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Abstract The natural dynamic characteristics of a circular cylindrical tube made
of three-directional (3D) functional graded material (FGM) based on the Timoshenko
beam theory are investigated. Hamilton’s principle is utilized to derive the novel motion
equations of the tube, considering the interactions among the longitudinal, transverse,
and rotation deformations. By dint of the differential quadrature method (DQM), the
governing equations are discretized to conduct the analysis of natural dynamic charac-
teristics. The Ritz method, in conjunction with the finite element method (FEM), is
introduced to verify the present results. It is found that the asymmetric modes in the
tube are controlled by the 3D FGM, which exhibit more complicated shapes compared
with the unidirectional (1D) and bi-directional (2D) FGM cases. Numerical examples
illustrate the effects of the axial, radial, and circumferential FGM indexes as well as the
supported edges on the natural dynamic characteristics in detail. It is notable that the
obtained results are beneficial for accurate design of smart structures composed from
multi-directional FGM.
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1 Introduction

Functionally graded material (FGM) is a class of advanced composite structures, which
usually contains two or more constitutions with desired characteristics by designing the volume
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fraction of the body according to a certain mixture rule. Due to the continuous and smooth
variation in the graded element, there are some outstanding features including high resistance,
lightweight, and flexibility[1–3]. Consequently, the superior composites have a wide range of
applications under hash working conditions, e.g., the plasma surface of fusion reactor and
spacecraft heat shield. It is not surprising that FGM structures, e.g., FGM beam[4], FGM
plate[5], FGM shell[6], and FGM pipe[7–8], are developed as perfect candidates to construct the
main element in the machine construction.

Another famous structure applied in a great number of engineering fields, e.g., aerospace,
civil, mechanical, and naval engineering, is hollow cylinder, which is selected as the necessary
unit from micro to macro scales, e.g., microtubule, carbon nanotube, and fuel tank[9–10]. Hollow
cylinder in service often withstands severe complex loads, which directly affects the structural
stability, reliability, and integrity. In order to optimize the tube responses for improving me-
chanical behaviors, FGM has been utilized to construct hollow circular cylinders. The dynamic
characteristics and mechanics of FGM hollow cylinders are of interesting topics, and have re-
ceived vast attention. By virtue of the semi-analytical finite element method (FEM), Kadoli
and Ganesan[11] investigated the buckling and vibration of FGM cylinders with the action of
thermal stresses. By dint of a two-step perturbation technique, Fu et al.[12] investigated the
thermal buckling and postbulking problems of FGM tubes with material properties varying
graded along the radial direction according to the power-law function. With the help of a
refined higher-order beam and the modified couple stress theories, Lu et al.[13–14] used a func-
tionally graded (FG) graphene platelet reinforced composite (GPLRC) multilayer to construct
microtubes, and studied the free vibration, stability, and postbuckling behaviors. Fuselages of
aerospace crafts and shuttles[15] often endure super-high thermal loads in two or three orien-
tations. Conventional unidirectional (1D) FGM can no longer satisfy the demand of several
physical fields. To fulfill the increasing requirements of advanced materials undergoing multi-
directional loads, multi-directional FGM is proposed so as to meet the design potential in more
general physical fields, e.g., multi-directional severe variations of temperature.

In recent years, scholars have widely focused on multi-directional FGM, owing to its out-
standing superiority over 1D FGM. In order to acquire effective applications of multi-directional
FGM, several researchers have carried out investigations on the mechanical characteristics of bi-
directional (2D) FGM, e.g., flexural response[16], bucking[17], vibration[18–19], postbucking[20],
hygro-thermal behavior[21], and magneto-electro-elastic coupling mechanism[22–23]. However,
the number of analyses on structures made of three-directional (3D) FGM is still limited. Hadi
et al.[24] took the advantage of the differential quadrature technique to study the natural dy-
namic characteristics of 3D FGM nanobeams with the nonlocal strain gradient theory.

To the best of the authors’ knowledge, most of previous works related to the static and
dynamic characteristics of FGM circular cylindrical tubes address uni-directional FGM. The
novelty of the present work is to use 3D FGM to construct circular cylindrical tubes for resisting
multi-directional loads. It has been shown from our previous investigations that 2D FGM may
induce asymmetric modes in free vibration, which significantly affects the structural behavior.
It is confirmed that 3D FGM tubes exhibit different dynamic characteristics over conventional
FGM tubes. In this paper, the dynamic characteristics of a circular cylindrical Timoshenko
tube made of 3D FGM under general boundary conditions are investigated by means of the
differential quadrature method (DQM), the Ritz method, and the FEM. In Section 2, the
relative theory and formulation are introduced. In Section 3, the solution procedure is described.
The numerical results are presented in Section 4. The main conclusions are summarized in
Section 5.

