraction of spectral energy to augment frequencies. Zhu and
Christoffersen[31] proposed a new AHB method by using the warped multi-time partial differen-
tial equation to separate fast and slow criteria in the responses so as to estimate the harmonic
contributions. Jaumouillé et al.[32] developed an AHB method to analyze the nonlinear bolted
joint models, and introduced the approximate strain energy to identify the necessary harmonics.
Grolet and Thouverez[33] proposed an AHB method based on the tangent predictor for adding
and removing harmonics. Suess et al.[34] introduced an AHB method to treat the dry friction
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damping problem. By means of calculating the spectral energy ratio of each harmonic to the
whole response, the harmonics with a ratio greater than a threshold would retain. Gastaldi and
Berruti[35] proposed a Jacobian alert algorithm to check the solution at each frequency step
and identified whether the higher harmonics should be considered in the solution. Sert and
Cigeroglu[36] proposed a two-step pseudo-response based (PRB)-AHB method to estimate the
response with no extra computation. The above-mentioned AHB methods actually reduce the
number of harmonics so as to decrease the size of the nonlinear algebraic equations. However,
they have some limitations. The selection procedure of these methods could estimate the con-
tribution of all harmonics only in a given range. Some methods require solving an approximate
solution containing all harmonics as a reference before selecting the harmonics. For example,
the method in Ref. [32] employs the approximate strain energy, the method in Ref. [11] uses the
nonlinear force vector, and the method in Ref. [33] relies on the predictive vector. When dealing
with a wide frequency range, solving a massive nonlinear or linear equation will be necessary.
Therefore, it is very inconvenient to solve complex frequency problems that need a wide range of
harmonics, e.g., nonlinear systems subjected to multi-frequency excitations. Moreover, in some
methods, the number of harmonics is increased until meeting a stopping criterion or reaching
the maximum number of harmonics, which only limits the number of harmonics but cannot
neglect unnecessary harmonics[11,36].

The motivation of this paper is to develop a new AHB method by introducing the asymptotic
harmonic selection (AHS) procedure, which enables us to estimate the contribution of the
most necessary harmonics that are generated from nonlinear terms and excitations. The AHS
procedure selects harmonics from the frequency spectra of nonlinear terms whose amplitudes are
larger than a given threshold. Therefore, the AHS procedure can select several harmonics rather
than one harmonic in an iteration, which improves the efficiency of harmonic selection. The
division of harmonics and the initial value construction are introduced to avoid recalculation.
Moreover, with the variation of the path parameter, the harmonics are changing adaptively,
i.e., some harmonics are added, while some harmonics are deleted. Consequently, the nonlinear
algebraic equations are different for different path parameters, resulting in the failure of the
traditional arc-length continuation method. A modified continuation method is suggested to
overcome this limitation. Furthermore, five examples with different types of nonlinearities
and external forces are introduced to demonstrate the effectiveness of the proposed AHB-AHS
method. It has been proved that the proposed AHB-AHS method is easily programmed, highly
efficient, and robust compared with the classical HBM.

2 Modified adaptive harmonic method

2.1 HBM principle
The general second-order differential equation of an n-DOF nonlinear dynamic system can

be written as

Mẍ + Cẋ + Kx + fN(x, ẋ, t) = fE(t), (1)

where M , C, and K are the mass, damping, and stiffness matrices, respectively. x is the
displacement vector. fN is the nonlinear force vector. fE is the external force vector. If the
external force is periodic with the period T = 2π/ω, the steady-state solution x(t) to Eq. (1)
can be expressed as follows:

x(t) = a0 +
m∑

i=1

ai cos(iωt) +
m∑

i=1

bi sin(iωt), (2)

where a0 is an n × 1 vector containing the bias terms. ai and bi are the unknown Fourier
coefficients of the ith harmonic of the cosine components and the sine components, respectively.
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m is the truncation number of the Fourier series. Meanwhile, the external force fE can be
written as

fE(t) = fE0 +
m∑

i=1

fEci cos(iωt) +
m∑

i=1

fEsi sin(iωt), (3)

where fE0 is the bias term vector of the external force. fEci and fEsi are the coefficient vectors
of the sine and cosine components of the ith harmonic, respectively. The nonlinear forces
are dependent on not only the time but also the displacement x and its derivatives, which
indicates that the Fourier coefficients of fN are functions dependent on x and ẋ. Therefore, the
coefficients cannot be expressed analytically. The alternate frequency time (AFT) method[37] is
introduced to handle this case, and the nonlinear forces and their coefficients can be obtained
as follows:

fN(x, ẋ, t) = fN0 +
m∑

i=1

fNci cos(iωt) +
m∑

i=1

fNsi sin(iωt), (4)

fN0 =
1
T

∫ T

0

fN(x, ẋ, t)dt, (5)

fNci =
2
T

∫ T

0

fN(x, ẋ, t) cos(iωt)dt, (6)

fNsi =
2
T

∫ T

0

fN(x, ẋ, t) sin(iωt)dt, (7)

where fN0 is the bias term vector of the nonlinear term. fNci and fNsi are the coefficients vectors
of the sine and cosine components of the ith harmonic, respectively. Substitute Eqs. (2)–(4) into
Eq. (1), and balance the coefficients of the bias term and sine and cosine components on both
sides. Then, Eq. (1) is converted into n(2m + 1) nonlinear algebraic equations with n(2m + 1)
unknowns. The matrix form of the nonlinear algebraic equations can be represented as follows:




K 0 0 · · · 0
0 Λ(ω) 0 · · · 0
0 0 Λ(2ω) · · · 0
...

...
...

