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Abstract Based on the thermo-electro-elastic coupling theory, the mathematical model
for a surface heated piezoelectric semiconductor (PS) plate is developed in the time do-
main. Applying the direct and inverse Laplace transformations to the established model,
the mechanical and electrical responses are investigated. The comparison between the
analytical solution and the finite element method (FEM) is conducted, which illustrates
the validity of the derivation. The calculated results show that the maximum values
of the mechanical and electrical fields appear at the heating surface. Importantly, the
perturbation carriers tend to concentrate in the zone near the heating surface under the
given boundary conditions. It can also be observed that the heating induced elastic wave
leads to jumps for the electric potential and perturbation carrier density at the wavefront.
When the thermal relaxation time is introduced, all the field quantities become smaller
because of the thermal lagging effect. Meanwhile, it can be found that the thermal relax-
ation time can describe the smooth variation at the jump position. Besides, for a plate
with P-N junction, the effect of the interface position on the electrical response is studied.
The effects of the initial carrier density on the electrical properties are discussed in detail.
The conclusions in this article can be the guidance for the design of PS devices serving
in thermal environment.
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1 Introduction

In recent years, a growing number of studies on piezoelectric semiconductor (PS) have been
successfully carried out. Driven by external load, the carrier transportation in PS can be ad-
justed due to the coupling between piezoelectricity and semiconduction[1–2]. As applications,
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PS has been fabricated into many functional devices, e.g., nanogenerators, field effect transis-
tors, sensors, and logic calculation devices[3–6]. With the development of synthetic technology,
PS structures can be manufactured conveniently[7]. Thereby, PS possesses great potential in
the field of smart devices.

In order to reveal how external load adjusts the carrier redistribution, one-dimensional
(1D) theoretical models were established. Zhang et al.[8–9] investigated the extension of ZnO
nanofibers theoretically, and revealed the distribution rules of the electromechanical fields and
the carrier concentrations. Zhang et al.[10] studied the bending of a cantilever ZnO fiber under
the transverse end force, and found that the electric potential and electron concentration varied
rapidly near the fixed end but nearly kept constant for the other parts. In these studies, the
linearized theory was adopted. Actually, the equations for PS are originally nonlinear. In some
particular situations, e.g., large deformation, the linearized theory is not suitable to explain
the electromechanical properties in PS. To overcome the shortcoming of the linearized theory,
Yang et al.[11] utilized the perturbation solutions to analyze the nonlinearity for PS fiber. Zhao
et al.[12] introduced the homotopy analysis method to study the nonlinear behavior in PS.
With the consideration of nonlinearity, the internal mechanism how the external load adjusts
the carriers could be described accurately. Apart from static extension or bending, dynamic
response is also significant. Li et al.[13] and Wang et al.[14] found that the energy conversion
efficiency was sensitive to the semiconduction in PS fiber driven by harmonic force, and the
energy conversion efficiency was reduced because of the screening effect.

In view of the elementary block in integrated circuit, the P-N junction between p-type and
n-type PS has also been studied. Luo et al.[15–16] and Fan et al.[17] investigated the electrome-
chanical fields near the P-N junction. For P-N junction, potential barrier and well are important
characteristics adjusting the electric conduction. It has been found that the similar function
can be realized by applying distributed stress or manipulating nonhomogeneous doping density.
Fan et al.[18] applied piecewise-stresses in ZnO fiber to produce potential barrier and well. Yang
et al.[19] adopted nonuniform doping to produce potential barrier in PS fiber. To further ex-
plain the physical mechanism of PS, Yang et al.[20] studied the mechanical load tuned electronic
energy band properties.

The composite fiber, whose material proportion can be adjusted conveniently, has been taken
into account by many researchers. Cheng et al.[21] and Luo et al.[22] illustrated the interaction of
piezoelectricity and semiconduction in composite PS fiber by composing piezoelectric dielectrics
and non-piezoelectric semiconductors, and concluded that there was a peak value of material
proportion which could produce the maximum electric potential and the most carriers. There-
fore, adopting composite structure could be an efficient approach to obtaining ideal electrical
responses according to the requirements. For application, Yang et al.[23] set P-N junction in
composite PS fiber, and studied the electro-elastic properties in composite PS. More recently,
the multiferroic coupled composite structure was proposed. Cheng et al.[24] introduced the
concept of designing magneto-electro-semiconductor composite fiber, and established the multi-
physical field coupling theory, in which the multiferroic coupled composite structure enabled
the magnetic field to adjust the carrier transportation. Liang et al.[25] achieved the potential
barrier and well by applying local magnetic field. Kong et al.[26] manipulated the piezotronic
behaviors in multiferroic semiconductors through applying time-dependent magnetic field.

Besides load or magnetic field, because of the pyroelectricity and thermoelectricity in PS,
temperature change can also drive the movement of carriers. Cheng et al.[27] revealed the rela-
tion between the temperature change and the carrier redistribution. By introducing the concept
of composite fiber, Cheng et al.[28] studied the effect of temperature on the mobile charge in
composite fiber. Cheng et al.[29–30] investigated the electrical behaviors of P-N junction and
nonuniform temperature induced potential barrier and well. Yang et al.[31] analyzed the elec-
tromechanical and piezotronic behaviors in a composite PS cylindrical shell subject to thermal
load. Although the temperature effect is undesirable in some situations, e.g., heat generation in
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electronic devices, the studies on temperature effect is meaningful to improve the performance
of devices, e.g., exploring effective cooling measures. By contrast, temperature change could
be useful to generate power, e.g., thermoelectric generator[32] and solar cell[33]. Thereby, the
studies on thermal coupling problems in PS are valuable for thermoelectric devices.

