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Abstract The purpose of this investigation is to theoretically shed some light on the
effect of the unsteady electroosmotic flow (EOF) of an incompressible fractional second-
grade fluid with low-dense mixtures of two spherical nanoparticles, copper, and titanium.
The flow of the hybrid nanofluid takes place through a vertical micro-channel. A fractional
Cattaneo model with heat conduction is considered. For the DC-operated micropump,
the Lorentz force is responsible for the pressure difference through the microchannel.
The Debye-Hükel approximation is utilized to linearize the charge density. The semi-
analytical solutions for the velocity and heat equations are obtained with the Laplace and
finite Fourier sine transforms and their numerical inverses. In addition to the analytical
procedures, a numerical algorithm based on the finite difference method is introduced for
the given domain. A comparison between the two solutions is presented. The variations
of the velocity heat transfer against the enhancements in the pertinent parameters are
thoroughly investigated graphically. It is noticed that the fractional-order parameter
provides a crucial memory effect on the fluid and temperature fields. The present work
has theoretical implications for biofluid-based microfluidic transport systems.
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1 Introduction

Electroosmosis is a significant study topic because of its wide applications, e.g., nanodevices
in biochemical, medical, and industrial sectors[1]. An electric double layer (EDL) is formed
and bonded to an exterior diffused layer inside the charged sheet. When an external power
supply field is applied to the EDL, the molecules in the dispersed area of the EDL move to
produce mass liquid dislocation via the dense effect, which is also known as the electroosmotic
flow (EOF). Many Newtonian and non-Newtonian flows in micro- and nano-fluidic applications
are governed by the electroosmosis concept. Zhao et al.[2] studied the EOF of a nanofluid in
the magnetic field through a horizontal microchannel, and observed that the magnetic field and
EDL had a high effect on the flow and heat transfer. Awan et al.[3] studied the slip effect along
with the EOF for a second-grade fluid with the Caputo-Fabrizio fractional derivative, and found
out that the velocity field was enhanced with an increase in the fractional parameter. Alsharif
and Abd-Elmaboud[4] investigated the fractional Cattaneo model for a fractional second-grade
fluid with the EOF, and concluded that the free convectional force was enhanced by the EOF.
Abdellateef et al.[5] studied a second-grade factional fluid with the Cattaneo heat flux through
a microchannel with the consideration of the EOF, and observed that the time required for the
flow rate to get to a steady state increased for the non-Newtonian case.

In recent decades, the fractional derivative models for non-Newtonian fluids have shown to be
an excellent technique for assessing the viscoelastic behavior of the flow amount in microfluidic
devices. The long-term memory effect of the fractional derivatives is extremely suited and
reliable for application. In steady flows, the fluid flow described by the fractional rate of
deformation displays a time dependent behavior. Dey and Shit[6] studied the second-grade
viscoelastic behavior with the imposed electric field and applied magnetic field, and concluded
that the EOF had an increasing effect on the heat transfer rate. Wang et al.[7] analyzed the
fractional flows with the EOF through parallel plates with the zeta potentials and pressure
gradient by means of the Debye-Hükel approximation, Laplace transforms, and finite difference
method. Wang et al.[8] derived the exact solution to a generalized problem of a second-grade
flow by means of the integral transform method, considering the fractional derivative. Under
the Debye-Hükel approximation, they concluded that there was a monotonous increase in the
velocity profile with an increase in the Debye-Hükel parameter. There are many works that shed
light on the EOF, micropumps, and nanofluids, e.g., Refs. [9]–[12] and the references therein.

The heat flux system based on the Fourier law is said to be appropriate for most engineering
purposes even though it assumes an unlimited propagation speed of thermal perturbations.
Nevertheless, under low temperature or rapid heating settings, it fails to predict the tempera-
ture accurately. As a result, many non-Fourier models have been developed to address these
shortcomings in the analyses for heat transfer characteristics. Qi et al.[13] studied the heat of
short laser pulse with the fractional Cattaneo model, and obtained the analytic solutions for
the temperature profile by means of Laplace transformations. They deduced that there was
a prominent increase in the temperature distribution near to the input pulse ending with an
increase in the fractional parameter. Xu and Wang[14] investigated the heat transfer with short
pulsed laser in a finite slab for a fractional Cattaneo system. They concluded that enhancing
the relaxation time reduced the heat flux propagation. Xu et al.[15] studied a generalized Cat-
taneo model with non-Fourier heat conduction, and derived the exact solutions by means of
Laplace transformations. They concluded that the temperature achieved at the boundary was
higher for the Cataneo model than for the fractional Cattaneo model. The Cattaneo-Christov
heat flux model has been used in medicinal and bioengineering procedures such as the heat
reduction in nuclear reactors and hybrid power generators. Many authors used this model in
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their studies because of its wide applicability in heat transport mechanisms[16–18].
The high thermal conductivity at low nanoparticle aggregation, minimum clogging in flow

