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Abstract This paper proposes a method to amplify the performance of a flexural-
wave-generation system by utilizing the energy-localization characteristics of a phononic
crystal (PnC) with a piezoelectric defect and an analytical approach that accelerates the
predictions of such wave-generation performance. The proposed analytical model is based
on the Euler-Bernoulli beam theory. The proposed analytical approach, inspired by the
transfer matrix and S-parameter methods, is used to perform band-structure and time-
harmonic analyses. A comparison of the results of the proposed approach with those
of the finite element method validates the high predictive capability and time efficiency
of the proposed model. A case study is explored; the results demonstrate an almost
ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-
band frequency, compared with a system without the PnC. Moreover, design guidelines
for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-
generation performance that arise depending on the defect location.
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1 Introduction

Phononic crystals (PnCs), in which artificially designed unit cells are periodically arranged,
have received significant research attention in recent years; the resulting work has dramatically
expanded the boundaries of technology for manipulating the flow (e.g., amount and direction) of
elastic wave energy[1–4]. One emerging research topic is the spatial localization and quantitative
amplification of wave energy in a desired region via defect-introduced PnCs[5–8]. The periodic
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nature of a defect-free PnC contributes to the creation of Bragg-scattering-based phononic band
gaps in its dispersion relationships (i.e., frequency versus wavenumber)[9–10]. Here and hereafter,
when using the term ‘defect’, we envisage an engineering circumstance in which a structure
with different geometric values and/or materials is used to replace a unit cell intentionally.
When a defect is introduced, one or more passbands form within the phononic band gaps,
which are called defect bands, with slopes close to zero. Defect bands appear to be tightly
sandwiched in the separated band gaps. A previous study has shown that the band-gap feature
of some unit cells that encloses the defect induces hypothetical, fixed-end boundary conditions
due to evanescent waves; further, it brings about a mechanically resonating motion from the
defect, called the defect-mode shape, at each frequency of the defect bands[11]. These intriguing
properties facilitate a high-density concentration of elastic wave energy inside and near the
defect.

Many engineers have devoted research effort to devising and producing valuable devices that
harness such defect-mode-enabled energy-amplification characteristics. Instead of relying solely
on traditional defect-introduced PnCs, the most recent research focus has been on intelligent-
defect-introduced PnCs; these approaches keep practicality in mind by attaching intelligent
materials to a defect or unit cell[12–13] or by imposing intelligent materials as a defect[14–15]. In
general, the previous works that involve incorporating piezoelectric materials into the design
stage of defect-introduced PnCs have offered particularly compelling results to move the related
research forward[16–19]. The use of piezoelectric materials has several merits, including their
quick response to external stimuli, versatility in fabrication, and their wide range of available
frequencies[20]. Examples of applications of piezoelectric-defect-introduced PnCs include (i)
energy harvesters or ultrasonic sensors that amplify the output electric energy generated by
the piezoelectric elements when subjected to input elastic waves and (ii) ultrasonic transducers
that amplify the output elastic waves generated when subjected to input electric energy.

The successful implementation of energy harvesters and ultrasonic sensors stems from the
direct piezoelectric effect (from mechanical energy to electric energy). Attractive topics in this
field cover three areas: (i) developing analytical or numerical models to predict the amount
of electric power amplification[21–22], (ii) conducting experimental demonstrations for one- or
two-dimensional PnCs[23–24], and (iii) advancing structural designs or electric circuit config-
urations to enhance electric power[25–26]. Unfortunately, research related to the development
of ultrasonic transducers is only in its infancy. The slow progress of this field originates from
the fact that most preliminary studies on defect-free or defect-introduced PnCs presume a sit-
uation where elastic waves are incident. As a groundbreaking paradigm shift, research into
the idea of generating elastic waves using the converse piezoelectric effect (from electric energy
to mechanical energy) began in 2022. Scrutinizing the existing works, one area of research
seeks to develop analytical models that explicitly predict the generation performance of elastic
waves when single or double defects are imposed[27–28]; however, this approach is limited to
longitudinal waves. For this approach, research on the generation of flexural waves with more
complicated governing equations remains an unrevealed area.

Hence, the objectives of this study are as follows: (i) make an academic bridge between
a one-dimensional PnC with a piezoelectric defect and a flexural-wave-generation system and
(ii) develop an analytical model that defines the predictions of the output performance of such
an approach. To retain compatibility with the previous approaches that were made under
longitudinal waves[27–28], the wave-generation performance is divided into two categories: (i)
defect bands that emerge in the phononic band gaps and the corresponding defect-mode shapes
(used in band-structure analysis), and (ii) velocity amplitudes of outgoing waves and electric
current for a unit input voltage (used in time-harmonic analysis). Starting from the basis of
the Euler-Bernoulli beam theory, the proposed analytical model considers both the transfer-
matrix and S-parameter methods in each type of analysis. The predictive capability of the
proposed analytical model is validated through comparison with the numerical model (e.g.,
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finite-element-based model), using a case study with manufacturable materials and geometric
values. Finally, a comparative study on the change in wave-generation performance according
to the defect location is carried out from a design point of view.

The remainder of this paper is structured as follows. Section 2 delineates the schematic con-
figuration of a one-dimensional, flexural-wave-generation system. Sections 3 and 4 offer mathe-
matical derivation and numerical validation, respectively, of the proposed analytical model for
band-structure and time-harmonic analyses. Section 5 analyzes how the wave-generation per-
formance varies with the defect location. Finally, Section 6 summarizes this work and describes
follow-up studies that should be pursued as the next stepping stones for the development of
PnC-incorporated wave-generation systems.

2 System configuration and description

Figure 1(a) shows a front view of a one-dimensional, flexural-wave-generation system con-
structed with a PnC, in which bimorph piezoelectric patches adhere to a defect. In this paper,
such a defect is referred to as a piezoelectric defect. A piezoceramic material is used for the
patches, and the rest of the structures are made of metal. A composite structure, defined as a
unit cell, consists of light and dark gray beams with a rectangular cross-section of constant area.
A periodic arrangement of N unit cells in the 1-axis builds a defect-free PnC. Then, one defect
is put in the periodic structure by changing the length of the light gray beam that is positioned
in the Hth unit cell. Two dark blue piezoelectric patches with identical geometric values are
fully attached to the top and bottom surfaces of the defect. The term ‘fully’ means that their
attachment area covers the entire defect region. A thin layer of brown electrodes is placed on
the top and bottom of each patch. An engineering circumstance is considered where light gray
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semi-infinite structures adhere to each end of the PnC. Generated flexural waves propagate
outward through these structures. This semi-infinite setting prevents finite-condition-induced
wave reflection, thus helping to analyze the intrinsic features of the defect-introduced PnC[28].
One previous study presents that the intrinsic properties of PnCs remain fixed regardless of fi-
nite or semi-infinite conditions through comparison with numerical analysis and experiment[29].
Here, perfect adhesion between all interfaces is presumed, which eliminates the need to consider
delamination issues[30–31].