...
0 0 0 · · · Λ(mω)







a0

a1

b1

...
am

bm




+




fN0

fNc1

fNs1

...
fNcm

fNsm




=




fE0

fEc1

fEs1

...
fEcm

fEsm




, (8)

Λ(ω) =
(

K − ω2M ωC

−ωC K − ω2M

)
. (9)

Equation (8) can be solved by the Newton and quasi-Newton methods[38]. It is obvious
that the computation efficiency of the HBM is affected by the scale of the nonlinear algebraic
equations, i.e., the n(2m + 1) equations. Since n is fixed in a certain system, decreasing m, the
number of the harmonics, can decrease the number of the nonlinear algebraic equations and thus
improve the computation efficiency. Moreover, for multi-frequency excitation cases, such as ω1

and ω2, all combinations of mω1 ± nω2 should be determined for precision[39–40], which causes
a great deal of computing storage and time. Therefore, it is hoped to use an algorithm that can
select the necessary harmonics and neglect the harmonics that do not contribute significantly
to the total solution. The adaptive harmonic balance method (AHBM) is proposed based on
the requirement.
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2.2 AHS procedure
In previous research on the AHBM, a maximum number of harmonics, Nm

h , should be
taken, and all harmonics from 1 to Nm

h should be evaluated in the contribution to the total
solution. The main idea of these methods is to select the necessary harmonics or cut out the
unnecessary harmonics from the intervals (1, 2, 3, · · · , Nm

h ). However, the repetitive calculation
of the responses of the nonlinear systems for various harmonics is computationally expensive,
which requires that Nm

h cannot be too large. Therefore, in this study, a new AHS procedure is
proposed to overcome the difficulty, which generates the harmonics from the initial harmonics
but does not estimate the response of the nonlinear system, so that more than one harmonics
can be selected or deleted in one step iteration.

The main idea of the AHS procedure is that the harmonics other than the external excitation
frequencies and natural frequencies can only be generated by nonlinear terms. Assume that the
harmonics would be generated by nonlinear terms if an approximate solution is efficiently close
to the exact solution.

Since the procedure involves Fourier transforms, the sampling frequency fs should be deter-
mined at first, and the Nyquist sampling theorem should be satisfied while the aliasing should
be avoided[41]. It should be noted that in some cases, it may be necessary to increase the
sampling period T to achieve better frequency resolution. For example, when focusing on fre-
quencies around 0.1ω, the sampling period should be increased by 10 times. Therefore, the set
of all harmonics can be represented as follows:

Ωa = {ωi|ωi = i · ω, i ∈ Ia}, (10)

Ia = (1, 2, 3, · · · , fs), (11)

where Ia is the index set of the all harmonic set Ωa. Then, an initial harmonic set should be
determined by the user as follows:

Ω0 = {ωi|ωi ∈ Ωa, i ∈ I0 ⊂ Ia}, (12)

where I0 is the index set. The selection of the initial harmonics is flexible, which is an initial
guess. In general, the frequencies of excitations and their multiple can be set as the initial
harmonics.

Substitute the initial harmonic Ω0 into Eq. (8). Then, the approximate solution x(0) can be
obtained by solving Eq. (8). In order to generate other harmonics, the terms of the nonlinear
force in Eq. (1) are moved to the right side of the equations so that the system is regarded as
a linear system driven by the nonlinear terms and external forces, which can be written as

Mẍ + Cẋ + Kx = fNE(x, ẋ, t), (13)

fNE(x, ẋ, t) = fE(t)− fN(x, ẋ, t). (14)

Since the approximate solution x(0) has been obtained, fNE can be obtained accordingly. Then,
Fourier transforms are applied, and the new harmonic set and its index set can be defined as
follows:

Ω1 = {ωi|ωi ∈ Ωa, p(ωi) > ε}, (15)

I1 = {i|i ∈ Ia, p(ωi) > ε}, (16)

p(ωi) = flocmax(FFT(fNE(x(0), ẋ(0), t))), (17)

where flocmax(·) is the local maximum function, FFT(·) is the Fourier transform, and ε is a
selected threshold representing the selection precision. It is worth noting that the selection
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threshold has a clear physical meaning. The selection threshold ε can be regarded as the user’s
tolerance error for the force, i.e., the harmonics of the nonlinear forces whose amplitudes are less
than the selection threshold will be ignored. In theory, ε should be chosen as small as possible
to obtain a more accurate solution. However, in practical applications, it is acceptable to use
the maximum amplitude of the nonlinear forces as a reference for selecting ε. For instance, ε
can be set to one thousandth of the maximum amplitude of the nonlinear forces. Hence, Ω1

contains all harmonics where the amplitude of fNE is the local maximum and is larger than a
selected threshold ε in the frequency domain, and I1 is the index set of Ω1.

Afterward, the new harmonic set Ω1 is substituted into Eq. (8), and a new approximate
solution x(1) is solved. However, if solving the nonlinear equation from scratch, the recalculation
is expensive and unnecessary. Since the solution x(0) is an approximate solution, the solution
x(1) can be obtained based on the solution x(0). In other words, the solution x(0) is regarded as
the initial value of the new equation with the new harmonic set Ω1. However, the new harmonic
set Ω1 may differ from the old harmonics set Ω0. Therefore, the divisions of Ω1 and Ω0 are
proposed as follows:

Ω1 = Ωin ∪ Ωadd, Ω0 = Ωin ∪ Ωdel, (18)

where Ωin is the intersection of Ω1 and Ω0, Ωadd is the set of new harmonics, and Ωdel is the
set of the harmonics which should be deleted, i.e.,

Ωin = Ω1 ∩ Ω0, Ωadd = Ω1 − Ω0, Ωdel = Ω0 − Ω1.

