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Abstract We propose a novel symplectic finite element method to solve the structural
dynamic responses of linear elastic systems. For the dynamic responses of continuous
medium structures, the traditional numerical algorithm is the dissipative algorithm and
cannot maintain long-term energy conservation. Thus, a symplectic finite element method
with energy conservation is constructed in this paper. A linear elastic system can be
discretized into multiple elements, and a Hamiltonian system of each element can be
constructed. The single element is discretized by the Galerkin method, and then the
Hamiltonian system is constructed into the Birkhoffian system. Finally, all the elements
are combined to obtain the vibration equation of the continuous system and solved by
the symplectic difference scheme. Through the numerical experiments of the vibration
response of the Bernoulli-Euler beam and composite plate, it is found that the vibration
response solution and energy obtained with the algorithm are superior to those of the
Runge-Kutta algorithm. The results show that the symplectic finite element method can
keep energy conservation for a long time and has higher stability in solving the dynamic
responses of linear elastic systems.
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1 Introduction

For linear or nonlinear elastic systems, in the absence of external force and dissipation, all
real physical processes can be represented by the Hamiltonian system, and the total energy
of the system is conserved. This important property is of great significance in engineering.
When the analytical solution of the physical quantity of the system cannot be obtained, we
usually use the numerical calculation method to solve the problem. However, with the increase
in time steps, the cumulative error brought by the numerical calculation method will make the
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calculation results beyond recognition, making it a highly challenging problem to be accurately
solved[1–7]. Therefore, it is of great research value to construct a non-dissipative numerical
method in the Hamiltonian system.

Feng[8] first systematically studied the symplectic geometry algorithm based on the Hamil-
tonian system. Then, he developed a series of symplectic preserving algorithms[9]. Each step
of the symplectic geometry algorithm is a symplectic transformation and pioneering research
on this system with different methods is carried out[10]. For symplectic algorithms, the cal-
culation results have long-term stable tracking ability. After that, the symplectic preserving
algorithm has attracted more and more attention. The condition that the Runge-Kutta method
is symplectic was found in 1988 by Sanz-Serna[11], Lasagni[12], and Suris[13] independently. A
multi-symplectic algorithm that maintains the symplectic conservation law under the symplec-
tic method similar to the Hamilton ordinary differential equation was proposed by Bridges and
Thomas[14] and Reich[15] around 2000. In order to prevent the occurrence of energy drift, the
symplectic method was applied to the discretization of the time domain to construct symplectic
finite element[16].

Symplectic algorithm has been widely used in engineering and solving equations. Discontinu-
ous Galerkin (DG) method was introduced into the acoustic equation, two-dimensional Maxwell
equation, and hyperbolic equation to realize space discretization[17]. The Hamiltonian structure
was obtained by mixing and discretizing the acoustic equation and the symplectic method in the
time domain, to prevent the loss of energy[18]. Another finite element method uses the Hamil-
ton discontinuous Galerkin (HDG) scheme to discretize space, and uses symplectic, diagonal
implicit, and explicit partitioned Runge-Kutta methods to discretize time, ensuring the con-
servation of energy[19]. Then, the DG method with arbitrary accuracy was introduced into the
elastic wave equation, which can maintain the energy or projectile dissipation performance[20].
Qiu and Jiang[21] introduced a symplectic conservative perturbation series expansion method
for linear Hamiltonian systems with perturbations and their applications. Qiu and Xia[22] intro-
duced a symplectic perturbation series methodology for a non-conservative linear Hamiltonian
system with damping. There are multi-source uncertainties in practical engineering. Qiu and
Jiang[23] introduced random and interval linear uncertainties into the nonlinear homogeneous
Hamiltonian equation. Later, Qiu and Jiang[24] used random and interval linear uncertainties
in the symplectic preserving algorithm of the Birkhoffian system, and compared the calculation
results of the two methods. Zhou et al.[25] analyzed the crack propagation along the bi-material
interface using the analytical symbolic dual approach. Su et al.[26] proposed an order-modified
symplectic finite element method to deal with large-scale seismic wave problems to improve ac-
curacy. Sun et al.[27] constructed the Hamiltonian canonical equation to transform the buckling
analysis of ring-stiffened porous graphene sheet-reinforced composite cylindrical shells under hy-
drostatic pressure into an eigenproblem in symplectic space. Lai et al.[28] solved the torsional
buckling problem of cylindrical shells with local defects by the symplectic method. Chen and
Zhu[29] introduced the symplectic algorithm into the control theory. Zhou et al.[30] proposed a
new method based on a series of analytical symplectic eigensolutions to solve the steady-state
forced vibration of composite nanobeam system on an elastic foundation.

