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Abstract The effects of time-delayed vibration absorber (TDVA) on the dynamic char-
acteristics of a flexible beam are investigated. First, the vibration suppression effect of a
single TDVA on a continuous beam is studied. The first optimization criterion is given,
and the results show that the introduction of time-delayed feedback control (TDFC) is
beneficial to improving the vibration suppression at the anti-resonance band. When a
single TDVA is used, the anti-resonance is located at a specific frequency by the optimum
design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for
vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,
and the relationship between the dynamic responses and the TDFC parameters is investi-
gated. The obtained relationship shows that the TDVA has a significant regulatory effect
on the vibration behavior of the continuous beam. The effects of the number of TDVAs
and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are
applied, according to the different requirements on the location and bandwidth of the
effective vibration suppression band, the optimization criteria for the TDFC parameters
are given, which provides guidance for the applications of TDVAs in practical projects
such as bridge and aerospace.
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1 Introduction

Vibration suppression techniques[1] have attracted extensive research interests, since the ex-
istence of vibration with low-frequency and large amplitude may lead to failures of engineering
structures[2], errors in manufacturing processes[3], discomforts of transportation[4], etc. Dy-
namic vibration absorber is significant for the effective suppression of undesired vibrations[5–6].
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A traditional vibration absorber usually consists of a mass, a spring, and a damper, as a tuned-
mass-damper (TMD)[7–8]. Since TMD is effective in the application of vibration suppression
at a fixed excitation frequency, which strictly equals the natural frequency of the primary sys-
tem to induce the anti-frequency point, its effective frequency band is so narrow that it is
not practicable to suppress the vibrations for cases with varying excitation frequencies. Thus,
variable semi-/active control methods are carried out to improve the performances of vibration
absorbers[9–13].

In active control methods, time delay is unavoidable in active control loop due to the data
acquisition, signal transmission, mathematical calculation, and force actuation cost time. In
the early studies, time delay was considered as an unexpected parameter because it might lead
to errors in the control results, destabilization of systems, chaotic phenomena, etc. In order to
eliminate the negative factor, many compensation methods of time delay were proposed[14–15].
With the deepening of research, time delay has been proved to be effective in the control of
various dynamic systems. Researchers have found that time delay is effective in the stabilization
of unstable periodic orbits embedded in chaotic attractors[16], the chaos synchronization of dy-
namic systems[17], the balancing of wheeled inverted pendulums[18–19], the vibration reduction
of flexible beams[20–21], chatter and flapping[22–23], etc. Time-delayed feedback control (TDFC)
is treated as a novel control technique due to its capability for adjusting the frequency and am-
plitude according to the requirements in variable vibration control problems. Sun and Xu[24]

and Sun et al.[25–26] studied the multi-directional quasi-zero-stiffness with multiple time delays
in low-frequency vibration suppression for nonlinear systems. El-Sayed and Bauomy[27] and
Saeed and El-Ganaini[28] obtained the optimum control parameters for problems with impact
and harmonic excitations to improve the performances of TDFC, and showed that TDFC was
suitable for vibration isolation due to its ability to tune the stiffness and damping properties
of isolators, especially for low-frequency ranges. Yang and Cao[29–30] studied the displacement
and velocity feedback with time delay to control the vibration of a smooth and discontinuous
(SD) oscillator with nonlinear stiffness, and established the relationship between the parameters
and the vibration characteristics of the SD oscillator with nonlinear stiffness. It is pointed out
that, from a physical point of view, the TDFC adjusts the equivalent stiffness and damping
characteristics, and optimizes the effect of vibration control.

Since TDFC has the capacity of adjusting equivalent stiffness and damping, it has been
introduced to vibration absorber for better vibration absorption. Olgac and Holmhansen[31]

proposed the first design of time-delayed vibration absorber (TDVA), which was defined as
delayed-resonator (DR). The time-delayed displacement was utilized as the feedback control
signal to suppress the vibration of a linear dynamic system. The results showed that the intro-
duction of TDFC was capable of tuning the vibration responses of the primary system. With the
chosen control parameters, the vibration of the primary system could be totally eliminated. In
engineering applications, the primary system may be subject to external excitations with multi-
ple sinusoidal harmonics. In view of the design problem of TDVA in the case of multi-frequency
external excitations, Olgac et al.[32] proposed two design methods for TDVA, and mainly dis-
cussed the design and function of the dual-frequency fixed DR. The results showed that the
natural frequencies of the vibration absorber and the external excitation frequencies could be
exactly equal by a reasonable selection of the control gain and time delay, and the response of
the main system at the two frequencies could be completely absorbed by the TDVA simulta-
neously. Jalili and Olgac[33] adopted multiple identical TDVAs for the vibration suppression
of multi-degree-of-freedom systems, and showed that the reduction of vibrations for several
masses of the primary system could be significantly improved. Hosek et al.[34–35] proposed
the centrifugal time-delay resonator to suppress torsional vibration, and used the proportional
angular-displacement feedback control with variable time-delay to achieve the full absorption
of the structure torsional vibration. Sun and Xu[36] and Xu and Sun[37] designed a TDVA
for the vibration of a linear system, and used the acceleration signal to achieve anti-resonance
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phenomena. The results showed that the TDVA was suitable for the vibration suppression of
linear systems. Wang and Xu[38] and Wang et al.[39–40] proposed the parameter design criteria
for TDVAs based on an anti-resonance frequency analysis for linear and nonlinear systems.
The theoretical and experimental results showed that the proposed TDVAs were effective in
the vibration suppression of both linear and nonlinear primary systems. Zhang et al.[41–42]

studied TDVAs with friction, and discovered that the stability mode was related to the excita-
tion frequency due to the existence of non-smooth friction model. Besides, the corresponding
experiment of TDVAs determined the value of time delay in the control loop[42]. Meng et
al.[43–44] utilized the nonlinear TDVA to achieve equal-peak phenomena. Ji and Zhang[45–46]

analyzed the vibration suppression effects of the TDVA on the primary and super-harmonic
resonances of the nonlinear primary system, and clarified the effectiveness of the TDVA on the
above vibration suppression.