Analogously, the index set can be divided, and Iin, Iadd, and Idel can be defined. As a conse-
quence, an initial value x

(1)
0 is constructed as follows:

x
(1)
0 (t) = a

(0)
0 +

∑

i∈Iin

a
(0)
i cos(ωit) +

∑

i∈Iin

b
(0)
i sin(ωit)

+
∑

j∈Iadd

a
(1)
j cos(ωjt) +

∑

j∈Iadd

b
(1)
j sin(ωjt). (19)

a
(0)
0 , a

(0)
i , and b

(0)
i are gathered easily from x(0). a

(1)
j and b

(1)
j are some small values because

of the sufficiently approximate solution x(0) so that the new harmonics contribute less than the
old harmonics. Of course, the following linear guess is feasible:

a
(1)
j = b

(1)
j =

F (ωj)
diag(K)

, j ∈ Iadd, (20)

where F (ωj) is the amplitude of the ωj harmonic. After substituting x
(1)
0 (t) and Ω1 into

Eq. (8), the solution x(1) is obtained efficiently since most unknowns are approximate to the
exact solution, and thus convergence is achieved with a few iterations. Then, a new set Ω2 will
be generated, similar to what Eq. (15) does. A comparison between Ω1 and Ω2 can be carried out
by means of Eq. (18). If Ωadd is an empty set, which suggests no new harmonics, the iteration
of the AHS procedure is completed, and the solution x(1) is the solution to Eq. (1) with the
harmonic set Ω1. Otherwise, the iteration continues until Ωadd becomes empty. According to
the previous derivation, the flowchart of the AHB-AHS method is shown in Fig. 1.
2.3 Continuation for variable harmonics
2.3.1 Traditional arc-length continuation algorithm

The numerical continuation is a technique to compute a consecutive sequence of points
that approximate the desired solution branch, e.g., the amplitude-frequency response curve.
Consider a smooth function

G : RN+1 → RN .
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Calculate x(i) by Eq. (8)

Obtain Ω
i
 by Eq. (14) and I

i
 by Eq. (15)

Decompose Ω
i
, I

i
 into Ω

in
, Ωadd, Ωdel, Iin, Iadd, Iin by Eq. (17)

Input

Ω0, x
(0), ε, i=1
0

Construct x(i) by Eqs. (18) and (19)
0

Ωadd= ∅? No

Yes

i:= i+1

Output

Ω
i
, x(i)

Fig. 1 Flowchart of the AHB-AHS method (color online)

The solution curve is obtained by solving the equation G(y) = 0, where y contains the unknowns
of Eq. (8) and the path parameter α. Most continuation algorithms implement a predictor-
corrector method, which requires the same number of equations as unknowns. Therefore, an
extra scalar condition should be applied as

G(y) = 0, h(y) = 0. (21)

A common predictor is the tangent prediction

Y 0 = yi + svi, (22)

where s is a step-size, and vi is the normalized tangent vector at yi. One common choice h(y)
is to find a hyperplane passing through Y 0 which is orthogonal to the tangent vector vi,

h(y) =
〈
y − Y 0,vi

〉
= 0. (23)

Therefore, the Newton iteration can be expressed as




Y k+1 = Y k − Φ−1
y (Y k)Φ(Y k),

Φ(Y ) =

(
G(y)

0

)
,

Φy(Y ) =

(
Gy(y)

vT
i

)
.

(24)

After Eq. (23) converges, a new point yi+1 on the curve is found, and the new tangent vector
vi+1 should be computed by

(
Gy(yi+1)

vT
i

)
vi+1 =

(
0
a

)
, (25)

where Gy is the Jacobian matrix of the function G, and a > 0. It is noted that vi+1 should be
normalized after Eq. (25). In this paper, we choose a = 1.
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2.3.2 Modified continuation method for harmonics adaptively changing
The traditional continuation is convenient, but it cannot be used in the new AHB method

with the AHS procedure, since the size of yi+1 is different from the size of yi when the number
of harmonics changes adaptively. Consequently, Eq. (25) is invalid.

In order to handle the predicament, a modification should be used to construct the hy-
perplane and tangent vector. First of all, it is crucial to classify and discuss the change in
the harmonics. It is easy to divide the case into 3 parts, i.e., no changed harmonics, some
deleted harmonics, and new generated harmonics. The first situation is trivial because Eq. (25)
is available. For the second situation, recall the division of harmonic set by Eq. (18). Then, the
unknowns yi+1 and tangent vector vi+1 are expressed as

{
yi+1 = (a0, · · · ,aj , bj , · · · , α), j ∈ I0,

vi+1 = (v0, · · · ,vj ,v
′
j , · · · , α), j ∈ I0.

(26)

According to Eq. (18), the new unknowns ỹi+1 and tangent vector ṽi+1 after the AHS
procedure can be represented as

{
ỹi+1 = (a0, · · · ,aj , bj , · · · , α), j ∈ Iend,

ṽi+1 = (v0, · · · ,vj ,v
′
j · · · , α), j ∈ Iend,

(27)

where Iend is the index set of the harmonic set which is converged in the AHS procedure. It is
notable that no recalculation occurs to obtain ṽi+1, but some components of vi+1 that belongs
to the set I0 − Iend are deleted.