Although the symplectic algorithm has been applied in many fields, there is relatively little
research on the symplectic algorithm for computing complex continuum. In practical engineer-
ing, the finite element method is usually used to discretize complex structures into elements,
but this method cannot maintain symplectic structure when solving structural dynamics. In
order to maintain the symplectic structure of the discrete system, the fully discrete system
is transformed into a Hamiltonian structure, which is solved by using the difference scheme
that maintains the symplectic structure. When the spatial discretization of the system is the
finite element method, this method is called Hamiltonian symplectic finite element (HSFE).
The main work of this paper is to develop a new symplectic finite element method to solve the
vibration response of linear elastic systems. This method can maintain the Hamiltonian energy
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conservation and long-term stable tracking ability. The linear elastic body is discretized into
finite elements, and the Hamiltonian system of the element is constructed. The Hamiltonian
system is transformed into the Birkhoffian system by generalized transformation, and then the
symplectic scheme of the Birkhoffian system is obtained. In the end, the whole linear elastic
body system is constructed, and the Euler midpoint scheme is used to solve the problem.

The contents of this paper are as follows. In Section 2, the linear Hamiltonian system
is briefly introduced. In Section 3, the Birkhoffian system is introduced. In Section 4, the
Hamiltonian system is discretized by the Galerkin finite element method, the linear Birkhoffian
system is established, and the problem is solved by the Euler midpoint scheme. In Section 5, the
numerical examples of the linear Hamiltonian function, the vibration response of the Bernoulli-
Euler beam, and the vibration response of composite plate demonstrate that the HSFE method
can keep energy conservation in a long term. Compared with the classical Runge-Kutta algo-
rithm, the HSFE method has better accuracy and stability. Finally, some concluding remarks
are collected in Section 6.

2 Linear Hamiltonian system

Consider an n-dimensional Hamiltonian system. The Hamilton canonical equation is in a
compact form of

ż =
dz

dt
= J−1Hz, (1)

where




z = (z1, · · · , zn, zn+1, · · · , z2n)T, Hz =
(∂H

∂z1
, · · · ,

∂H

∂zn
,

∂H

∂zn+1
, · · · ,

∂H

∂z2n

)T

,

J =
(

0 In

−In 0

)
,

(2)

in which In is the n-dimensional identity matrix, J is called the standard symplectic matrix
which has the property J−1 = JT = −J , and H is called the Hamiltonian function of the
system.

A Hamiltonian system is called the Hamiltonian function. H(z) is a quadratic form of z,

H(z) =
1
2
zTCz, (3)

where C is a symmetrical matrix CT = C. Thus, the Hamiltonian canonical equation (1) can
be expressed as

Jż = Cz. (4)

The symplectic scheme can be used to solve the linear Hamiltonian equation (4)

J
zk+1 − zk

τ
= C

zk+1 + zk

2
, (5)

in which τ is the time step. The transformation zk 7→ zk+1 is given by the following relationship:

zk+1 = Fτzk, Fτ = φ
(
− τ

2
J−1C

)
, φ(λ) =

1− λ

1 + λ
. (6)
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3 Linear Birkhoffian system

The Birkhoffian system is

K
dz

dt
−

(∂B(z, t)
∂z

+
∂R(z, t)

∂t

)
= 0, (7)

where K is an antisymmetric matrix, B(z, t) is called the Birkhoffian function, and R(z, t) is
called the Birkhoffian function group.

When the Birkhoffian function and the Birkhoffian function group satisfy Eq. (8) at the same
time,





B =
1
2
zTLz,

∂B

∂z
=

1
2
(L + LT)z,

∂R

∂t
= Sz.

