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Abstract The present research focuses on the analysis of wave propagation on a
rotating viscoelastic nanobeam supported on the viscoelastic foundation which is sub-
ject to thermal gradient effects. A comprehensive and accurate model of a viscoelastic
nanobeam is constructed by using a novel nonclassical mechanical model. Based on the
general nonlocal theory (GNT), Kelvin-Voigt model, and Timoshenko beam theory, the
motion equations for the nanobeam are obtained. Through the GNT, material hardening
and softening behaviors are simultaneously taken into account during wave propagation.
An analytical solution is utilized to generate the results for torsional (TO), longitudinal
(LA), and transverse (TA) types of wave dispersion. Moreover, the effects of nonlocal
parameters, Kelvin-Voigt damping, foundation damping, Winkler-Pasternak coefficients,
rotating speed, and thermal gradient are illustrated and discussed in detail.
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1 Introduction

Viscoelastic nanobeams are structures that exhibit both viscous and elastic behaviors at
the nanoscale. Their engineering background is primarily rooted in the fields of material sci-
ence, nanotechnology, and mechanical engineering. These beams are typically composed of
viscoelastic materials which possess time-dependent deformation characteristics. Viscoelastic
nanobeams find applications in various areas due to their unique mechanical properties. Some
applications are described as below.

Viscoelastic nanobeams are employed in microelectromechanical system (MEMS) and na-
noelectromechanical system (NEMS) devices. These devices often require flexible and resilient
components, and viscoelastic nanobeams provide the desired properties for sensing, actuation,
and energy harvesting applications[1–3]. Viscoelastic nanobeams can be used as platforms for
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drug delivery systems. By incorporating drug-loaded nanoparticles into nanobeam structures,
controlled release of drugs can be achieved through viscoelastic deformations of beams in re-
sponse to external stimuli, such as temperature or pH changes[4–6]. In biomedical engineering,
viscoelastic nanobeams find applications in tissue engineering, regenerative medicine, and bio-
sensing. They can be used as scaffolds for cell growth and tissue regeneration, as well as in the
development of biosensors for detecting specific biomarkers[7–9]. Viscoelastic nanobeams can be
utilized for energy harvesting from ambient vibration. Their viscoelastic behavior allows them
to efficiently convert mechanical vibration into electrical energy, which can be harnessed for
powering small electronic devices or sensors[10–12].

When supported on viscoelastic foundations, viscoelastic nanobeams can exhibit enhanced
mechanical properties and offer additional applications. By placing viscoelastic nanobeams on
viscoelastic foundations, it is possible to create vibration isolation systems. These systems effec-
tively attenuate vibrations transmitted through the nanobeams, making them useful in reduc-
ing the impact of external vibrations on sensitive equipments or structures[13–14]. Viscoelastic
nanobeams supported on viscoelastic foundations can act as shock absorbers. When the beams
and foundations are subject to sudden impacts or mechanical shocks, their viscoelastic nature
allows them to dissipate energy and protect the surrounding structures or components[15–16].
When viscoelastic nanobeams are supported on viscoelastic substrates, they can be used as
flexible interconnects or stretchable electrodes in electronic devices. The viscoelastic founda-
tion enables mechanical flexibility and robustness, allowing nanobeams to withstand bending,
stretching, or other deformations without losing functionality[17–18].

Overall, viscoelastic nanobeams offer a wide range of applications in diverse fields, including
MEMS/NEMS, drug delivery, biomedical engineering, energy harvesting, vibration isolation,
shock absorption, and flexible electronics. These applications leverage the unique properties
of viscoelastic materials and the nanoscale engineering of beams to achieve desired functional-
ities. Hence, small viscoelastic structures such as viscoelastic nanobeams have attracted great
attention due to their exceptional properties and characteristics.

It is known that experimental and statistical approaches can demonstrate the impacts of
small-scale effects on the behavior of nanostructures. However, these methods are costly, time-
consuming, and restricted by the capabilities of technical facilities. On the other hand, as
the continuum theories are scale-free, they are incapable of capturing the influence of small-
scale parameters on the performance of nanostructures[19–21]. Different theories that consider
small-scale effects have been proposed, such as the nonlocal theory[22–24], the strain gradi-
ent theory[25–26], the modified coupled stress theory[27–28], and the nonlocal strain gradient
theory[29–31]. The nonlocal strain gradient theory is an advanced theoretical framework that
incorporates both strain gradients and nonlocal effects to better describe the mechanical behav-
ior of materials at small scales. This theory takes into account the influence of microstructural
features and interactions, such as dislocations and grain boundaries, on the overall deformation
response of materials. By considering strain gradients, which capture the variations in strain
within materials, and nonlocal effects, accounting for the influence of neighboring regions, the
nonlocal strain gradient theory provides a more comprehensive understanding of material be-
havior at the microscale and nanoscale.