The studies on the interaction between temperature and carriers remind us that the tem-
perature is an important factor for adjusting the carrier transportation. However, to date, the
researchers treated temperature changes as constants. Actually, the heating process is closely
related to time. Deep study on transient problems can help us understand the internal mecha-
nism of the thermo-electro-elastic coupling properties thoroughly. Motivated by this, this article
mainly concerns on the transient problem for the thermo-electro-elastic coupling properties in
PS body.

The paper is arranged as follows. The theory on PS is reviewed within generalized thermoe-
lasticity in Section 2, and a 1D theoretical model for PS plate subject to heating at the surface
is developed in Section 3. Applying the direct Laplace transformation, the analytical solutions
are derived. In Section 4, the field quantities in the time domain are obtained by adopting
numerical inverse transformation. In Section 5, selecting specific materials, the mechanical and
electrical responses are investigated and discussed. As a summary, some conclusions are drawn
in Section 6.

2 Generalized thermoelastic theory for PS

The thermoelastic theory, which describes the thermal coupling properties in a medium, is
necessary in our work. It has been found that the classical Fourier heat conduction theory, which
treats the thermal wave propagation at an infinite speed, is unreasonable. To revise the defect
of the Fourier heat conduction theory, the Cattaneo-Vernotte (C-V) heat conduction function
is proposed. Furthermore, a generalized thermoelasticity theory is established by Lord and
Shulman[34] (L-S theory). By introducing two thermal relaxation time, Green and Lindsay[35]

proposed another new thermoelasticity theory (G-L theory). As two representative generalized
thermoelastic theories, they have been widely adopted to investigate thermo-elastic coupling
problems, e.g., thermal shock[36] and wave propagation[37]. Chandrasekharaiah[38–39] proposed
a temperature-rate-dependent thermopiezoelectricity theory. Based on this, a great number of
studies have been carried out, e.g., the thermal shock for an electromagnetic medium[40] and the
dynamic response for a piezoelectric plate[41]. It should be noted that Wauer and Suherman[42]

and Sladek et al.[43] explored the generalized thermoelastic theory for PS. With the help of this
theory, our work can be performed conveniently.

Theoretically, the thermal coupled theory for PS consists of piezoelectricity, generalized ther-
moelasticity, and drift-diffusion of carriers in semiconductor. The multi-field coupling properties
are described by the motion equation, Gauss’s law, energy equation, and the conservation of
charge for electrons and holes[8,42–43] as follows:

Tij,i = ρüj , (1a)

Di,i = q(p− n + N+
D −N−

A ), (1b)
hi,i = −T0η̇, (1c)
Jp

i,i = −qṗ, (1d)

Jn
i,i = qṅ, (1e)

where Tij is the stress tensor. ρ is the mass density. ui is the mechanical displacement tensor.
Di is the electric displacement tensor. q is the electronic charge. p and n are the concentrations
of holes and electrons, respectively. N+

D and N−
A are the concentrations of donor and accepter

impurities, respectively. Jp
i and Jn

i are the hole and electron current densities, respectively.
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Besides, for the equation of energy conservation, hi is the heat flux vector within the material,
η is the entropy density, and T0 is the initial reference temperature. The superscript of dot
denotes a time derivative, and the repeated subscripts mean summation operation.

The corresponding constitutive equations describing the thermo-electro-elastic coupled be-
haviors in PS is




Tij = cijklSkl − ekijEk − αijθ, Di = eiklSkl + εikEk + βiθ,

η = αklSkl + βkEk +
ρCE

T0
θ,

(2)

where cijkl is the elastic stiffness, ekij is the piezoelectric constant, εik is the dielectric constant,
θ is the increment of temperature, αij is the thermal stress modulus, and βi is the pyroelectric
modulus. CE is the specific heat at constant deformation. Skl and Ek are the strain and electric
fields, and can be expressed by the displacement ui and the electric potential ϕ through

Skl =
1
2
(uk,l + ul,k), Ek = −ϕ,k. (3)

According to the L-S generalized thermoelastic theory[34,42–43], the heat conduction equation
is formulated as

hi + τ ḣi = −kijθ,j , (4)

where τ is the thermal relaxation time. When τ = 0, the Fourier heat conduction function can
be obtained. For semiconductor, the drift-diffusion theory of carriers is commonly used. It is
mathematically described as[44]

Jp
i = qpµp

ijEj − qdp
ijp,j , Jn

i = qnµn
ijEj + qdn

ijn,j , (5)

where µp
ij (µn

ij) and dp
ij (dn

ij) represent the carrier mobility and carrier diffusion constants of
holes (electrons), respectively. The nonlinear terms are contained in Eq. (5). For simplification,
assume that p = p0 + ∆p and n = n0 + ∆n, in which ∆p (∆n) is the perturbation of holes
(electrons), and p0 (n0) is treated as uniform doping, i.e., p0 = N−

A (n0 = N+
D ). Furthermore,

Eq. (1b) and Eq. (5) can be approximated by

Di,i = q(∆p−∆n), Jp
i
∼= qp0µ

p
ijEj − qdp

ij∆p,j , Jn
i
∼= qn0µ

n
ijEj + qdn

ij∆n,j . (6)

With the linearized equations, the mechanical and electrical responses for temperature cou-
pled PS under thermal load can be studied analytically.