(8)

The Birkhoffian system (7) can also be expressed as

Kż = Pz, (9)

where P = 1
2 (L + LT)z + S, and P is a symmetric matrix which is called the characteristic

control of the linear Birkhoffian equation matrix. Equation (8) satisfying Eq. (9) is called a
linear Birkhoffian equation. Similarly, the symplectic Euler midpoint scheme can be used to
solve the generalized linear Birkhoffian equation (9). The solution form is

K
zk+1 − zk

τ
= P

zk+1 + zk

2
. (10)

It can also be expressed as

zk+1 =
(
K − τP

2

)−1(
K +

τP

2

)
zk. (11)

4 Galerkin finite element method for linear Hamiltonian system

4.1 Galerkin finite element method and the weak formulation
In this section, the Galerkin finite element method is used to discretize the linear Hamiltonian

equation (4).
Assuming that there are l elements after the system is discretized, the ith element is analyzed

below. According to the basic theory of the finite element, its displacement response can be
approximately expressed in the form of shape function,

zi = Niz
e
i , (12)

where Ni = (Ni1,Ni2, · · · ,Nij) is the (2n × 2nj)-dimensional finite element shape function
matrix. ze

i = (ze
i1,z

e
i2, · · · ,ze

ij)
T is the 2nj × 1 displacement response vector, where j is the

number of unit nodes. Nim (m = 1, 2, · · · , j) is the (2n×2n)-dimensional shape function matrix
corresponding to the mth element node. ze

im = (ze
im1, z

e
im2, · · · , ze

im2n)T(m = 1, 2, · · · , j) is the
corresponding (2n× 1)-dimensional displacement response vector. e denotes the node value.

Similarly, the velocity response żi of the ith element can also be approximately expressed
in the form of a shape function,

żi = Niż
e
i , (13)
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where że
i = (że

i1, ż
e
i2, · · · , że

ij)
T is the (2n× 1)-dimensional velocity response vector correspond-

ing to the mth element node.
Obviously, the approximate expressions (12)–(13) of displacement response zi and velocity

response żi cannot accurately meet the linear Hamiltonian equation (4), which will produce
residuals,

Ri = Jżi −Czi. (14)

The approximation method requires that the sum of the weighted residuals in the whole
region Ω is 0, that is,

∫

Ω

WmRidΩ =
∫

Ω

Wm(Jżi −Czi)dΩ = 0, m = 1, 2, · · · , j, (15)

where Wm (m = 1, 2, · · · , j) is the (2n× 2n)-dimensional weighting function matrix of the mth
element node.

If we select different weighting functions Wm (m = 1, 2, · · · , j), different approximation
methods will be obtained. For the Galerkin finite element method, the weighting function
Wm is taken as the shape function Nim. Thus, the Galerkin finite element equation of linear
Hamiltonian system (4) is obtained,

∫

Ω

Nim(Jżi −Czi)dΩ = 0, m = 1, 2, · · · , j. (16)

Otherwise, the whole unit is written as
∫

Ω

NT
i (Jżi −Czi)dΩ = 0. (17)

4.2 The symplectic solution
The approximate expressions (12)–(13) of displacement response zi and velocity response

żi are substituted into Eq. (17),
∫

Ω

NT
i JN iż

e
i dΩ =

∫

Ω

NT
i CN iz

e
i dΩ. (18)

Equation (18) can be further written as

( ∫

Ω

NT
i JN idΩ

)
że

i =
( ∫

Ω

NT
i CN idΩ

)
ze

i . (19)

Let

A =
∫

Ω

NT
i JN idΩ, D =

∫

Ω

NT
i CN idΩ. (20)

Then, the matrices A and D are both (2nj × 2nj)-dimensional square matrices. Thus,
Eq. (19) can be further written as

Aże
i = Dze

i . (21)

For matrix A, since J is an antisymmetric matrix, there is

(NT
i JN i)T = NT

i JTNi = −NT
i JN i. (22)

Thus, NT
i JN i is matrix A, since J is an antisymmetric matrix.
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For matrix D, since C is a symmetric matrix, there is

(NT
i CN i)T = NT

i CTNi = NT
i CN i. (23)

Thus, NT
i CN i is a symmetric matrix, and D is a symmetric matrix.