Nanostructures with the ability to rotate and spin, such as nanogears, nanoturbines, and
nanobearings, have garnered significant interest among nanotechnology researchers. The reli-
able design and formulation of these structures necessitate a thorough investigation of vibration
and wave dispersion of nanobeams. For instance, in a study by Khaniki[32], the vibration of ro-
tating nanobeams was examined using Eringen’s two-phase local/nonlocal theory. The natural
frequencies were obtained through the utilization of a modified generalized differential quadra-
ture method. The study demonstrated that the dynamical behavior of the rotating nanobeams
is significantly influenced by the scale parameter, rotating speed, and hub radius. Fang et
al.[33] employed the nonlocal elasticity theory to investigate the natural vibrations of rotating
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nanobeams with functionally graded (FG) material properties varying along their thickness.
The displacement field incorporated an axial shortening term, and the model was derived using
Hamilton’s principle. Galerkin’s approach was then utilized to solve the resulting equations.
The study revealed that the natural frequencies of the rotating nanobeams are significantly
influenced by the nonlocal parameter, slenderness ratio, angular velocity, and FG index. Ad-
ditionally, Ebrahimi and Haghi[34] examined the wave dispersion behavior of a rotating FG
Euler-Bernoulli beam model. The mathematical model was formulated using the nonlocal
strain gradient theory and Hamilton’s principle. Closed-form solutions were presented, demon-
strating the substantial impact of the angular velocity, temperature change, FG index, nonlocal
parameter, and length scale parameter on the structural behavior. In another investigation,
Ebrahimi and Dabbagh[35] applied the nonlocal strain gradient theory to analyze the wave dis-
persion characteristics of a rotating FG nanobeam subject to magnetic and electric fields. The
material properties were assumed to vary through the thickness according to a power law rela-
tion. The analysis accounted for shear deformation, and the governing equations of motion were
derived using Hamilton’s principle. Analytical solutions were obtained, revealing the significant
influences of shear deformation, angular velocity, nonlocal parameter, FG index, wave number,
and magneto-electric potentials on the wave propagation of rotating FG nanobeams. Further-
more, Rahmani et al.[36] investigated the wave propagation behavior of rotating nanobeams in a
thermal environment supported by a Winkler-Pasternak layer. The governing equations of mo-
tion were derived using Reddy’s beam theory, nonlocal elasticity theory, modified couple stress
theory, and Hamilton’s principle. Analytical solutions were employed, demonstrating that the
angular velocity, FG index, wave number, and nonlocal parameter have considerable impacts
on the wave propagation behavior of rotating FG nanobeams. Ebrahimi et al.[37] developed
an analytical solution for the wave dispersion characteristics of a rotating FG Euler-Bernoulli
nanobeam. The governing equations of motion were obtained using Hamilton’s principle and
Eringen’s nonlocal elasticity theory. Closed-form solutions were assumed, and it was illustrated
that the angular velocity, FG index, wave number, and nonlocal parameter significantly affect
the wave propagation behavior of rotating FG nanobeams.

When dealing with materials exhibiting distinct axial and transverse (TA) characteristics,
Eringen’s nonlocal theory (ENT) presents certain drawbacks and limitations. Recognizing this,
Shaat[38] introduced the general elasticity theory as an alternative approach for modeling par-
ticle mechanics and material dispersion relations. Multiple attenuation functions were explored
to ascertain the material coefficients and length scales.

Faroughi et al.[39] proposed a wave dispersion analysis for two-dimensional (2D) FG
nanobeams. They employed the general nonlocal theory (GNT), Reddy’s beam theory, and
Hamilton’s principle to formulate a model for porous rotating beams. The study revealed
that the wave dispersion behavior of 2D rotating FG nanobeams is influenced by the FG in-
dexes, porosity, nonlocal parameter, and rotating velocity. Rahmani et al.[40] utilized the GNT
to investigate the vibrations of bi-directional rotating porous FG nanobeams. The governing
equations of motion were derived using Reddy’s beam theory and Hamilton’s principle. The
differential quadrature method was used to determine the natural frequencies of the nanobeams.
The study discussed the effects of porosity, length-to-thickness ratio, power law indexes, and
angular velocity on the free vibration. In another study, Faroughi and Shaat[41] examined the
influence of Poisson’s ratio on the bending and vibration behaviors of auxetic and non-auxetic
nanobeams. The GNT was introduced to model the nonlocal effects. The findings empha-
sized the crucial role of Poisson’s ratio in determining the characteristics of nanobeams. Li
et al.[42] conducted an investigation into the vibrational behavior of rotating FG piezoelectric
nanobeams. They utilized the Timoshenko beam model and the nonlocal elasticity theory to
formulate the governing equations. The numerical results were obtained using the differential
quadrature method. Wang et al.[43] performed a vibration analysis of rotating axisymmetric
circular nanoplates. They employed the Mindlin plate theory, nonlocal strain gradient theory,
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and differential quadrature method to derive the model and obtain the results.
After reviewing the existing literature, it is apparent that no studies have investigated

the wave propagation of a viscoelastic nanobeam using the general nonlocal elasticity theory.
Therefore, the objective of this research is to address this gap in the literature. Specifically, this
study focuses on the analysis of wave propagation in a rotating viscoelastic nanobeam supported
on a viscoelastic foundation and subject to thermal gradient effects. The mathematical model is
established, and results are obtained by employing the GNT, Kelvin-Voigt model, Timoshenko
beam theory, and an analytic method. The remainder of this study is organized as follows.
Section 2 formulates the problem and utilizes Hamilton’s principle to establish the governing
equations of motion for a rotating Timoshenko nanobeam resting on a viscoelastic layer and
subject to thermal loads. In Section 3, the GNT is introduced, along with two constant nonlocal
moduli as functions of the lattice constant. Section 4 applies the Kelvin-Voigt model to illustrate
the viscoelastic properties. Section 5 assumes a closed-form solution and estimates the results
using an analytic method. The model is validated, and the results are presented and discussed
in Section 6. Finally, Section 7 provides concluding remarks.