3 Formulation for the surface heating PS plate

The system, which consists of substrate and covered layers, is a kind of commonly used
elementary structure in smart devices. According to the requirements in applications, the sub-
strate could be elastic or rigid[45]. Herein, two typical plates lying on a rigid substrate are taken
into account (see Fig. 1). In both cases, the plates are infinite along the x1- and x2-directions.
Along the x3-direction, the plates are heated at the upper surface (x3 = 0), and fixed at

θ0 θ0

Fig. 1 Sketch for the surface heating PS plate (color online)
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the bottom surface (x3 = h). The polarization direction is along positive x3. For Case 2, the
thicknesses for the two layers are h1 and h2, respectively. It should be noted that the materials
for the two layers are identical but with different initial carrier densities. Mathematically, the
discontinuity of the initial carrier densities along the x3-direction is described as

n0(p0) =

{
n

(1)
0 (p(1)

0 ), 0 < x3 6 h1,

n
(2)
0 (p(2)

0 ), h1 < x3 6 h2,

where n
(1)
0 (p(1)

0 ) and n
(2)
0 (p(2)

0 ) stand for the artificially adjusted initial carrier densities for the
first layer and the second layer, respectively. In view of this, we focus on the electro-elastic
properties of the P-N junction in Case 2.

Consider a homogeneous heating source, independent of the x1- and x2-directions. In this
situation, the 1D model along the x3-direction can be adopted to describe the thermo-electro-
elastic coupling properties for the given cases. Correspondingly, the constitutive equations for
the ith layer are simplified to





T
(i)
33 = c

(i)
33 S

(i)
33 − e

(i)
33 E

(i)
3 − α

(i)
33 θ(i), D

(i)
3 = e

(i)
33 S

(i)
33 + ε

(i)
33 E

(i)
3 + β

(i)
3 θ(i),

η(i) = α
(i)
33 S

(i)
33 + β

(i)
3 E

(i)
3 +

ρ(i)C
(i)
E

T0
θ(i), J

p(i)
3 = qp

(i)
0 µ

p(i)
33 E

(i)
3 − qd

p(i)
33 ∆p

(i)
,3 ,

J
n(i)
3 = qn

(i)
0 µ

n(i)
33 E

(i)
3 + qd

n(i)
33 ∆n

(i)
,3 .

(7)

Substituting Eq. (7) into the linearized governing equations yields 1D equations as follows:

c
(i)
33 u

(i)
3,33 + e

(i)
33 ϕ

(i)
,33 − α

(i)
33 θ

(i)
,3 = ρ(i)ü

(i)
3 , (8a)

e
(i)
33 u

(i)
3,33 − ε

(i)
33 ϕ

(i)
,33 + β

(i)
3 θ

(i)
,3 = q(∆p(i) −∆n(i)), (8b)

− k
(i)
33 θ

(i)
,33 +

(
1 + τ (i) ∂

∂t

)
(T0α

(i)
33 u̇

(i)
3,3 − T0β

(i)
3 ϕ̇

(i)
,3 + ρ(i)C

(i)
E θ̇(i)) = 0, (8c)

− qp
(i)
0 µ

p(i)
33 ϕ

(i)
,33 − qd

p(i)
33 ∆p

(i)
,33 = −q∆ṗ(i), (8d)

− qn
(i)
0 µ

n(i)
33 ϕ

(i)
,33 + qd

n(i)
33 ∆n

(i)
,33 = q∆ṅ(i). (8e)

When the temperature-related terms are dropped (θ(i) and Eq. (8c)), Eqs. (8a), (8b), (8c),
(8d), and (8e) degenerate to the equation describing pure PS as in Ref. [8].

For qualitative analysis, the following non-dimensional qualities are introduced:




ξ =
x3

h
, t

(i) = t(i)

√
c
(i)
33

ρ(i)h2
, u(i) =

u
(i)
3

h
, ϕ(i) =

ε
(i)
33

e
(i)
33 h

ϕ(i), θ
(i)

=
β

(i)
3

e
(i)
33

θ(i),

n(i) =
qh

e
(i)
33

∆n(i), p(i) =
qh

e
(i)
33

∆p(i), T
(i)

=
T

(i)
33

c
(i)
33

, D
(i)

=
D

(i)
3

e
(i)
33

, J
n(i)

=
J

n(i)
3 h2

e
(i)
33 d

n(i)
33

,

J
p(i)

=
J

p(i)
3 h2

e
(i)
33 d

p(i)
33

, a
(i)
1 =

e
(i)2
33

ε
(i)
33 c

(i)
33

, a
(i)
2 =

α
(i)
33 e

(i)
33

c
(i)
33 β

(i)
3

, a
(i)
3 =

β
(i)
3 T0α

(i)
33 h

e
(i)
33 k

(i)
33

√
c
(i)
33

ρ(i)
,

a
(i)
4 =

β
(i)2
3 T0h

ε
(i)
33 k

(i)
33

√
c
(i)
33

ρ(i)
, a

(i)
5 =

ρ(i)C
(i)
E h

k
(i)
33

√
c
(i)
33

ρ(i)
, a

(i)
6 =

qp
(i)
0 µ

p(i)
33 h2

d
p(i)
33 ε

(i)
33

, a
(i)
7 =

h

d
p(i)
33

√
c
(i)
33

ρ(i)
,

a
(i)
8 =

qn
(i)
0 µ

n(i)
33 h2

d
n(i)
33 ε

(i)
33

, a
(i)
9 =

h

d
n(i)
33

√
c
(i)
33

ρ(i)
, τ (i) = τ (i)

√
ρ(i)h

c
(i)
33

.
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It should be noted that t
(1) = t

