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Abstract The paper develops and examines the complete solutions for the elastic

field induced by the point load vector in a general functionally graded material (FGM)

model with transverse isotropy. The FGMs are approximated with n-layered materials.

Each of the n-layered materials is homogeneous and transversely isotropic. The complete

solutions of the displacement and stress fields are explicitly expressed in the forms of

fifteen classical Hankel transform integrals with ten kernel functions. The ten kernel

functions are explicitly expressed in the forms of backward transfer matrices and have clear

mathematical properties. The singular terms of the complete solutions are analytically

isolated and expressed in exact closed forms in terms of elementary harmonic functions.

Numerical results show that the computation of the complete solutions can be achieved

with high accuracy and efficiency.
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1 Introduction

Functionally graded materials (FGMs) have the elastic properties varying with the depth

and can keep the properties constant along the horizontal direction. They can be approximated
and represented by the n-layered FGM model shown in Fig. 1, where n is an arbitrary positive

integer and stands for the total number of the material layers. The n-layered FGM model

can occupy the full three-dimensional (3D) space by further adhering two materials of either
upper or lower semi-infinite extent. Each individual layer is homogeneous and has five elastic
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parameters of transverse isotropy. The five elastic parameters can be noted as c1j , c2j , c3j , c4j ,

and c5j , where j = 0, 1, 2, · · · , n, n + 1. The interfacial conditions between any two connected
dissimilar layers are fully bonded, where the three displacements and the three vertical stresses

acting on any interface plane are continuous.

0

10, 20, 30, 40, 50

11, 21, 31, 41, 51

1( −1), 2( −1), 3( −1), 4( −1), 5( −1)

1( +1), 2( +1), 3( +1), 4( +1), 5( +1)

1( +1), 2( +1), 3( +1), 4( +1), 5( +1)

1 , 2 , 3 , 4 , 5

1 , 2 , 3 , 4 , 5

1

−2

−1

  
or 

or

−1

+1

+1

−1

1

0

+1

+1→∞

0→∞

+1

−1

1

Fig. 1 Schematics of n-layered FGM model with isotropy or transverse isotropy of full-space subject

to point load vector (fx, fy, fz) (color online)

There are the following characteristics: (i) The upper material of −∞ < z 6 H−
0 is the

0th homogeneous elastic half-space; (ii) The layer material of H+
j−1 < z 6 H−

j (j = 1, 2, · · · , n)
is the jth homogeneous elastic layer with the layer thickness hj = Hj − Hj−1; (iii) The lower

material of H+
n 6 z < +∞ is the (n + 1)th homogeneous elastic half-space. As n can be large,

the above n-layered FGM model has its five elastic parameters varying with the depth as a

stepped function, and can well represent the arbitrary variations of any general FGM elastic

parameters with the depth.

Without loss of generality, the point load vector is concentrated at an arbitrary horizontal

plane z = d in the n-layered FGM model,

f(x, y, z) = fcδ(x)δ(y)δ(z − d), (1)

where H+
k−1 6 d 6 H−

k (1 6 k 6 n), δ is a Dirac delta function, and fc = (fx, fy, fz)
T. In

particular, the loading situation for −∞ < d 6 H0 or H+
n < d < +∞ can be included by

dividing a single layer of finite thickness h > H0−d or h > d−Hn in the 0th or (n+1)th layer,
respectively.

The above boundary value problem is an extension of the classical problems related to the
fundamental singularity or Green’s function or point load solutions in elasticity[1–16]. Pan[14]

documented the relevant publications in general Green’s functions. Yue[17] derived the fun-

damental singular solutions of elastic fields in the n-layered isotropic elastic material subject
to two body force vectors. The past papers[12,17–21] examined the mathematical methods for

the solutions of elastostatics in n-layered dissimilar elastic materials, and the methods were
used by other researchers including Merkel et al.[22] and Maloney et al.[23]. Xiao and Yue[24]

used the point load solutions of the n-layered FGM model with isotropy[17], and developed

the boundary element methods for analyzing the fracture mechanics and contact mechanics in
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layered and graded materials. This paper aims to concisely and explicitly derive and present

the complete solutions with closed-form singularity and to further present its accurate compu-
tational method for the elastic field induced by a point load vector in the n-layered FGM model

with either isotropy or transverse isotropy. The numerical results with pre-given accuracy of

convergence are obtained for the elastic field at any point in the FGM model, and the influence
of heterogeneity and anisotropy on the elastic fields is illustrated.

2 General solutions in FGM model with transverse isotropy

2.1 Governing equations

In the jth layer of the n-layered FGM model (see Fig. 1), the linear constitutive equations
governing the stresses (σij) and the strains (εij) take the forms of





σxx = c1jεxx + (c1j − 2c5j)εyy + c2jεzz, σyy = (c1j − 2c5j)εxx + c1jεyy + c2jεzz,

σzz = c2jεxx + c2jεyy + c3jεzz, σxz = 2c4jεxz, σyz = 2c4jεyz, σxy = 2c5jεxy.
(2)

For the special case of an isotropic elastic material, where

∆j =
√

c1jc3j − c2j − 2c4j = 0,

the five parameters can be reduced to the Lamé constants λj and µj , i.e.,

c2j = λj , c4j = c5j = µj , c1j = c3j = λj + 2µj .

By the definition of positive strain energy in elastic materials, we have the constraints on

the five elastic parameters as follows:

c1j > c5j > 0, c3j > 0, c4j > 0,
√

c1jc3j > c2j . (3)

The strains are related to the displacements, which can be expressed as

εlm =
1

2
(ul,m + um,l), l, m = x, y, z. (4)

The governing equations are complete with the specification of equations of static equilibrium

in the open regions of vertically inhomogeneous materials,

σlm,m + fl = 0, (5)

where the body force vector fl is given in Eq. (1).