Symbols with the subscripts ‘UL,’ ‘UD,’ ‘D,’ ‘P,’ ‘SL,’ and ‘SR’ indicate the physical proper-
ties, respectively, of the light and dark gray beams in the unit cells, the light gray beam (defect),
one piezoelectric patch in the piezoelectric defect, and the left and right semi-infinite structures.
The assumption of complete attachment makes the defect and bimorph patches mechanically
equivalent to one homogenized beam. In this regard, symbols with the subscript ‘PD’ corre-
spond to their shared or homogenized characteristics. For geometric parameters, the symbols
d and h denote the length and height, respectively. The lattice constant dUnit of the unit cell
is dUL + dUD. The total length dPnC of the PnC is (N − 1)dUnit + dPD + dUD. Other than the
patches, the height of each structure is commonly denoted by hPnC. Similarly, the symbol bPnC

denotes the width of the overall PnC. Of note, the length should be sufficiently greater than the
height to comply with several assumptions of the Euler-Bernoulli beam theory[32–33]. In terms of
the material properties, the symbols ρ and Y represent the mass density and Young’s modulus
of the metallic structures, respectively. The symbols cE

11, εS
33, and e31 for the patches represent

the 1-axial elastic modulus at a constant electric field E, the 3-axial dielectric permittivity at
a constant strain field S, and the piezoelectric coupling coefficient, respectively.

An external input voltage source V (t) induces the 3-axial electric polarization within the
patches through electrical wires connected to the top patch’s upper surface and the bottom
patch’s lower surface. From this viewpoint, the electrical configuration of the patches falls in
the series connection. Unlike the case of longitudinal waves, it is worth pointing out that each
poling direction in the patches is opposite. Hence, the different signs of their piezoelectric
coupling coefficients result in opposing 1-axial mechanical deformations (i.e., elongation versus
compression) of each patch in response to the identical 3-axial electric field[34–35]. This is the
basic principle by which flexural waves are generated via the 31-mode converse piezoelectric
effect. This is analogous to general piezoelectric actuators for transverse vibrations[36–37].

Unlike conventional, flexural-wave-generation systems where patches are directly attached
to one homogeneous and infinite structure, flexural waves initially generated by the piezoelectric
patches repeatedly undergo scattering (i.e., partial reflection and transmittance) at each inter-
face between neighboring beams since the present PnC-integrated system consists of multiple
beams with different mechanical impedances. When enough time passes to make the dynamic
behaviors converge to a steady state, the flexural waves of interest finally propagate through
the semi-infinite structures. Here, the target physical quantities are classified into two cate-
gories. The first category in Fig. 1(b) is, in the absence of a unit input voltage, a defect band
that emerges in a phononic band gap and the corresponding defect-mode shape in the band-
structure analysis. The other category in Fig. 1(c) is, in the presence of a unit input voltage,
a velocity amplitude of outgoing waves and an electric current (e.g., its amplitude and phase)
that are generated in the time-harmonic analysis.

3 The proposed analytical model under flexural waves

3.1 Derivation of governing equations and corresponding solutions
The Cartesian coordinates in the 1- and 3-axes are represented in terms of x and z, re-

spectively. Recall that the proposed model is based on the Euler-Bernoulli beam theory. The
transverse displacement and internal bending moment at an arbitrary space x and time t are
denoted as W (x, t) and M(x, t), respectively. Newton’s second law expresses the partial differ-
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ential equation that governs the transverse motions of the piezoelectric defect as

bPnC(ρDhPnC + 2ρPhP)
∂2WPD(xPD, t)

∂t2
=

∂2MPD(xPD, t)
∂x2

PD

, (1)

where the internal bending moment MPD(xPD, t) is given by

MPD(xPD, t) = bPnC

( ∫

zD

zDTD(xPD, zD, t)dzD +
∫

zP

zPTP(xPD, zP, t)dzP

)
, (2)

where zD ∈ (−hPnC/2, hPnC/2) and zP ∈ (−hPnC/2 − hP,−hPnC/2) ∪ (hPnC/2, hPnC/2 + hP).
Here, TD(xPD, zD, t) and TP(xPD, zP, t) stand for the normal stresses of the defect and bimorph
patches along the 1-axis, respectively. In accordance with the Euler-Bernoulli beam theory,
the remaining stresses are assumed to vanish throughout the interior of the piezoelectric defect.
According to the small deformation theory under flexural waves, the linear constitutive relations
express the normal stresses TD(xPD, zD, t) and TP(xPD, zP, t) as[38–39]





TD(xPD, zD, t) = −zDYD
∂2WPD(xPD, t)

∂x2
PD

,

TP(xPD, zP, t) = −zPcE
11

∂2WPD(xPD, t)
∂x2

PD

+ sgn(zP)e31EP(xPD, zP, t),
(3)

where sgn(z) indicates the sign of z. When a piezoelectric patch is sufficiently thin, an electric
field that is the negative, spatial derivative (gradient) of the electric potential is assumed to be
uniform throughout its interior[40–41]. Here, the series connection makes the difference between
the electric potentials of the top patch’s upper surface and the bottom patch’s lower surface
equal to the input voltage V (t). Therefore, the 3-axial electric field EP(xPD, zP, t) can be
expressed as

EP(xPD, zP, t) = −V (t)Π(xPD; 0, dPD)
2hP

, (4)

where the electric fields in the remaining axes are assumed to be negligible. The boxcar function
Π(x; a, b) mathematically equals H(x−a)−H(x−b), where H(x) stands for the Heaviside step
function and b > a. The use of this boxcar function Π(xPD; 0, dPD) presents the attachment
domain of the piezoelectric patches and limits the generation of the electric field within the
patches. Previous works that handle piezoelectric effects use this mathematical technique to
avoid removing the electric field-related terms in the differentiation processes[34–35,40–41]. In
particular, the previous analytical models with this technique under longitudinal waves exhibit
good agreement with the results of the finite element method[27–28]. Finally, inserting Eqs. (2)–
(4) into Eq. (1) rewrites the mechanical equation of transverse motions as

(ρA)PD
∂2WPD(xPD, t)

∂t2
+ (Y J)PD

∂4WPD(xPD, t)
∂x4

PD

=ϑPV (t)
(dδ(xPD)

dxPD
− dδ(xPD − dPD)

dxPD

)
, (5)

where the Dirac delta function δ(x) is the derivative of the Heaviside function H(x). (ρA)PD

and (Y J)PD denote the equivalent mass per unit length and bending stiffness, respectively, of
the piezoelectric defect. ϑP denotes the electroelastic coupling coefficient of the patches. These
quantities are calculated by





(ρA)PD = bPnC(ρDhPnC + 2ρPhP),

(Y J)PD = bPnC

(YDh3
PnC

12
+

2cE
11

3

((hPnC

2
+ hP

)3

−
(hPnC

2

)3))
,

ϑP = bPnCe31

(hPnC + hP

2

)
.