(2) = t due to the same material for the two layers in Case 2.
After non-dimensional transformation, the governing equations are rewritten as

u
(i)
,ξξ + a

(i)
1 ϕ

(i)
,ξξ − a

(i)
2 θ

(i)

,ξ = u
(i)

,tt
, (9a)

u
(i)
,ξξ − ϕ

(i)
,ξξ + θ

(i)

,ξ = p(i) − n(i), (9b)

− θ
(i)

,ξξ +
(
1 + τ (i) ∂

∂t

)
(a(i)

3 u,ξt − a
(i)
4 ϕ

(i)

,ξt
+ a

(i)
5 θ

(i)

,t ) = 0, (9c)

a
(i)
6 ϕ

(i)
,ξξ + p

(i)
,ξξ = a

(i)
7 p

(i)

,t
, (9d)

− a
(i)
8 ϕ

(i)
,ξξ + n

(i)
,ξξ = a

(i)
9 n

(i)

,t
. (9e)

With the help of boundary conditions, the solutions could be unique for the governing
equations. In Case 1, n-type semiconductor is considered only. The governing equations are
consist of Eqs. (9a), (9b), (9c), and (9e) by ignoring p. The boundary conditions are





T
(1)

(0) = 0, D
(1)

(0) = 0, J
n(1)

(0) = 0, θ
(1)

(0) = θ0,

u(1)(1) = 0, ϕ(1)(1) = 0, n(1)(1) = 0, θ
(1)

,ξ (1) = 0.

(10)

For Case 2, not only the boundary conditions but also the continuity conditions are needed.
The boundary conditions are





T
(1)

(0) = 0, D
(1)

(0) = 0, J
n(1)

(0) = 0, J
p(1)

(0) = 0, θ
(1)

(0) = θ0,

u(2)(1) = 0, ϕ(2)(1) = 0, n(2)(1) = 0, p(2)(1) = 0, θ
(2)

,ξ (1) = 0.

(11)

The continuity conditions are





T
(1)

(γ) = T
(2)

(γ), D
(1)

(γ) = D
(2)

(γ), J
n(1)

(γ) = J
n(2)

(γ), J
p(1)

(γ) = J
p(2)

(γ),

u(1)(γ) = u(2)(γ), ϕ(1)(γ) = ϕ(2)(γ), n(1)(γ) = n(2)(γ), p(1)(γ) = p(2)(γ),

θ
(1)

(γ) = θ
(2)

(γ), θ
(1)

,ξ (γ) = θ
(2)

,ξ (γ),

(12)

where γ = h1/h is introduced to manipulate the thickness ratio. The above derivations describe
the thermo-electro-elastic coupling model for the surface heating plate in the time domain. To
reveal the mechanical and electrical properties in PS, a proper solution should be sought. In
the following, the solution will be discussed in detail.

4 Solutions for the thermo-electro-elastic coupling model

4.1 Solutions in the Laplace domain
Practically, let the range of time t be (0,+∞). The direct Laplace transformation helps us

to obtain the solutions in the Laplace domain. Then, the inverse Laplace transformation can be
adopted to calculate the real solutions in the time domain. Applying the Laplace transformation

L(f(t)) = f̃(s) =
∫ +∞

0

f(t) exp(−st)dt
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to Eqs. (9a)–(12) yields the governing equations in the Laplace domain as follows:

ũ
(i)

,ξξ + a
(i)
1 ϕ̃

(i)

,ξξ − a
(i)
2 θ̃

(i)

,ξ = s2ũ
(i)

, (13a)

ũ
(i)

,ξξ − ϕ̃
(i)

,ξξ + θ̃
(i)

,ξ = p̃
(i) − ñ

(i)
, (13b)

− θ̃
(i)

,ξξ + s(1 + τ (i)s)(a(i)
3 ũ

(i)

,ξ − a
(i)
4 ϕ̃

(i)

,ξ + a
(i)
5 θ̃

(i)

) = 0, (13c)

a
(i)
6 ϕ̃

(i)

,ξξ + p̃
(i)

,ξξ = sa
(i)
7 p̃

(i)
, (13d)

− a
(i)
8 ϕ̃

(i)

,ξξ + ñ
(i)

,ξξ = sa
(i)
9 ñ

(i)
. (13e)

The boundary conditions for Case 1 are rewritten as




T̃
(1)

(0) = 0, D̃
(1)

(0) = 0, J̃
n(1)

(0) = 0, θ̃
(1)

(0) = θ̃0,

ũ
(1)

(1) = 0, ϕ̃
(1)

(1) = 0, ñ
(1)

(1) = 0, θ̃
(1)

,ξ (1) = 0.

(14)

The boundary conditions and continuity conditions for Case 2 are, respectively, rewritten as




T̃
(1)

(0) = 0, D̃
(1)

(0) = 0, J̃
n(1)

(0) = 0, J̃
p(1)

(0) = 0, θ̃
(1)

(0) = θ̃0,

ũ
(2)

(1) = 0, ϕ̃
(2)

(1) = 0, ñ
(2)

(1) = 0, p̃
(2)

(1) = 0, θ̃
(2)

,ξ (1) = 0,

(15)





T̃
(1)

(γ) = T̃
(2)

(γ), D̃
(1)

(γ) = D̃
(2)

(γ), J̃
n(1)

(γ) = J̃
n(2)

(γ), J̃
p(1)

(γ) = J̃
p(2)

(γ),

ũ
(1)

(γ) = ũ
(2)

(γ), ϕ̃
(1)

(γ) = ϕ̃
(2)

(γ), ñ
(1)

(γ) = ñ
(2)

(γ), p̃
(1)

(γ) = p̃
(2)

(γ),

θ̃
(1)

(γ) = θ̃
(2)

(γ), θ̃
(1)

,ξ (γ) = θ̃
(2)

,ξ (γ).