2.2 Solution representation in matrix Fourier integral transforms

The solutions of the displacement, the vertical stress, and the plane strains can be expressed

by

u =




ux

uy

uz



 , Tz =




σxz

σyz

σzz



 , Γp =




εxx

εxy

εyy



 . (6)

In the ensuing, the set of solution representations is presented for the field variables in the

jth elastic layer (−∞ < x < +∞,−∞ < y < +∞, and Hj−1 6 z 6 Hj) in the Cartesian

coordinate systems. Based on the classical theory of Fourier integral transforms, it can be



414 Sha XIAO and Zhongqi YUE

found that the following set of solution representations exists in Cartesian coordinate systems

(Oxyz and Oξηz):





u(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

1

ρ
Πw(ξ, η, z)Kdξdη,

Tz(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

ΠYz(ξ, η, z)Kdξdη,

Γp(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

Πpw(ξ, η, z)Kdξdη,

(7)

where ρ =
√

ξ2 + η2, K = ei(ξx+ηy), and i =
√
−1.

In Eq. (7), the above three sets of vectors for the field variables in the physical domain can
be represented by two unknown vectors

w(ξ, η, z) = (w1, w2, w3)
T, Yz(ξ, η, z) = (τ1, τ2, τ3)

T

for all the boundary-value problems of a solid occupying the jth layer region of −∞ < x < +∞,
−∞ < y < +∞, and Hj−1 6 z 6 Hj . The coordinate coefficient matrices Π and Πp are defined

by

Π =
1

ρ




iξ iη 0
iη −iξ 0

0 0 ρ


 , Πp = − 1

ρ2




ξ2 ξη 0

ξη
1

2
(η2 − ξ2) 0

η2 −ξη 0


 . (8)

The two field variable vectors w(ξ, η, z) and Yz(ξ, η, z) in the transform domain are re-
expressed by u(x, y, z) and Tz(x, y, z) as follows:






w(ξ, η, z) =
ρ

2π

∫ +∞

−∞

∫ +∞

−∞

Π∗u(x, y, z)K∗dxdy,

Yz(ξ, η, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

Π∗Tz(x, y, z)K∗dxdy,

(9)

where K∗ and Π∗ are the complex conjugates of K and Π, respectively. The body force vector
f(x, y, z)(= (fx, fy, fz)

T) and its counterpart g(ξ, η, z)(= (g1, g2, g3)
T) in the transform domain

have the following relations:






f(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

Πg(ξ, η, z)Kdξdη,

g(ξ, η, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

Π∗f(x, y, z)K∗dxdy.

(10)

It is noted that the solutions of the plane stresses (σxx, σxy, σyy) and the vertical strains

(εxz, εyz, εzz) can be easily obtained from the solutions of the vertical stresses (σxz , σyz, σzz)
and the plane strains (εxx, εxy, εyy) using the constitutive equation (1).

2.3 Two sets of governing equations in transform domain

The system of the fifteen linear partial differential equations (2), (4), and (5) for the jth

homogeneous layer can be simplified and decoupled into the two sets of the first-order ordinary

differential equations in the transform domain. The first set is due to the anti-symmetry about
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the z-axis of the fifteen governing equations, and has two linear first-order ordinary differential

equations with two field variables as follows:

d

dz
V (z) = ρCvjV (z) − Gv(z), (11a)

where Hj−1 6 z 6 Hj , 0 6 ρ < +∞, V (z) = (w2, τ2)
T, and Gv = (0, g2)

T.

The second set is due to the axial symmetry about the z-axis of the fifteen governing equa-
tions and has four linear first-order ordinary differential equations with four field variables. It

can be expressed as follows:

d

dz
U(z) = ρCujU(z) − Gu(z), (11b)

where Hj−1 6 z 6 Hj , 0 6 ρ < +∞, U(z) = (w1, w3, τ3, τ1)
T, and Gu = (0, 0, g3, g1)

T.

Note that the two coefficient matrices Cvj and Cuj are given in Appendix A. They contain
the five material parameters only, and do not contain ξ, η, and ρ. ρ is the only factor of Cvj

and Cuj in Eqs. (11a) and (11b).

2.4 General solutions of V (z) and U(z)

The general matrix solutions for the first set of two linear ordinary differential equations

(11a) for the jth homogeneous layer (Hj−1 6 z 6 Hj) can be obtained as follows:

V (z) = A(z − z1)V (z1) −
∫ z

z1

A(z − ς)Gv(ς)dς. (12)

The first basic square matrix A(s) is defined as follows:

A(s) = Bj(γ0j)e
γ0jρs + Bj(−γ0j)e

−γ0jρs, (13)

where z1 = Hj−1 or z1 = Hj , γ0j is the material characteristic root, and Bj(χ) is the material

constant matrix.
Similarly, the general matrix solutions for the second set of four linear ordinary differential

equations (11b) for the jth homogeneous layer (Hj−1 6 z 6 Hj) can be obtained as follows:

U(z) = Q(z − z1)U(z1) −
∫ z

z1

Q(z − ς)Gu(ς)dς. (14)

The second basic square matrix Q(s) is defined as follows:

Q(s) =

8

>

>

>

>

>

<

>

>

>

>

>

:

Cj(γ1j)e
γ1jρs − Cj(γ2j)e

γ2jρs + Cj(−γ1j)e
−γ1jρs − Cj(−γ2j)e

−γ2jρs for ∆j > 0,

Dj(γ3j)e
γ3jρs + Dj(−γ3j)e

−γ3jρs

+ γ3jρs(Ej(γ3j)e
γ3ρs − Ej(−γ3j)e

−γ3jρs) for ∆j = 0,

ecajρs
Cαβj(1) + e−cajρs

Cαβj(−1) for ∆j < 0,

(15)

where Cαβj(χ) = Cαj(χ) cos(χcbjρs)+ Cβj(χ) sin(χcbjρs). Cj(χ), Dj(χ), Ej(χ), Cαj(χ), and

Cβj(χ) are five square coefficient matrices of the five elastic parameters of the jth homogeneous

layer (cij , i = 1, 2, · · · , 5; j = 0, 1, · · · , n + 1). γ1j , γ2j , and γ3j are the roots of the character-
istic equations of transversely isotropic elasticity, and caj and cbj are the material parameters

obtained from characteristic roots. The discriminant ∆j =
√

c1jc3j − c2j − 2c4j. For isotropic
materials, ∆j = 0, and γ0j = γ3j = 1.