(6)
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At the same time, the combination of the electroelastic coupling in bimorph patches and the
electrical polarization induced by the input voltage produces an output electric current. Due
to the series connection of patches with the same specifications and configuration, the total
electric current is equal to the electric current generated by each patch. Gauss’s law expresses
the output electric current I(t) as

I(t) =
d
dt

(
bPnC

∫ dPD

0

DP

(
xPD,

hPnC + hP

2
, t

)
dxPD

)
, (7)

where the constitutive equation of linear piezoelectricity specifies the electric displacement
DP(xPD, zP, t) as[38–39]

DP(xPD, zP, t) = εS
33EP(xPD, zP, t)− sgn(zP)zPe31

∂2WPD(xPD, t)
∂x2

PD

. (8)

Here, the normal strain at zP = (hPnC + hP)/2 is considered as an averaging value. Finally,
inserting Eq. (8) into Eq. (7) rewrites the electrical circuit equation as

I(t) = −CP

2
dV (t)

dt
− ϑP

(∂2WPD(xPD, t)
∂xPD∂t

∣∣∣
xPD=dPD

− ∂2WPD(xPD, t)
∂xPD∂t

∣∣∣
xPD=0

)
, (9)

where CP denotes the capacitance of one patch, which is calculated by

CP =
εS
33bPnCdPD

hP
. (10)

Parallel to the previous analytical models for longitudinal-wave-generation, it is important
to note two highlighted items in this work. First, the mechanical equation of transverse motions
for the piezoelectric defect in Eq. (5) considers the inertia, bending stiffness, and electroelastic
coupling of the piezoelectric patches that are listed in Eq. (6). Second, the electrical circuit
equation in Eq. (9) considers non-uniform strain distributions in the electroelastic coupling
term. However, two distinctive points also exist. First, the mechanical equation of transverse
motions lies in the fourth-order partial differential equations. Further, rather than the Dirac
delta functions themselves, the electroelastic coupling term in Eq. (5) is expressed in terms of
its differential form. Second, in this case, the difference in transverse slopes at the ends of the
piezoelectric-patch-attached defect contributes to the electroelastic coupling term in Eq. (9). On
the other hand, the difference in the longitudinal displacements is of concern in the longitudinal
wave studies. Beyond simply switching the wave types of interest, these notable issues set our
study apart from the previous works.

When the wave-generation system undergoes harmonic motions over time, the output trans-
verse displacement WPD(xPD, t), electric current I(t), and input voltage V (t) can be rewritten as
WPD(x)exp(−jωt), I(ω)exp(−jωt), and V (ω)exp(−jωt), respectively. These harmonic expres-
sions simplify each governing equation in Eqs. (5) and (9), respectively, in terms of ordinary
differential equations as

(Y J)PD
d4WPD(xPD)

dx4
PD

− ω2(ρA)PDWPD(xPD) = ϑPV (ω)
(dδ(xPD)

dxPD
− dδ(xPD − dPD)

dxPD

)
, (11)

I(ω) =
jωCP

2
V (ω) + jωϑP

(dWPD(xPD)
dxPD

∣∣∣
xPD=dPD

− dWPD(xPD)
dxPD

∣∣∣
xPD=0

)
. (12)

A homogeneous solution WH
PD(xPD) to Eq. (11) is well known as the linear combination of

hyperbolic (sinh(kx) and cosh(kx)) and trigonometric (sin(kx) and cos(kx)) functions. Its non-
homogeneous solution WNH

PD (xPD) can be obtained with the help of Green’s function. Recall that
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the electroelastic coupling term is the sum of two derivatives of Dirac delta functions δ(xPD)
and δ(xPD − dPD). Physically, δ(x − x0) means the concentrated unit transverse force that is
excited at x = x0 in wave equations, and the corresponding wave solution is called Green’s
function[42–43]. Hence, multiplying the coefficient ϑPV (ω) but summing the two derivatives of
the corresponding Green’s functions yields the non-homogeneous solution. Consequently, the
general solution of the transverse displacement field WPD(xPD) within the piezoelectric defect
becomes





WPD(xPD) = WH
PD(xPD) + WNH

PD (xPD),

WH
PD(xPD) = oPDO(kPDxPD) + pPDP (kPDxPD) + qPDQ(kPDxPD) + rPDR(kPDxPD),

WNH
PD (xPD) =

ϑPV (ω)
4(Y J)PDk2

PD

((−1 + j)(R(kPDxPD) + R(kPD(dPD − xPD)))

+ (−1− j)(P (kPDxPD) + P (kPD(dPD − xPD)))
+ 2(Q(kPDxPD) + Q(kPD(dPD − xPD)))),

(13)

where its wavenumber kPD is calculated by

kPD = 4

√
ω2(ρA)PD

(Y J)PD
. (14)

O(kx), P (kx), Q(kx), and R(kx) are combinations of the hyperbolic and trigonometric func-
tions, which are defined, respectively,





O(kx) =
1
2

(cosh(kx) + cos(kx)) ,

P (kx) =
1
2
(sinh(kx) + sin(kx)),

Q(kx) =
1
2
(cosh(kx)− cos(kx)),

R(kx) =
1
2
(sinh(kx)− sin(kx)t).

(15)

Inserting Eq. (13) into Eq. (12) rewrites the output electric current I(ω) as

I(ω) =jωϑPkPD (oPDR(kPDdPD) + pPD(O(kPDdPD)− 1) + qPDP (kPDdPD) + rPDQ(kPDdPD))

+
jωϑ2

PV (ω)
2(Y J)PDkPD

((−1 + j)Q(kPDdPD) + (−1− j)(O(kPDdPD)− 1)

+ 2P (kPDdPD)) +
jωCPV (ω)

2
. (16)

Transverse displacement fields of the remaining structures in the absence of the bimorph
patches can be readily obtained by removing the electroelastic coupling-related term (i.e., the
last term on the right-hand side of Eq. (13)). Naturally, the generation of electric current
does not occur in Eq. (16). In addition, setting the height of the patches in Eq. (6) as zero
gives information on their mass per unit length and bending stiffness. Hence, their transverse
displacement field becomes

Wi(xi) = oiO(kixi) + piP (kixi) + qiQ(kixi) + riR(kixi), (17)

where i ∈ {UL, UD,SL,SR}. The corresponding wavenumber ki is calculated by

ki = 4

√
12ω2ρi

Yih2
PnC

. (18)
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Here, o, p, q, and r are the unknown transverse displacement coefficients in Eqs. (13), (16),
and (18). The following two subsections, Subsections 3.2 and 3.3, deal with the specifications
of these coefficients in the band-structure and time-harmonic analyses, respectively.
3.2 Prediction of defect bands and their defect-mode shapes within phononic band

gaps
A band structure is the computational product of a typical eigenvalue problem in wave

engineering. Band-structure analysis in waves has the same physical meaning as modal analysis
in vibrations. This work focuses on the transfer-matrix method, from various methods, such
as the finite element method[44–45] and the plane-wave-expansion method[46–47]. The transfer-
matrix method, which is specialized for one-dimensional engineering problems, is based on
mathematical solutions to wave equations. The transfer matrix TM refers to one matrix
that quantifies the direct relationship between two vectors of specific physical quantities at the
left and right ends of a structure[48–49]. Unlike longitudinal waves, the fourth-order partial
differential equation in Eq. (11) results in a 4 × 4 transfer matrix. In this subsection, the
physical quantities of interest are the transverse displacement, slope, internal bending moment,
and internal shear force. In addition, this subsection focuses only on the unit cell or defect-
introduced PnC since the band structure aims to reveal the inherent characteristics of defect-free
or defect-introduced PnCs. In other words, the existence of semi-infinite structures is ignored.