(16)

In this article, the heating source is treated as θ0 = ΘH(t), where Θ is the magnitude value,
and H is the Heaviside function. Applying the Laplace transformation yields

θ̃0 =
Θ
s

. (17)

The solutions to Eqs. (13a), (13b), (13c), (13d), and (13e) are

ũ
(i)

= A
(i)
1 exp(λ(i)ξ), (18a)

ϕ̃
(i)

= A
(i)
2 exp(λ(i)ξ), (18b)

θ̃
(i)

= A
(i)
3 exp(λ(i)ξ), (18c)

p̃
(i)

= A
(i)
4 exp(λ(i)ξ), (18d)

ñ
(i)

= A
(i)
5 exp(λ(i)ξ). (18e)

For Case 1, substituting Eqs. (18a), (18b), (18c), (18d), and (18e) into Eqs. (13a), (13b),
(13c), and (13e) leads to four linear homogeneous algebraic equations for A

(1)
1 , A

(1)
2 , A

(1)
3 , and

A
(1)
5 . For nontrivial solutions, the determinant of the coefficient matrix of the equations has to

vanish, which leads to a polynomial equation of degree eight for λ(1). Denote the eight roots
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of the algebraic equations as λ
(1)
m (m = 1, 2, 3, · · · , 8) and the nontrivial solution of A

(1)
1 , A

(1)
2 ,

A
(1)
3 , and A

(1)
5 as A

(1)
1m, A

(1)
2m, A

(1)
3m, and A

(1)
5m. The solutions are expressed as




ũ
(1)

ϕ̃
(1)

θ̃
(1)

ñ
(1)




=
6∑

m=1




A
(1)
1m

A
(1)
2m

A
(1)
3m

A
(1)
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 , (19)

where B
(1)
1m, B

(1)
2m, and B

(1)
5m are derived from the governing equations. Substitute Eq. (19) into

Eq. (14). Then, eight linear algebraic equations for A
(1)
3m are obtained, and the solutions can be

calculated.

Similarly, for Case 2, substituting Eq. (18) into Eq. (13) leads to five linear homogeneous
algebraic equations for A

(i)
1 , A

(i)
2 , A

(i)
3 , A

(i)
4 , and A

(i)
5 . Then, a polynomial equation of degree

ten for λ(i) can be obtained. With the same variables, the solutions for both layers are expressed
as
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, i = 1, 2. (20)

Substituting Eq. (20) into Eqs. (15) and (16) yields twenty linear algebraic equations for
A

(i)
3m. Finally, the solutions for Case 2 can be calculated.

4.2 Solutions in the time domain

For the purpose of obtaining real solutions in the time domain, the inverse Laplace trans-
formation should be performed. In view of the complexity of solutions in the Laplace domain,
it is difficult to search the analytical expressions. In this work, the numerical inverse Laplace
transformation proposed by Durbin[46] is adopted to calculate the real solutions in the time
domain.
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5 Numerical analysis and discussion

As an example, take the CdSe plate into account in the numerical analysis. The relative
material parameters are[47–48]





c
(i)
33 = 83.6GPa, e

(i)
33 = 0.347C/m2

, ε
(i)
33 = 9.03× 10−11 F/m,

α
(i)
33 = 0.551× 106 N/(K ·m2), β

(i)
3 = −2.94× 10−6 C/(K ·m2), k

(i)
33 = 1.4W/(K ·m),

ρ(i) = 7 600 kg/m3, C
(i)
E = 420 J/(kg ·K), T0 = 300 K, µ

n(i)
33 = 0.09m2/(V · s),

µ
p(i)
33 = 0.005m2/(V · s), d

n(i)
33 =

keT

q
µ

n(i)
33 , d

p(i)
33 =

keT

q
µ

p(i)
33 ,

keT

q
= 0.026V,

q = 1.602× 10−9 C, τ (i) = 0.05, h = 100 nm, Θ = 1.

Additionally, for Case 1, the initial carrier density is n0 = 1021 m−3. For Case 2, assume
that n

(1)
0 = p

(2)
0 = 0.5a0 and n

(2)
0 = p

(1)
0 = a0.

5.1 Single layered plate subject to the surface heating source (Case 1)
Before analysis, the validity of the derivations should be proved. The finite element method

(FEM) is used based on the COMSOL software, and the obtained results are shown in Fig. 2,
along with the results obtained from the analytical method for comparison. It is shown that
the results from the analytical solution agree well with those obtained by the FEM.

In Fig. 2(a), the temperature change θ is 1 at the heating surface (ξ = 0). It verifies the
correctness of the solutions further. With the prolonging of heating time, Fig. 2(b) shows that
the deformation u increases near the heating surface and keeps steady in the other parts. At
the same time, larger deformation induces larger electric potential ϕ (see Fig. 2(c)). Driven by
the electric potential, more perturbation carriers n tend to concentrate in the zone near the
heating surface (see Fig. 2(d)).