All the coefficient matrices and characteristic roots in Eqs. (13) and (15) are, respectively,

given in Appendices A and B.
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3 Specific solutions in transform domain

3.1 Boundary and interface conditions

For the regularity condition as the vector z → ±∞, the stresses and displacements approach

zero. For the perfectly bonded interface connection, the displacement vector u(x, y, z) and the
stress vector Tz(x, y, z) are completely continuous at the horizontal interface between any two

connected dissimilar elastic layers, i.e.,

lim
z→H

±

j

u(x, y, z) = u(x, y, Hj), lim
z→H

±

j

Tz(x, y, z) = Tz(x, y, Hj), j = 0, 1, 2, · · · , n. (16)

In the transform domain, using the interface conditions (16), we have

V (H−
j ) = V (Hj) = V (H+

j ), U(H−
j ) = U(Hj) = U(H+

j ), j = 0, 1, 2, · · · , n. (17)

3.2 Backward transform matrix method

The general solution matrices in Eqs. (13) and (15) have the functions of exponential growth.

These functions can lead to problems in the numerical integration of the inverse Fourier or

Hankel integral transforms. They can be eliminated by using the backward transfer matrix
method[17]. Appendix C illustrates how to derive the specific solution of V (z) in terms of Gv

for −∞ < z 6 d− with the backward transfer matrix method. Similarly, the specific solution

of V (z) in terms of Gv for d+ 6 z < +∞ and the specific solution of U(z) in terms of Gu for
−∞ < z 6 d− and d+ 6 z < +∞ can be easily obtained. These specific solutions have only

the functions of exponential decrease. They are explicitly given below.

3.3 Specific solution of V (z) in terms of Gv

The solution of V (z) is expressed as follows:

V (z) = ΨV (ρ, z)Gv, (18)

where −∞ < z < +∞, 0 6 ρ < +∞, and ΨV (ρ, z) is a square matrix of 2 × 2 elements.
The 2 × 2 matrix ΨV (ρ, z) in Eq. (18) is a real matrix, and can be explicitly expressed as

follows.
(i) For the 0th layer of the upper half-space −∞ < z 6 H0 6 d−,

ΨV (ρ, z) = e−γ00ρ(H0−z)−γ01ρh1−···−γ0(k−1)ρhk−1−γ0kρ(d−Hk−1)B0(γ00)NAp. (19)

(ii) For the jth layer of finite thickness Hj−1 6 z 6 Hj and z 6 d−, j = 1, 2, · · · , k − 1,

k (6 n),

ΨV (ρ, z) = e−γ0jρ(Hj−z)−γ0(j+1)ρhj+1−···−γ0(k−1)ρhk−1−γ0kρ(d−Hk−1)

· Ap
j (z − Hj−1)A

p
j−1(hj−1) · · ·Ap

1(h1)NAp, (20)

where the square matrix A
p
j (s) is defined by the following equation:

A
p
j (s) = Bj(γ0j) + e−2γ0jρsBj(−γ0j). (21)

(iii) For the jth layer of finite thickness Hj−1 6 z 6 Hj and z > d+, j = k, k + 1, · · · , n,

ΨV (ρ, z) = e−γ0jρ(z−Hj−1)−γ0(j−1)ρhj−1−···−γ0(k+1)ρhk+1−γ0kρ(Hk−d)

· Aq
j(z − Hj)A

q
j+1(−hj+1) · · ·Aq

n(−hn)NAq, (22)

where the square matrix A
q
j(s) is defined by the following equation:

A
q
j(s) = e2γ0jρsBj(γ0j) + Bj(−γ0j). (23)
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(iv) For the (n + 1)th layer of the lower half-space Hn 6 z < +∞,

ΨV (ρ, z) = e−γ0(n+1)ρ(z−Hn)−γ0nρhn−···−γ0(k+1)ρhk+1−γ0kρ(Hk−d)Bn+1(−γ0(n+1))NAq. (24)

In Eqs. (19) and (20), the 2 × 2 matrix NAp is explicitly expressed as

NAp = M−1
Ap

(
0

pn+1A
p
n(hn)Ap

n−1(hn−1) · · ·Ap
k+1(hk+1)A

p
k(Hk − d)

)
, (25)

where M−1
Ap is the inverse of the 2 × 2 matrix MAp defined by

MAp =

(
q0

pn+1A
p
n(hn)Ap

n−1(hn−1) · · ·Ap
1(h1)

)
. (26)

In Eqs. (22) and (24), the 2 × 2 matrix NAq is explicitly expressed as

NAq = −M−1
Aq

(
0

q0A
q
1(−h1)A

q
2(−h2) · · ·Aq

k−1(−hk−1)A
q
k(Hk−1 − d)

)
, (27)

where M−1
Aq is the inverse of the 2 × 2 matrix MAq defined by

MAq =

(
pn+1

q0A
q
1(−h1)A

q
2(−h2) · · ·Aq

n(−hn)

)
. (28)

In the above equations, the material matrices q0 and pn+1 are given in Appendix A.

3.4 Specific solution of U(z) in terms of Gu

The solution of U(z) is expressed as follows:

U(z) = ΨU (ρ, z)Gu, (29)

where −∞ < z < +∞, 0 6 ρ < +∞, and ΨU (ρ, z) is a square matrix of 4 × 4 elements.

The 4 × 4 matrix ΨU (ρ, z) in Eq. (29) is a real matrix, and can be explicitly expressed as
follows.

(i) For the 0th layer of the upper half-space −∞ < z 6 H0,

ΨU (ρ, z) = e−γa1ρh1−···−γa(k−1)ρh(k−1)−γakρ(d−Hk−1)Q
p
0(H0 − z)NQp, (30a)

where γaj = γ1j for ∆j > 0, γaj = γ3j for ∆j = 0, and γaj = caj for ∆j < 0 (j = 1, 2, · · · ,
k − 1, k). The 4 × 4 matrix Q

p
0(s) is defined by the following equations:

Q
p
0(s) =






e−γ10ρsC0(γ10) − e−γ20ρsC0(γ20) for ∆0 > 0,

e−γ30ρs(D0(γ30) − γ30ρsE0(γ30)) for ∆0 = 0,

e−ca0ρsCαβ0(1) for ∆0 < 0.