2 Formulation

Figure 1 shows a Kelvin-Voigt rotating nanobeam resting on a viscoelastic foundation. The
geometric characteristics of the nanobeam with rectangular cross sections are L, b, and h
for length, width, and thickness, respectively. Based on the Timoshenko beam model, the
displacement fields are considered as

u1(x, t) = u(x, t)− zϕ(x, t), u2(x, t) = 0, u3(x, t) = w(x, t), (1)

in which u (= (u1, u2, u3)) is the displacement in (x, y, z) directions. Also, u and w are lon-
gitudinal (LA) and TA displacements, respectively, and ϕ denotes the rotation of the cross
section.

z

kp

O

(kw,kd)

Kelvin-Voigt viscoelastic nanobeam
ω

x

Fig. 1 Kelvin-Voigt rotating nanobeam (color online)

Therefore, the strains can be expressed as
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Accordingly, the strain energy density Πs can be expressed as follows:

Πs =
∫ L

0

∫
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− ϕ

))
dx, (3)
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where

Nxx =
∫

A

σxxdA, Mxx =
∫

A

zσxxdA, Nxy =
∫

A

σxydA. (4)

Also, the kinetic energy Πk and the work of external forces Πw are defined as

Πk =
1
2
ρ

∫ L

0

∫

A

((∂u1

∂t

)2

+
(∂u2

∂t

)2

+
(∂u3

∂t

)2)
dAdx

=
1
2

∫ L

0

(
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(∂u

∂t

)2

− 2m1

(∂u

∂t

)(∂ϕ

∂t

)
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(∂ϕ
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)2
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(∂w

∂t

)2)
dx, (5)

Πw =
∫ L

0

(
− ∂

∂x

(
NT

∂w

∂x

)
+ q − kww − kd

∂w

∂t
+ kp

∂2w

∂x2
+

∂

∂x

(
T (x)

∂w

∂x

)
+ f

)
dx, (6)

in which NT (=
∫

A
(Eα∆T )dA) is the thermal force applied due to thermal gradients. kw, kd,

and kp are the coefficients indicating the Winkler, damping, and Pasternak factors associated
with the foundation, respectively. q and f are external forces acting in the TA and LA directions,
respectively. When the nanobeam rotates, the axial force caused by centrifugal stiffening T (x)
is represented as

T (x) = b

∫ L

x

∫ h/2

−h/2

ρω2
bxdzdx, (7)

where ωb is observed as the rotating speed of the nanobeam.
It is important to pay attention to the fact that the effects of temperature gradients at the

nanoscale can deviate from classical macro-scale behavior due to several reasons, such as size
effects, phonon transport, surface effects, and quantum effects. Nevertheless, the concept of
thermal loads can still be applicable in small-size structures, and many recent research studies
equate the effect of temperature gradients to thermal loads in small-scale structures[36,44–46].
However, this study ignores the effects of phonon transport, surface effects, and quantum effects.

Hence, in order to derive the mathematical model, Hamilton’s principle can be applied as

δΠ = δ

∫ t2

t1

(Πs −Πk −Πw)dt = 0. (8)

Thus, the first variations of Πs, Πk, and Πw give

δΠs =
∫ L

0

(
− ∂Nxx

∂x
δu +

(∂Mxx

∂x
−Nxy

)
δϕ− ∂Nxy

∂x
δw

)
dx, (9)

δΠk = −
∫ L

0
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∂t2
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∂2ϕ
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∂2w

∂t2

)
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)
dx, (10)

δΠw = −
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0

((
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(
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)
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∂t
+kp
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∂x2
+

∂
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))
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)
dx. (11)

Equations (9)–(11) can be substituted into Eq. (8) to derive the equations of motion as
follows:

δu : −∂Nxx

∂x
+ f + m0

∂2u

∂t2
= 0, (12a)

δϕ :
∂Mxx

∂x
−Nxy + m2

∂2ϕ

∂t2
= 0, (12b)

δw : −∂Nxy

∂x
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)
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∂x2
+
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T (x)
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∂x

)
+m0

∂2w

∂t2
= 0. (12c)
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3 GNT

In the nonlocal fields, Shaat and Abdelkefi[47] introduced a novel nonlocal theory known as
the GNT. Their research is aimed to advance ENT and provide fresh insights into its limita-
tions. The authors demonstrated that the conventional nonlocal theory (i.e., the ENT) fails to
simultaneously account for both LA and TA (shear) acoustic dispersions in materials. To over-
come this limitation, they developed the GNT, which can accurately describe both hardening
and softening behaviors. Consequently, the GNT utilized in their study is considered as the
most comprehensive, suitable, and accurate theory for investigating elastic wave dispersion in
materials.