θ

θ

ξ

ϕ

ξ

 

ξ

 ϕ

ξ

× ×

×

Fig. 2 Comparison of the results from the analytical method and the FEM (color online)
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It can be observed that there are jumps for deformation, electric potential, and perturbation
carrier density. To explain this phenomenon, Fig. 3 gives the comparison among the displace-
ment u, the stress T , the electric potential ϕ, the electric field E, and the perturbation carrier n
when t = 0.5. It can be found that the jump position is very close to ξ = 0.5. According to the
non-dimensional governing equation (Eq. (9)), the phase speed of the elastic wave in a pure elas-
tic medium is equal to 1. Although the phase speed of the elastic wave in PS is not 1 because of
the dispersion and dissipation, it still can be predicted reasonably that the jump of deformation
is induced by the propagation of elastic wave according to the calculated results. Subject to
the jump of deformation, a peak appears for stress. At the same position, there is a jump for
the electric potential. This phenomenon can also be seen in Ref. [18], where the piecewise-stress
produced electric potential barrier. Further, the sudden change for the electric field and the
jump for the perturbation carrier density are produced. The above discussion illustrates that
the heating induced elastic wave propagation has the ability to change the distributions of field
quantities in PS.

ξ

ϕ

×

×

×

Fig. 3 Comparisons among the displacement u, the stress T , the electric potential ϕ, the electric

field E, and the perturbation carrier density n when t = 0.5 (color online)

In this article, the generalized thermal-elasticity (L-S theory) is considered. The thermal
relaxation time τ is an important factor describing the thermal wave propagation. According
to the works carried by other researchers, it can be reasonably predicted that the thermal re-
laxation time is able to describe different distributions of field quantities in PS. To qualitatively
illustrate the effect of the thermal relaxation time on the distributions of field quantities, two
thermal relaxation time, i.e., τ = 0, 0.05, is adopted, and the calculated results are plotted in
Fig. 4. It can be concluded that the effects of the thermal relaxation time on the tempera-
ture, electrical, or mechanical quantities are stronger for shorter time heating. It means that
the consideration of thermal relaxation time is necessary for short time heating process. It
can also be observed that when the thermal relaxation time is considered, the gentle slopes
replace the abrupt jumps (see Figs. 4(b), 4(d), and 4(f)), and the maximal values at sud-
den changed positions for the stress and electric fields become smaller (see Figs. 4(c) and 4(e)).
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Fig. 4 Thermal relaxation time effects on the fields in PS (color online)

This is because the thermal relaxation time plays the role of damping, and the longer thermal
relaxation time causes smaller values of all fields in the PS plate in short heating time.

In semiconductor structures, the initial carrier density can be adjusted artificially. The
investigation about the initial carrier density effect on electrical properties is meaningful for
practical application. As significant quantities, ϕ and n are studied here. Considering the
thermal relaxation time (i.e., τ = 0.05), the electric potential and perturbation carrier density
at the heating surface (i.e., ϕ(0) and n(0)) vary with the increase in the initial carrier density
n0 (see Fig. 5). It can be found that the electric potential decreases while the perturbation
carrier density increases when τ increases. The physical mechanism behind this phenomenon
is that the mobile charge tends to screen the electric potential. This conclusion can also be
seen in Ref. [13]. Differently, in this article, it can be concluded from Fig. 5 that the screening
effect is much stronger for longer heating time. This is because more perturbation carriers are
produced by longer heating time, and thus a stronger screening effect is induced.
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Fig. 5 Effects of the initial carrier density on the electric potential and perturbation carrier density
(color online)
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5.2 Double layered plate subject to the surface heating source (Case 2)
In this section, a double layered plate is focused. Herein, the electrical properties for the

P-N junction between the two layers are the objects. From the calculated results in Subsection
5.1, it is found the mechanical or electrical field quantities vary quickly in the range about
(0,0.1]. Consequently, the adjustment of the interface position in the range could lead to visible
results. In the following discussion, τ = 0.05, t = 0.5, and a0 = 1021 m−3.

For a piezoelectric P-N junction in the equilibrium state, which is not disturbed by any ex-
ternal perturbation, the initial contact potential difference of the space charge zone ϕ0 can be
determined by the doping densities through[17,44] ϕ0 = (keT/q) ln(N+

D N−
A /n2

i ). Since nn0 ≈ N+
D

and np0 ≈ n2
i /N

−
A , ϕ0 = (keT/q) ln(nn0/np0), where ni is the intrinsic carrier concentration, and

nn0 and np0 stand for the initial carrier concentrations of electrons in the n- and p-zones, respec-
tively. According to the given parameters, the initial contact potential difference ϕ0 ≈ 0.018V.
Correspondingly, the non-dimensional initial contact potential difference ϕ0 is calculated by
ϕ0 = ε

(1)
33 ϕ0/(e(1)

33 h) ≈ 4.69× 10−5.
Next, we discuss the variation of the electric potential in the non-equilibrium state. In

Fig. 6(a), the interface position affected electric potential is plotted. It can be seen that the
thermal induced electric potential ϕ is much larger than the initial contact potential difference
ϕ0 in the equilibrium state, indicating that the potential barrier is dominated by the thermal
induced electric potential. In Figs. 6(b), 6(c), and 6(d), the variations of the electric field,
the perturbation carrier density of electrons, and the perturbation carrier density of holes are
plotted, respectively. It can be observed that the position of the interface nearly does not affect
the electric potential and electric fields. However, in the zone near the heating surface, the
perturbation carrier density of electrons decreases while the perturbation carrier density of holes
increases with the moving of interface. Furthermore, Figs. 6(e) and 6(f) give the polarization
charge and the total charge, respectively. According to the definition, the polarization charge ρp

can be calculated by ρp = −P3,3, where P3 = D3−ε0E3 is the polarization vector. According to
the aforementioned non-dimensional method, the non-dimensional polarization charge is defined
as ρp = −D,ξ − (ε0/ε

(1)
33 )ϕ,ξξ.
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Fig. 6 Effects of the thickness ratio on the electrical properties (color online)
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The non-dimensional total charge is expressed as ρa = ρp + p − n. From the calculated
results, it can be found that the polarization charge is much larger than the carrier charge,
indicating that the total charge is dominated by the polarization charge.