For broadband vibration suppression of flexible beams, multiple vibration absorbers have
been adopted as inner local resonators (LRs) to form quasi-periodic structure. Owing to their
unusual properties such as negative effective mass density and stiffness, acoustic meta mate-
rials have been employed for the vibration isolation and absorption in a broad low-frequency
range[47–52]. Various design principles have been proposed for LRs based on the width of
bandgaps with/without active control[53–57]. However, there still exist contradictions on the
design and optimization of dynamic behaviors. Although the location of the bandgap can be
decreased to the low-frequency range, the width of it is reduced. The width of the vibration
bandgap can be increased, and the resonance peak can be reduced by increasing the coupling
damping, but the amplitude in the effective band is increased at the same time. To break
the limitation, control mechanisms are needed to achieve adjustable bandgaps for applications
in various external environments. Practically, TDVA, made up of a mass-spring-damper and
a delayed-controller, has been proven to be able to provide adjustable stiffness and damping
simultaneously[58–59]. Therefore, TDVA is expected to provide a potential path to realize the
vibration suppression within a wide low-frequency range for flexible beams.

In this study, the effects of multiple TDVAs on the dynamic characteristics of a flexible beam
are investigated. In Section 2, the flexible beam model with one attached TDVA is established.
The frequency response function of the beam is obtained by the Galerkin truncation method,
and the vibration suppression effect of a single TDVA on the beam is studied. In Section 3, the
delay-coupled system of the flexible beam and multiple TDVAs, which are uniformly distributed,
is proposed. The beam is considered as a quasi-periodic structure with TDVAs as the inner
LRs, and the wide band vibration suppression effects are investigated. The relationship between
the dynamic responses of the beam and the TDFC parameters is investigated. The relationship
between the effective vibration control frequency band and the control parameters is given. In
Section 4, conclusions are drawn, and discussion is made.

2 Vibration suppression effects of single TDVA

2.1 Mathematical modeling
Figure 1(a) shows a flexible beam with multiple TDVAs, and Fig. 1(b) shows a beam with

one TDVA. The oscillations of the TDVA and the beam are both in the vertical direction w.
The coupling force and the control force between the flexible beam and the TDVA are written
as fd and fcontrol, respectively. The governing equations of the flexible beam with one TDVA
(see Fig. 1(b)) are written as





EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= fE(t)δ(x− xE) + (fd(zr, wr, żr, ẇr, t)

+ fcontrol(zr, zrτ , wτ , xr, t))δ(x− xr),
mr z̈r(t) + fd(zr, wr, żr, ẇr, t) + fcontrol(zr, zrτ , wτ , xr, t) = 0,

(1)
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where E is Young’s modulus, I is the moment of inertia, ρ is the density, A is the area of the
cross section, w(x, t) is the deflection of the beam at position x and time t, mr is the mass of the
TDVA, zr is the vibration of the TDVA, zrτ is the TDFC signal as zr(t− τ) from the TDVA,
and wτ is the TDFC signal as w(x, t − τ) from the beam. In Eq. (1), δ(·) is the Dirac delta
function, δ(x − xE) represents that the excitation is applied at xE, and δ(x − xr) represents
that the TDVA is applied at xr on the beam.

(b)(a)

zr(t)

fd kr fcontrol

Beam

c
w(xr, t)

xr

w

O

mr mr

x

Fig. 1 (a) Flexible beam with multiple TDVAs. (b) Flexible beam with one TDVA (color online)

Based on the Galerkin truncation method, the transverse displacement of the beam can be
assumed as

w(x, t) =
P∑

p=1

φp(x)qp(t), (2)

where P is the total number of the Galerkin truncations, φp(x) is the pth modal function, and
qp(t) is the pth generalized displacement. The internal force between the TDVA and the beam
is

f(zr, zrτ , wτ , xr, t) = fd + fcontrol

= kr(zr(t)− w(xr, t)) + cr(żr(t)− ẇ(xr, t))

+ gkr(zr(t− τ)− w(xr, t− τ)). (3)

Substituting Eq. (2) into the first equation of Eq. (1) yields

EI
P∑

p=1

∫ L

0

φ(4)
p (x)φn(x)dxqp(t) + ρA

P∑
p=1

∫ L

0

φp(x)φn(x)dxq̈p(t)

=
∫ L

0

φn(x)δ(x− xE)dxfE(t) +
∫ L

0

φn(x)δ(x− xr)f(xr, t)dx. (4)

According to Fig. 1, The modal functions are selected as those for the Euler beams with
free-free end boundaries. Due to the orthogonality of the modal functions and considering the
modal damping of the beam and the TDVA, Eq. (4) can be formulated as

mpq̈p + cpq̇p + kpqp

=φp(xE)fE(t) + φp(xr)cpżr(t) + krφp(xr)(zr(t)− φp(xr)qp)