Unlike the conventional nonlocal theory, the GNT employs two distinct nonlocal coefficients.
With the GNT, the nonlocal stress fields can be expressed as follows[38,47]:

σji(x) =
∫

V

(λβ1(|x′ − x|)εrr(x′)δij + 2µβ2(|x′ − x|)εij(x′))dV ′, (13)

in which σji specifies the nonlocal stress field based on the two constant nonlocal coefficients
β1(|x′ −x|) and β2(|x′ −x|). λ and µ are Lame’s constants. Also, δ and εij

(
= 1

2 (ui,j + uj,i)
)

denote the Dirac-delta function and the nonlocal strain field, respectively.
According to the GNT, the differential equation is indicated as[47]

(1− ε1∇2)(1− ε2∇2)σ(ji)(x) = λ(1− ε2∇2)εrr(x)δij + 2µ(1− ε1∇2)εij(x), (14)

where ε1 and ε2 are two constant nonlocal moduli which are described as functions of the lattice
constant a, and ∇2 = ∂2

∂x2 is the Laplacian gradient operator.
Based on the GNT, Eq. (14) can be rewritten as

(1− ε1∇2)(1− ε2∇2)σxx = λ(1− ε2∇2)εxx + 2µ(1− ε1∇2)εxx, (15a)

(1− ε1∇2)(1− ε2∇2)σxy = 2µ(1− ε1∇2)εxy. (15b)

Substituting Eq. (2) into Eq. (15) and paying attention to Eq. (4) give

(1− ε1∇2)(1− ε2∇2)Nxx =(1− ε2∇2)
(
A0

∂u

∂x
−A1

∂ϕ

∂x

)
+2(1− ε1∇2)

(
B0

∂u

∂x
−B1

∂ϕ

∂x

)
, (16a)

(1− ε1∇2)(1− ε2∇2)Mxx =(1− ε2∇2)
(
A1

∂u

∂x
−A2

∂ϕ

∂x

)
+2(1− ε1∇2)

(
B1

∂u

∂x
−B2

∂ϕ

∂x

)
, (16b)

(1− ε1∇2)(1− ε2∇2)Nxy = 2B0(1− ε1∇2)
(∂w

∂x
− ϕ

)
, (16c)

where

(A0, A1, A2) =
∫

A

λ(1, z, z2)dA, (17a)

(B0, B1, B2) = κs

∫

A

µ(1, z, z2)dA, (17b)

in which κs is the shear correction factor in the Timoshenko beam model, and it is equal to 5/6
for square cross section.

Applying the GNT into Eq. (12) and considering Eq. (16) lead to the governing equations of
motion for the rotating nanobeam resting on the viscoelastic foundation in terms of displace-
ments as

δu : (A0 + 2B0)
∂2u

∂x2
− (ε2A0 + 2ε1B0)

∂4u

∂x4
− (A1 + 2B1)

∂2ϕ

∂x2
+ (ε2A1 + 2ε1B1)

∂4ϕ

∂x4

=m0

(∂2u

∂t2
− (ε1 + ε2)

∂4u

∂x2∂t2
+ ε1ε2

∂6u

∂x4∂t2

)
, (18a)
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δϕ : (A1 + 2B1)
∂2u

∂x2
− (ε2A1 + 2ε1B1)

∂4u

∂x4
+ B0ϕ− (A2 + 2B2 + ε1B0)

∂2ϕ

∂x2

+ (ε2A2 + 2ε1B2)
∂4ϕ

∂x4
−B0

∂w

∂x
+ ε1B0

∂3w

∂x3

= −m2

(∂2ϕ

∂t2
− (ε1 + ε2)

∂4ϕ

∂x2∂t2
+ ε1ε2

∂6ϕ

∂x4∂t2

)
, (18b)

δw : B0
∂ϕ

∂x
− ε1B0

∂3ϕ

∂x3
+ ε1ε2(kp −NT + T (x))

∂6w

∂x6
+ ε1ε2

(∂T (x)
∂x

− ∂NT

∂x

)∂5w

∂x5

+ (ε1B0 + (ε1 + ε2)(NT − T (x)− kp)− ε1ε2kw)
∂4w

∂x4
+ (ε1 + ε2)

(∂NT

∂x
− ∂T (x)

∂x

)∂3w

∂x3

+
(
T (x)−NT −B0 + kp + (ε1 + ε2)

(∂2NT

∂x2
− ∂2T (x)

∂x2
+ kw

)

− ε1ε2

(∂4NT

∂x4
− ∂4T (x)

∂x4

))∂2w

∂x2
+

(∂T (x)
∂x

− ∂NT

∂x
+ (ε1 + ε2)

(∂3NT

∂x3
− ∂3T (x)

∂x3

))∂w

∂x

− kww − kd

(∂w

∂t
− (ε1 + ε2)

∂3w

∂x2∂t
+ ε1ε2

∂5w

∂x4∂t

)

= −m0

(∂2w

∂t2
− (ε1 + ε2)

∂4w

∂x2∂t2
+ ε1ε2

∂6w

∂x4∂t2

)
. (18c)

It is noted that, for ε1 = ε2, the GNT is reduced to the conventional ENT which was
extensively employed in the previous studies.