In the final case, new harmonics are generated after the AHS procedure, and the unknowns
can be represented as

ỹi+1 = (a0, · · · ,aj , bj , · · · ,ak, bk, · · · , α), j ∈ Iin, k ∈ Iadd. (28)

Because the size of ỹi+1 is changed and some new harmonics are generated, Eq. (26) is
unavailable for computing ṽi+1. Fortunately, the orthogonality between the hyperplane passing
ỹi+1 and the tangent vector ṽi+1 still holds. In consequence, the new ṽi+1 can be obtained by
solving

Gy(ỹi+1)ṽi+1 = 0, (29)

which means that ṽi+1 is the null space of the Jacobi matrix Gy. Furthermore, the direction
along the curve must be preserved,

ṽ′i+1 = ṽi+1 · sign(〈ṽi+1,vi+1〉),
where vi+1 is padded with vi+1 and is zero at the corresponding location of generating har-
monics so that its length is equal to the length of ṽi+1. Substitute ṽ′i+1 into Eq. (22), and
continue the new predictor-corrector procedure. In addition, if both adding harmonics and
deleting harmonics occur together, the harmonics of vi+1 should be deleted by Eq. (27) at first,
and new harmonics can be added later by Eq. (29).

In summary, the modified arc-length continuation method can be mainly divided into three
steps.

Step 1 Obtain the approximate solution yi+1 by using Eq. (24) and the approximate tan-
gent vector vi+1 by using Eq. (25).

Step 2 Obtain the exact solution ỹi+1 through the AHS process.
Step 3 Determine the new tangent vector ṽi+1 by Eq. (29).
Substitute the approximate yi+1 into Eq. (25). Then, we obtain an approximate tangent

vector vi+1 whose direction is the correct continuation direction. However, the tangent vector



A novel adaptive harmonic balance method with an asymptotic harmonic selection 1895

ṽi+1 calculated through Eq. (29) is a correct tangent vector but with an uncertain direction. To
address this issue, we use zero-padding to approximate the tangent vector vi+1 (denoted with
vi+1 after zero-padding) to ensure

ṽT
i+1vi+1 > 0.

This is ensured by the fact that the dimension of the null space of the tangent vector belonging
to the matrix Gy is 1-dimensional.

3 Numerical examples

In order to examine the proposed AHB-AHS method, five examples featuring different types
of nonlinearities and excitations are adopted. The first example is a mathematical pendulum
system involving nonlinear sine stiffness subjected to single-frequency external force, and the
second one is the same system subjected to double frequency excitations. The third one is
the van der Pol system, the fourth one is the nonlinear Mathieu system, and the last one is
a dual rotor-bearing system. The efficiency and accuracy of different methods, including the
classical HBM, the AHB-AHS method, and the fourth-order Runge-Kutta method (RK4), are
compared in each example. All programs are run on the Windows 10 professional operating
system with Intel Core i7-8700 CPU and 32 GB RAM. It should be noted that, even though
simple models are selected to demonstrate the developed AHB-AHS method, it is applicable to
the multiple-DOF system.
3.1 Example 1: generalized pendulum subjected to single frequency excitation

Consider a generalized mathematical pendulum subjected to single frequency excitation
described by

ẍ + 0.01ẋ + 7x + 5 sin x = 0.2 cos(ωt). (30)

This system can be reduced to the Duffing equation by applying Taylor expansion to the
nonlinear term. Set the initial harmonics set as Ω0 = {ω}, the selected threshold ε is 0.001,
and the sampling frequency is 128 Hz. For the classical HBM, the 20-harmonic truncation is
applied. The amplitude-frequency response curve generated by the classical HBM, AHB-AHS
method, and RK4 are shown in Fig. 2.

Since it is difficult for the RK4 to obtain the unstable solution, the curve attained by the
RK4 is different from the curves attained by the classical HBM and AHB-AHS method, while

2.0 2.5 3.0 3.5 4.0

ω/(rad · s−1)

0

1

2

3

4

5

6

A
m

p
li
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Fig. 2 Amplitude-frequency response curves of the generalized mathematical pendulum system sub-
jected to single frequency excitation (color online)
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the curve of the AHB-AHS method almost coincides with that of the classical HBM. The time
history at different frequencies of excitations is shown in Fig. 3, the solution of the AHB-AHS
method agrees well with the solutions of the classical HBM and RK4. In order to compare the
accuracy of the classical HBM and AHB-AHS method, the mean-square difference error (EMD)
is used as follows:

EMD = ‖x− x̃‖2, (31)

where ‖ · ‖2 is the Euclidean norm of the vector, and x and x̃ are the solutions from the AHB-
AHS method and the classical HBM, respectively. The mean-square difference error between
the results from the AHB-AHS method and the classical HBM is shown in Fig. 4. The abscissa
is the number of continuation iterations rather than the frequency ω because of the bend
amplitude-frequency curve so that the frequency is not monotonous. It can be seen that the
mean-square difference errors are less than 1 × 10−8 at most frequencies. However, when the
frequency is near the frequencies of the peaks, the mean-square difference error grows up to
about 1.4× 10−8.
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Fig. 3 Time history diagrams of different frequencies subjected to single frequency excitation: (a)
ω = 2.5 rad/s, (b) ω = 2.678 rad/s at the top of the 1st resonant peak, and (c) ω = 3.5 rad/s
(color online)

It is significant to find out the reason for the growth of the mean-square difference error
between the AHB-AHS method and the classical HBM. Because the set of harmonics changes
with the frequency of external force, the harmonics that have been selected in every continuation
iteration are shown in Fig. 5. It is shown that the harmonic set becomes {1ω, 3ω} from {ω}
when ω = 3.31 rad/s. Then, the size of the harmonic set increases as ω changes (see Fig. 2).
The harmonics of the set increase to {ω, 3ω, 5ω, · · · , 17ω} at ω = 2.68 rad/s, which is the top
of the resonant peak shown in Fig. 2. Finally, the harmonics decrease to {ω}. From Figs. 4 and
5, we can see that the maximum of EMD is at the top of the peak, which is reasonable since
the mean-square difference error represents an absolute error.
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As for the calculation time, it takes 1.081 s for the AHB-AHS method to solve the whole
amplitude-frequency response curve, while the classical HBM spends 1.448 s and the RK4 spends
77.732 s. Therefore, the reduction in computational time is 25.4% approximately. The calcula-
tion time of different methods is listed in Table 1.