(30b)

(ii) For the jth layer of finite thickness Hj−1 6 z 6 Hj and z 6 d−, j = 1, 2, · · · , k − 1,

k (6 n),

ΨU (ρ, z) = e−γajρ(Hj−z)−γa(j+1)ρhj+1−···−γa(k−1)ρhk−1−γakρ(d−Hk−1)

· Qp
j (z − Hj−1)Q

p
j−1(hj−1) · · ·Qp

1(h1)NQp, (31)
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where γaj = γ1j for ∆j > 0, γaj = γ3j for ∆j = 0, and γaj = caj for ∆j < 0. The 4 × 4 matrix

Q
p
j (s) is defined by the following equations:

Q
p
j (s) =





Cj(γ1j) − e−(γ1j−γ2j)ρsCj(γ2j) + e−2γ1ρsCj(−γ1j)

− e−(γ1j+γ2j)ρsCj(−γ2j) for ∆j > 0,

Dj(γ3j) + γ3jρsEj(γ3j) + e−2γ3jρs(Dj(−γ3j) − γ3jρsEj(−γ3j)) for ∆j = 0,

Cαβj(1) + e−2caρsCαβj(−1) for ∆j < 0.

(32)

(iii) For the jth layer of finite thickness Hj−1 6 z 6 Hj and z > d+, j = k, k + 1, · · · , n,

ΨU (ρ, z) = e−γajρ(z−Hj−1)−γa(j−1)ρhj−1−···−γa(k+1)ρhk+1−γakρ(Hk−d)

· Qq
j(z − Hj)Q

q
j+1(−hj+1) · · ·Qq

n(−hn)NQq, (33)

where γaj = γ1j for ∆j > 0, γaj = γ3j for ∆j = 0, and γaj = caj for ∆j < 0. The 4 × 4 matrix

Q
q
j(s) is defined as

Q
q
j(s) =





e2γ1jρsCj(γ1j) − e(γ1j+γ2j)ρsCj(γ2j) + Cj(−γ1j)

− e(γ1j−γ2j)ρsCj(−γ2j) for ∆j > 0,

e2γ3jρs(Dj(γ3j) + γ3jρsEj(γ3j)) + Dj(−γ3j)

− γ3jρsEj(−γ3j) for ∆j = 0,

e2cajρsCαβj(1) + Cαβj(−1) for ∆j < 0.

(34)

(iv) For the (n + 1)th layer of the lower half-space Hn 6 z < +∞,

ΨU (ρ, z) = e−γanρhn−γa(n−1)ρhn−1−···−γa(k+1)ρhk+1−γakρ(Hk−d)Q
q

(n+1)(z − Hn)NQq, (35a)

where γaj = γ1j for ∆j > 0, γaj = γ3j for ∆j = 0, and γaj = caj for ∆j < 0 (j = k, k+1, · · · , n).
The 4 × 4 matrix Q

q

(n+1)(s) is defined as

Q
q

(n+1)(s)

=





e−γ1(n+1)ρsCn+1(−γ1(n+1)) − e−γ2(n+1)ρsCn+1(−γ2(n+1)) for ∆(n+1) > 0,

e−γ3(n+1)ρs(Dn+1(−γ3(n+1)) − γ3(n+1)ρsEn+1(−γ3(n+1))) for ∆(n+1) = 0,

e−ca(n+1)ρsCαβ(n+1)(−1) for ∆(n+1) < 0.

(35b)

In Eqs. (30) and (31), the 4 × 4 matrix NQp is explicitly expressed as

NQp = M−1
Qp

(
0

pp(n+1)Q
p
n(hn)Qp

n−1(hn−1) · · ·Qp
k+1(hk+1)Q

p
k(Hk − d)

)
, (36)

where M−1
Qp is the inverse of the 4 × 4 matrix MQp defined by

MQp =

(
Pq0

Pp(n+1)Q
p
n(hn)Qp

n−1(hn−1) · · ·Qp
1(h1)

)
. (37)

In Eqs. (33) and (35), the 4 × 4 matrix NQq is defined by

NQq = −M−1
Qq

(
0

Pq0Q
q
1(−h1)Q

q
2(−h2) · · ·Qq

k−1(−hk−1)Q
q
k(Hk−1 − d)

)
, (38)
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where M−1
Qq is the inverse of the 4 × 4 matrix MQq defined by

MQq =

(
Pp(n+1)

Pq0Q
q
1(−h1)Q

q
2(−h2) · · ·Qp

n(−hn)

)
. (39)

In the above equations, the material matrices Pq0 and Pp(n+1) are given in Appendix A.

3.5 Specific solutions of w(z) and Yz(z) in terms of g(ξ, η)

The specific solutions of V (z) and U(z) are given in Eqs. (18) and (29) in terms of the two
loading matrices Gv(ξ, η) and Gu(ξ, η). V (z) and U(z) can be expressed as follows:

V (z) =

(
w2

τ2

)
=

(
Φbb(ρ, z) Φ22(ρ, z)

Ψbb(ρ, z) Ψ22(ρ, z)

)(
0

g2

)
, (40)

U(z) =




w1

w3

τ3

τ1


 =




Φac(ρ, z) Φaa(ρ, z) Φ13(ρ, z) Φ11(ρ, z)

Φcc(ρ, z) Φca(ρ, z) Φ33(ρ, z) Φ31(ρ, z)

Ψcc(ρ, z) Ψca(ρ, z) Ψ33(ρ, z) Ψ31(ρ, z)
Ψac(ρ, z) Ψaa(ρ, z) Ψ13(ρ, z) Ψ11(ρ, z)







0

0

g3

g1


 . (41)

As a result, the solutions of w(z) and Yz(z) can be expressed as follows in terms of the body
force loading vector g(ξ, η):

w(ξ, η, z) = Φ(ρ, z)g(ξ, η), Yz(ξ, η, z) = Ψ(ρ, z)g(ξ, η), (42)

where




Φ(ρ, z) =




Φ11(ρ, z) 0 Φ13(ρ, z)
0 Φ22(ρ, z) 0

Φ31(ρ, z) 0 Φ33(ρ, z)


 ,

Ψ(ρ, z) =




Ψ11(ρ, z) 0 Ψ13(ρ, z)

0 Ψ22(ρ, z) 0
Ψ31(ρ, z) 0 Ψ33(ρ, z)


 .