+ gkrφp(xr)(zr(t− τ)− φp(xr)qpτ ), (5)

where

mp = ρA

∫ L

0

φ2
p(x)dx, kp = EI

∫ L

0

φ(4)
p φp(x)dx, cp = 2ζp

√
mpkp,

in which ζp is the equivalent damping ratio of the pth beam mode.
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The dynamic responses of the pth generalized displacement of the beam qp(t) and the TDVA
are assumed as the periodic functions written as follows:

{
qp(t) = ap sin(ωt) + bp cos(ωt),

zr(t) = cr sin(ωt) + dr cos(ωt),
(6)

and the excitation fE(t) is assumed as

fE(t) = fE cos(ωt).

Substituting Eq. (6) and the excitation into Eq. (1), one can derive (P +2) equations. Then,
collecting the coefficients of sin(ωt) and cos(ωt) and setting them as zero, one can derive 2(P +2)
equations related to ap, bp, cr, dr, and fE. Rearranging the 2(P + 2) equations, one gets

C2(P+2)×2(P+2)A2(P+2)×1 = E2(P+2)×1, (7)

where A2(P+2)×1 (= (a1, b1, · · · , ap, bp, cr, dr)T) is the vector of the generalized displacement
amplitudes of cosines and sines, C2(P+2)×2(P+2) is the matrix of the coefficients, E2(P+2)×1 is
the matrix related to the excitation force. A2(P+2)×1 can be calculated according to Eq. (7).
The results are substituted into Eqs. (2) and (6), and then the dynamics of the beam and LRs
can be derived. The frequency response function (FRF) of the beam is defined as the spectrum
of the displacement at the beam end divided by that at the tip of the beam as follows:

FRF = 20 lg(|w(L, t)|/|w(0, t)|), (8)

where | · | denotes the amplitude of (·). In this study, the position of excitation force is assumed
as the left end of the beam so that xE = 0, and the position of TDVA is at the right end of the
beam and xr = L.
2.2 Vibration suppression effects of TDVA

The physical parameters of the proposed beam are listed in Table 1. The material of the
beam is chosen as aluminum. The cross section of the beam is a rectangle with the width of
0.03m and the height of 0.012 m. The length of the beam is fixed as 1 m. In the following
analysis, the default number of the unit cells of the beam is chosen as 8, and the mass of the
TDVA mr is assumed as 20% of the mass of one unit cell. Similarly, when the unit cell number
of the beam is chosen as 4, the mass mr of the TDVA is 10% of the mass of one cell. The
stiffness of the coupling spring between the TDVA mass and the beam is chosen as 8 000 N/m.

Table 1 Physical parameters of the flexible beam and TDVA

Parameter Description Value

E Young’s modulus of beam 70GPa

ρ Density of beam 2 700 kg/m3

I Moment of inertia of beam 4.32× 10−9 m4

A Area of cross section of beam 3.6× 10−4 m2

L Length of beam 1m

mr Mass of TDVA 0.025 kg

kr Stiffness of TDVA 8000N/m

ζp Modal damping ratio of beam 0.02

ζr Damping ratio of TDVA 0.01

fE Amplitude of excitation force 1N



1634 Xiuting SUN, Yipeng QU, Feng WANG, and Jian XU

2.2.1 Effects of control gain (cases without time delay)
To clarify the effects of the control gain on the vibration amplitude and effective vibration

suppression frequency bands, the time delay is set as zero. In Fig. 2, the results of FRF at the
end of the beam under different control gains g are shown.

From Fig. 2, it can be seen that there always exists an anti-resonance frequency point between
the first and second peaks, at which the response at the end of the beam is the lowest. In the
cases shown in Fig. 2, when the control gain g increases from −0.9 to 0.9, the anti-resonance
frequency of the beam increases from 29.16 Hz to 123.56Hz.
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Fig. 2 Results of FRF at the end of the beam for different control gains g (color online)

For no active control (see Fig. 2(c)), since the natural frequency of the TDVA without active
part is about 90Hz, which approximately equals

√
kr/mr (=

√
8 000/0.025 = 565.7 rad/s =

90.07Hz), the anti-resonance frequency point is around 90.05 Hz. When the control gain is
negative (see Figs. 2(a) and 2(b)), the anti-resonance point is reduced to less than 90 Hz. When
the control gain is positive (see Figs. 2(d) and 2(e)), the anti-frequency point is tuned over
100Hz. Unfortunately, when the time-delay equals zero, the response amplitude at the anti-
frequency point under either a negative or a positive control gain is larger than that under
g = 0. Thus, the results in this section demonstrate that the feedback control without time
delay deteriorates the vibration suppression for the response amplitude at the anti-frequency
point.