4 Kelvin-Voigt model for nanobeam

The Kelvin-Voigt viscoelastic model states that the mechanical properties are dependent on
the variation in time. Therefore, Lame’s constants of materials are, respectively, defined as[48]

λviscoelastic = λ
(
1 + Cd

∂

∂t

)
, (19a)

µviscoelastic = µ
(
1 + Cd

∂

∂t

)
, (19b)

in which Cd is the damping parameter of the structure, and ∂
∂t is the derivative with respect

to time.
Based on the Kevin-Voigt model and elasticity theory, the constitutive equation can be

formulated as follows:

σij(x) =
(
1 + Cd

∂

∂t

)
(λεrr(x)δij + 2µεij(x)). (20)

On the basis of the GNT and Kelvin-Voigt viscoelastic models and substituting Eq. (20) into
Eq. (3) and considering Eq. (16), the governing equations of motion for a rotating nanobeam on
a viscoelastic foundation can be established as follows:

δu :
(
1 + Cd

∂

∂t

)
∆u = m0

(∂2u

∂t2
− (ε1 + ε2)

∂4u

∂x2∂t2
+ ε1ε2

∂6u

∂x4∂t2

)
, (21a)

δϕ :
(
1 + Cd

∂

∂t

)
∆ϕ = −m2

(∂2ϕ

∂t2
− (ε1 + ε2)

∂4ϕ

∂x2∂t2
+ ε1ε2

∂6ϕ

∂x4∂t2

)
, (21b)

δw :
(
1 + Cd

∂

∂t

)
∆w + ε1ε2(kp −NT + T (x))

∂6w

∂x6
+ ε1ε2

(∂T (x)
∂x

− ∂NT

∂x

)∂5w

∂x5
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+ ((ε1 + ε2)(NT − T (x)− kp)− ε1ε2kw)
∂4w

∂x4
+ (ε1 + ε2)

(∂NT

∂x
− ∂T (x)

∂x

)∂3w

∂x3

+ (T (x)−NT + kp + (ε1 + ε2)
(∂2NT

∂x2
− ∂2T (x)

∂x2
+ kw

)
− ε1ε2

(∂4NT

∂x4
− ∂4T (x)

∂x4

))∂2w

∂x2

+
(∂T (x)

∂x
− ∂NT

∂x
+ (ε1 + ε2)

(∂3NT

∂x3
− ∂3T (x)

∂x3

))∂w

∂x
− kww

− kd

(∂w

∂t
− (ε1 + ε2)

∂3w

∂x2∂t
+ ε1ε2

∂5w

∂x4∂t

)

= −m0

(∂2w

∂t2
− (ε1 + ε2)

∂4w

∂x2∂t2
+ ε1ε2

∂6w

∂x4∂t2

)
, (21c)

where

∆u =(A0 + 2B0)
∂2u

∂x2
− (ε2A0 + 2ε1B0)

∂4u

∂x4
− (A1 + 2B1)

∂2ϕ

∂x2
+ (ε2A1 + 2ε1B1)

∂4ϕ

∂x4
, (22a)

∆ϕ =(A1 + 2B1)
∂2u

∂x2
− (ε2A1 + 2ε1B1)

∂4u

∂x4
+ B0ϕ− (A2 + 2B2 + ε1B0)

∂2ϕ

∂x2

+ (ε2A2 + 2ε1B2)
∂4ϕ

∂x4
−B0

∂w

∂x
+ ε1B0

∂3w

∂x3
, (22b)

∆w =B0
∂ϕ

∂x
− ε1B0

∂3ϕ

∂x3
+ ε1B0

∂4w

∂x4
−B0

∂2w

∂x2
. (22c)

Because the current study is about wave dispersion in unbounded elastic domains, there is
no need to discuss and consider the boundary conditions[49–51].

5 Solution procedure

In this section, to describe wave dispersion in Kelvin-Voigt rotating nanobeams, the analyt-
ical solution is provided to the governing equations. The displacement fields associated with
wave propagation can be illustrated using the harmonic method as follows[36,39]:





u(x, t) = u0exp(i(Kx− ωt)),
ϕ(x, t) = ϕ0exp(i(Kx− ωt)),
w(x, t) = w0exp(i(Kx− ωt)),

(23)

in which ω and K are the frequency and wave number, respectively, X (= (u0, ϕ0, w0)) is the
wave amplitude matrix, and i =

√−1.
By substituting Eq. (23) and its derivatives into Eq. (21), the characteristic equation is ob-

tained as

(K + ωC + ω2M)X = 0, (24)

where M ,C, and K are the mass, damping, and stiffness matrices, respectively, and

M =




mu0u0 mu0ϕ0 mu0w0

mϕ0u0 mϕ0ϕ0 mϕ0w0

mw0u0 mw0ϕ0 mw0w0


 , K =




ku0u0 ku0ϕ0 ku0w0

kϕ0u0 kϕ0ϕ0 kϕ0w0

kw0u0 kw0ϕ0 kw0w0


 , C =




cu0u0 cu0ϕ0 cu0w0

cϕ0u0 cϕ0ϕ0 cϕ0w0

cw0u0 cw0ϕ0 cw0w0


 . (25)