In order to figure out how the interface position changes the electrical properties thoroughly,
the perturbation carrier density at the heating surface is studied. The effects of the initial carrier
density on the electrical properties are shown in Figs. 7(a) and 7(b). It can be observed that n
decreases while p increases. This is because of the increment in the bulk of p-type semiconductor.
Here, the carrier charge p(0) − n(0) is also investigated. Define ρe = p(0) − n(0). Figure 7(c)
gives the relative carrier charge ρe/ρe

1, where ρe
1 is the carrier charge, when γ = 0.01. In

addition, the effects of the initial carrier density on the electrical properties are studied. When
the initial carrier density increases, the perturbation carrier increases. However, because of the
screening effect, the electric potential decreases (see Fig. 7(d)). Besides, it can also be found
that the position of the interface corresponding to the minimum carrier charge is altered by the
initial carrier density, and the position tends to move toward the surface. This is because the
increment in the p-type perturbation carrier density is much faster than the increment in the
n-type perturbation carrier density for larger initial carrier density. These conclusions can be
the guidance for the design of P-N junction modified semiconductor structure.
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Fig. 7 Effects of the initial carrier density on the electrical properties for Case 2 (color online)

6 Conclusions

In this paper, the surface heating PS plate lying on a rigid substrate is investigated math-
ematically based on the thermo-electro-elastic coupling theory. The validity of derivation is
illustrated by comparing the results from the analytical method and FEM. The surface heating
induced mechanical or electrical responses are discussed in detail for three heating time. It is re-
vealed that the maximum mechanical or electrical responses appear at the heating surface. The
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investigations on the electric potential and the perturbation carrier density show that most car-
riers tend to concentrate in the zone near the heating surface, and longer heating time leads to
greater screening effects on the electric potential. Besides, the values of mechanical or electrical
field quantities with the consideration of thermal relaxation time are smaller than those without
the consideration of thermal relaxation time. The slops of jumps at the elastic wavefront for
the electric potential and perturbation carrier density are reduced. Furthermore, the effects of
the interface position between the n-type and p-type plates on the electrical responses are stud-
ied. The conclusions in this article can be used to design thermoelectricity devices or solar cells.
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format, as long as you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

References

[1] WANG, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano
Today, 5, 540–552 (2010)

[2] WU, W. and WANG, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and op-
toelectronics. Nature Reviews Materials, 1, 1–17 (2016)

[3] WANG, Z. L. and SONG, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays.
Science, 312, 242–246 (2006)

[4] HUANG, H., ZHANG, H., CAO, Y., LIU, Y., MA, K., LIU, K., and LIANG, Y. C. High-
temperature three-dimensional GaN-based hall sensors for magnetic field detection. Journal of
Physics D: Applied Physics, 54, 075003 (2020)

[5] HAN, W., ZHOU, Y., ZHANG, Y., CHEN, C. Y., LIN, L., WANG, X., and WANG, Z. L. Cor-
rection to strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano,
6, 5736–5736 (2012)

[6] YU, R., WU, W., DING, Y., and WANG, Z. L. GaN nanobelt-based strain-gated piezotronic logic
devices and computation. ACS Nano, 7, 6403–6409 (2013)

[7] WANG, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides— from materials
to nanodevices. Advanced Materials, 15, 432–436 (2003)

[8] ZHANG, C., WANG, X., CHEN, W., and YANG, J. An analysis of the extension of a ZnO
piezoelectric semiconductor nanofiber under an axial force. Smart Material Structures, 26, 025030
(2016)

[9] ZHANG, C. L., LUO, Y. X., CHENG, R. R., and WANG, X. Y. Electromechanical fields in
piezoelectric semiconductor nanofibers under an axial force. MRS Advances, 2, 3421–3426 (2017)

[10] ZHANG, C., WANG, X., CHEN, W., and YANG, J. Bending of a cantilever piezoelectric semi-
conductor fiber under an end force. Generalized Models and Non-classical Approaches in Complex
Materials 2, Springer, Cham, 261–278 (2018)

[11] YANG, G., DU, J., WANG, J., and YANG, J. Extension of a piezoelectric semiconductor fiber
with consideration of electrical nonlinearity. Acta Mechanica, 229, 4663–4676 (2018)

[12] ZHAO, M. H., MA, Z. L., LU, C. S., and ZHANG, Q. Y. Application of the homopoty analysis
method to nonlinear characteristics of a piezoelectric semiconductor fiber. Applied Mathematics
and Mechanics (English Edition),42(5), 665–676 (2021) https://doi.org/10.1007/s10483-021-2726-5

[13] LI, P., JIN, F., and YANG, J. Effects of semiconduction on electromechanical energy conversion
in piezoelectrics. Smart Materials and Structures, 24, 025021 (2015)

[14] WANG, G., LIU, J., LIU, X., FENG, W., and YANG, J. Extensional vibration characteristics
and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of
Applied Physics, 124, 094502 (2018)

[15] LUO, Y., ZHANG, C., CHEN, W., and YANG, J. An analysis of PN junctions in piezoelectric
semiconductors. Journal of Applied Physics, 122, 204502 (2017)