(43)

4 Specific solutions in physical domain

4.1 Specific solutions in inverse double Fourier transform integrals

Using Eqs. (7), (9), (10), and (43), the solutions of the field variable vectors u(x, y, z),

Tz(x, y, z), and Γp(x, y, z) in the FGM model (−∞ < x, y, z < +∞) due to the internal loading
f(x, y) concentrated on a horizontal plane, i.e., f(x, y, z) = f(x, y)δ(z − d), can be expressed

as follows:





u(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

1

ρ
ΠΦ(ρ, z)Π∗f̃(ξ, η)Kdξdη,

Tz(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

ΠΨ(ρ, z)Π∗f̃(ξ, η)Kdξdη,

Γp(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

ΠpΦ(ρ, z)Π∗f̃ (ξ, η)Kdξdη,

(44)

where the body force vector f̃(ξ, η) in the transform domain is expressed as follows:

f̃(ξ, η) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

f(x, y)K∗dxdy. (45)



420 Sha XIAO and Zhongqi YUE

4.2 Specific solutions for point force vector

The fundamental singular solution due to the body force vector f(x, y) concentrated at the

point (0, 0, d) can be expressed as follows:

f(x, y) = δ(x)δ(y)fc, f̃(ξ, η) =
fc

2π
. (46)

Consequently, the displacements u, the vertical stresses Tz, and the plane strains Γp can be

expressed as

u(x, y, z) = Gu(x, y, z)fc, Tz(x, y, z) = Gz(x, y, z)fc, Γp(x, y, z) = Gp(x, y, z)fc, (47)

where Green’s functions are




2πGu(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

1

ρ
ΠΦ(ρ, z)Π∗Kdξdη,

2πGz(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

ΠΨ(ρ, z)Π∗Kdξdη,

2πGp(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

ΠpΦ(ρ, z)Π∗Kdξdη.

(48)

The relationships of the independent variables between the Cartesian and cylindrical coor-
dinates in the physical domain can be defined as follows:

x = r cos θ, y = r sin θ, z = z, r =
√

x2 + y2. (49)

Similarly, the relationships of the independent variables between the Cartesian and cylin-

drical coordinates in the transform domain can be defined as follows:

ξ = ρ sin ϕ, η = ρ cosϕ, z = z, ρ =
√

ξ2 + η2. (50)

The identity of Bessel functions of order m can be expressed as follows:

Jm = Jm(ρr) =
1

2π

∫ 2π

0

e±i(ρr sin θ−mθ)dθ, m = 0,±1,±2,±3, · · · . (51)

Consequently, Green’s functions in Eq. (48) can be simplified as the following Hankel trans-

form integrals with the semi-infinite interval from 0 to +∞, i.e.,

2πGu(x, y, z) =

∫ +∞

0




Φ1J0 −
x2 − y2

r2
Φ2J2 −2xy

r2
Φ2J2 −x

r
Φ13J1

−2xy

r2
Φ2J2 Φ1J0 +

x2 − y2

r2
Φ2J2 −y

r
Φ13J1

x

r
Φ31J1

y

r
Φ31J1 Φ33J0




dρ, (52a)

2πGz(x, y, z) =

∫ +∞

0




Ψ1J0 −
x2 − y2

r2
Ψ2J2 −2xy

r2
Ψ2J2 −x

r
Ψ13J1

−2xy

r2
Ψ2J2 Ψ1J0 +

x2 − y2

r2
Ψ2J2 −y

r
Ψ13J1

x

r
Ψ31J1

y

r
Ψ31J1 Ψ33J0




ρdρ, (52b)
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2πGp(x, y, z) = − 1

2

∫ +∞

0




x

r
(2Φ1 + Φ2)J1

y

r
Φ2J1 Φ13J0

y

r
Φ1J1

x

r
Φ1J1 0

x

r
Φ2J1

y

r
(2Φ1 + Φ2)J1 Φ13J0




ρdρ

+
1

2

∫ +∞

0




(4x3

r3
− 3x

r

)
Φ2J3

(3y

r
− 4y3

r3

)
Φ2J3

x2−y2

r2
Φ13J2

(3y

r
− 4y3

r3

)
Φ2J3

(3x

r
− 4x3

r3

)
Φ2J3

2xy

r2
Φ13J2

(3x

r
− 4x3

r3

)
Φ2J3

(4y3

r3
− 3y

r

)
Φ2J3

y2−x2

r2
Φ13J2




ρdρ, (52c)

where

Φ1 =
1

2
(Φ11 + Φ22), Φ2 =

1

2
(Φ11 − Φ22),

Ψ1 =
1

2
(Ψ11 + Ψ22), Ψ2 =

1

2
(Ψ11 − Ψ22).

Φ11, Φ13, Φ22, Φ31, Φ33, Ψ11, Ψ13, Ψ22, Ψ31, and Ψ33 are ten kernel functions associated with

the n-layered FGM model and given in Section 3.

5 Isolation of singular terms and precise computation of complete solutions

5.1 Properties of ten kernel functions

The specific solutions of Φ(ρ, z) and Ψ(ρ, z) depend on the material parameters, the interface
conditions, and the location of the loading plane z = d. They are independent of the specific

loading conditions on the loading plane (z = d). All the components of the 3 × 3 matrices
Φ(ρ, z) and Ψ(ρ, z) in Eq. (43) are real values and free of any functions of exponential growth

with ρ. The solutions in Eq. (52) are expressed in terms of the improper Hankel transform

integrals with semi-infinity extent, and their integral variable ρ has to approach infinity (+∞)
during integration. If Φ(ρ, z) and Ψ(ρ, z) have any functions of exponential growth with ρ, these

integrations would be problematic and ill-conditioned, and can cause numerical overflow and
instability. The backward transfer matrix method eliminates all the functions of exponential

growth e|γ|ρ|z|(0 6 ρ < +∞), and keeps only the functions of exponential decrease e−|γ|ρ|z|

during the exact and explicit formulation. Note that γ = min(γ1j , γ2j) for ∆j > 0, γ = min(γ3j)
for ∆j = 0, and γ = min(caj) for ∆j < 0, where j = 0, 1, 2, · · · , n + 1. As a result, Φ(ρ, z) and

Ψ(ρ, z) rapidly tend to zero or constant values as ρ becomes larger and larger, which ensures

the numerical precision, convergence, and stability of the solutions in the matrix forms of the
Hankel transform integrals in Eq. (52).