2 Theory and formulation

As seen in Fig. 1, we present a circular cylindrical Timoshenko tube made of 3D FGM, in
which L is the length, Ri is the inner radius, and Ro is the outer radius. In the tube system,
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we define two types of coordinate systems, i.e., the Cartesian coordinates (x, y, z) and the
cylindrical coordinates (θ, r, x). It is noted that the relationship between the two coordinate
systems is r2 = z2 + y2, y = r cos θ, and z = r sin θ. We assume that the 3D FGM Timoshenko
tube has a continuous and smooth property varying along the axial, radial, and circumferential
orientations, so that the elastic modulus Ẽ(x, r, θ), the density ρ̃(x, r, θ), and Poisson’s ratio
ν̃(x, r, θ) are

Ẽ(x, r, θ) = Θ1(x)
(
Ec

( r −Ri

Ro −Ri

)n( θ

2π

)k

+ Em
(
1−

( r −Ri

Ro −Ri

)n( θ

2π

)k))
, (1)

ρ̃(x, r, θ) = Θ2(x)
(
ρc

( r −Ri

Ro −Ri

)n( θ

2π

)k

+ ρm
(
1−

( r −Ri

Ro −Ri

)n( θ

2π

)k))
, (2)

ν̃(x, r, θ) = Θ3(x)
(
νc

( r −Ri

Ro −Ri

)n( θ

2π

)k

+ νm
(
1−

( r −Ri

Ro −Ri

)n( θ

2π

)k))
, (3)

where Θ1(x), Θ2(x), and Θ3(x) are arbitrary functions. n and k denote the radial and circum-
ferential FGM indexes, respectively, which are relevant to the volume fraction varied along the
radial and circumferential orientations. The superscripts c and m represent the corresponding
properties of pure ceramic and metal, respectively.

(a) Main view (b) Cross-section view
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Fig. 1 Schematic diagram of a circular cylindrical Timoshenko tube made of 3D FGM (color online)

According to the Timoshenko beam theory, the displacement fields (ũ1, ũ2, ũ3) of the 3D
FGM tube are introduced as follows:

ũ1 = u0(x, t) + zψc(x, t), ũ2 = 0, ũ3 = wh(x, t), (4)

where u0 and wh represent the axial and transverse deflections of any point in the 3D FGM
tube on the x-axis, and ψc denotes the rotation of the tube cross-section. Introduce the strain-
displacement relationship as follows:

ε̃xx =
∂ũ1

∂x
=

∂u0

∂x
+ z

∂ψc

∂x
, γ̃xz =

∂ũ1

∂z
+

∂ũ3

∂x
=

∂wh

∂x
+ ψc. (5)

According to Hooke’s law and the assumption of small deformations, the stresses in the 3D
FGM tube are

σ̃xx = Ẽε̃xx, τ̃xz = k̃sG̃γ̃xz, (6)

where k̃s denotes the shear correction factor, which is employed to account for the non-uniform
shear stress distribution, and G̃ is the shear modulus of the tube defined by G̃ = Ẽ/(2(1 + ϑ̃)).
On the basis of Cartesian coordinates, the potential energy of the 3D FGM tube takes the
following form:

ΠU =
1
2

∫

V̂

(σ̃xxε̃xx + τ̃xz γ̃xz)dV̂ , (7)
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where V̂ is the volume of the tube. Substituting Eqs. (5) and (6) into Eq. (7) yields

ΠU =
1
2

∫ L

0

∫

Â

(
σ̃xx

∂u0

∂x
+ σ̃xxz

∂ψc

∂x
+ τ̃xz

(∂wh

∂x
+ ψc

))
dÂdx

=
1
2

∫ L

0

Ñ∆
∂u0

∂x
+ M̃∆

∂2wh

∂x2
+ Q̃∆

(∂wh

∂x
+ ψc

)
dx, (8)

where Â is the cross-sectional area of the tube. The axial force Ñ∆, the bending moment M̃∆,
and the shear force Q̃∆ are defined by

(Ñ∆, M̃∆, Q̃∆) =
∫

Â

(σ̃xx, σ̃xxz, τ̃xz)dÂ. (9)

Substituting Eqs. (5)–(6) into Eq. (9) yields




Ñ∆ = B1
xxΘ1(x)

∂u0

∂x
+ B2

xxΘ1(x)
∂ψc

∂x
,

M̃∆ = B2
xxΘ1(x)