Therefore, the time delay should be introduced into the feedback control and the influ-
ence of time delay on the dynamic responses should be studied by defining the corresponding
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optimization criteria of the time-delayed control parameters.
2.2.2 Effects of time delay

In order to explore the effects of time delay on the dynamic response of the beam, in Fig. 3,
the results of FRF at the end of the beam for different time delays under g = −0.2 and 0.2
are presented. From Fig. 3, it can be seen that when the control gain g is fixed, the dynamic
behavior of the beam can be adjusted by adjusting the time delay. For the case with negative
control gain (see Fig. 3(a)), when the time delay increases from 0 ms to 6 ms, the anti-frequency
point increases from 80Hz to 100Hz, and the amplitude at the anti-frequency point is non-
monotonic. For the other case with positive control gain (see Fig. 3(b)), when the time delay
increases from 0ms to 5.5 ms, the anti-frequency point is reduced to lower frequency band. The
amplitude at the anti-frequency point for the case as τ = 5.5ms is much less than that of the
case as τ = 0 ms. Therefore, by means of adjusting the time delay, the anti-frequency point can
be varied for both lower and higher frequencies, which induces adjustable optimum vibration
suppression property.
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Anti-frequency point

Move to higher band Move to lower band

40

0

−40

F
R

F
/d

B

F
R

F
/d

B

40

0

−40

Excitation frequency/Hz
0 40 80 120

(a) g=−0.2 (b) g=0.2

160 200
Excitation frequency/Hz

0 40 80 120 160 200

τ=0 ms (Ref. [1])

τ=3 ms
τ=6 ms

τ=0 ms (Ref. [1])
τ=3 ms
τ=5.5 ms

Fig. 3 Results of FRF at the end of the beam with different time delays under different control gains
g (color online)

Therefore, it can be concluded that different time delays correspond to different anti-
resonance frequencies. Besides, the response amplitude of the beam at the anti-resonance
greatly depends on the value of the time delay.

From the results shown in Fig. 3, it can be discovered that the variations of the anti-frequency
point and response amplitude are non-monotonic. We propose the optimization criterion R to
obtain the TDFC parameters for two conditions, the anti-frequency point Ωa should be fixed
at the specified point Ωf , and the response amplitude a should be reduced to the lowest level
at the anti-frequency point, i.e.,

R = {(g, τ)|Ωa = Ωf&min(aΩa)}, (9)

where aΩa is the response amplitude at the anti-frequency point.
According to the optimal criterion for one TDVA as given in Eq. (9), the optimal control gain

g and time delay τ under different external excitation frequencies are calculated (see Fig. 4).
In Fig. 4(a), in the frequency band of [75, 115]Hz, the variation of the optimal control gain g

is approximately a straight line, and there is a jump at 107 Hz. When the external frequency is
less than 90 Hz, the optimal control gain g is positive. When the external frequency is beyond
90Hz, the optimal control gain g is negative. When the excitation frequency equals 90 Hz, the
optimal value of g is zero. For the optimal values of time delay (see Fig. 4(b)), the variation
of the optimal time delay τ is non-monotone and nonlinear. At 90 Hz and 109Hz, there exists
jumping for the optimal τ . The optimal τ varies quasi-periodically, since the time-delayed
control affects the equivalent stiffness and damping properties with respect to the time delay.
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Fig. 4 Optimal values of the control gain g (a) and the time delay τ (b) under different external
excitation frequencies (color online)

The beam FRF results without control, with control restrained by zero time delay, and with
the optimal TDFC are shown in Fig. 5. From the black dashed lines shown in Fig. 5, we can
see that the anti-frequency point is located at 90 Hz for the case without control (g = 0.0
and τ = 0.0ms). In addition, without time delay (τ = 0.0ms), the anti-frequencies under
different control gains can be adjusted to the required values according to the classical control
method[1], but the response amplitude at the anti-frequency point cannot be further reduced.
As g = 0.2, 0.0, −0.2, and 0.5, the anti-frequencies are 80 Hz, 90 Hz, 100Hz, and 110 Hz (see the
blue solid lines in Fig. 5). When time delay is considered (τ > 0.0ms) and the optimal TDFC
parameters are applied, not only the anti-frequency can be adjusted, but also the amplitude at
the anti-frequency can be further reduced (see the yellow solid lines in Fig. 5). Thus, the TDVA
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Fig. 5 Results of the beam FRF without control, with optimal gain and zero-time delay, and with
the optimal TDFC under different control gains g (color online)
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designed by the optimal criterion of Eq. (9) can significantly reduce the response of the beam at
the required external excitation frequency, since time delay can adjust not only the equivalent
coupling stiffness but also the equivalent damping property. From Fig. 5, we can also see that
the TDFC can change the anti-resonance frequency of the beam in a wide frequency band, and
improve the vibration suppression of the beam at the anti-resonance frequency.

In this section, the influence of a single TDVA on the dynamic response of the beam is
studied. The influence rules of TDFC on the dynamic response of the beam are given. It is
found that the anti-resonance frequency of the beam can be changed by adjusting the TDFC
parameters. Through numerical calculations, the relationship between the optimal control gain
and time delay and the given external excitation frequency is given. Based on the comparison
of the responses of the beam among the cases without control, with the optimal control gain
without time delay, and with the optimal TDFC parameters, it is found that the TDFC can
greatly improve the suppression effect of the vibration absorber on the dynamic response of the
beam. The research in this section provides a reference for the application of single TDVA in
the vibration suppression of beams.

3 Vibration suppression effects of multiple TDVAs

From the analysis above, it has been verified that one TDVA can achieve significant vibration
suppression of a continuous beam by adjusting the anti-frequency point and response amplitude.
In this section, we study the vibration suppression effects of multiple TDVAs on the flexible
beam.