5.2 Asymptotic expression of ten kernel functions as ρ approaches +∞

Φ(ρ, z) and Ψ(ρ, z) have no singular poles for 0 6 ρ < +∞, and have the exact asymptotic
expressions for ρ → +∞. If the depth z is not located at or closely adjacent to the loading plane

(z = d), Φ(ρ, z) and Ψ(ρ, z) rapidly decrease to zero following the functions of exponential

decrease (i.e., e−|γ|ρ|z−d|) as ρ → +∞. If the depth z approaches the loading plane (i.e.,
|z − d| 6 δa), where δa is an arbitrary positive value less than the thicknesses of the two

homogeneous layers adjacent to the loading plane z = d, the functions of exponential decrease
(i.e., e−|γ|ρ|z−d|) become slow and slow as ρ → +∞. They are equal to one at z = d. The

Hankel transform integrals in Eq. (52) become improper and convergent under the sense of the

Cauchy principle value.
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We have shown that Φ(ρ, z) and Ψ(ρ, z) have the following asymptotic expressions as

|γ|ρδa → +∞:

lim
|z−d|→0

Φ(ρ, z) ≈ Φtwo(ρ, z), lim
|z−d|→0

Ψ(ρ, z) ≈ Ψtwo(ρ, z), (53)

where Φtwo(ρ, z) and Ψtwo(ρ, z) are the two 3 × 3 kernel matrices associated with the point
load solutions for the case of the bi-material full-space with the material parameters of the two

adjacent layers (ci(k−1), cik) or (cik, ci(k+1)) surrounding the loading plane d (Hk−1 6 d 6 Hk)
of f = fcδ(x)δ(y)δ(z − d).

5.3 Isolation of singular terms in the point load solutions

Due to the presence of the weak convergence of the Hankel transform integrals in the sense

of Cauchy principal value, the point load solutions in Eq. (6) have to be re-expressed as follows:





u(x, y, z, d) = Gu(x, y, z,Φ#)fc + utwo-upper(x, y, z, d)

+ utwo-lower(x, y, z, d) − uone(x, y, z, d),

Tz(x, y, z, d) = Gz(x, y, z,Ψ#)fc + T two-upper
z (x, y, z, d)

+ T two-lower
z (x, y, z, d) − T one

z (x, y, z, d),

Γp(x, y, z, d) = Gp(x, y, z,Φ#)fc + Γtwo-upper
p (x, y, z, d)

+ Γtwo-lower
p (x, y, z, d) − Γone

p (x, y, z, d),

(54)

where −∞ < x, y, z < +∞, and Hk−1 6 d < Hk.

In Eq. (54), the superscript two-upper denotes the upper bi-material full-space formed with

the two sets of the elastic parameters of the (k − 1)th layer and the kth layer. The super-

script two-lower denotes the lower bi-material full-space formed with the two sets of the elastic
parameters of the kth layer and the (k + 1)th layer. The superscript one denotes the homoge-

neous full-space formed with the one set of the elastic parameters of the kth layer. utwo-upper,
T two-upper

z , and Γtwo-upper
p are, respectively, the displacements, the vertical stresses, and the

plane strains for the upper bi-material full-space induced by the point load vector in the lower

half-space. utwo-lower, T two-lower
z , and Γtwo-lower

p are, respectively, the displacements, vertical
stresses, and plane strains for the lower bi-material full-space induced by the point load vector

in the upper half-space. uone, T one
z , and Γone

p are, respectively, the displacements, vertical
stresses, and plane strains for the homogeneous full-space induced by the point load vector.

These complete point load solutions in exact closed forms are given by Yue[12].

In Eq. (54), the two remaining kernel matrices Φ# and Ψ# are expressed as





Φ#(ρ, z, d) = Φ(ρ, z, d) − Φtwo-upper(ρ, z, d) − Φtwo-lower(ρ, z, d) + Φone(ρ, z, d),

Ψ#(ρ, z, d) = Ψ(ρ, z, d) − Ψtwo-upper(ρ, z, d) − Ψtwo-lower(ρ, z, d) + Ψone(ρ, z, d),
(55)

where Φ and Ψ are the two kernel matrices for an n-layered model in Eq. (43), Φtwo-upper

and Ψtwo-upper are the two kernel matrices for the upper bi-material full-space, Φtwo-lower and

Ψtwo-lower are the two kernel matrices for the lower bi-material full-space, and Φone and Ψone

are the two kernel matrices for the homogeneous full-space. These particular kernel matrices
are explicitly given by Yue[12].

5.4 Numerical integrations with controlled precision

According to Eq. (54), only the first terms, i.e., Gu(x, y, z,Φ#), Gz(x, y, z,Ψ#), and

Gp(x, y, z,Φ#), need to be numerically calculated. Each of the fifteen improper integrals in
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Eq. (53) with ten remaining kernel functions can be further expressed as follows:

∫ +∞

0

Φ#
33(ρ, z, d)J0(ρr)dρ ≈

∫ A1

0

Φ#
33(ρ, z, d)J0(ρr)dρ + · · ·

+

∫ Am+1

Am

Φ#
33(ρ, z, d)J0(ρr)dρ. (56)

Each finite integral on the right-hand side of Eq. (56) is a proper integral, and can be

calculated by using Simpson’s quadrature based on adaptively iterative integrations with an
assigned absolute or relative error δc. The limits of A1, A2, · · · , Am, Am+1 are chosen according

to the rule Al = λAl−1, where l = 2, 3, · · · , m, m + 1. In particular, A1 = 2 and λ = 1.5
are adopted in the computer programming. The evaluation of the finite integrals of these

fifteen semi-infinite integrals is automatically terminated provided that the following criterion

is satisfied:

|
∫ Am+1

Am
Φ#

A(ρ, z, d)JB(ρr)ρ0 or 1dρ|

1 +
m∑

i=1

(|
∫ Ai+1

Ai
Φ#

A(ρ, z, d)JB(ρr)ρ0 or 1dρ|)
6 δc, (57)

where Φ#
A is one of the ten remaining kernel functions, and JB(ρr) is the corresponding Bessel

function of the order 0, 1, 2, or 3.