Since applying an input voltage to piezoelectric patches is equivalent to applying an external,
dynamic force to one mechanical system, this subsection considers the absence of the input
voltage (i.e., V (ω) = 0). In other words, the electroelastic coupling terms in Eqs. (13) and
(16) are negligible. This setting helps to derive the harmonic expressions of the slope SBS(x),
internal bending moment MBS(x), and internal shear force FBS(x) as





SBS
PD(xPD) =

dWBS
PD(xPD|V (ω) = 0)

dxPD
,

SBS
i (xi) =

dWBS
i (xi)
dxi

,

MBS
PD(xPD) = −(Y J)PD

d2WBS
PD(xPD|V (ω) = 0)

dx2
PD

,

MBS
i (xi) = −YibPnCh3

PnC

12
d2WBS

i (xi)
dx2

i

,

FBS
PD(xPD) = (Y J)PD

d3WBS
PD(xPD|V (ω) = 0)

dx3
PD

,

FBS
i (xi) =

YibPnCh3
PnC

12
d3WBS

i (xi)
dx3

i

,

(19)

where the superscript ‘BS’ is the abbreviation of band-structure analysis. Due to the absence
of the input voltage, the solution forms of WBS

PD(xPD), SBS
PD(xPD), MBS

PD(xPD), and FBS
PD(xPD)

are the same as those of Wi(xi), Si(xi), Mi(xi), and Fi(xi). Further, these field quantities are
also the functions of the unknown transverse displacement coefficients o, p, q, and r. Hence, a
4 × 4 matrix CMBS is defined, which connects (o p q r)T with (W (x) S(x) M(x) F (x))T

at an arbitrary point x. The superscript ‘T’ denotes the transposition of vectors or matrices.
Symbols with the subscripts ‘L’ and ‘R’ stand for the left and right ends (i.e., x = 0 and d) of
one structure. Then, CMBS

L and CMBS
R are given by

{
(Wn(xn) Sn(xn) Mn(xn) Fn(xn))Txn=0 = CMBS

n,L(on pn qn rn)T,

(Wn(xn) Sn(xn) Mn(xn) Fn(xn))Txn=dn
= CMBS

n,R(on pn qn rn)T,
(20)
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where n ∈ {UL,UD,PD}. Finally, the 4 × 4 transfer matrix TMBS under flexural waves
becomes

TMBS
n = CMBS

n,R(CMBS
n,L)−1. (21)

One important assumption is that the mentioned field quantities are assumed to be continu-
ous throughout the PnC. This implies that the continuity condition takes place for all interfaces
where the materials of the beams are different. This setting helps to obtain the transfer matrices
at the unit cell and piezoelectric-defect-introduced PnC levels. The transfer matrices TMBS

Unit

and TMBS
PnC that relate the vectors of four physical quantities at their leftmost and rightmost

sides of the unit cell and PnC become, respectively,




TMBS
Unit = TMBS

UDTMBS
UL,

TMBS
PnC =

(
TMBS

Unit

)N−H

TMBS
UDTMBS

PD

(
TMBS

Unit

)H−1

.
(22)

In accordance with the supercell technique[50–51], when the Floquet-Bloch theorem applies the
periodic boundary condition to these transfer matrices in Eq. (22), two eigenvalue problems are
formulated as

{
(TMBS

Unit(ωUnit)− exp(jkBloch
Unit dUnit)I4×4)(WUnit SUnit MUnit FUnit)TLeftmost = 04×1,

(TMBS
PnC(ωPnC)− exp(jkBloch

PnC dPnC)I4×4)(WPnC SPnC MPnC FPnC)TLeftmost = 04×1,
(23)

where Ia×a is the a × a identity matrix, and 0a×b is the a × b zero matrix. The subscript
‘Leftmost’ stands for the leftmost position of the given composite structures. Real-valued,
normalized Bloch wavenumbers kBloch

Unit dUnit and kBloch
PnC dPnC lie in the first Brillouin zone that

ranges from zero to π[50–51]. Numerical computation of a corresponding set of normalized Bloch
wavenumbers (eigenvalues), for a given frequency range, that satisfy the characteristic equation
in Eq. (23) enables the stipulation of each band structure of the unit cell (ωUnit versus kBloch

Unit )
or piezoelectric-defect-introduced PnC (ωPnC versus kBloch

PnC ). At the unit-cell level, the first
equation in Eq. (23) determines the phononic band gaps where the frequency regimes do not
correspond to Bloch wavenumbers. At the piezoelectric-defect-introduced PnC level, the second
equation in Eq. (23) specifies defect-band frequencies that correspond to the Bloch wavenumber
after reducing the frequency range of interest to phononic band gaps.

Furthermore, the eigenvalue problem for the piezoelectric-defect-introduced PnC yields a set
of eigenvectors that corresponds to a set of defect-band frequencies. Recall that each eigenvector
represents a vector of four physical quantities at the leftmost end of the PnC. Using the inverse
matrix of CMBS

L , the first equation in Eq. (20) gives the values of the transverse displacement
coefficients for the first beam and specifies its displacement field. Next, the multiplication
of one transfer matrix TMBS in Eq. (21) and the computed eigenvector constitutes a vector
of four physical quantities at the left end of the second beam. Hence, its displacement field
can be determined in a similar manner. Finally, execution of this procedure for each beam
step by step determines the transverse displacement field (called the defect-mode shape) of the
piezoelectric-defect-introduced PnC.
3.3 Prediction of the velocity amplitudes of outgoing flexural waves and electric

current
The main concern of the research described in this subsection is the prediction of the velocity

amplitudes of outgoing waves and electric current (i.e., its amplitude and phase) in the presence
of the input voltage. Additionally, unlike the band-structure analysis in Subsection 3.2, the
existence of the semi-infinite structures is taken into account. In the time-harmonic analysis, a
new vector is defined as (W (x) S(x) M(x) F (x) V (ω))T. Note that the input voltage V (ω)
is a given scalar value, while the remaining components are the functions of space x that need
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to be computed. The expressions of the slope STH(x), internal bending moment MTH(x), and
internal shear force FTH(x) are