∂u0

∂x
+ B3

xxΘ1(x)
∂ψc

∂x
, Q̃∆ = k̃sD55

(∂wh

∂x
+ ψc

)
,

(10)

in which

(B1
xx, B2

xx, B3
xx) =

∫ 2π

0

∫ Ro

Ri

(
Ec

( r −Ri

Ro −Ri

)n( θ

2π

)k

+ Em
(
1−

( r −Ri

Ro −Ri

)n( θ

2π

)k))
(1, r sin θ, r2 sin2 θ)rdrdθ, (11)

D55(x) =
∫ 2π

0

∫ Ro

Ri

Ẽ

2(1 + ν̃)
rdrdθ. (12)

The kinetic energy of the 3D FGM tube can be obtained as

ΠT =
1
2

∫

V̂

ρ̃
((∂ũ1

∂t

)2

+
(∂ũ3

∂t

)2)
dV̂

=
1
2

∫ L

0

Θ2(x)
(
mbr0

(∂u0

∂t

)2

+ 2mbr1
∂u0

∂t

∂ψc

∂t
+ mbr2

(∂ψc

∂t

)2

+ mbr0

(∂wh

∂t

)2)
dx, (13)

where the inertia components mbr0, mbr1, and mbr2 are

(mbr0,mbr1,mbr2) =
∫

Â

ρ̃

Θ2(x)
(1, z, z2)dA

=
∫ 2π

0

∫ Ro

Ri

(
ρc

( r −Ri

Ro −Ri

)n( θ

2π

)k

+ ρm
(
1−

( r −Ri

Ro −Ri

)n( θ

2π

)k))

· (1, r sin θ, r2 sin2 θ)rdrdθ. (14)

Hamilton’s principle is introduced as

∫ t2

t1

(δΠT − δΠU )dt = 0. (15)
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Substituting Eqs. (8) and (13) into Eq. (15) and then integrating by parts to the solutions
yield the governing equations

∂Θ1(x)Ñx

∂x
= Θ2(x)

(
mbr0

∂2u0

∂t2
+ mbr1

∂2ψc

∂t2

)
, (16)

∂Θ1(x)Q̃∆

∂x
= Θ2(x)mbr0

∂2wh

∂t2
, (17)

∂Θ1(x)M̃∆

∂x
−Θ1(x)Q̃∆ = Θ2(x)mbr1

∂2u0

∂t2
+ Θ2(x)mbr2

∂2ψc

∂t2
(18)

and the boundary conditions




u0 = 0 or Θ1(x)Ñx = 0,

wh = 0 or Q̃∆ = 0,

ψc = 0 or Θ1(x)M̃∆ = 0,

∂wh

∂x
= 0 or Q̃∆ = 0.

(19)

Substituting Eq. (10) into Eqs. (16)–(18) yields the dynamic equations in terms of u0, wh,
and ψc as follows:

B1
xx

(∂2u0

∂x2
Θ1(x) +

∂u0

∂x
Θ′1(x)

)
+ B2

xx

(∂2ψc

∂x2
Θ1(x) +

∂ψc

∂x
Θ′1(x)

)

=Θ2(x)
(
mbr0

∂2u0

∂t2
+ mbr1

∂2ψc

∂t2

)
, (20)

D55(x)k̃s

(∂2wh

∂x2
+

∂ψc

∂x

)
+ D′

55(x)k̃s

(∂wh

∂x
+ ψc

)
= Θ2(x)mbr0

∂2wh

∂t2
, (21)

B2
xx

(∂2u0

∂x2
Θ1(x) +

∂u0

∂x
Θ′1(x)

)
+ B3

xx

(∂2ψc

∂x2
Θ1(x) +

∂ψc

∂x
Θ′1(x)

)
−D55(x)k̃s

(∂wh

∂x
+ ψc

)

=Θ2(x)
(
mbr1

∂2u0

∂t2
+ mbr2

∂2ψc

∂t2

)
. (22)

Assume that the material properties change exponentially in the axial orientation. Then,
we obtain

Θ1(x) = Θ2(x) = Θ3(x) = e
β
L x, (23)

where β stands for the axial FGM index. Substituting Eq. (23) into Eqs. (20)–(22) yields

B1
xx

(∂2u0

∂x2
e

β
L x +

∂u0

∂x
e

β
L x β

L

)
+ B2

xx

(∂2ψc

∂x2
e

β
L x +

∂ψc

∂x
e

β
L x β

L

)

=e
β
L x

(
mbr0

∂2u0

∂t2
+ mbr1

∂2ψc

∂t2

)
, (24)