passageways, and long-term stability are all characteristics of nanofluids. These distinguishing
characteristics make them more helpful in many applications such as micro-electromechanical
systems and cooling of microchips[19–21]. However, the thermal conductivity and long-term
stability increase when different nanoparticles are mixed in the base fluid, which is known as
“hybrid nanofluid”. Due to the importance of this type of fluid, many researchers have studied
the flow of hybrid nanofluids in various geometries. Khan et al.[22] discussed the problem of the
thermal boundary layer flow of a hybrid nanofluid. They found that the heat transfer augmented
due to the elevation of the nanoparticle’s volume fraction. Christopher et al.[23] studied the
effect of the Catteno-Christov heat flux model on a hybrid nanofluid flow through a porous
medium. El-Masry et al.[24] investigated the direct current (DC)/alternating current (AC) MHD
micropump of the hybrid nanofluid in the annular region between vertical coaxial microtubes.
They concluded that the stream was enhanced by the large concentration of particles in the
mixture, resulting in a low necessary pressure.

In light of the efficacy of the fractional models in heat conduction along with the applica-
tions of the EOF with non-Newtonian models, we intend to shed light on the EOF of a hybrid
nanofluid with copper and titanium nanoparticles through a vertical micro-channel. We frac-
tionalize the proposed model, use the Caputo-Fabrizio derivative, and derive the velocity field
with the aid of the Laplace transformation method for the fractional derivative. The Debye-
Hükel approximation is utilized to linearize the charge density. The numerical algorithm is
introduced, and the analytical and numerical solutions are compared. Graphs are presented to
show a clear visualization for the obtained solutions.

2 Problem formulation and mathematical model

The unsteady fractional second-grade fluid flow through a vertical microchannel with the
fractional Cattaneo model of heat conduction is considered. The electroosmosis phenomenon
is considered. The asymmetric zeta potentials ζ1 and ζ2 of the channel walls are constant. The
walls are kept at the constant temperatures T1 and T2 (see Fig. 1). The fluid is exposed to a
uniform magnetic field B = (0, By, 0) and an electric field E = (Ex, 0,−Ez). In our manuscript,
we will assume the following assumptions.

(i) The Debye-Hükel approximation is used, and hence the following linearized charge density
is taken:

%′e =
−2z2

i e2
i n0Ψ′

deTABc
.

'

'= 2

Ψ'=

'=

'

Ψ '=ξ

Fig. 1 Geometry of the problem (color online)
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(ii) The electroosmotic velocity is assumed to be u′ = u′(y, t)i.
(iii) In addition to the electroosmotic force, in case of DC-operated magneto-hydrodynamics

(MHD), the Lorentz force is responsible for the pressure difference through the microchannel.
Therefore, −P ′x = J ′ × B =

(
σ
(
ByEz − B2

yu′
)
, 0, σByEx

)
, where J ′ = σ(E′ + u′ × B),

TA is the electrolytic solution temperature, Bc is a constant of Boltzmann, ei is the electron
charge, n0 denotes the ionic concentration in the bulk phase, de denotes the solution’s dielectric
constant, J ′ is the electric current density, and σ is the electrical conductivity.

The constitutive relations for the fractional second-grade fluid and the fractional Cattaneo
model for heat conduction are as follows[4–5,25]:

τ = (µhnf + M1D
ε
t)γ(t), 0 < ε < 1, (1)

(
1 +

λc
2

c!
Dc

t

)
q = −Khnf∇T ′, 0 < c < 1, (2)

where τ is the shear stress, q is heat flux, T ′ is the temperature, γ is the shear strain, µhnf

is the viscosity of the hybrid nanofluid, M1 is the viscoelastic constant, Khnf is the thermal
conductivity of the hybrid nanofluid, and ε and c are the fractional orders.