The schematic diagram of the flexible beam with periodically attached TDVAs is shown in
Fig. 6. As shown in Fig. 6, the coupling spring between the LRs and the beam is linear. For
each local LR, the time-delayed control is applied in the coupling section.

mr mr

TDVAs
(a) (b)

mr mr
mr

zi(t)

w(xi, t)

ith cell(i−1)th cell

(i−1)lc (i+1)lcilc

w

xO

mr mr
mr

Fig. 6 (a) Schematic diagram of the flexible beam with periodically attached TDVAs. (b) Compu-
tational model of the flexible beam with TDVAs as the LRs (color online)

For a continuous beam, the TDVAs serve as the LRs, and then, a quasi-periodic structure is
constructed by the continuous beam with the multiple TDVAs. For the challenge of broadband
vibration suppression in low-frequency band, the optimal method for the TDFC is provided.
3.1 Bandgaps of the infinite model

For the continuous beam, the deflection of the beam can be assumed as w(x, t) = W (x)ejωt,
where W (x) is the assumed mode shape function, and ejωt represents the dynamic response.
The assumed mode shape function W (x) is written as

W (x) = α1 cos(βx) + α2 sin(βx) + α3 cosh(βx) + α4 sinh(βx). (10)

In Eq. (10), the coefficients α1, α2, α3, and α4 are unknown, and β4 = ρA
EI ω2. The mode shape

function for the ith unit is

Wi(x′) = α1i cos(βx′) + α2i sin(βx′) + α3i cosh(βx′) + α4i sinh(βx′), (11)

where x′ = x− ilc, ilc 6 x 6 (i + 1)lc, and lc is the length of each unit.
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For the ith delayed LR, the governing equation is given as

mr z̈i(t) + kr(zi(t)− w(xi, t)) + gkr(zi(t− τ)− w(xi, t− τ)) = 0, (12)

where kr(zi(t) − w(xi, t)) is the coupling force of the connecting spring, and gkr(zi(t − τ) −
w(xi, t− τ)) is the active control force provided by the ith delayed LR. The symbol g denotes
the control gain, and τ is the time delay. The response of the ith delayed LR is assumed as
zi(t) = Ziejωt. Substituting the assumption solution zi(t) into Eq. (12) yields

− ω2mrZi + kr(Zi −Wi(0)) + gkr(Zi −Wi(0))e−jωτ = 0, (13)

Zi =
kr + gkre−jωτ

kr − ω2mr + ge−jωτ
Wi(0). (14)

The coupling force between the delayed LR and the beam is defined as

f(xi, zi, t; τ) = kr(Zi −Wi(0))ejωt + gkr(Zi −Wi(0))Wi(0)ejω(t−τ)

= (kr + gkre−jωτ )
ω2mr

kr − ω2mr + gkre−jωτ
Wi(0)ejωt

= Firejωt, (15)

where Fir is the amplitude of the coupling force.
The continuous conditions of the displacement, slope, bending moment, and shear force of

the beam at each joint point of the delayed LR are expressed as

{
Wi−1(lc) = Wi(0), W ′

i−1(lc) = W ′
i (0),

EIW ′′
i−1(lc) = EIW ′′

i (0), EIW ′′′
i−1(lc) + Fir = EIW ′′′

i (0).
(16)

Substituting Eqs. (11) and (12) into Eq. (16) yields

Hψi−1 = Gψi, (17)

where




ψi = (α1i, α2i, α3i, α4i),

H =




c s ch sh
−βs βc βsh βch
−β2c −β2s β2ch β2sh
β3s −β3c β3sh β3ch


 ,

G =




1 0 1 0
0 β 0 β
−β2 0 β2 0
−F −β3 −F β3


 ,

in which




c = cos(βlc), s = sin(βlc), ch = cosh(βlc), sh = sinh(βlc),

F =
kr + gkre−jωτ

EI

ω2mr

kr − ω2mr + gkre−jωτ
.
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According to the Floquet-Bloch theorem[42], the relationship between the adjacent mode
shape function should satisfy the following condition:

ψi = ejqlcψi−1, (18)

where q is the wave vector. Substituting Eq. (18) into Eq. (17) yields

(H − ejqlcG)ψi−1 = 0. (19)

As a result, the dispersion relation of the beam can de expressed as
∣∣H − ejqlcG

∣∣ = 0. (20)

According to the dispersion relation in Eq. (20), the bandgap of the beam for different
parameters can be obtained. First, we discuss the case for the control without time delay, i.e.,
the time delay τ equals zero. The bandgaps of the beam for different control gains without
time delay are shown in Fig. 7.

In Fig. 7, the solid lines denote the real wave vectors, and the shadows are the bandgaps.
In the bandgaps, the wave propagation is completely eliminated. When the control gain g
decreases from 0.9 to −0.9, although the bandgap shifts to the low-frequency range, its width
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Fig. 7 Bandgaps (represented by shadows) of the beam under different control gains g, where solid
lines represent the real wave vectors (color online)
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gets narrower. Based on Ref. [43], the ending frequency of the bandgap can be theoretically
obtained as

ωe = ωr

√
1 + mr/(ρAlc), (21)

where
ωr =

√
kr(1 + g)/mr.

Actually, the stiffness of the coupling spring between the beam and the LR has the similar
influence to the control gain g on the ending frequency of the bandgap. For smaller g or kr,
the bandgap moves to the lower frequency range. The relation between the control gain g and
the beginning and ending frequencies of the bandgaps is shown in Fig. 8.