D55(x)k̃s

(∂2wh

∂x2
+

∂ψc

∂x

)
+ D′

55(x)k̃s

(∂wh

∂x
+ ψc

)
= e

β
L xmbr0

∂2wh

∂t2
, (25)

B2
xx

(∂2u0

∂x2
e

β
L x +

∂u0

∂x
e

β
L x β

L

)
+ B3

xx

(∂2ψc

∂x2
e

β
L x +

∂ψc

∂x
e

β
L x β

L

)
−D55(x)k̃s

(∂wh

∂x
+ ψc

)

=e
β
L x

(
mbr1

∂2u0

∂t2
+ mbr2

∂2ψc

∂t2

)
. (26)
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Let us introduce the following dimensionless variables:




ug =
u0

Lπ
, whg =

wh

L
, ξ = π

x

L
, φcg =

ψc

π
, β =

β

π
,

(χ1, χ2, χ3) = (B1
xx, B2

xx, B3
xx)

1
B0

xx

, Gmm =
D55L

2

D0
xx

, λ10 =
mbr0

m0
br0π

2
,

(λ11, λ12) =
(mbr1

L
,
mbr2

L2

) 1
m0

br0

, τ =
πt

L2

√
B0

xx

m0
br0

,

(27)

where m0
br0 =

∫
Â

ρmdÂ, and B0
xx =

∫
Â

Emz2dÂ. Substituting Eq. (27) into Eqs. (24)–(26)
yields the dimensionless governing equations for the 3D FGM Timoshenko tube as follows:

χ1eβ ξ
(∂2ug

∂ξ
2 +

∂ug

∂ξ
β
)

+ χ2eβ ξ
(∂2φcg

∂ξ
2 +

∂φcg

∂ξ
β
)

= eβ ξ
(
λ10

∂2ug

∂τ2
+ λ11

∂2φcg

∂τ2

)
, (28)

Gmmk̃s

(∂2whg

∂ξ
2 +

∂φcg

∂ξ

)
+

∂Gmm

∂ξ
k̃sβ

(∂whg

∂ξ
+ φcg

)
= eβ ξλ10

∂2whg

∂τ2
, (29)

χ2eβ ξ
(∂2ug

∂ξ
2 +

∂ug

∂ξ
β
)

+ χ3eβ ξ
(∂2φcg

∂ξ
2 +

∂φcg

∂ξ
β
)
− k̃sGmm

(∂whg

∂ξ
+ φcg

)

=eβ ξ
(
λ11

∂2ug

∂τ2
+ λ12

∂2φcg

∂τ2

)
. (30)

From Eq. (27), one can divide the end supports of Eq. (19) into the following cases:




ug(0, τ) = ug(1, τ) = 0, whg(0, τ) = whg(1, τ) = 0,

∂whg(0, τ)
∂ξ

=
∂whg(1, τ)

∂ξ
= 0, φcg(0, τ) = φcg(1, τ) = 0

(31)

for a clamped-clamped (C-C) Timoshenko tube,




ug(0, τ) = ug(1, τ) = 0, whg(0, τ) = whg(1, τ) = 0,

∂2whg(0, τ)

∂ξ
2 =

∂2whg(1, τ)

∂ξ
2 = 0,

∂φcg(0, τ)

∂ξ
=

∂φcg(1, τ)

∂ξ
= 0

(32)

for a hinged-hinged (H-H) Timoshenko tube,




ug(0, τ) = ug(1, τ) = 0, whg(0, τ) = whg(1, τ) = 0,

∂whg(0, τ)
∂ξ

=
∂2whg(1, τ)

∂ξ
2 = 0, φcg(0, τ) =

∂φcg(1, τ)

∂ξ
= 0

(33)

for a clamped-hinged (C-H) Timoshenko tube, and




ug(0, τ) =
∂2ug(1, τ)

∂ξ
2 = 0, whg(0, τ) =

∂2whg(1, τ)

∂ξ
2 = 0,

∂whg(0, τ)
∂ξ

=
∂3whg(1, τ)

∂ξ
3 = 0, φcg(0, τ) =

∂2φcg(1, τ)

∂ξ
2 = 0

(34)

for a clamped-free (C-F) Timoshenko tube.
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3 Solution procedure

3.1 DQM
The DQM is put forward for conducting the solving procedure. According to the DQM, ug,

whg, φcg, and their mth derivatives can be expressed as follows:

(ug, whg, φcg) =
N∑

j=1

κj(ξ)(uj
g, w

j
hg, φ

j

cg), (35)