The time fractional derivative of order ε for the Caputo-Fabrizio model is[26]

Dε
tg(t) =

L∗(ε)
1− ε

∫ t

0

g′(t)e
ε(t−τ)

ε−1 dτ, 0 < ε < 1, (3)

where L∗(0) = L∗(1) = 1. The continuity, momentum, and energy equations, by using the
above assumptions, will be[24–25]

∂u′

∂x′
= 0, (4)

ρhnf
∂u′

∂t′
=

∂τ ′xy

∂y′
+ σByEz − σB2

yu′ + ρ′eEx + (ρα)hnfg(T ′ − T0), (5)

(ρcp)hnf

(
1 +

λ′c

c!
∂c

∂t′c

)∂T ′

∂t′
= Khnf

∂2T ′

∂y′2
+ Q0

(
1 +

λ′c

c!
∂c

∂t′c

)
(T ′ − T0), (6)

where Q0 is the heat source.
The properties of the hybrid nanofluid are summarized as follows[24]. The density of the

hybrid nanofluid is designated by

ρhnf = φs1ρs1 + φs2ρs2 + (1− φT)ρwater, (7)

where φT = φs1 +φs2 is the overall volume concentration. The viscosity of the hybrid nanofluid
is

µhnf = µf(1− φT)−2.5. (8)

The heat capacitance is

(ρcp)hnf = φs1ρs1(cp)s1 + φs2ρs2(cp)s2 + (1− φT)(ρcp)water. (9)

The coefficient of thermal expansion is

(ρα)hnf = (φρα)s1 + (φρα)s2 + (1− φT)(ρα)water. (10)

For low dense mixtures of two substances (s1 =Cu and s2 =TiO2) with spherical particles, the
effective thermal conductivity, according to the Maxwell model, is represented by

Khnf

Kwater
=

Khp + 2Kwater − 2φT(Kwater −Khp)
Khp + 2Kwater + φT(Kwater −Khp)

, (11)
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where
Khp =

φs1Ks1 + φs2Ks2

φT
.

The Debye-Hükel approximation can be applied, and the Poisson equation combining Ψ′

and %′e can be expressed as

∇2Ψ′ = Υ′2Ψ′ =
−%′e
ε

, (12)

where Υ′2 = 2e2n0z2
v

εTABc
. The boundary and initial conditions are





u′(y′, t′) = T ′(y′, t′) = 0 at t′ = 0,

Ψ′(y′) = ζ1, u′(y′, t′) = 0, T ′(y′, t′) = T0 at y′ = 0,

Ψ′(y′) = ζ2, u′(y′, t′) = 0, T ′(y′, t′) = T1 at y′ = H.

(13)

From Eq. (1), the stress tensor component τ ′xy for the small deformation of the viscoelastic fluid
can be expressed as

τ ′xy = µhnf(1 + δDε
t)

∂u′

∂y′
, (14)

where δ is the non-Newtonian parameter.
We introduce the following dimensionless variables:





Ψ =
Ψ′

ζ1
, u =

u′

uHS
, y =

y′

H
, t =

µt′

H2ρ
, Υ = HΥ′,

ρe = −H2%′e
ζ1ε

, η =
δ

µ
(

H2ρ
µ

)γ , λ =
λ′

c!(H2ρ
µ )c

, θ =
T ′ − T0

T1 − T0
.

(15)

The non-dimensional governing equations (5), (6), and (12) are

dΨ
dy2

= Υ2Ψ, (16)

ρR
∂u

∂t
= µR(1 + ηDε

t)
∂2u

∂y2
+ HaE −Ha2 u + ρe + (ρα)RGrθ, (17)

(ρcp)R Pr(1 + λDc
t)

∂θ

∂t
= νR

∂2θ

∂y2
+ Q(1 + λDc

t)θ. (18)

The non-dimensional boundary and initial conditions become




u(y, t) = θ(y, t) = 0 at t = 0,

Ψ(y) = 1, u(y, t) = 0, θ(y, t) = 0 at y = 0,

Ψ(y) = R, u(y, t) = 0, θ(y, t) = 1 at y = 1,

(19)

where η is the retardation time, Ha = HBy

√
σ
µ is the Hartmann number, λ is the temperature

relaxation time, µR = µhnf
µf

is the viscosity ratio, νR = Khnf
Kf

is the thermal conductivity ratio,

E = HEz

uHS

√
σ
µ is the electric field parameter, Gr = ρgαH2(T1−T0)