Table 1 Calculation time for obtaining the amplitude-frequency curve of the generalized mathemat-
ical pendulum system subjected to single frequency excitation

Method Calculation time/s Harmonic set

AHB-AHS 1.081 Adaptive

Classical HBM 1.448 {ω, 2ω, · · · , 18ω}
RK4 77.732 –

3.2 Example 2: generalized pendulum subjected to double frequency excitations
Consider a generalized mathematical pendulum subjected to double frequency excitation

described by

ẍ + 0.01ẋ + 7x + 5 sin x = 0.2 cos(ωt) + 0.1 sin(1.3ωt). (32)

The difference between Eq. (32) and Eq. (30) is the new external force with 1.3ω as frequency.
It is difficult to set proper harmonics for the classical HBM because all harmonics of mω±n1.3ω
should be set. As for the AHB-AHS method, the initial harmonic set is {ω, 1.3ω}. Meanwhile,
the integration period T should be expanded to 10 times. The amplitude-frequency response
curve and time history diagrams are shown in Fig. 6 and Fig. 7. It can be seen that the curve
generated by the AHB-AHS method is close to the classical HBM and coincides with that of the
RK4 outside the resonant region. In the resonant region, the solution of the AHB-AHS method
agrees with the solution of the classical HBM. The mean-square difference error between the
results from the AHB-AHS method and the classical HBM is shown in Fig. 8. The maximum
of EMD is less than 2.5× 10−7.

Similarly, the selected harmonics at different frequencies are shown in Fig. 9. It can be
seen that the number of selected harmonics increases at the resonant region. During the first
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Fig. 6 Amplitude-frequency response curves of the generalized mathematical pendulum system sub-
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Fig. 9 Variation of the harmonic set of the
generalized mathematical pendulum
system subjected to double frequency
excitations (color online)

resonant peak, the harmonic set is

Ω = {0.7ω, ω, 1.3ω, 1.6ω, 1.9ω, 3.3ω, 3.6ω, · · · , 7.1ω, 8.5ω, 9.1ω, 9.4ω, 11.4ω, 11.7ω, 12ω, 14.3ω}.

However, at the second peak, the harmonic set becomes {0.7ω, ω, 1.3ω, 2.7ω, 3ω, 3.3ω, 4.7ω,
5ω, 5.3ω, 6.7ω, 7ω, 7.3ω, 8.7ω, 9ω, 9.3ω, 10.7ω, 11ω, 11.3ω, 13ω, 15ω, 17ω}. Besides, the frequen-
cies of external forces, ω and 1.3ω, are always selected, and different combination frequencies
of fundamental frequencies are selected in different resonant peaks. Therefore, the AHB-AHS
method is more convenient for solving the system without finding all combinations of harmonics
from double frequencies.

For the calculation time, it takes 27.507 s for the AHB-AHS method to obtain the whole
amplitude-frequency response curve. In comparison, the RK4 spends 79.434 s and the classical
HBM spends 67.256 s on calculating the whole curve since more harmonics should be considered.
The comparison of solution time by different methods is listed in Table 2.

Table 2 Calculation time of different methods for obtaining the amplitude-frequency curve of the
generalized mathematical pendulum system subjected to double frequency excitations

Method Calculation time/s Harmonic set

AHB-AHS 27.507 Adaptive

Classical HBM 67.256
{0.7ω, ω, 1.3ω, 2.7ω, 3ω, 3.3ω, 4.7ω, 5ω, 5.3ω, 6.7ω, 7ω,
7.3ω, 8.7ω, 9ω, 9.3ω, 10.7ω, 11ω, 11.3ω, 13ω, 15ω, 17ω}

RK4 79.434 –

3.3 Example 3: forced van der Pol system
In order to demonstrate the effect of the AHS procedure, a forced van der pol equation is

considered, which is described by

ẍ− µ(1− x2)ẋ + x = 0.2 cos(ωt). (33)

If the initial harmonic set is {ω}, the phase portrait of the van der pol equation at µ = 0.8
and ω = 1 is shown in Fig. 10.
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Fig. 10 Phase portraits of the van der Pol equation obtained by the AHS method when the initial
harmonic set is {ω}, where µ = 0.8, and ω = 1 (color online)

As is shown, the AHS procedure converged after 4 iterations. The initial harmonic set is
{ω}, which leads to the circle motion appearing in the phase portrait. The harmonic set Ω1

after an AHS iteration is {ω, 3ω}, and the following harmonic set is shown in Table 3. The odd
harmonics are selected to obtain the smooth limit cycle.

Table 3 Harmonics set of all AHS iterations when the initial harmonic set is {ω}
Set Component

Ω0 {ω}
Ω1 {ω, 3ω}
Ω2 {ω, 3ω, 5ω, 7ω, 9ω}
Ω3 {ω, 3ω, 5ω, 7ω, 9ω, 11ω, 13ω}
Ω4 {ω, 3ω, 5ω, 7ω, 9ω, 11ω, 13ω, 15ω}

If the initial harmonic set is {ω, 2ω, 3ω, 4ω, 5ω}, which contains the unnecessary even har-
monics, the results obtained by the AHB-AHS method are shown in Fig. 11. It can be seen that
the number of iterations decrease to 3, and the converged limit cycle is found. The harmonic
sets of all AHS iterations are shown in Table 4, where it is clear that the needless even harmonics
are deleted, and new odd harmonics are added to the set Ω1 at the first AHS iteration.
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Fig. 11 Phase portraits of the van der Pol equation obtained by the AHS method when the initial
harmonic set is {ω, 2ω, 3ω, 4ω, 5ω}, where µ = 0.8, and ω = 1 (color online)