Transient analysis on surface heated piezoelectric semiconductor plate lying on rigid substrate 1855

[16] LUO, Y., CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Electromechanical fields near a
circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31,
127–140 (2018)

[17] FAN, S., YANG, W., and HU, Y. Adjustment and control on the fundamental characteristics of a
piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416–421 (2018)

[18] FAN, S., HU, Y., and YANG, J. Stress-induced potential barriers and charge distributions in
a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition),
40(5), 591–600 (2019) https://doi.org/10.1007/s10483-019-2481-6

[19] YANG, G., DU, J., WANG, J., and YANG, J. Electromechanical fields in a nonuniform piezoelec-
tric semiconductor rod. Journal of Mechanics of Materials and Structures, 13, 103–120 (2018)

[20] YANG, W., HU, Y., and PAN, E. Tuning electronic energy band in a piezoelectric semiconductor
rod via mechanical loading. Nano Energy, 66, 104147 (2019)

[21] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Piezotronic effects in the extension of a
composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied
Physics, 124, 064506 (2018)

[22] LUO, Y., ZHANG, C., CHEN, W., and YANG, J. Piezopotential in a bended composite fiber made
of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54,
341–348 (2018)

[23] YANG, G., YANG, L., DU, J., WANG, J., and YANG, J. PN junctions with coupling to bending
deformation in composite piezoelectric semiconductor fibers. International Journal of Mechanical
Sciences, 173, 105421 (2020)

[24] CHENG, R., ZHANG, C., ZHANG, C., and CHEN, W. Magnetically controllable piezotronic
responses in a composite semiconductor fiber with multiferroic coupling effects. Physica Status
Solidi A, 217, 1900621 (2020)

[25] LIANG, C., ZHANG, C., CHEN, W., and YANG, J. Electrical response of a multiferroic composite
semiconductor fiber under a local magnetic field. Acta Mechanica Solida Sinica, 33, 663–673 (2020)

[26] KONG, D., CHENG, R., ZHANG, C., and ZHANG, C. Dynamic manipulation of piezotronic be-
haviors of composite multiferroic semiconductors through time-dependent magnetic field. Journal
of Applied Physics, 128, 064503 (2020)

[27] CHENG, R., ZHANG, C., and YANG, J. Thermally induced carrier distribution in a piezoelectric
semiconductor fiber. Journal of Electronic Materials, 48, 4939–4946 (2019)

[28] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on mobile charges
in extension of composite fibers of piezoelectric dielectrics and non-piezoelectric semiconductors.
International Journal of Applied Mechanics, 11, 1950088 (2019)

[29] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on PN junctions in
piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Elec-
tronic Materials, 49, 3140–3148 (2020)

[30] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Electrical behaviors of a piezoelectric semi-
conductor fiber under a local temperature change. Nano Energy, 66, 104081 (2019)

[31] YANG, Z., SUN, L., ZHANG, C., ZHANG, C., and GAO, C. Analysis of a composite piezoelectric
semiconductor cylindrical shell under the thermal loading. Mechanics of Materials, 164, 104153
(2022)

[32] FENG, Q., SHI, X., XING, Y., LI, T., LI, F., PAN, D., and LIANG, H. Thermoelectric micro-
generators using a single large-scale Sb doped ZnO microwires. Journal of Alloys and Compounds,
739, 298–304 (2018)

[33] DOU, Y., WU, F., FANG, L., LIU, G., MAO, C., WAN, K., and ZHOU, M. Enhanced performance
of dye-sensitized solar cell using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by the
synergistic effect of photovoltaic and thermoelectric conversion. Journal of Power Sources, 307,
181–189 (2016)

[34] LORD, H. W. and SHULMAN, Y. A generalized dynamical theory of thermoelasticity. Journal of
the Mechanics and Physics of Solids, 15, 299–309 (1967)

[35] GREEN, A. E. and LINDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)



1856 Luke ZHAO, Sen GU, Yaqin SONG, and Feng JIN

[36] XIONG, Q. L. and TIAN, X. G. Response of a semi-infinite microstretch homogeneous isotropic
body under thermal shock. Journal of Applied Mechanics, 78, 925–948 (2011)

[37] TANG, F. and SONG, Y. Wave reflection in semiconductor nanostructures. Theoretical and Ap-
plied Mechanics Letters, 8, 160–163 (2018)

[38] CHANDRASEKHARAIAH, D. S. A generalized linear thermoelasticity theory for piezoelectric
media. Acta Mechanica, 71(1), 39–49 (1988)

[39] CHANDRASEKHARAIAH, D. S. A temperature-rate-dependent theory of thermopiezoelectricity.
Journal of Thermal Stresses, 7, 293–306 (1984)

[40] HE, T. H., SHEN, Y. P., and TIAN, X. G. A two-dimensional generalized thermal shock problem
for a half-space in electromagneto-thermoelasticity. International Journal of Engineering Science,
42, 809–823 (2004)

[41] LI, H. M., WANG, Y. M., WANG, B. Y., and HE, T. H. The dynamic response of a rotating thick
piezoelectric plate with thermal relaxations. Applied Mechanics and Materials, 52, 1565–1570
(2011)

[42] WAUER, J. and SUHERMAN, S. Thickness vibrations of a piezo-semiconducting plate layer.
International Journal of Engineering Science, 35, 1387–1404 (1997)

[43] SLADEK, J., SLADEK, V., PAN, E., and WÜNSCHE, M. Fracture analysis in piezoelectric
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