µuHS
is the Grashof number, Pr =

cpµ
Kf

is the Prandtl number, Q = H2Q0
Kf

is the non-dimensional heat source parameter, R = ζ2
ζ1

is
the ratio of the zeta potentials, Υ is the Debye-Hükle parameter or electrokinetic parameter, η
is the retardation time parameter, and uHS = − εζ1Ex

µ is the Helmholtz-Smoluchowski velocity.
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3 Method

Under the boundary conditions in Eq. (19), we can solve Eq. (16) and get

Ψ = cschΥ(sinh(Υ−Υy) + R sinh(Υy)). (20)

Then, the charge density will be

ρe = Υ2cschΥ(sinh(Υ−Υy) + R sinh(Υy)). (21)

The Laplace transformation method is used to get the semi-analytical solution for the velocity
and heat fields with the following mathematical form:

ū(y, s) =
∫ t

0

u(y, t)e−stdt. (22)

With Eq. (19), applying the Laplace transform formula for the fractional derivative on Eqs. (17),
(18), and (19) yields

(ρRs + Ha2) ū(y, s) = µR

( η s

s + ε(1− s)
+ 1

)∂2ū(y, s)
∂y2

+
HaE

s
+

ρe

s
+ (ρα)RGrθ̄(y, s), (23)

( ∂2

∂y2
+

1
νR

(Q− (ρcp)R Prs)
(
λ

s

c(1− s) + s
+ 1

))
θ̄(y, s) = 0, (24)





ū(y, t) = 0, θ̄(y, t) = 0 at y = 0,

ū(y, t) = 0, θ̄(y, t) =
1
s

at y = 1.
(25)

The analytical solution to Eq. (28) is

θ̄(y, s) =
csch

√
A(s) sinh(

√
A(s)y)

s
, (26)

where

A(s) =
(ρcp)RPrs−Q

νR

(
1 +

λs

s + c(1− s)

)
. (27)

Applying the finite Fourier sine transform defined in Eq. (42) to Eq. (23) with Eq. (43) yields

˜̄u(ζm, s) =
A1 + sA2

µR ξ2
m

(
ηs2

ε(1−s)+s + s
)

+ ρRs2 + Ha2s
, (28)

where

A1 =
1

ξm(ξ2
m + Υ2)

(−HaEΥ2(cos ξm − 1) + ξ2
m

(
− (HaE + Υ2Rζ) cos ξm + HaE + Υ2

)

+ Υ3ξmcschΥ sin ξm(Rζ coshΥ− 1)), (29)

A2 = (ρα)R
Gr(

√
A(s) coth

√
A(s) sin ξm − ξm cos ξm)

s(A(s) + ξ2
m)

. (30)

Applying the inverse finite sin-Fourier transform defined in Eq. (44) into Eq. (28) yields

ū(y, s) = 2
∞∑

m=1

˜̄u(ζm, s) sin(ξmy), (31)

F (s) =
∫ 1

0

ū(y, s)dy, (32)
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where F (s) is the transformed dimensionless flow rate. We obtain the inverse Laplace transform
of the transformed functions (velocity, flow rate, and heat) numerically to get the complete
solutions.

4 Numerical solution

In this section, the numerical algorithm is based on the method of the finite difference scheme
and will be introduced to solve Eqs. (17) and (18) with the conditions in Eq. (19). Dividing the
y domain [0, 1] into m grids and the time domain [0, T ] into n grids yields

yi = i∆y, tj = j∆t, (33)

where i = 0, 1, 2, · · · ,m, j = 0, 1, 2, · · · , n, h = 1/m is the space step, and k = T/n is the
time step. We will adopt uj

i as the numerical solution of u(y, t) at the mesh point (yi, tj). To
proceed, we consider the following approximations:

∂u(y, t)
∂t

∣∣∣
j

i
=

uj−1
i − uj

i

∆t
+ O(∆t), (34)

∂u(y, t)
∂y

∣∣∣
j

i
=

uj
i+1 − uj

i−1

2∆y
+ O(∆y2), (35)

∂2u(y, t)
∂y2

∣∣∣
j

i
=

uj
i−1 + uj

i+1 − 2uj
i

∆y2
+ O(∆y2). (36)

From the Grünwald-Letnikov relation, we have

Dα
t [u(y, t)]ji =

1
∆tα

j∑

k=0

wα
k uj−k

i , (37)

Dβ
t

[∂2u(y, t)
∂y2

]j

i
=

1
∆tβ

j∑

k=0

wβ
k (uj−k

i−1 + uj−k
i+1 − 2uj−k

i )
∆y2

, (38)

where wβ
k = (−1)k

(
β
k

)
.