The comparison of the AHB-AHS method, classical HBM, and RK4 is shown in Fig. 12 and
Fig. 13. As is shown, the limit cycles of different methods coincide with each other, which illus-
trates the accuracy of the AHB-AHS method. For the comparison of the computing efficiency
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Table 4 Harmonics set of all AHS iterations when the initial harmonic set is {ω, 2ω, 3ω, 4ω, 5ω}
Set Component

Ω0 {ω, 2ω, 3ω, 4ω, 5ω}
Ω1 {ω, 3ω, 5ω, 7ω, 9ω, 11ω}
Ω2 {ω, 3ω, 5ω, 7ω, 9ω, 11ω, 13ω}
Ω3 {ω, 3ω, 5ω, 7ω, 9ω, 11ω, 13ω, 15ω}
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Fig. 12 Phase portraits of the van der Pol
equation by different solving meth-
ods when µ = 0.8, and ω = 1 (color
online)

0 10 20 30 40 50

−2

0

2

AHB-AHS
RK4

Classical HBM

τ

x

Fig. 13 Time history diagrams by different
solving methods when µ = 0.8, and
ω = 1 (color online)

of the AHB-AHS method, it takes 0.089 4 s for the AHB-AHS method to obtain the limit cycle.
In comparison, the classical HBM spends 0.245 s on getting the limit cycle by choosing the
15-order harmonic truncation. The comparison of the solution time by different methods is
listed in Table 5.

Table 5 Calculation time of different methods for obtaining the amplitude-frequency curve of the
forced van der Pol system

Method Calculation time/s Harmonics set

AHB-AHS 0.089 3 Adaptive

Classical HBM 0.245 0 {ω, 3ω, · · · , 15ω}
RK4 0.563 0 –

3.4 Example 4: nonlinear Mathieu system
An advantage of the AHB-AHS method is the excellent convergence. When too many

harmonics should be considered, it is difficult to find a proper initial value for carrying out the
Newton iteration of classical HBM. In order to seize the initial value, generally, a linearized
equation should be solved or a “brute force” method such as the direct integration method
should be used to solve the nonlinear equation. To demonstrate the convergence of the AHB-
AHS method, a nonlinear Mathieu equation is introduced. It is described by

ẍ + cẋ− (1 + β sin t) sin x + x3 = 0, (34)

which is an inverted pendulum with a rotational spring. As for the AHB-AHS method, the
initial harmonic set is {ω}, and the initial values of Fourier coefficients (a0, a1, b1) are (10, 10,
10). When new harmonics are added, their initial values are all 1 × 10−2. Therefore, they
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are equivalent to the initial values (10, 10, 10, 1 × 10−2, 1 × 10−2, · · · , 1 × 10−2) for the
classical HBM. These initial values are outrageous for the classical HBM, so the initial values
will be diverged by using the classical HBM. However, it can be converged to a correct solution
by means of the AHB-AHS method, and the limit cycle of the nonlinear Mathieu equation
is shown in Fig. 14. It shows that the correct solution is obtained by the AHB-AHS method
compared with the RK4.

The residual is defined as

Res = ‖R(x)‖2, (35)

where R(x) is the residual vector of Eq. (8), and ‖ · ‖2 is the Euclidean norm of the vector.
The residual results are shown in Fig. 15. It can be seen that the residual of Eq. (8) solved
by the classical HBM increases sharply. As a comparison, the residual decreases step by step
until new harmonics are generated, and the initial value changes when the AHB-AHS method
is applied. At the 54th, 88th, and 119th iterations (corresponding to Points A, B, and C in
Fig. 15) of the Newton-Raphson method, the AHS procedure is applied, and new harmonics are
generated, which makes a little disturbance to the residual. However, the iteration holds stable
and continues until convergence is achieved. It is reasonable that the initial values away from
the correct solution for some harmonics affect the convergence of other harmonics. The AHS
procedure selects harmonics asymptotically. That is, harmonics contributing similarly to the
total response are divided into a class, and are selected in an AHS iteration step. Meanwhile,
the previous harmonics have been balanced, which indicates that the coefficients are close to
those of the exact solution. Therefore, they lead the coefficients of new harmonics to converge
to the coefficients of the exact solution.
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Fig. 14 Phase portraits of the nonlinear
Mathieu equation when c = 0.25
and β = 8 with an outrageous ini-
tial value (color online)
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For the calculation time, a proper initial value is taken to make the solution of the classical
HBM converge. As it is shown in Fig. 16, the solution of the AHB-AHS method agrees well
with the solutions of the classical HBM and the RK4. In addition, it takes 0.138 s for the
AHB-AHS method to obtain the whole amplitude-frequency response curve. In comparison,
the RK4 spends 0.684 s and the classical HBM spends 0.171 s on computing the whole curve
since more harmonics should be considered. The comparison of the solution time of different
methods is listed in Table 6.
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Fig. 16 Time history diagram of the nonlinear Mathieu equation when c = 0.25, and β = 8 (color
online)

Table 6 Calculation time of different methods for obtaining the amplitude-frequency curve of the
nonlinear Mathieu equation when c = 0.25 and β = 8