6 Numerical results and analyses of case study

This section presents a case study to explore the behavior of the n-layered FGM model (see
Table 1) subject to point loads, and shows the wide applicability of the point load solutions. This

FGM model is also used to calculate the elastic fields induced by circular ring force vectors[26].

Table 1 Five elastic parameters of transversely isotropic FGM model for case study

Layer

number
z (= z/h) Ex(z)/GPa νxy(z) Ex

Ez

νxy

νxz

µxy

µxz
∆

0 z < 0 269.84 0.221 4 0.75 1 1 > 0

1 0 6 z < 0.245 15 225 + 42.01z0.266 0.22 − 0.05z0.266 03 0.85 1 1 > 0

2 0.245 15 6 z < 0.372 6 247.65 0.193 2 1 0.75 1 < 0

3 0.372 6 6 z < 0.627 43
269.86 + 93.18

·(z − 0.372 6)0.859 4

0.22 + 0.2

·(z − 0.372 6)0.859 4
1 1 1 =0

4 0.627 43 6 z < 0.749 31
282.81 − 35.16

·(z − 0.627 4)

0.247 5 − 0.06

·(z − 0.627 4)
1 1 0.75 < 0

5 0.749 31 6 z < 1 281.1e0.975 9(z−0.299 7) 0.244 6e(z−0.749 3) 1 1 0.85 < 0

6 z > 1 269.84 0.221 4 0.75 1 1 > 0

The elastic fields are calculated for the new transversely isotropic FGM model induced by
the point loads fx and fz concentrated at the point (x = y = 0, d/h = 0.372 6). The results

along the depth z/h from −0.1 to 1.1 are given in Figs. 2–4, where E0 = 1GPa for the non-
dimensional presentation, y/h = 0, and x/h = 0.1, 0.2, 0.3, 0.4, 0.5, 1.0. In the computation,

δc = 0.000 001. The constant h is a dimensional factor of the layer thicknesses. The following

observations can be made from these figures.
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Fig. 2 Variations of displacements and stresses with depth z/h along six locations (x, y) in trans-

versely isotropic FGM model induced by point force fx, where red dotted line denotes loading

plane (d/h = 0.372 6), and each dash-dotted horizontal line stands for interface plane (color

online)
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Fig. 3 Variations of displacements and stresses with depth z/h along six locations (x, y) in trans-

versely isotropic FGM model induced by point force fz, where red dotted line denotes loading

plane (d/h = 0.372 6), and each dash-dotted horizontal line stands for interface plane (color

online)
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Fig. 4 Variations of two plane normal strains with depth z/h along six locations (x, y) in transversely

isotropic FGM model induced by point forces fx and fz, where red dotted line denotes loading

plane (d/h = 0.372 6), and each dash-dotted horizontal line stands for interface plane (color

online)

(i) The displacements ux and uz, the vertical stresses σxz and σzz, and the plane strains εxx

and εyy are continuous with the depth z/h.

(ii) The elastic fields at the points approaching the loading point (x = y = 0, d/h = 0.372 6)

vary more violently.

(iii) Across the material interfaces between the finite layers or sub-layers, the elastic fields (ux

and uz, σxz and σzz , εxx and εyy) are non-smoothly continuous. Because the elastic parameters
across the material interfaces do not vary largely, the non-smooth continuity of the elastic fields

at the most interfaces is not obvious. However, at some material interfaces, the non-smooth
variations can be noticeable. For example, εyy is non-smoothly continuous across the material

interface of the third and fourth layers by fz along x/h = 0.1.

7 Concluding remarks

The paper has presented explicit matrix expressions and precise computation for the point
load solutions of 3D elastostatics in an n-layered FGM model with transverse isotropy or

isotropy. A general case designed from the isotropic FGM data in Ref. [25] is examined and

analyzed. The two kernel 3×3 square matrices Φ(ρ, z) and Ψ(ρ, z) are dependent on the FGMs
and the location of the loading plane, and are independent of the actual loading. If the depth

z is located at or closely adjacent to the loading plane and ρ approaches +∞, their asymptotic
expressions of all the ten kernel functions are given explicitly as the same as the ten kernel

functions associated with the bi-materials of transverse isotropy. Furthermore, the point load

solutions of the bi-material are explicitly expressed in closed forms in terms of the elementary
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harmonic functions. As a result, the singular terms of the point load solutions for the n-layered

FGM model can be isolated and expressed using the closed-form point load solutions of the
corresponding bi-materials at the loading plane. The systematic, block, and matrix expressions

of the point load solutions enable its precise implementation in the numerical schemes.

The present work can have many extensions and applications as follows: (i) The precise
computation method for the point load solutions for an n-layered FGM model can be extended

to the cases of an n-layered FGM model subject to other types of loading conditions[26]; (ii) The

new point load solutions with closed-form singularity can be implemented as the fundamental
singular kernel functions in the boundary element method for more effectively solving complex

and practical problems[24].
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Appendix A Constant matrices of elastic parameters

The square matrices Cvj and Cuj are expressed below,

Cvj =

0

B

@

0
1

c4j

c5j 0

1

C

A
, Cuj =

0

B

B

B

B

B

B

B

B

B

B

B

@

0 −1 0
1

c4j

c2j

c3j

0
1

c3j

0

0 0 0 1

cpj 0 − c2j

c3j

0

1

C

C

C

C

C

C

C

C

C

C

C

A

. (A1)

The square matrices Bj(χ), Cj(χ), Dj(χ), Ej(χ), Cαj(χ), and Cβj(χ) are expressed below,

Bj(χ) =
1

2

0

B

@

1
1

c4jχ

c4jχ 1

1

C

A
, (A2)

Cj(χ) =
1

2(r2
1j − r2

2j)χ

0

B

B

B

B

B

B

B

B

B

B

B

@

χ3 +
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c3j

χ −
“

χ2 +
c2j

c3j

”
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χ
1

c4j

χ2 − 1

c3j

c2j

c3j

χ2 +
c1j

c3j

χ3 + cqjχ
1
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χ

cpjχ −cpj χ3 + cqjχ χ2 +
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2 −cpjχ −
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”
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c3j

χ

1

C

C

C

C

C

C

C

C

C

C

C

A

, (A3)
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Dj(χ) =
1
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B
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1

C
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C

C

C

C

C

C

C

C

A
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Ej(χ) =
c2j + c4j

2c3jχ2
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χ
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C

C
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Cαj(χ) =
1

4caj
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Cβj(χ) =
1

4cajcbj
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where caj and cbj are presented in Appendix B.