Therefore, Eq. (21) is the generalized linear Hamiltonian equation (9).
By assembling the element finite element equation (21), the overall finite element equation

of the system can be obtained as

Aallże all
i = Dallze all

i , (24)

where matrices Aall and Dall are the overall matrices formed by connecting A and D of all the
elements, respectively. Its dimension is (l + 1)nj × (l + 1)nj. ze all

i and że all
i are, respectively,

the displacement response vector and velocity response vector of the overall finite element of
the system with dimension n. e all denotes the overall nodes of the system.

The symplectic preserving Euler midpoint scheme can be used to solve the overall finite
element equation (24) of the system. The format is

Aall (z
e all
i )k+1 − (ze all

i )k

τ
= Dall (z

e all
i )k+1 + (ze all

i )k

2
. (25)

It also can be written as

(ze all
i )k+1 =

(
(Aall)− τDall

2

)−1(
(Aall) +

τDall

2

)
(ze all

i )k. (26)

After solving Eq. (26), we can get ze all
i . The displacement response of the element can be

obtained by substituting it into Eq. (12).
So far, the symplectic solution of Galerkin finite element method for the linear Birkhoffian

system has been realized.

5 Numerical examples

This section provides two numerical examples to demonstrate the effectiveness of the pro-
posed method (HSFE), i.e., the Bernoulli-Euler cantilever beam vibration and the laminated
plate vibration. For comparison, the results obtained by this method are compared with those
obtained by the second-order and fourth-order Runge-Kutta algorithms (HSFE, RK 2, and
RK 4, respectively).
5.1 Solution of a linear Hamiltonian function

Consider the Hamiltonian function of the 2D linear system,

H(p1, q1, p2, q2) = 1/2(40p2
1 + 1/20p2

2 + 160q2
1 + 1/5q2

2).

The corresponding regular equations are

p′1 = −160q1, p′2 = −1/5q2,

q′1 = 40p1, q′2 = 1/20p2,

p1(0) = 2, p2(0) = 2, q1(0) = 0, q2(0) = 0.

The analytical solutions to the equation are

p1 = 2 cos(80t), q1 = sin(80t), p2 = 2 cos(t/10), q2 = sin(t/10).

The results calculated by the HSFE method are as follows.
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As shown in Table 1, the time step is set to τ = 0.002 s. From Fig. 1, we can see that the
phasing orbit of the generalized displacement is a closed ellipse. This shows that the HSFE
method can maintain the orbital stability of the linear Hamiltonian system for a long time.
As shown in Fig. 2, the analytical solution is almost consistent with the results calculated with
the HSFE method, which verifies the accuracy of the proposed method. From Table 1, in
[0, 40 000 000] steps, the energy error of the calculation results using the HSFE method shows
periodic changes.

Table 1 Error between numerical solution and real solution at nodes

Parameter τ 102τ 103τ 104τ 105τ 106τ 107τ

p2 10−3 5.645× 10−7 5.748× 10−5 0.005 7 0.327 4 0.002 5 0.195 1
q2 2× 10−3 2.258× 10−6 2.298× 10−4 0.022 5 0.118 8 0.009 8 0.357 5
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5.2 Bernoulli-Euler cantilever beam vibration
As shown in Fig. 3, a rectangular cantilever beam is fixed on the left side, and a downward

load is imposed on the beam. The rectangular beam is 9m long, and its section is illustrated
in Fig. 3, in which a = 0.05m, and b = 0.04m. The thickness of the beam is 0.005 m, and the
beam is divided into fifteen elements. The density of the beam is 7.85×103 kg/m3, and Young’s
modulus is 200 GPa.

The proposed symplectic algorithm is used to obtain the vertical displacement of the right
node of element 15, and the Runge-Kutta algorithms are also conducted for comparison. The
time step is set to be τ = 0.001 s. The results of the vertical displacement and Hamiltonian
function are shown in Fig. 4 and Fig. 5, respectively.
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The Butcher tableau for the Runge-Kutta algorithm of order 2 (RK 2) in the study is listed
as follows:

0
1 1

1/2 1/2
. (27)

The Butcher tableau for the Runge-Kutta algorithm of order 4 (RK 4) in the study is listed
as follows:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

. (28)

From the results, we can conclude that the proposed algorithm can obtain reasonable results
of the vertical displacement[31].