Method Calculation time/s Harmonic set

AHB-AHS 0.138 Adaptive

Classical HBM 0.171 {ω, 2ω, · · · , 8ω}
RK4 0.684 –

3.5 Example 5: dual rotor-bearing system
It is easy to extend the AHB-AHS method to solve multi-dimensional systems. To demon-

strate the capability of the AHB-AHS method in multi-dimensional nonlinear systems, a dual
rotor-bearing system is introduced. A typical dual rotor-bearing system is shown in Fig. 17. In
this case, the inter-shaft bearing is modeled based on the Hertz contact theory, and the frac-
tional exponential nonlinearity, segmentation function nonlinearity, and clearance nonlinearity
are considered.
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Inter-shaft bearing
Lower pressure rotor

k1

c1

l1 l2
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l

O1 O2
c3
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k2

Kb

ω1
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Fig. 17 Schematic diagram of the dual-rotor system with the inter-shaft bearing[42] (color online)

The dynamical equations can be expressed as

m1ẍ1 + c1(ẋ1 − θ̇yl1) + c2(ẋ1 + θ̇yl2) + k1(x1 − θyl1) + k2(x2 + θyl2)

=m1ω
2
1e1 cos(ω1t)− Fbx, (36a)

m1ÿ1 + c1(ẏ1 + θ̇xl1) + c2(y1 − θxl2) + k1(y1 + θxl1) + k2(y1 − θxl2)

=m1ω
2
1e1 sin(ω1t)− Fby −m1g, (36b)
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Jd1θ̈x + ω1Jp1θ̇y + c1l1(ẏ1 + θ̇xl1)− c2l2(ẏ1 − θ̇xl2) + k1l1(y1 + θxl1)

− k2l2(y1 − θxl2)

=Fby(l2 − l5), (36c)

Jd1θ̈y − ω1Jp1θ̇x − c1l1(ẋ1 − θ̇yl1) + c2l2(ẋ1 + θ̇yl2)− k1l1(x1 − θyl1)

+ k2l2(y1 + θxl2)

= − Fbx(l2 − l5), (36d)

m2ẍ2 + c3(ẋ2 − ϕ̇yl3) + k3(x2 − ϕyl3)

=m2ω
2
2e2 cos(ω2t) + Fbx, (36e)

m2ÿ2 + c3(ẏ2 + ϕ̇xl3) + k3(y2 + ϕxl3)

=m2ω
2
2e2 sin(ω2t) + Fby −m2g, (36f)

Jd2ϕ̈x + ω2Jp2ϕ̇y + c3l3(ẏ2 + ϕ̇xl3) + k3l3(y2 + ϕxl3) = −Fbyl4, (36g)

Jd2ϕ̈y − ω2Jp2ϕ̇x − c3l3(ẋ2 − ϕ̇yl3) + k3l3(x2 − ϕyl3) = Fbxl4, (36h)

where m, Jd, and Jp are the mass, the diameter moment of inertia, and the polar moment of
inertia, respectively. The subscript 1 represents the low-pressure rotor, and the subscript 2 is
the high-pressure rotor. The meanings of variables k, c, and l are shown in Fig. 17. The detailed
derivation of Eq. (36) can be found in the Refs. [42] and [43]. Besides, the nonlinear forces of
the inter-shaft bearing in Eq. (36) are Fbx and Fby, which can be expressed as

ωc =
ω1ri + ω2ro

ri + ro
=

ri + λro

ri + ro
ω1, (37)

θi =
2π

Nb
(i− 1) +

ω1ri + ω2ro

ri + ro
t, k = 1, 2, · · · , Nb, (38)

δi = ((x2 + θy(l2 − l5))− (xl2 + ϕyl4)) cos θi

+ ((y1 − θx(l2 − l5))− (y2 − ϕxl4)) sin θi − δ0, (39)
(

Fbx

Fby

)
= Kb

Nb∑

i=1

δ
10/9
i H(δi)

(
cos θi

sin θi

)
, (40)

where ri and ro are the radii of the inner and outer rings of the inter-shaft bearing, respectively,
δ0 is the radial clearance of the inter-shaft bearing, Kb is the contact stiffness, Nb is the number
of rollers, H(·) represents the Heaviside function, and λ is the high and low pressure rotor speed
ratio defined by

λ =
ω2

ω1
.

According to Eqs. (37)–(39), it can be seen that the nonlinear forces of the inter-shaft bear-
ing contain piecewise function nonlinearity, fractional exponential nonlinearity, and clearance
nonlinearity.
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The structure parameters of the system are shown as follows:




m1 = 49.256 5 kg, m2 = 55.547 9 kg,

Jd1 = 0.176 2 kg ·m2, Jp1 = 1.521 8 kg ·m2,

Jd2 = 0.212 3 kg ·m2, Jp2 = 1.038 8 kg ·m2,

l1 = 0.171 95 m, l2 = 0.916 25 m,

l3 = 0.399 30 m, l4 = 0.245 83 m, l5 = 0.340 47 m,

k1 = k2 = k3 = 6× 107 N/m,

c1 = c2 = c3 = 655 N · s/m, Kb = 2× 108 N/m9/10
,

Nb = 19, δ0 = 6 µm,

ri = 57.5mm, ro = 68.85mm, λ = 1.2.

When using the classical HBM, it is difficult to set up the harmonic set of this system.
Because of the presence of the unbalanced excitation of the dual frequency and the bearing
nonlinear force, the elements in the harmonic set are the permutations of the three excitation
frequencies. In other words, the elements in the harmonic set can be expressed as

ωijk = iω1 + jω2 + kωc, i, j, k ∈ Z, (41)

where Z is the integer set. Assume that the maximum of each fundamental frequency is 5, i.e.,
i, j, k ∈ [−5, 5]. Then, 113 frequencies are possible in the harmonic set, which will result in a
significant increase in computation time and required computer memory. In general, one sets
up only the harmonics of interest and ignores the other harmonics to reduce the computational
effort, which undoubtedly reduces the accuracy of the solution.