Beginning frequency

Ending frequency

Bandgap

Excitation frequency/Hz
0 40 6020 80 100 120 140 160 180 200

−0.9

0.0

0.9

Fig. 8 Beginning and ending frequencies of the bandgap for different control gains g, where dashed
lines represent the beginning frequencies obtained by numerical simulation, and solid lines
represent the ending frequencies ωe as defined in Eq. (21) (color online)

As shown in Fig. 8, with the decrease in the control gain g, the bandgap could shift to lower
frequency region. However, as shown in Fig. 7, the bandwidth of the bandgap becomes narrower
with smaller g. It indicates that the active feedback control strategy can adjust the location of
the bandgap to the required frequency range. To cover the shortage that the bandwidth gets
narrower for low-frequency range, the time delay should be considered.
3.2 Dynamic simplification of the beam with finite length with delayed LRs

To show the effects of time delay on both bandgap location and amplitude magnitude, the
vibration response of the beam with a finite length is analyzed. FRF is studied to illustrate the
variation of the vibration amplitude in the concerned frequency bands. For multiple TDVAs,
the governing equation of the beam is formulated as

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= fE(t)δ(x− 0) +

N∑

i=1

f(xi, t)δ(x− xi), (22)

where fE(t) is the excitation force applied at the left end of the beam, N is the number of the
time-delayed LRs. Similar to Eq. (12), the internal coupling force between the delayed LR and
the beam is

f(xi, t) = kr(zi(t)− w(xi, t)) + gkr(zi(t− τ)− w(xi, t− τ)). (23)

The coupling force as Eq. (23) can embody the effectiveness of the coupling gain g and the
time delay τ , respectively. When τ = 0 ms, the magnitude of the coupling force depends on the
strength of the coupling gain g. When τ is nonzero, the coupling force depends both on the
coupling gain and the time delay, and the effectiveness of time delay can be clearly illustrated
since the dynamic behavior of g has been known.
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Based on the Galerkin truncation method, the transverse displacement of the beam is as-
sumed as

w(x, t) =
P∑

p=1

φp(x)qp(t), (24)

where P is the total number of the Galerkin truncations, φp(x) is the pth modal function, and
qp(t) is the pth generalized displacement. Substituting Eq. (24) into Eqs. (22) and (23) yields

EI
P∑

p=1

φ(4)
p (x)qp(t) + ρA

P∑
p=1

φp(x)q̈p(t) = fE(t)δ(x− 0) +
N∑

i=1

f(xi, t)δ(x− xi), (25)

and the internal coupling force is written as

f(xi, t) = kr

(
zi(t)−

P∑
p=1

φp(xi)qp(t)
)

+ gkr

(
zi(t− τ)−

P∑
p=1

φp(xi)qp(t− τ)
)
. (26)

Multiplying Eq. (25) by the nth modal function and integrating it from 0 to the length of the
beam L yield

EI
P∑

p=1

∫ L

0

φ(4)
p (x)φn(x)dxqp(t) + ρA

P∑
p=1

∫ L

0

φp(x)φn(x)dxq̈p(t)

=
∫ L

0

φn(x)δ(x− 0)dxfE(t) +
N∑

i=1

∫ L

0

φn(x)δ(x− xi)f(xi, t)dx. (27)

The modal functions are selected as those for the Euler beams with the free-free end bound-
ary. Due to the orthogonality of the modal functions and considering the modal damping of
the beam and the resonators, Eq. (27) can be formulated as

mpq̈p + cpq̇p + kpqp = φp(0)fE(t) +
N∑

i=1

φp(xi)fd(xi, t) +
N∑

i=1

φp(xi)f(xi, t), (28)

where

mp = ρA

∫ L

0

φ2
p(x)dx, kp = EI

∫ L

0

φ(4)
p φp(x)dx, cp = 2ζp

√
mpkp,

in which ζp is the damping ratio of the pth beam mode.
The governing equation of the ith delayed LR is expressed as

mr z̈i(t) + fd(xi, t) + f(xi, t) = 0. (29)

In Eqs. (28) and (29), the equivalent damping force fd is given as

fd(xi, t) = 2ζr

√
mrkr

(
żi(t)−

P∑
p=1

φp(xi)q̇p(t)
)
, (30)

where ζr is the damping ratio of each delayed LR. The displacement of the ith delayed LR is
assumed as

zi(t) = ci sin(ωt) + di cos(ωt). (31)
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Substituting Eqs. (6) and (31) into Eqs. (28) and (29) yields (P + N) equations. Then,
collect the coefficients of sin(ωt) and cos(ωt), and be sure that their coefficients are zero. Then,
2(P +N) equations related to the amplitudes ap, bp, ci, di and the excitation amplitude fE are
obtained. Rearranging them, one gets

C2(P+N)×2(P+N)A2(P+N)×1 = E2(P+N)×1, (32)

where A2(P+N)×1 (= (a1, b1, · · · , aP , bP , c1, d1, · · · , cN , dN )T) is the vector of the generalized
displacement amplitudes of cosines and sines, and C2(P+N)×2(P+N) and E2(P+N)×1 are similar
to those in Eq. (7).
3.3 Vibration suppression effects for multiple TDVAs
3.3.1 FRF without time delay