In the above expressions, cpj , cqj , and csj are expressed as

cpj = c1j −
c2
2j

c3j

, cqj =
c2
2j + c2jc4j − c1jc3j

c3jc4j

, csj = c3j(c
2
aj + c2

bj). (A8)

The matrices q0, pn+1, Pq0, and Pp(n+1) are expressed below,

q0 =
“

1 − 1

c40γ00

”

, pn+1 =
“

1
1
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,
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Pp(n+1)
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Appendix B Characteristic roots of transversely isotropic materials

The material characteristic roots γ0j , γ1j , γ2j , and γ3j are defined as follows:

8

>

>

>

>

<

>

>

>

>

:

γ0j =
p

c5j/c4j ,

γ1j = caj + cbj > 0, γ2j = caj − cbj > 0 for ∆j > 0,

γ1j = caj + icbj , γ2j = caj − icbj for ∆j < 0,

γ3j = (c1j/c3j)
1
4 for ∆j = 0,

(B1)

where
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>

:

caj =
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c1jc3j + c2j + 2c4j)(
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c1jc3j + c2j)|∆j |
2
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√

c1jc3j − c2j − 2c4j .

(B2)

Appendix C Specific solution of V (z) in terms of Gv for −∞ < z 6 d−

Using Eq. (12), the general solution of V (z) for the 0th and (n + 1)th layers can be expressed in

terms of V (H−

0 ) and V (H+
n ) as follows:

(

V (z) = e−γ00ρ(H0−z)
B0(γ00)V (H−

0 ), q0V (H−

0 ) = 0,

V (z) = e−γ0(n+1)ρ(z−Hn)
Bn+1(−γ0(n+1))V (H−

n ), pn+1V (H+
n ) = 0,

(C1)

where q0, pn+1, B0(χ), and Bn+1(χ) are given in Appendix A.

Similarly, the general solution of V (z) for the jth layer can be expressed in terms of V (H+
j−1) as

follows:

V (z) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

eγ0jρ(z−Hj−1)
A

p
j (z − Hj−1)V (H+

j−1) for H+
j−1 6 z 6 H−

j , 1 6 j 6 k − 1,

eγ0kρ(z−Hk−1)
A

p
k(z − Hk−1)V (H+

k−1) for H+
k−1 6 z 6 d−, j = k,

eγ0kρ(z−Hk−1)
A

p
k(z − Hk−1)V (H+

k−1)

− eγ0kρ(z−d)
A

p
k(z − d)Gv for d+

6 z 6 H−

k , j = k,

eγ0jρ(z−Hj−1)
A

p
j (z − Hj−1)V (H+

j−1) for H+
j−1 6 z 6 H−

j , k + 1 6 j 6 n,

(C2)

where A
p
j (s) contains only the function of exponential decrease and is given in Eq. (21).

Using the interface condition (17), the general solution of V (z) can be expressed in terms of V (H0)

and Gv as follows.

(i) For H0 6 z 6 d and 0 < j 6 k, we have

V (z) = eγ0jρ(z−Hj−1)+γ0(j−1)ρhj−1+···+γ01ρh1A
p
j (z − Hj−1)A

p
j−1(hj−1) · · ·Ap

1(h1)V (H0). (C3a)

(ii) For d 6 z 6 Hn and k 6 j 6 n, we have

V (z) = eγ0jρ(z−Hj−1)+γ0(j−1)ρhj−1+···+γ01ρh1A
p
j (z − Hj−1)A

p
j−1(hj−1) · · ·Ap

1(h1)V (H0)

− eγ0jρ(z−Hj−1)+γ0(j−1)ρhj−1+···+γ0kρ(Hk−d)

· Ap
j (z − Hj−1)A

p
j−1(hj−1) · · ·Ap

k+1(hk+1)A
p
k(Hk − d)Gv. (C3b)
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In addition, the linear equation between V (Hn) and V (H0) can be obtained as follows:

V (Hn) = eγ0nρhn+γ0(n−1)ρhn−1+···+γ01ρh1A
p
n(hn)Ap

n−1(hn−1) · · ·Ap
1(h1)V (H0)

− eγ0nρhn+γ0(n−1)ρhn−1+···+γ0(k+1)ρhk+1+γ0kρ(Hk−d)

· Ap
n(hn)Ap

n−1(hn−1) · · ·Ap
k+1(hk+1)A

p
k(Hk − d)Gv. (C4)

Using Eqs. (C1) and (C4), we can have the following boundary equations governing V (H0):

 

q0

pn+1A
p
n(hn)Ap

n−1(hn−1) · · ·Ap
1(h1)

!

V (H0)

= e−γ0kρ(d−Hk−1)−γ0(k−1)ρhk−1−···−γ01ρh1

·
 

0

pn+1A
p
n(hn)Ap

n−1(hn−1) · · ·Ap
k+1(hk+1)A

p
k(Hk−1 − d)

!

Gv. (C5)

The specific solution of V (H0) can be expressed as

V (H0) = e−γ01ρh1−γ02ρh2−···−γ0(k−1)ρhk−1−γ0kρ(d−Hk−1)
NApGv, (C6)

where NAp is given in Eq. (25).

Substitute Eq. (C6) into Eqs. (C1) and (C3a) and (C3b). Then, the specific solution of V (z) in

terms of Gv (see Eqs. (19) and (20)) for −∞ < z 6 d− can be obtained.