Finally, we obtain the following finite difference scheme:

ρR
un

i − un−1
i

∆t
= A1 −A2 un

i + µR

un
i−1 + un

i+1 − 2un
i

∆y2
+ ρe + Gr(ρα)Rθn

i

+ ηµR τ−ε
n∑

k=0

wε
k(un−k

i−1 + un−k
i+1 − 2un−k

i )
∆y2

, (39)

(ρcp)RPr
(θj

i − θj−1
i

∆t
+ λ∆t−(c+1)

j∑

k=0

wc+1
k θn−k

i

)

= νR

θj
i−1 + θj

i+1 − 2θj
i

∆y2
+ Q

(
θj

i + λ ∆t−c

j∑

k=0

wc
kθj−k

i

)
, (40)

where i = 1, 2, · · · ,m− 1, and j = 1, 2, · · · , n.
The boundary and initial conditions can be discretized by

{
θ0

i = 0, θj
0 = 0, θj

m = 1,

u0
i = 0, uj

0 = 0, uj
m = 0,

(41)
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where i = 0, 1, 2, · · · ,m, and j = 0, 1, 2, · · · , n.

5 Graphical results and discussion

The semi-analytical and numerical solutions are derived for the EOF of the fractional second-
grade hybrid nanofluid through a vertical micro-channel. The effects of the relevant parameters
on the electroosmotic velocity, flow rate, and temperature are discussed in this section. The
non-dimensional parameters are chosen as follows[3–8,24]:

{
0 6 φT 6 6%, 0 6 Ha 6 10, E = 1, 0 6 Gr 6 4, P r = 6.2,

0 6 Q 6 4, 0 < R 6 1, 0 6 Υ 6 30, 0 6 η 6 1, 0 6 λ 6 1.

The semi-analytical and numerical solutions for the electroosmotic velocity (u), flow rate
(F ), and temperature (θ) are shown in Fig. 2. The figure shows that the results are very
consistent.

-

θ

θ

Fig. 2 Semi-analytical and numerical solutions for u, F , and θ when φT = 6%, ε = 0.8, c = 0.8,
Pr = 6.2, λ = 0.1, Q = 0.5, E = 1, Ha = 0.5, R = 1, η = 0.1, Υ = 2, and Gr = 1 (color
online)

5.1 Velocity characteristics
The variations of the electroosmotic velocity (u) and the flow rate (F ) for varied values of

the volume concentration (φT) where the pertinent parameters are fixed are shown in Fig. 3.
It is shown that u and F reach the steady state very quickly. Moreover, an increase in the
overall volume concentration (φT) follows by decreasing both u and F due to the change in the
momentum of the hybrid nanofluid.

Figure 4 depicts the variations of the electroosmotic velocity and the flow rate under the
effect of the fractional-order parameter (ε). It can be concluded from the figure that after a short
period (t 6 1), the elevation of the fractional-order parameter (ε) enhances the electroosmotic
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φ
T
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φ
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φ
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φ
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φ
T
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(a)

t

u

0.35

0.30
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0.20
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0.10
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F

8 10 0 2 4 6

(b)

t

8 10

Fig. 3 Variations of (a) u and (b) F versus t for different values of φT when ε = 0.5, c = 0.5, Pr = 6.2,
λ = 0.1, Q = 0.5, E = 1, Ha = 0.5, R = 1, η = 0.2, Gr = 2, and Υ = 2 (color online)
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Fig. 4 Variations of (a) u and (b) F versus t for different values of ε when φT = 6%, c = 0.5,
Pr = 6.2, λ = 0.1, Q = 0.5, E = 1, Ha = 0.5, R = 1, Υ = 2, Gr = 2, and η = 0.2 (color
online)

velocity and the flow rate. The main reason is that the fractional-order parameter provides
a crucial memory effect on the fluid. Figure 5 shows that an increase in the retardation time
(η) delays the electroosmotic velocity and the flow rate to reach the steady state. Physically, a
reduction in the retardation time is equivalent to a reduction in the friction, which resists the
system elastic deformation.
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Fig. 5 Variations of (a) u and (b) F versus the time t for different values of η when φT = 6%, c = 0.5,
λ = 0.1, Pr = 6.2, Q = 0.5, E = 1, Ha = 0.5, R = 1, Gr = 2, Υ = 2, and ε = 0.5 (color
online)