As shown in Fig. 4, in the first 12 s, the vibration response of the right end node presents
the shape of the sinusoidal curve, which conforms to the physical law of node responses. The
Hamiltonian function remains a constant value during the numerical calculation as shown in
Fig. 5, which illustrates the symplectic conservation of the proposed algorithm. The symplectic
properties of the algorithm can be carried out by the values of the Hamiltonian function with
respect to time.

As shown in Fig. 6, HSFE, RK 2, and RK 4 are used to calculate the responses of the right
nodes within the first 0.012 s. Through comparison, it can be found that the stability of HSFE is
stronger than the other traditional algorithms, the vibration response of nodes calculated with
RK 2 has diverged, and the calculation methods of RK 4 and HSFE are still relatively stable.
In Fig. 7, compared with the RK 4, in the first 60 s, HSFE method can keep the energy stable,
while the energy of the RK 4 method shows a downward trend, and thus it can be explained
that HSFE method is more stable.
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5.3 Laminated plate vibration
The last example concerns a fully clamped composite laminate with the side length a =

1.6m, the width b = 0.8m, and the mass density ρ = 1 500 kg/m3 as shown in Fig. 8, while the
thickness of each layer h = 0.1mm.
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Fig. 8 Laminated plate with one end under clamping (color online)

The dispersion in the material properties introduced by the material production and mea-
surement process is unavoidable. The nominal and perturbed parts of the material properties
are E1 = 38.6GPa, E1r = 5%×E1, E2 = 8.27GPa, E2r = 5%×E2, ν21 = 0.26, ν21r = 10%×ν21,
G12 = 4.14GPa, and G12r = 7%×G12.

The response caused by the force F = −1 000 N acts on the center of the laminate in order.
The HSFE method proposed in this paper and the traditional Runge-Kutta algorithm are used
to solve the dynamic response of the midpoint at the right end of the cantilever plate structure,
and the comparative analysis is carried out at the two levels of energy and stability of the
calculation results.

As shown in Fig. 9, the response of the laminate in the first 2.5 × 10−6 s conforms to the
trend of the continuous solution, which is similar to the traditional solution[32]. Figure 10 shows
that the Hamiltonian function of the right node can keep constant values in 1 s. However, it is
worth noting that the numerical results calculated with the RK 2 are exponentially divergent
under the condition of the set time step in a short time interval t ∈ [0, 2× 10−7] s as shown in
Fig. 11, while there is not any difference between the amplitude calculated by the Runge-Kutta
method and the HESM method. Only when the time step is extremely small like τ = 10−8 s,
satisfactory results can be achieved. As shown in Fig. 12, the system energy value calculated
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with the RK 4 method shows a downward trend, because the method itself is a dissipation algo-
rithm, and numerical damping will occur in the calculation process. On the contrary, the HSFE
method shows an outstanding advantage in terms of stability. This phenomenon highlights the
superiority of HSFE.

6 Conclusions

This paper presents a finite element method for solving the dynamic problems of linear
continuum. It is used to solve the vibration problems of linear continuous systems, avoiding
energy loss in the solving process. First, we discretize the continuum into finite elements.
Then, the generalized displacement vector is defined. The Hamiltonian structure of the element
is constructed, the continuous system is discretized with the finite element method based on
Galerkin, and then the velocity and displacement responses of the continuum are interpolated
to obtain the linear Birkhoffian system. After that, it is solved by the Euler midpoint scheme.
By using the proposed method, a series of vibration response problems of linear elastic bodies
can be solved, and finally, the solution without energy dissipation can be obtained.
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The validity, symplectic conservation, and engineering applicability of HSFE are studied
by two examples. Compared with the Runge-Kutta method, the HSFE method can obtain
high-precision results in a longer term, especially in the case that the Runge-Kutta method
cannot converge. Only when the Runge-Kutta method takes a very short time step and takes
the fourth-order accuracy, it can obtain high accuracy results. Therefore, the HSFE method
can effectively improve computational efficiency. In addition, in terms of energy, the HSFE
method can keep the conservation for long-term dynamics, while the energy of the traditional
Runge-Kutta algorithm gradually decreases with the increase in time.
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