In this example, the initial harmonics are set as

Ω0 = {ω1, ω2, ωc} = {ω, 1.2ω, 1.11ω},

the threshold ε is 0.001, and the sampling frequency is 128. The required frequency resolution for
the three fundamental frequencies is 0.01, so the integration period should be extended to 100T .
For the classical HBM, it is difficult to calculate if all harmonics are to be considered. Therefore,
we have selected 14 frequencies which, we believe, are necessary to ensure the accuracy of the
classical HBM. The amplitude-frequency response curves generated by the AHB-AHS method,
classical HBM, and RK4 are shown in Fig. 18. Four points A, B, C, and D are marked,
respectively, and their corresponding rotational speeds are 975 rad/s, 983 rad/s, 1 176 rad/s,
and 1 284 rad/s.

It can be seen that at most rotational speeds, the results obtained by the three solving
methods match well. However, in two of these regions near Points B and C, the results of
the AHB-AHS method and the classical HBM do not match with those of the RK4. At the
resonance peak A, the RK4 cannot find the unstable solution. At the resonance peak C, all
methods match well. In order to analyze the accuracy of the AHB-AHS method, the time
history diagrams of the four points A, B, C, and D are drawn separately (see Fig. 19). It can
be seen that the time history of Points A and C match very well, while Points B and C match
better near the initial value point, and the error starts to increase with the growth of time. This
phenomenon is consistent with the characteristics of chaotic motion. Therefore, the variation
of the max Lyapunov exponent with the rotational speed is derived (see Fig. 20). It can be seen
that the regions near Points B and C are exactly chaotic.
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Fig. 18 Amplitude-frequency response curves of the dual rotor-bearing system (color online)
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Fig. 19 Time history diagrams at different speeds (blue solid lines are for the AHB-AHS method,
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A, ω = 975 rad/s; (b) Point B, ω = 983 rad/s; (c) Point C, ω = 1176 rad/s; and (d) Point
D, ω = 1284 rad/s (color online)

To demonstrate the effect of the harmonic selection by the AHB-AHS method, the variation
of the harmonic set with continuation iteration is shown in Fig. 21. It can be seen that the
AHS process can select different harmonics at different rotational speeds, and the harmonics
increasing sharply in regions near Points B and D correspond to the continuation iteration
numbers in the ranges of [350, 380] and [640, 690], respectively (see Fig. 21). In detail, 38
harmonics are selected at Point B, and 61 harmonics are selected at Point D.
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The solution efficiency of the AHB-AHS method is advantageous compared with the RK4
and the classical HBM, and the calculation time of the three methods to solve the amplitude-
frequency response curve is shown in Table 7. Note that we have chosen only 14 harmonics for
the HBM to be calculated, because, as stated in Eq. (41), it is very difficult to solve when there
are too many elements in the harmonic set. At this point, the classical HBM is slower than the
AHB-AHS method, which uses more than 14 harmonics in some frequency intervals. When one
does not know which harmonics to set, more harmonics will be set to ensure the accuracy of
the solution, and the calculation speed of the classical HBM will be slower. In addition, due to
the local convergence of the Newton iteration, it may be difficult to find a suitable initial value
to converge.

Table 7 Calculation time of different methods for obtaining the amplitude-frequency curve of the
dual rotor-bearing system

Method Calculation time/s Harmonic set

AHB-AHS 457.88 Adaptive

Classical HBM 546.14
{0.2ω, 0.4ω, 0.5ω, ω, 1.11ω, 1.2ω, 1.4ω, 1.7ω,
1.9ω, 2ω, 2.2ω, 2.5ω, 2.7ω, 3.6ω}

RK4 2 045.06 –

4 Conclusions

In this paper, a novel AHB method is developed for the nonlinear dynamic analysis. A
new harmonic selection method based on the FFT is proposed to realize the adaptive selection
of harmonics. Unlike most existing AHB methods, this new method does not estimate the
contribution of all harmonics to the whole response, but finds the necessary harmonics from
nonlinear terms and excitations. It has been shown that the new method can select harmonics
asymptotically through five numerical examples. With the variation of the path parameter,
some harmonics are added, and some harmonics are deleted, indicating that the harmonics are
changing adaptively.

Moreover, the addition or removal of harmonics does not require a-priori knowledge of the
harmonic range. Instead, the AHS procedure selects harmonics from the frequency spectra
of nonlinear terms whose amplitudes are larger than a given threshold. Therefore, the AHS
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procedure can select several harmonics rather than one harmonic in an iteration, which improves
the efficiency of harmonic selection. Five numerical examples are used to demonstrate the
calculation efficiency and accuracy of the AHB-AHS method. It is shown that the AHB-AHS
method is 1.2−2.7 times faster than the classical HBM, and the mean-square difference errors
between the AHB-AHS method and the classical method are smaller than 2.5× 10−7.

In addition, to overcome the difficulty in the number of harmonics changing in the contin-
uation method, a modified arc-length continuation method for harmonics adaptively changing
is proposed. It has been proved that all solution branches can be obtained by the modified
arc-length continuation method in the first 2 numerical examples. In the 3rd example, the
process of harmonic selection by the AHS procedure is shown. Besides, the convergence of the
AHB-AHS method is better than that of the classical HBM in the 4th example. Although sim-
ple numerical examples are applied, the AHB-AHS method allows for handling high-dimension
dynamic problems and various nonlinearities. The last numerical example shows that the AHB-
AHS method can be applied to high-dimensional complex nonlinear systems. Besides, it can
correctly select harmonics and solve the equations efficiently, while the traditional HBM method
without harmonic selection requires solving a system of nonlinear algebraic equations of huge
size, which is difficult to achieve in many cases.
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