Figure 6 provides the variations in the electroosmotic velocity with the distance (y) for
different values of the Debye-Hükle parameter (Υ). It shows that for small values of the Debye-
Hükle parameter, the electroosmotic velocity takes a parabolic shape. In the core flow zone, it
exhibits a plug-like profile at higher values, and grows rapidly within the EDL. Physically, the
higher the value of Υ, the thinner the Debye layer becomes, resulting in a stronger electroosmotic
body force acting on the fluid mass in the EDL, driving the flow. Figure 7 demonstrates the
effect of the zeta potential ratio (R) on the electroosmotic velocity. Clearly, in the case of
symmetric electrolytes (R = 1), the electrostatic velocity takes a symmetric profile. While in
the asymmetric case (R < 1), the asymmetric electrostatic velocity profile is noticed. This can
be justified as higher values of R increase the concentration of ions within the EDL.

The variations of the electroosmotic velocity (u) and the flow rate (F ) versus the Hartmann
number (Ha) for different values of the Grashof number (Gr) are shown in Fig. 8. It is noticed
that u and F increase for small values of Ha while decrease for larger values of Ha. As a result
of the small values of Ha, it is seen that the impedance force with the magnitude (Ha2 u) is
smaller than the adding force with the magnitude (HaE). However, for the progressive values
of Ha, the impedance force is larger than the adding force.
5.2 Temperature characteristics

Figure 9 shows that the elevation of the overall volume concentration (φT) enhances the
fluid temperature in the core region of the channel when the thermal conductivity of the hybrid
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Fig. 6 Variations of u versus y for different
values of Υ when E = 0, Ha = 0,
φT = 2%, c = 0.5, Pr = 6.2, η = 0.8,
Q = 0.5, R = 1, ε = 0.5, Gr = 0, and
λ = 0.5 (color online)
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Fig. 7 Variations of u versus y for different
values of R when φT = 6%, c = 0.5,
η = 0.8, Pr = 6.2, Q = 0.5, Ha =
0.5, E = 1, ε = 0.5, Gr = 0, λ = 0.5,
and Υ = 20 (color online)
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Fig. 8 Variations of u (a) and F (b) versus Ha for different values of Gr when E = 1, φT = 6%,
c = 0.5, η = 0.5, Pr = 6.2, Q = 0.5, R = 1, ε = 0.5, λ = 0.5, and t = 1 (color online)

nanofluid increases. Figure 10 shows the effects of the fractional-order (c) on the temperature
evaluated at the centerline of the channel. It is evident that there is a gradual increase in the
temperature as time passes by till reaching a steady state. Moreover, the temperature of the
hybrid nanofluid is highly dependent on the fractional-order (c) before the steady state.
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Fig. 9 Effects of φT on θ versus y when λ =
0.8, Pr = 6.2, Q = 2, c = 0.8, and
t = 1 (color online)
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Fig. 10 Effects of c on θ versus t when λ =
1, P r = 6.2, Q = 2, φT = 6%, and
y = 0.5 (color online)

Figure 11 shows the effects of the relaxation time (λ) on the temperature at the centerline
of the channel. It is noticed that the temperature is relaxed at the beginning until a certain
value of the time, and then fluctuates. The fluctuation gradually disappears with the increasing
time. Figure 12 shows the effects of the heat source parameter on the temperature. It is shown
that the temperature fluctuates when the value of the heat source parameter is high, resulting
in longer time to reach the steady state.
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Fig. 11 Effects of λ on θ versus t when c =
0.8, Pr = 6.2, Q = 2, φT = 6%,
and y = 0.5 (color online)
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Fig. 12 Effects of Q on θ versus t when c =
0.8, P r = 6.2, λ = 0.8, φT = 6%,
and y = 0.5 (color online)