In this case, the number of the Galerkin truncations is set as P = 8, and the number of
TDVAs is also selected as N = 8. Figure 9 shows the FRF results for different control gains g
without time delay. To understand the evolutionary process of the bandgaps with the control
gain g, a three-dimensional (3D) view of FRF and the density visualization are displayed in
Fig. 9. For the control without time delay, based on Eq. (32), the FRF results of the beam can
be calculated to verify the bandgap structures in Subsection 3.1.
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Fig. 9 (a) 3D version of the beam FRF for different control gains calculated by the Galerkin truncation
method. (b) Density visualization of FRF. (c) FRF (solid lines) and bandgap results (shadows)
for g = −0.9, g = −0.5, g = 0, g = 0.5, and g = 0.9 (color online)

In Fig. 9(a), the FRF results in the colored region below zero are in the bandgap frequency
range, and the regions with warm color denote the resonance peaks. As shown in Fig. 9(a), there
exists a valley between the second and third peaks in the FRF results, indicating the bandgap
of the beam. Figure 9(b) reveals excellent agreement with the FRF results shown in Fig. 9(a).
In Fig. 9(b), with the decrease in the control gain, both the beginning and ending frequencies
decrease. In the density visualization of FRF, the white region represents the extremely low
response amplitude in the bandgap. Figures 9(a) and 9(b) show that, with the decrease in
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the control gain g, the frequencies of the peaks and valley shift to the lower frequency ranges
gradually. Although the results demonstrate that the proper value of the control gain g can
tune the location of the bandgap in the required range, the bandgap for effective vibration
suppression becomes narrower.

Figure 9(c) shows the variations of the bandgap and response amplitude. In conformity with
the results shown in Figs. 9(a) and 9(b), the FRF results in Fig. 9(c) show that the bandgaps
shift to the low-frequency range and the bandwidth is reduced when the control gain decreases.

From the results in Figs. 7 and 9(c), we can see that there exists a little difference in the
bandgaps due to the existence of damping. The bandgaps in Fig. 9(c) are wider than the
bandgaps in Fig. 7, since the damping further suppresses the response amplitudes and broaden
the boundaries of the bandgaps. This enlightens us that the damping may play an important
role in the enlargement of the gap bandwidth. Notably, there remain wide plain valleys between
the first and second peaks or the third and fourth peaks. Thus, if the peaks could be eliminated
and the valleys could be joined together, the useful bandwidth for vibration attenuation would
be sufficiently expanded. It is worth a trial to introduce damping by adopting the time delay
mechanism. The time delay mechanism has been analyzed in the literature, and it has been
summarized that TDFC provides tunable coupling stiffness. The position and width of the
bandgap are potentially tunable at the mean time for proper control gain and time delay.
3.3.2 FRF with time delay

As mentioned above, the TDFC may lead to the convergence of the bandgaps and regions
below zero between peaks. The effects of time delay on FRF are analyzed. The FRF results of
the TDVA-coupled beam for different time delays are shown in Fig. 10 to show the effects of
time delay on the elimination of peaks and joining of useful frequency bands.

Figure 10 shows the FRF results at the end of the beam with different time delays when
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Fig. 10 FRF results of the TDVA-coupled beam for different time delays calculated by the Galerkin
truncation method under different control gains g, where dashed lines denote the case without
control and shadows denote the continuous frequency band below zero (color online)
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g ∈ [−0.9, 0.9]. The dashed line denotes the FRF results without control, and the solid lines
with thick, medium, and light colors indicate the cases for different time delays. The shadows
with the corresponding colors show the continuous frequency bands in which FRF is below zero.
As shown in Fig. 10, for cases without control, the bandgap is in the range of [85.3, 103.2]Hz.
In Fig. 10(a), with the gradual increase in the time delay, the peaks of the response on both
sides of the effective bandwidth decrease gradually, and finally fall below zero when the time
delay τ increases to 0.6 ms. The band for effective vibration suppression is increased from
[100, 142]Hz to [80, 182]Hz, which completely covers the bandgap without control. The reason
is that the time delay increases the damping of the system and reduces the amplitude of the
formant. Thus, the effective vibration suppression bands outside the band gap merges with
it and forms a wider continuous effective band. However, the damping caused by time delay
weakens the effects of vibration suppression in the band gap. Similarly, in Figs. 10(b) and
10(c), the introduction of time delay also broadens the effective frequency band, and weakens
the suppression effect of vibration in the band gap. It is discovered that the bandgap can be
adjusted into a low-frequency band unloosing its width. In Fig. 10(d), due to the large control
gain, it is difficult to find an appropriate time delay to improve the damping effect of the TDVA
on beam vibration. Objectively, it is found that the improvement of the vibration suppression
effect of the beam by introducing time delay control is not universal. From the above analysis,
we find that TDFC is effective in the ascension of the vibration absorption inhibition effect and
the change of the effective vibration suppression band position, and broadening the effective
vibration suppression has effects on problems such as bandwidth.