STH
PD (xPD) =

dWTH
PD (xPD|V (ω) 6= 0)

dxPD
,

STH
i (xi) =

dWTH
i (xi)
dxi

,

MTH
PD (xPD) = −(Y J)PD

d2WTH
PD (xPD|V (ω) 6= 0)

dx2
PD

+ ϑPV (ω),

MTH
i (xi) = −YibPnCh3

PnC

12
d2WTH

i (xi)
dx2

i

,

FTH
PD (xPD) =

∫
ω2(ρA)PDWTH

PD (xPD|V (ω) 6= 0)dxPD,

FTH
i (xi) =

YibPnCh3
PnC

12
d3WTH

i (xi)
dx3

i

,

(24)

where the superscript ‘TH’ is the abbreviation of time-harmonic analysis. The 4 × 4 matrix
CMBS that is used in the previous subsection (band-structure analysis) is updated into a 5×5
matrix CMTH to consider the electroelastic coupling nature in this subsection (time-harmonic
analysis). Here, CMTH presents the relationship between (W (x) S(x) M(x) F (x) V (ω))T

and (o p q r V (ω))T. At the left and right ends of each structure, the matrices CMTH
PD,L,

CMTH
PD,R, CMTH

i,L , and CMTH
i,R are expressed as





CMTH
PD,L =

(
CMBS

PD,L PV PD,L

01×4 I1×1

)
,

CMTH
PD,R =

(
CMBS

PD,R PV PD,R

01×4 I1×1

)
,

CMTH
i,L =

(
CMBS

i,L 04×1

01×4 I1×1

)
,

CMTH
i,R =

(
CMBS

i,R 04×1

01×4 I1×1

)
,

(25)

where PV PD,L and PV PD,R are the 4× 1 vectors that represent the relationship between the
electroelastic-coupling-related terms in (W (x) S(x) M(x) F (x))T and the input voltage V (ω).
All components in the vectors PV PD,L and PV PD,R are associated with the non-homogeneous
solution in Eqs. (13) and (24). They are expressed in terms of the electroelastic coupling
coefficient ϑP. In a similar manner, the 5 × 5 matrix TMTH is defined, which determines
the relationship between (W (x) S(x) M(x) F (x) V (ω))T given at the left and right ends of
the structures. For example, the matrices TMTH

PD and TMTH
i are expressed as

{
TMTH

PD = CMTH
PD,R(CMTH

PD,L)−1,

TMTH
i = CMTH

i,R(CMTH
i,L )−1.

(26)

Recall that two semi-infinite structures are adhered; one at each end of the PnC. The transverse
displacement field within each semi-infinite structure is expressed as

{
WTH

SL (xSL) = oSLO(kSLxSL) + pSLP (kSLxSL) + qSLQ(kSLxSL) + rSLR(kSLxSL),

WTH
SR (xSR) = oSRO(kSRxSR) + pSRP (kSRxSR) + qSRQ(kSRxSR) + rSRR(kSRxSR),

(27)



Flexural-wave-generation using a phononic crystal with a piezoelectric defect 1251

where xSL 6 0 and xSR > 0. The zero values of xSL and xSR indicate the junctions between
the PnC and semi-infinite structures. Here, a 5× 5 scattering matrix SMTH is defined, which
transforms (oPD pPD qPD rPD V (ω))T of the piezoelectric defect to (oSL pSL qSL rSL V (ω))T

(or (oSR pSR qSR rSR V (ω))T) of the left (or right) semi-infinite structure. Thanks to the
continuity assumption, the matrices SMTH

L and SMTH
R are expressed as

{
SMTH

L = (CMTH
SL,xSL=0)

−1(TMTH
UDTMTH

UL )1−HCMTH
PD,L,

SMTH
R = (CMTH

SR,xSR=0)
−1(TMTH

UDTMTH
UL )N−HTMTH

UDCMTH
PD,R.

(28)

One important thing to note here is that the functions O(kx), P (kx), Q(kx), and R(kx)
in Eq. (15) are useful in the differentiation or integration processes; however, they lose knowl-
edge about the propagating and attenuating directions. These characteristics motivate the
modification of these four functions into exp(jkx), exp(−jkx), exp(−kx), and exp(kx) as




exp(jkx)
exp(−jkx)
exp(−kx)
exp(kx)
V (ω)




=




1 j −1 −j 0
1 −j −1 j 0
1 −1 1 −1 0
1 1 1 1 0
0 0 0 0 1







O(kx)
P (kx)
Q(kx)
R(kx)
V (ω)




= FM




O(kx)
P (kx)
Q(kx)
R(kx)
V (ω)




. (29)

The displacement coefficients of the functions exp(jkx), exp(−jkx), exp(−kx), and exp(kx)
are denoted as αProp, βProp, αEvan, and βEvan, respectively. The subscripts ‘Prop’ and ‘Evan’
represent the propagating and evanescent waves, respectively. The symbols α and β are related
to the left- and right-going waves, respectively. The employment of the transforming matrix
FM modifies the scattering matrices SMTH

L and SMTH
R in Eq. (28) into SMTH∗

L and SMTH∗
R ,

respectively, which connect (αProp βProp αEvan βEvan V (ω))T of the piezoelectric defect with
(αSL,Prop βSL,Prop αSL,Evan βSL,Evan V (ω))T (or (αSR,Prop βSR,Prop αSR,Evan βSR,Evan V (ω))T)
of the left (or right) semi-infinite structure. They are expressed as

{
SMTH∗

L = (FMT)−1SMTH
L FMT,

SMTH∗
R = (FMT)−1SMTH

R FMT.
(30)

Here, the semi-infinite setting results in the existence of only left-going waves in the left-ended
semi-infinite structure and of only right-going waves in the right-ended semi-infinite structure.
In other words αSL,Prop, αSL,Evan, βSL,Prop, and βSL,Evan become zero. Using this information,
the vector (αPD,Prop βPD,Prop αPD,Evan βPD,Evan)T of the piezoelectric defect can be expressed,
which is proportional to the input voltage V (ω) as




αPD,Prop

βPD,Prop

αPD,Prop

βPD,Prop


 = −




SMTH∗
L (1, 1) · · · SMTH∗

L (1, 4)

SMTH∗
L (3, 1) · · · SMTH∗

L (3, 4)

SMTH∗
R (2, 1) · · · SMTH∗

R (2, 4)

SMTH∗
R (4, 1) · · · SMTH∗

R (4, 4)




−1 


SMTH∗
L (1, 5)

SMTH∗
L (3, 5)

SMTH∗
R (2, 5)

SMTH∗
R (4, 5)




V (ω). (31)

Then, the remaining displacement coefficients βSL,Prop, βSL,Evan, αSL,Prop, and αSL,Evan can be
obtained by




βSL,Prop

βSL,Evan

αSR,Prop

αSR,Evan


=




SMTH∗
L (2, 1) · · · SMTH∗

L (2, 4)

SMTH∗
L (4, 1) · · · SMTH∗

L (4, 4)

SMTH∗
R (1, 1) · · · SMTH∗

R (1, 4)

SMTH∗
R (3, 1) · · · SMTH∗

R (3, 4)







αPD,Prop

βPD,Prop

αPD,Prop

βPD,Prop


+




SMTH∗
L (2, 5)

SMTH∗
L (4, 5)

SMTH∗
R (1, 5)

SMTH∗
R (3, 5)




V (ω). (32)
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It should be noted that evanescent waves become negligible when the traveling distance away
from the PnC is sufficiently large. Therefore, the transverse displacement amplitudes of the
generated outgoing refer to the absolute values of βSL,Prop and αSL,Prop, respectively. Finally,
the velocity amplitudes can be calculated by using jω|βSL,Prop| and jω|αSR,Prop|, respectively.
In addition, FMT(αPD,Prop βPD,Prop αPD,Evan βPD,Evan V (ω))T that is given by Eqs. (29) and
(31) provides (oPD pPD qPD rPD V (ω))T. The back-substitution of this vector into Eq. (16)
quantifies the generated electric current, specifically, its amplitude and phase.