As a standard description, the eigenvalue problem in Eq. (24) can be stated as follows:
[−M−1C −M−1C

I 0

] [
Ẋ
X

]
= ω

[
Ẋ
X

]
. (26)

Equation (26) is an eigenvalue problem, and TA, LA, and torsional (TO) wave frequencies
can be easily estimated by setting the determinant of the above matrix to zero. Also, the phase
velocity of waves (Vc = ω/K), escape frequency (K →∞), and cut-off frequency (K → 0) can
be easily computed.
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6 Results and discussion

6.1 Model validation
This section shows numerical results concerning the propagation frequencies and phase ve-

locities of various elastic wave types in the rotating viscoelastic nanobeam. To validate the
findings presented in this paper, the propagation frequencies of LA and TA waves in BaO ma-
terials are determined using the model and solution method described herein. Figure 2 provides
a comparison between the results presented in Ref. [47] and the results obtained in this study,
confirming the accuracy of the model and method employed.
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Fig. 2 Model validation (color online)

Following the validation process, the mechanical and physical properties of gold (Au), as pro-
vided in Refs. [38] and [47], are utilized to extract the results. Table 1 presents these properties
along with the geometric characteristics of the rotating nanobeam.

Table 1 Mechanical and geometric characteristics of rotating nanobeam

λ/GPa µ/GPa ρ/(kg ·m−3) a/nm α/◦C−1

154 48 10 490 0.407 9 14.2× 10−6

ε1/nm2 ε2/nm2 h/nm b/nm L/nm

0.14a2 0.018a2 1 2 15

The obtained results focus on the propagation frequencies and phase velocities of elastic
waves, taking into account various factors, namely nonlocal parameters, Kelvin-Voigt coeffi-
cient, nanobeam rotating speed, temperature gradient, Winkler and Pasternak coefficients, and
foundation damping. These factors are comprehensively examined and discussed. To ensure
accurate results, the wave number varies from zero to its maximum value

(
Kmax = 2π

a

)
.

6.2 Effects of nonlocal parameters
In the general nonlocal elasticity method, the behaviour of the nanostructure is described

using two distinct nonlocal coefficients, namely ε1 and ε2. Therefore, Fig. 3 illustrates the
impacts of changes in these coefficients on the propagation frequencies and phase velocities of
LA, TO, and TA waves. To obtain the results, the value of ε1 is kept fixed, while the ratio ε1/ε2
is varied in five steps from 0.1 to 2 for phase velocity results, and in eight steps from 0.1 to 10
for propagation frequency results. This stepwise variation allows for a comprehensive analysis
of the influence of these coefficients on the wave behaviour.

The results of propagation frequency for LA, TO, and TA waves are shown in Figs. 3(a), 3(c),
and 3(e), respectively. According to the results, it is clear that, with the increase in the ratio
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ε1/ε2, which means a decrease in the value of ε2, the corresponding propagation frequencies of
all three types of waves increase due to the increase in the stiffness of the rotating nanobeam.

In fact, the increase in ε1/ε2 due to the decrease in ε2, causes the nanobeam to become
stiffener, and consequently increases the frequencies of all three types of waves in the nanobeam.
Also, Figs. 3(b), 3(d), and 3(f) display the results of phase velocities for LA, TO, and TA waves,
respectively. With the increase in the wave number k, the phase velocities for all types of waves
decrease. However, the increase in ε1/ε2 due to the increase in the propagation frequency
causes the increment of phase velocities of all three types of waves. As concluded previously in
Sections 1–3, the results presented for ε1 = ε2 in Fig. 3 are the same results obtained from the
ENT.

According to the results of Fig. 3, it can be concluded that, for materials such as copper
(Cu), gold (Au), platinum (Pt), and silicon (Si), with two different nonlocal coefficients ε1 and
ε2, the application of Eringen’s nonlocal elasticity for describing the elastic wave behaviour in
the structure will lead to a significant error.
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online)

6.3 Effects of Kelvin-Voigt coefficient
Figure 4 shows the effects of changes in Kelvin-Voigt structural damping coefficient (Cd) on