Figure 13 depicts the variations of the heat transfer coefficient (Nu) (Nusselt number)
through the channel under the effect of the overall volume concentration (φT). It shows that
Nu is enhanced by elevating φT near the wall (y = 0), while this variation vanishes at the core
region and inverses near the wall (y = 1). Figure 14 shows the effects of the fractional-order
(c) on the heat transfer coefficient (Nu) at the wall (y = 0). It is clear that the temperature
fractional-order highly affects the heat transfer coefficient. Figure 15 depicts the variations
of the heat transfer coefficient (Nu) at the wall (y = 0) under the effect of the temperature
relaxation time (λ). It is noticed that the heat transfer coefficient at the wall (y = 0) is relaxed
at the beginning of the time period until a certain value of the time, and then fluctuates. The
fluctuation gradually disappears with the increasing time. Figure 16 depicts the effects of the
heat source parameter on the heat transfer coefficient at the wall (y = 0). It is evident that an
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Fig. 13 Variations of Nu versus y for dif-
ferent values of φT when Pr = 6.2,
Q = 2, c = 0.8, λ = 0.8, and t = 1
(color online)
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Fig. 14 Variations of Nu versus t for dif-
ferent values of c when Pr = 6.2,
Q = 2, φT = 6%, λ = 0.5, and
y = 0 (color online)
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Fig. 15 Variations of Nu versus t for dif-
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y = 0 (color online)
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increase in the heat source will be followed by an increase in the heat transfer coefficient at the
wall, but this increment takes a tiny time to appear.
5.3 Validation of results

To validate our results, we prepare Fig. 17 to represent a comparison between the numerical
and semi-analytical solutions for the pure fluid, i.e., φT = 0%, with data from Ref. [5]. The
figure shows that the current results are very accurate.

-

-

 θ θ

Fig. 17 Data validation when φT = 0%, ε = 1, c = 0, Pr = 6.2, λ = 0, Q = 2, E = 1, Ha = 2,
R = 1, η = 0.5, Gr = 2, and Υ = 10 (color online)

6 Conclusions

The unsteady EOF of an incompressible fractional second-grade fluid with the low-dense
mixture of two distinct spherical nanoparticles, copper, and titanium is examined. The flow
of the hybrid nanofluid takes place through a vertical microchannel. A fractional Cattaneo
model with heat conduction is also considered. The Lorentz force is responsible for the pressure
difference through the microchannel in case of the DC-operated micropump. The Debye-Hükel
approximation is utilized to linearize the charge density. The semi-analytical solutions for the
velocity and heat equations are obtained with the Laplace and finite Fourier sine transforms
and their numerical inverses. In addition to the semi-analytical procedures presented, the
numerical algorithm based on the finite difference method is introduced for the given domain.
A comparison between the two solutions is presented as well. The results show the following
conclusions.

(I) An increase in the overall volume concentration will be followed by a decrease in both
the electroosmotic velocity and the flow rate due to the change in the momentum of the hybrid
nanofluid.

(II) The fractional-order parameters provide a crucial memory effect on the fluid and tem-
perature fields.

(III) The retardation time parameter delays the electroosmotic velocity and the flow rate to
reach the steady state.

(IV) The electroosmotic velocity is supported by the convective force to move the hybrid
nanofluid.

(V) The electroosmotic velocity takes a parabolic shape at small values of the Debye-Hükle
parameter, while exhibits a plug-like profile in the core flow zone at higher values and grows
rapidly within the EDL.

(VI) The overall volume concentration enhances the fluid temperature in the core region of
the microchannel due to the increase in the thermal conductivity of the hybrid nanofluid.

(VII) The temperature gradually increases as time passes by reaching the steady state.
(VIII) Higher values of the heat source parameter cause temperature fluctuations and longer

time to reach the steady state.
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Appendix A

Let g(y) be a continuous or piecewise continuous function in an interval (0 < y < 1). The finite
Fourier sine transform of g(y) is defined by

F{g(y)} = g̃(ξm) =

∫ 1

0

g(y) sin(ξmy)dy (A1)

with
F{g′′(y)} = −ξ2

mg̃(ξm) + ξm(g(0) + (−1)m+1g(1)). (A2)

The inverse finite sine Fourier transform is

F−1{g̃(ξm)} = 2

∞∑
m=1

g̃(ξm) sin(ξmy), (A3)

where ξm are the positive roots of the transcendental equation tan ξm = 0.