4 Numerical validation through the finite element method

4.1 Planning for evaluation
Light and dark gray beams consist of magnesium and lead, respectively. The bimorph piezo-

electric patches consist of PZT-5H (lead zirconate titanate, Pb(ZrxTi1−xO3)); this piezoelectric
material has been widely used in sensing and actuating systems[52, 53]. Their mechanical or elec-
trical properties are listed in Table 1. The reference of these values is the datasheet that is
stored in one commercial finite-element-based software package, COMSOL Multiphysics 6.1. In
addition, the geometric dimensions of the piezoelectric-defect-introduced PnC are listed in Ta-
ble 2. The arrangement of eight unit cells comprises the defect-free PnC (N = 8); the fifth unit
cell is selected for defect imposition (H = 5). Here, it needs to mention that this setting puts
the flexural-wave-generation system in a geometrically axisymmetric state. Therefore, this case
study equalizes the velocity amplitudes of two outgoing waves traveling in opposite directions
through different semi-infinite structures. If generalized, the system is structurally symmetric
when the defect is located at H = N/2 + 1 for an even number of N . Otherwise, the velocity
amplitudes of the two outgoing waves are different. This issue is to be presented in Section 5.

Table 1 Material properties of structures used in a flexural-wave-generation system

Magnesium
Density 1 740 kg/m3

Young’s modulus 43 GPa

Lead
Density 11 300 kg/m3

Young’s modulus 17 GPa

PZT-5H

Density 7 500 kg/m3

1-axial elastic modulus 60.60 GPa
3-axial dielectric permittivity 25.55 nF/m

Piezoelectric coupling coefficient −16.60 C/m2

Table 2 Geometric dimensions of a piezoelectric-defect-introduced PnC

Parameter Value

Length of the light gray beam, dUL 10 mm
Length of the dark gray beam, dUD 10 mm

Length of the piezoelectric defect, dPD 30 mm
Height of the PnC, hPnC 1 mm

Height of the piezoelectric patch, hP 0.25 mm
Width, wPnC 5 mm

As was done in many prior studies that deal with analytical or semi-analytical models, a
comparison with the finite element method is used to validate the effectiveness of the proposed
model. This work adopts COMSOL Multiphysics 6.1, which has been widely used to predict
the output performance of elastic wave-propagation systems or smart-material-incorporated sys-
tems. The primary settings in this software are as follows. Commonly, two-dimensional space
with the plane-stress condition is used. In the ‘Eigenfrequency’ setting, the ‘Solid Mechanics’
module with the ‘Periodic Condition (type: Floquet Periodicity)’ performs the band-structure
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analysis (Subsections 3.2 and 4.2). As mentioned at the beginning of Subsection 3.2, only
the piezoelectric-defect-introduced PnC is considered. In the ‘Frequency Domain’ setting, the
‘Solid Mechanics’ and ‘Electrostatics’ modules with the activation of the ‘Multiphysics (Piezo-
electric Effects)’ module perform the time-harmonic analysis (Subsections 3.3, 4.3, and Section
5). Here, both the semi-infinite structures and the PnC are considered. The ‘Perfectly Matched
Layer’ setting that is imposed in the outer domains away from the PnC mimics the semi-infinite
conditions of each side of the wave-generation system. A unit input voltage is successfully ap-
plied through the use of ‘Piezoelectric Material’, ‘Charge Conservation, Piezoelectric’, ‘Ground’,
and ‘Terminal’. Recall that the base vector in each material coordinate of the top and bottom
patches is set to lie in opposite directions along the 3-axis. The quadratic serendipity is used
for the discretization of displacement fields and electric potential. The maximum size of the
meshes is set to one-twentieth of the lattice constant after the convergence test. A detailed
description in Refs. [27] and [28] will be helpful in understanding the COMSOL settings.
4.2 Prediction results from band-structure analysis

Figure 2(a) shows the band-structure results at the unit-cell level that are given by the first
equations in Eqs. (22) and (23). The normalized Bloch wavenumber on the x-axis ranges from
zero to π, and the frequency on the y-axis ranges from zero to 35 kHz. Brown-solid and green-
dashed lines stand for the calculation results that are determined by the analytical and numerical
models, respectively. Unlike the case of longitudinal waves, the form of a 4× 4 transfer matrix
provides four band structures. In this context, the analytical model stipulates three phononic
band gaps (light gray-colored boxes) as (i) (1.58 kHz, 3.36 kHz), (ii) (8.16 kHz, 12.03 kHz), and
(iii) (22.12 kHz, 22.66 kHz). On the other hand, the finite-element-based model determines the
band gaps as (i) (1.58 kHz, 3.34 kHz), (ii) (8.04 kHz, 11.77 kHz), and (iii) (21.14 kHz, 21.91 kHz).
In Fig. 2(a), as the frequency increases, the band-structure results from the analytical model
tend to be larger than those from the numerical model even though the slenderness ratios of
beams exceed 10. This investigation is analogous to previous studies of PnCs under flexural
waves[54–56]. This similarity comes from the fact that shear deformation and rotary inertia,
which are completely neglected in the Euler-Bernoulli beam theory, become significant over the
high-frequency range. Indeed, if the frequency exceeds 10 kHz, the wavelength of the lead (dark
gray beam) is only a few millimeters. If the sizes of the structure and the wavelength become
similar in this way, shear effects or rotational inertia effects cannot be ignored anymore. Hence,
prior research on phononic band-gap generation under flexural waves has demonstrated that
the results of finite element method and Euler-Bernoulli beam-theory-based analytical models
align well with respect to the first band gap, i.e., the gap between the first and second branches.
Given this information, it is reasonable to expect that the proposed analytical model can be
available for the frequency region corresponding to the first band gap. With this reason, the
remaining physical quantities of interest are predicted, focusing on the frequency range near
the first phononic band gap. Note that the consideration of the Timoshenko beam theory in
the modeling process can alleviate this limitation. This point will be explained in Section 6.

In the circumstance of the imposition of the piezoelectric defect into the periodic unit cells,
Fig. 2(b) presents the band-structure results at the PnC level that are given by the second
equations in Eqs. (22) and (23). The normalized wavenumber on the x-axis is the same as
in Fig. 2(a); however, the frequency on the y-axis focuses on the range from zero to 8 kHz.
In each model, one defect band of flatness is newly created within the first phononic band
gap. One red-solid line, ranging from 2.47 kHz to 2.49 kHz, and one blue-dashed line, ranging
from 2.46 kHz to 2.48 kHz, stand for the results from the analytical and numerical models,
respectively. Each defect band manifests a very narrow frequency range, and it is known that
the energy-transport velocity approaches zero. The center frequency of the defect band is called
the defect-band frequency. The values of the defect-band frequencies confirm that the proposed
analytical model possesses high predictive capabilities. The root mean squared error (RMSE)
between the defect bands determined by two different models is 0.01 kHz. It is worth pointing
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Fig. 2 Comparison results in terms of dispersion relationships (eigenvalues): (a) the creation of three
phononic band gaps at the unit cell level and (b) the generation of one defect band within the
first phononic band gap at the piezoelectric-defect-introduced PnC level (color online)

out that the analytical method is significantly efficient in terms of time consumption. In detail,
the analytical model takes less than 1 s to obtain Fig. 2, while the finite element model requires
more than 7 min.