the propagation frequencies and phase velocities of all three types of LA, TO, and TA waves.
With the increase in the Kelvin-Voigt coefficient, the propagation frequencies of all three types
of waves in the viscoelastic nanobeam decrease and reach zero with the increase in the wave
number. In other words, it can be concluded that, by increasing the Kelvin-Voigt coefficient,
and for values greater than a certain value of K/Kmax, the propagation of all three types of
waves in the viscoelastic nanobeam is stopped, and no wave will be able to propagate in the
viscoelastic nanobeam. Since the necessary condition for wave propagation in a medium is the
existence of elastic properties in that medium, with the increase in Cd and for wave numbers
greater than a certain value (for example, in the LA wave in Au element for Cd = 0.1 ps and
K/Kmax > 0.376), the wave propagation, i.e., the energy transfer within the structure, stops
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due to hysteretic losses. In fact, the increase in Cd means that the viscoelastic nanobeam
shows the change of its elastic properties in the form of energy loss, which is the main reason
for the lack of wave propagation in the viscoelastic nanobeam and for certain values of the wave
number.
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Fig. 4 Effects of Kelvin-Voigt viscoelastic coefficient on (a) LA wave frequency, (b) LA phase velocity,
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The results are similar for phase velocities. In other words, with the increase in Cd, both
propagation frequencies and phase velocities decrease. Also, for larger values of Cd, the wave
propagation is stopped for smaller values of K/Kmax, and consequently the phase velocity
becomes zero. The important point is that, for the same value of Cd, the stopping of the wave
propagation in the Kelvin-Voigt viscoelastic nanobeam will occur for the TO wave at smaller
values of K/Kmax than the other two types of waves. Also, the TA wave stops for higher values
of K/Kmax. In other words, the increase in Cd has more effects on the stopping of the TO wave
than the TA wave.
6.4 Effects of nanobeam rotating speed

Figure 5 shows the effects of the rotating speed of the nanobeam on the propagation frequen-
cies of TO and TA waves in a specific value of the wave number (K = 10 nm−1). According to
Eq. (7), the value of T (x) is a function of the position x in the length of the beam. Therefore,
when deriving the results, the position of the wave in the length of the beam should also be
taken into account. Hence, to extract the results of TA and TO wave propagation frequencies,
the value of x and the rotating speed of the nanobeam change from 0 nm to 15 nm and 0 THz
to 0.3THz, respectively. Based on the results, it is obvious that, the propagation frequencies of
TO and TA waves increase with the increase in the rotational speed of the nanobeam. Because
the increment of the rotating speed increases the value of the centrifugal force which always
acts as a tensile force on the nanobeam, and consequently the equivalent hardness of the ro-
tating nanobeam increases. Importantly, the effect of the rotating speed of the nanobeam on
the TO and TA frequencies gradually disappears when TO and TA waves approach the end of
the rotating nanobeam (at x = 15 nm). Because at the beginning of the nanobeam, the acting
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tensile force on the nanobeam has a maximum value, and with the increment of the length
of the beam, this value decreases, and finally at the end of the nanobeam, this tensile force
vanishes. In fact, due to the rotation of the nanobeam, the equivalent hardness is maximum at
the beginning of the nanobeam and is minimum at the end.
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From Fig. 5(a), which shows the effects of the rotating speed of the rotating nanobeam on
the frequency for the TO wave, it is clear that the slope of frequency increment at low rotational
speeds is very gentle, but it becomes steep as the rotational speed of the nanobeam increases.
Also, it can be concluded that the slope of increasing frequency for larger wave numbers is
steeper than that for lower wave numbers.

According to Fig. 5(b), it can be concluded that, increasing the rotating speed of the
nanobeam up to a certain value, increases the frequency of the TA wave, and for values greater
than that certain value, it will no longer have an effect on the frequency of the TA wave. In
other words, by increasing the rotational speed of the nanobeam, the frequency of the TA wave
will converge to its final value, which strongly depends on the wave number.

Figure 6 illustrates the gradient of phase velocity based on the variation of K/Kmax at five
different positions of the beam for the TO wave. The results in Fig. 6 are presented for two
cases Cd = 0ps, ωb = 0.3THz (see Fig. 6(a)) and Cd = 0.1 ps, ωb = 0.3THz (see Fig. 6(b)).
The results show that the position of the TO wave along the nanobeam has no significant effects
on the phase velocity of the TO wave. Also, the effect of Cd which is extensively discussed in
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Subsection 6.3 can be easily noticed in Fig. 6(b).
Figures 7 and 8 display the variations of phase velocity for the TA wave under different

conditions. The results are presented to observe and investigate the effects of the rotational
speed of the nanobeam, the position of the wave along the nanobeam, and the Kelvin-Voigt
coefficient on the phase velocity for the TA wave.
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As found in Fig. 7, with the increase in the rotational speed of nanobeam, the phase velocity
for the TA wave increases. In addition, the amount and the process of the increment depend
on both values of K/Kmax and the position of the TA wave. Also, when Cd 6= 0 ps, with
the increase in the rotational speed of the nanobeam, the TA wave stops for lower values of
K/Kmax. However, for the rotating nanobeam, stopping the TA wave also depends on the
position of the TA wave along the nanobeam.

For example, based on the results in Figs. 7(b) and 7(d), in the case Cd = 0.1 ps, ωb =
0.3THz, the TA wave stops at x = 0.25L when K/Kmax > 0.304 and stops at x = 0.75L
when K/Kmax > 0.336. The same results can also be concluded by comparing Figs. 8(b) and
8(d). Moreover, Figs. 8(a) and 8(c) show the effect of the TA wave position along the beam on
the phase velocity. The value of phase velocity at the beginning of the rotating nanobeam is
maximum, especially for lower values of K/Kmax and ωb.
6.5 Effects of temperature gradient

The effects of temperature gradient on the propagation frequencies of LA, TO, and TA waves
for the rotating nanobeam are shown in Fig. 9. To extract the results, the reference temperature
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is observed as T0 = 20 ◦C, and the temperature gradient is considered along the nanobeam
thickness from ∆T = 0 ◦C to ∆T = 35 ◦C. Based on the obtained results, the temperature
gradient has no effects on the frequency of the LA wave, a slight effect on the frequency of the
TO wave, while a significant effect on the frequency of the TA wave.