Figure 11 shows the trends of the FRF value at the end of the beam with the control gain
under different time delays τ . The dotted lines show the boundaries where FRF = 0, the warm
tone is the part where FRF > 0, and the cool tone is the part where FRF < 0. It can be seen
that when the time delay is small, the peaks on the right side of the band gap can gradually
disappear. For example, when g = 0.9, the response of the beam has a peak near 145 Hz in
the absence of time delay (see Fig. 9). However, in Fig. 11, within the range of [0.4, 3.6]ms, the
peak near 145 Hz is weakened, which can generate a very wide continuous effective vibration
suppression frequency band. By comparing Figs. 11(a), 11(b), 11(c), and 11(d), it is found that
the effect of g on the position of the effective vibration suppression band is qualitatively different
under different time delays. Therefore, the control gain and time delay should be considered
simultaneously to improve the vibration suppression effects of the vibration absorber on the
beam.
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Fig. 11 FRF results at the end of the beam with respect to the control gain g under different time
delays τ (color online)

Figure 12 shows the trends of FRF at the end of the beam with the time delay τ under
different control gains g. Similarly, the dotted line is the dividing line where FRF = 0, the warm
tone is the part where FRF > 0, and the cool tone is the part where FRF < 0. From Fig. 12,
it can be seen that the time delay has different effects on the amplitude-frequency evolution
under different control gains. When g = −0.3, the peak near 95 Hz gradually disappears with
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Fig. 12 FRF results at the end of the beam with respect to the time delay τ under different control
gains g (color online)

the increase in the time delay, and the effective bandwidths on both sides merge and form a
continuous effective vibration suppression band, in which FRF > 0. Similarly, when g = 0.3, the
peak near 130 Hz gradually disappears with the increase in the time delay, forming a continuous
effective vibration suppression band. It can be seen that the time delay can greatly widen the
effective vibration suppression band by weakening the FRF value at the formant.
3.4 Effects of the number of multiple TDVAs

In the above sections, the number of TDVAs is set as P = 8 in the exploration of the effects
of TDFC on the bandgaps and responses of the beam. According to the results in Section 3, the
number of LRs without control has little influence on the position of the bandgaps. However,
in our research process, it is found that the number of TDVAs has a great effect on the width of
the effective frequency band and the response amplitude of the beam in the effective frequency
band.

Figure 13 shows the effects of the number of TDVAs on the bandwidth of the beam bandgap
for vibration suppression. In Fig. 13, the number of TDVAs is chosen as N = 4, N = 8, and
N = 16. It can be clearly seen from Fig. 13 that the number of TDVAs plays an important role
in broadening the effective bandwidth and improving the vibration suppression effect within
the effective frequency band. For a larger number of TDVAs, a better vibration suppression
effect and a wider effective bandwidth are achieved. The increase in N can broaden the effective
vibration suppression band and reduce the amplitude in the band. When the number of TDVAs
applied on the continuous beam increases, the sum mass of absorbers becomes larger, and
correspondingly, more effective mass is involved into the vibration suppression. In addition,
when the number of TDVAs is the same, the vibration suppression band can be effectively
widened by introducing TDFC, which confirms the results in Fig. 10. This is because of the
larger control interaction force and the equivalent LR mass brought by the time-delayed control
for vibration suppression. Based on the results in Figs. 10 and 13, we can see that time delay
can break the contradiction between low-frequency and broadband vibration suppression. In
practical engineering, it is necessary to select the appropriate number of TDVAs according to
the engineering demand and cost.

4 Conclusions and discussion

In this study, the effects of TDVA on the vibration suppression of a continuous beam are
studied. First, the vibration suppression effect of a single TDVA on the beam is studied. The
results show that the introduction of TDFC is beneficial to improving the vibration suppres-
sion on the beam in the anti-resonance region. Then, considering multiple TDVAs uniformly
distributed on the beam, the relationship between the response features of the beam and the
TDFC parameters is given. The main contributions of this study are summarized as follows.

(i) For a continuous beam, TDVA is introduced to improve the vibration suppression effects.
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Fig. 13 Effects of the number of TDVAs on the effective frequency band of beam vibration suppres-
sion under different time delays τ when g = 0.5 (color online)

When a single TDVA is applied, the anti-resonance at a specific external excitation frequency
can be realized through the optimization design of TDFC parameters. The analysis of the dy-
namic behaviors based on the general dynamic model of the coupling system discovers that time
delay can adjust the location of the anti-frequency point and reduce the response amplitude at
the anti-frequency point simultaneously, which can achieve the optimum vibration suppression
at a required frequency point.

(ii) The vibration suppression effect of multiple TDVAs is studied when they are uniformly
distributed on the continuous beam. Utilizing the Floquet-Bloch theorem, the location and
bandwidth of the bandgap can be theoretically described by different structural parameters,
and the relationship between the bandgap and the control parameters is obtained. The influence
rules of the TDFC on the vibration suppression effectiveness of the continuous beam are given.
When multiple TDVAs are applied, appropriate TDC parameters are obtained to adjust the
position of the effective vibration suppression band and widen its bandwidth.

(iii) Based on the analysis of the effects of single and multiple TDVAs on the vibration
suppression effectiveness of a continuous beam, the corresponding optimization or design criteria
are proposed for appropriate TDFC parameters. In addition, the variations of the location and
bandwidth of bandgap with the number of TDVAs are given. It is revealed that the TDVAs
have a significant vibration suppression effect since when the number of TDVAs increases, the
bandgap is considerably widened, and the contradiction between the low-frequency and broad
bandgaps is overcome.
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The research results in this study show that the TDVA has a good effect on the vibration
suppression of continuous beams. Time delay can simultaneously adjust the location and band-
width of the bandgap, and thus, it can break through the contradiction of the low-frequency
and extension of the bandgap. In this study, the method of parameter selection for the applica-
tion of TDVAs in the beam structure is presented theoretically, which provides guidance for the
applications of TDVAs in bridge, aerospace, and other practical projects. In the future work,
the effects of nonlinear coupling and sum mass of TDVAs for nonlinear continuous beams will
be considered for wide and low-frequency vibration suppression.
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