At the center frequency of each defect band in the analytical and numerical models, Fig. 3
presents the transverse displacement field of the piezoelectric-defect-introduced PnC. Recall
that this refers to the defect-mode shape. The space on the x-axis ranges from zero to 180mm,
and the normalized transverse displacement on the y-axis ranges from −1.5 to 1.5. The position
of 95mm is the center of the piezoelectric defect. Note that the transverse displacement values
themselves are meaningless since they come from eigenvalue problems. Therefore, dividing the
displacement field by its maximum value executes normalization. Dashed lines with red and
blue colors stand for the calculation results that are determined by the analytical and numerical
models, respectively. From Fig. 3, three key points need to be highlighted. First, the defect-
mode shape confirms that the proposed analytical model possesses high predictive capabilities.
The RMSE between the defect-mode shapes is 0.02. Second, the piezoelectric defect manifests
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Fig. 3 Comparison results in terms of the defect-mode shape (eigenvectors) at the defect-band fre-
quency (color online)



Flexural-wave-generation using a phononic crystal with a piezoelectric defect 1255

the markedly amplified displacement field, known as defect-mode-enabled energy localization,
despite its frequency within the phononic band gap. Last, the slopes of the displacement field
concerning the space have different signs at the left and right ends of the piezoelectric defect.
This result indirectly implies that this defect-mode shape is suitable for flexural-wave-generation
systems since the electroelastic coupling term in Eq. (9) does not vanish. The previous work on
longitudinal-wave-generation when a particular defect-mode shape induces charge cancellation
supports this investigation[25].
4.3 Prediction results from time-harmonic analysis

Figures 4 and 5 present the frequency response functions (FRFs) for two physical quantities
of interest under a unit input voltage: (i) the velocity amplitude that is calculated by Eq. (32)
(see Fig. 4), and (ii) the amplitude and phase of the generated electric current that are calculated
by Eqs. (16), (29), and (31) (see Fig. 5). In all figures, for the considered piezoelectric-defect-
introduced PnC, the red-solid and blue-dashed lines stand for the calculation results of the
analytical and numerical models, respectively. At the same time, the comparison group consists
of one wave-generation system with bimorph piezoelectric patches that are attached to an
infinite structure without the defect-introduced PnC in Fig. 4. These patches have the same
specification and configurations as those used in this work. A black-dashed line represents its
numerical result. Inspired by the characteristics of geometrical, axial symmetry, we focus only
on the waves propagating in the left, semi-infinite structure in this subsection. The frequency
on the x-axis ranges from zero to 5 kHz, which includes the first phononic band gap. In Fig. 4,
the logarithm-scaled velocity amplitude on y-axis lies in the range of [10−1 mm/s, 102 mm/s].
In Figs. 5(a) and 5(b), the amplitude and phase of the electric current on the y-axis lie in the
ranges of [10−4 mA, 100 mA] and [−π rad, π rad], respectively. The frequency spacing of both
models is identically set to 10 Hz. As a side note, defect-free PnCs do not show any particular
energy localization and amplification phenomena; therefore, this case is not considered in the
comparison group.
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Fig. 4 Comparison results in terms of the FRF for the velocity amplitude of generated flexural waves
that propagate in the left, semi-infinite structure (color online)

Similar to the band-structure analysis described in Subsection 4.2, the proposed analytical
model has the ability to predict the wave-generation performance of the velocity amplitude and
electric current with high accuracy; these accuracies are similar to those of the finite-element-
based model. The relative error falls in a sufficiently acceptable range, despite the observation
of a slight difference over the high frequencies in the given range. The RMSE between the peak
frequencies is 0.01 kHz. Without matching the peak frequency, the RMSEs between the physical
quantities in Figs. 4 and 5 are calculated as 0.36 mm/s, 0.02mA, and 0.09 rad, respectively.
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Fig. 5 Comparison results in terms of the FRF for the electric current generated by the bimorph
piezoelectric patches: (a) amplitude and (b) phase (color online)

With matching the peak frequency, the RMSEs between the physical quantities are calculated
as 0.02 mm/s, 0.002 mA, and 0.01 rad, respectively. It is worth pointing out that the proposed
analytical method takes less than 1 s to perform the time-harmonic analysis; in contrast, the
finite element model requires nearly 6 min.

Figure 4 presents one peak frequency corresponding to 2.48 kHz in the proposed analytical
model. This peak frequency matches the central frequency of the defect band that is calculated
in Fig. 2(b). Moreover, the velocity amplitudes of the outgoing generated waves are amplified
up to ten times at each peak frequency, compared with the case in the absence of the PnC.
This is a notable performance improvement. This result infers that the amplification of flexural-
wave-generation performance originates from the energy-localization nature of the piezoelectric-
defect-introduced PnC. To support this statement, Fig. 6 depicts the displacement fields (the
so-called operating deflection shape) in the region that contains both the whole PnC and the
outer semi-infinite structures at the peak frequency of 2.48 kHz in the analytical model. The
information about the colors is the same as that described for Figs. 4 and 5. The left end of
the PnC is set as the origin to retain consistency with Fig. 3. Since the operating deflection
shape of the piezoelectric-defect-introduced PnC in the time-harmonic analysis coincides with
its defect-mode shape in the band-structure analysis, it confirms the effectiveness of energy-
localized behaviors of PnCs in flexural-wave-generation systems. Note that the RMSE between
the operating deflection shapes is 0.02 µm.

The proposed analytical model shown in Fig. 5(a) shows two frequencies, 2.48 kHz and
2.53 kHz, which correspond to the peak and dip values of the amplitude of the electric cur-
rent, respectively. What should be noted here is that the observations are well analogous to
the typical characteristics that are found in resonance-type piezoelectric actuators. For exam-
ple, the peak frequency in Fig. 5(a) is equal to the peak frequency in Fig. 4, which maximizes
the velocity amplitude. At the same time, the phase of the electric current in Fig. 5(b) also
changes rapidly by π rad. In a similar manner, the dip frequency in Fig. 5(a) is in agreement
with the other frequency, at which the phase of the electric current in Fig. 5(b) changes by
π rad. However, this dip frequency does not show special features in Fig. 4. The peak and
dip frequencies are called the resonance and anti-resonance frequencies of the wave-generation
system, respectively. The existing study in Ref. [11] which reveals the physical analogy between
the defect-mode-induced energy localization and mechanical resonance strengthens the conclu-
sion that these results are sufficiently reasonable. As a side note, the information about the
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generated electric current is crucial in amplifying the velocity amplitudes of generated flexural
waves from the viewpoint of electrical impedance matching. Hence, a follow-up study of the
electrical engineering aspects of this method will be explained in Section 6.