According to Figs. 9(a) and 9(c), TA and TO wave frequencies decrease with the tempera-
ture gradient. Also, the increase in the temperature causes the delay of initiating the TA wave
propagation and reduces the range of TA wave propagation in terms of the wave number in
the rotating nanobeam. Therefore, with the increase in temperature, the TA wave propagates
for larger wave numbers, and with a further increase in the wave number, the frequency ap-
proaches zero again, and the TA wave stops propagating in the rotating nanobeam. As shown
in Figs. 9(b) and 9(d), the temperature gradient does not significantly affect the phase velocity
of TO waves, but has the same effect on the phase velocity of TA waves as the effect on the
propagation frequency.
6.6 Effects of Winkler coefficient

The effects of Winkler coefficient of foundation on the frequencies and phase velocities of TO
and TA waves are considered in Fig. 10. On the basis of the results, the increase in the Winkler
coefficient due to the increase in the stiffness of the nanobeam, increases the frequencies of both
TO and TA waves. As is obvious in Fig. 10(a), with the increase in the wave number, the effect
of Winkler coefficient on the frequency of TO wave decreases and disappears for larger values
of the wave number.
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6.7 Effects of Pasternak coefficient

Figure 11 illustrates the effects of Pasternak coefficient of foundation on the frequencies
and phase velocities of TO and TA waves. According to Figs. 11(a) and 11(c) and due to the
increase in the stiffness of the nanobeam, TO and TA frequencies increase with the increase in
the Pasternak coefficient. However, for kp > 0.4, the effect of Pasternak coefficient of foundation
on the TA wave frequency is negligible.
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Fig. 11 Effects of Pasternak coefficient on (a) TO wave frequency, (b) TO phase velocity, (c) TA
wave frequency, and (d) TA phase velocity (color online)

The study on the effects of Pasternak coefficient on the phase velocity can also be found in
Figs. 11(b) and 11(d). It is shown that the effect of Pasternak coefficient on the phase velocity
of the TO wave increases with an increase in K/Kmax, whereas it is vice versa for the TA wave
and vanishes with an increase in K/Kmax.

6.8 Effects of foundation damping

Based on Fig. 12, with the increase in the viscoelastic damping coefficient of foundation, the
propagations of TO and TA waves are delayed up to a certain value of K/Kmax. It means that,
for a smaller value of K/Kmax, the TO and TA waves cannot propagate in the nanobeam, but
with the increase in the value of K/Kmax, the TA wave gradually and the TO wave instantly
start to propagate. In fact, the viscoelastic damping property of the foundation acts as a
resistance factor against wave propagation, and the wave energy for smaller values of K/Kmax

has the ability to overcome the viscoelastic damping energy of the foundation.
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Fig. 12 Effects of foundation damping coefficient on (a) TA wave frequency, (b) TA phase velocity,
(c) TO wave frequency, and (d) TO phase velocity (color online)

7 Conclusions

This research encompasses a comprehensive investigation into the propagation characteris-
tics of LA, TO, and TA waves for a rotating Kelvin-Voigt viscoelastic nanobeam supported on
a viscoelastic foundation. The governing equations of motion and mathematical model for the
rotating viscoelastic nanobeam are derived using the GNT in conjunction with the Timoshenko
beam model. Analytical methods are used to extract the results, and the effects of various fac-
tors such as nonlocal parameters, Kelvin-Voigt coefficient, viscoelastic foundation coefficients,
and nanobeam rotation speed on wave propagation behaviors are thoroughly examined. The
significant findings obtained in this research can be summarized as follows.

(i) The ENT, which is a simplified form of the GNT, does not accurately predict the me-
chanical and wave propagation behaviors in materials with ε1 6= ε2, such as gold and copper.
Therefore, it is recommended to utilize the GNT instead of the ENT to achieve more accurate
analyses of wave propagation phenomena.

(ii) Increasing the ratio ε1/ε2 leads to a larger frequency of propagation for all three types
of LA, TO, and TA waves due to the increasing stiffness of the nanobeam.

(iii) As the Kelvin-Voigt viscoelastic coefficient Cd increases, the propagation frequencies of
all three types of waves decrease. Moreover, as the wave number increases, the propagation
frequency approaches zero, indicating a cessation of wave propagation and energy transfer
within the structure due to hysteretic losses. It is worth noting that the effect of Cd is more
pronounced on the attenuation of the TO wave than the TA wave.

(iv) The rotational speed of the nanobeam influences the equivalent stiffness of the rotating
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structure through the centrifugal force. Consequently, the propagation frequencies of TO and
TA waves increase with an increase in the rotational speed of the nanobeam.

(v) The temperature gradient significantly affects the frequency of the TA wave, while it
has a relatively minor impact on the frequency of the TO wave.
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