5 Effects of the defect location on wave-generation performance

This section delineates how the defect location governs the velocity amplitudes of the gener-
ated flexural waves. To retain compatibility with Section 4, all values of the geometric dimen-
sions and material properties remain fixed for the unit cells, defect, and bimorph piezoelectric
patches. In addition, the number of unit cells is the same: eight (N = 8). Here, a para-
metric study is performed while sequentially changing the unit-cell location H to which the
piezoelectric defect is applied from the first to the last location (i.e., H ∈ {1, 2, · · · , 8}).

Remember that the setting of H = 5 makes the system structurally axisymmetric and pro-
vokes identical wave-generation performance in the left- and right-sided, semi-infinite structures.
In contrast, the remaining defect locations will show different output performances. With this
supposition, Fig. 7 displays the two velocity-amplitude FRFs that are obtained from the left
and right domains as dashed lines, in red and blue colors, respectively. Figures 7(a)–7(h) are
the results, respectively, when H = 1, 2, · · · , 8. Note that the results given by the numerical
model are not provided in this section, since the high predictive capabilities of the proposed
analytical model were already confirmed in Section 4.

The velocity-amplitude FRF in red (or blue) at the left (or right), semi-infinite structure
when H = 4 (see Fig. 7(d)), 3 (see Fig. 7(c)), and 2 (see Fig. 7(b)) is exactly equal to that in
blue (or red) at the right (or left), semi-infinite structure when H = 6 (see Fig. 7(f)), 7 (see
Fig. 7(g)), and 8 (see Fig. 7(h)), respectively. These results can be explained by the fact that the
structural appearance of the system seen from the front when H = 6, 7, and 8 matches that seen
from the rear when N = 4, 3, and 2, respectively. In general, the imposition of the piezoelectric
defect to the Hth unit cell can be systemically equivalent to that of the (N + 2 − H)th unit
cell for an even number of N .

When the defect is positioned at H = 1 (see Fig. 7(a)), 2 (see Fig. 7(b)), and 8 (see Fig. 7(h)),
which are close to the ends of the PnC, the defect-band-related peak frequency is not displayed.
This means that no defect-mode-enabled energy localization occurs. In the case of H = 1, one
can intuitively imagine that defect imposition and patch attachment are done outside of the
PnC. Thus, the term ‘defect’ does not fit in this location. In the cases of H = 2 and 8, the band-
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gap phenomenon does not take place virtually on the piezoelectric defect’s left (when H = 2)
or right (when H = 8) side, despite the existence of one unit cell; this is unlike the previous
case since the mechanism of band-gap formation is the periodic array of unit cells. Hence,
aided by the absence of physically effective defect modes, the piezoelectric-defect-introduced
PnCs with corresponding defect locations can be concluded to be unsuitable for application to
flexural-wave-generation systems.

In contrast, the defect locations of H = 3 (see Fig. 7(c)), 4 (see Fig. 7(d)), 5 (see Fig. 7(e)),
6 (see Fig. 7(f)), and 7 (see Fig. 7(g)) represent one peak frequency of 2.47 kHz in each FRF.
This means that the peak frequency is robust to the defect location if the unit cells surrounding
the piezoelectric defect are arranged in sufficient numbers. This significant characteristic solid-
ifies the effectiveness of PnC-integrated flexural-wave-generation systems. Instead, the velocity
amplitude at each peak frequency depends on the defect location. When H = 5, a value of
11.5mm/s is obtained for both sides. When H = 4, the semi-infinite structures on the left and
right sides present velocity amplitudes of 11.0 mm/s and 3.60 mm/s, respectively. When H = 3,
each structure presents 7.05 mm/s and 0.67 mm/s, respectively. Note that the periodicity weak-
ens as the defect location becomes farther from the center (here, H = 5) of the system. Keeping
this in mind, two observations can be summarized as follows. One is that the wave-generation
performance is inevitably reduced since the incident velocity amplitude of evanescent waves
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that are transferred to a semi-infinite structure becomes smaller as they get farther from the
defect. On the other hand, the incident velocity amplitude of evanescent waves, transferred to
a semi-infinite structure, becomes larger as they become closer to the defect. Therefore, the
trade-off relationship between an increased velocity amplitude of the evanescent waves and a
weakened periodicity may result in either (i) a monotonic decrease in the velocity amplitude (in
this case study) or (ii) an increasing velocity amplitude up to a certain location and a decreasing
velocity amplitude thereafter. Therefore, it is necessary to select the optimal defect location
in advance (during the design stage) that maximizes the velocity amplitude according to the
intended use of the structure.

6 Conclusions

This study is the first attempt to contribute to improving the performance enhancement
of flexural-wave-generation systems by using an energy-localization feature, an unorthodox
phenomenon observed in defect-introduced PnCs. Starting from the basis of the Euler-Bernoulli
beam theory, the analytical approaches based on the transfer-matrix and S-parameter methods
enabled the prediction of defect bands, defect-mode shapes within phononic band gaps, and
the velocity amplitudes of the finally generated flexural waves and electric current (i.e., its
amplitude and phase) generated by the piezoelectric patches. In both band-structure and
time-harmonic analyses, the predictive capability of the proposed analytical model is confirmed
through comparison with the finite element method, using a case study with manufacturable
materials and geometric values. In a case study, the root means square errors of the defect
band, defect-mode shape, three FRFs for the velocity amplitude, electric current amplitude,
and electric current phase are 0.01 kHz, 0.007, 0.36 mm/s, 0.02mA, and 0.09 rad, respectively. In
addition, it should be emphasized that the amplification ratio of velocity amplitudes of outgoing
generated waves reach up to ten times at the defect-band frequency of 2.48 kHz, compared with
the case in the absence of the PnC. Despite this high accuracy, the nature of the analytical
model allows all computations to be performed in a period of seconds.

The fast-computing analytical model suggested can be applied during the design phase of
piezoelectric actuators or sensors that exploit defect-introduced PnCs. These devices have
various engineering applications, such as nondestructive testing to estimate the initiation and
propagation of cracks for structural health monitoring, fault detection through acoustic emission
testing in rotating machinery, and medical imaging through ultrasonic technology. Potential
follow-up studies to this work can be organized into three primary categories to accelerate
further research on building a solid bridge between defect-introduced PnCs and wave-generation
systems. First, there is a need to improve the analytical model by incorporating the Timoshenko
beam theory into current model-development procedures to broaden its engineering applicability
in high frequencies. Second, modifications to the proposed analytical model can be explored to
consider delamination effects that may result from unwanted manufacturing errors or fatigue
loading during operation and result in worsening the flexural-wave-generation performance.
Last, optimizing the structures and electric circuits of the piezoelectric-defect-introduced PnCs
is necessary to maximize the flexural-wave-generation performance at the target frequency.
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