∂m

∂ξ
m (ug, whg, φcg)ξ=ξk

=
N∑

j=1

Ξ(m)
kj (uj

g, w
j
hg, φ

j

cg), (36)

where N is the number of mesh points, κj(ξ) means Lagrange interpolation polynomials, and
Ξ(m)

kj is the mth-order weighting coefficient in which the mathematical formula can be presented
by the previous literature[25]. By virtue of the Chebyshev-Gauss-Lobatto technique, we obtain
the distribution of mesh points as follows:

ξk =
1
2

(
1− cos

kπ

N − 1

)
, k = 1, 2, · · · , N. (37)

Substituting Eqs. (35) and (36) into Eqs. (28)–(30) yields a series of ordinary differential
equations as follows:

χ1eβ ξk

( N∑

j=1

Ξ(2)
kj uj

g + β

N∑

j=1

Ξ(1)
kj uj

g

)
+ χ2eβ ξk

( N∑

j=1

Ξ(2)
kj φ

j

cg + β

N∑

j=1

Ξ(1)
kj φ

j

cg

)

=eβ ξk(λ10ü
k
g + λ11φ̈

k

cg), (38)

Gmmk̃s

( N∑

j=1

Ξ(2)
kj wj

hg +
N∑

j=1

Ξ(1)
kj φ

j

cg

)
+

N∑

j=1

Ξ(1)
kj Gj

mmk̃sβ
( N∑

j=1

Ξ(1)
kj wj

hg + φ
k

cg

)

=eβ ξkλ10ẅ
k
hg, (39)

χ2eβ ξk

( N∑

j=1

Ξ(2)
kj uj

g + β

N∑

j=1

Ξ(1)
kj uj

g

)
+ χ3eβ ξk

( N∑

j=1

Ξ(2)
kj φ

j

cg + β

N∑

j=1

Ξ(1)
kj φ

j

cg

)

− k̃sGmm

( N∑

j=1

Ξ(1)
kj wj

hg + φ
k

cg

)
= eβ ξk(λ11ü

k
g + λ12φ̈

k

cg), (40)

where the over dot stands for the differentiation with respect to τ . With the similar procedure,
the boundary conditions can be discretized. Define the unknown vector as follows:

Λ = ((uj
g)

T, (wj
hg)

T(φ
j

cg)
T)T, j = 1, 2, · · · , N. (41)

Assembling the matrices corresponding to the end supports and Eqs. (38)–(40) yields

M Λ̈ + K Λ = 0, (42)

where K and M are the stiffness and mass matrixes, respectively. Calculating the standard
eigenvalue issue, one can obtain the dimensionless natural frequencies and the corresponding
mode shapes of the 3D FGM Timoshenko tube.
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3.2 Ritz method
To illustrate the correctness of the DQM, we use the Ritz method to determine the natural

dynamic characteristics of the 3D FGM Timoshenko tube. Based on Eqs. (7) and (13), the
potential energy and the kinetic energy of the tube are transformed into the following forms:

ΠU =
B0

xx

2L

∫ 1

0

Θ1(ξ)
(
χ1

(∂ug

∂ξ

)2

+ 2χ2
∂ug

∂ξ

∂φcg

∂ξ
+ χ3

(∂φcg

∂ξ

)2)

+ Θ3(ξ)ksD55

((∂whg

∂ξ

)2

+ 2
∂whg

∂ξ
φcg + φ

2

cg

)
dξ, (43)

ΠT =
B0

xx

2L

∫ 1

0

Θ2(ξ)
(
λ10

(∂ug

∂τ

)2

+ 2λ11
∂ug

∂τ

∂φcg

∂τ
+ λ12

(∂φcg

∂τ

)2

+ λ10

(∂whg

∂τ

)2)
dξ. (44)

The energy function of the 3D FGM tube can be written as

Γ = ΠU −ΠT . (45)

To apply the standard Ritz procedure, the axial, transverse, and rotational deflections of
the tube are approximated by a series of auxiliary functions as follows:

whg =
N∑

m=1

Am(τ)µmw(ξ), µmw(ξ) = ηw(ξ)ξ
m−1

, (46)

ug =
N∑

m=1

Bm(τ)µmu(ξ), µmu(ξ) = ηu(ξ)ξ
m−1

, (47)

φcg =
N∑

m=1

Cm(τ)µmψ(ξ), µmψ(ξ) = ηψ(ξ)ξ
m−1

, (48)

where Am(τ), Bm(τ), and Cm(τ) stand for unknown time-dependent coefficients. ηw, ηu, and
ηψ are the Ritz trial functions adopted to satisfy the geometric end supports. The Ritz trial
functions can be written as follows:

ηw(ξ) = ξ
pw(1− ξ)qw , ηu(ξ) = ξ

pu(1− ξ)qu , ηψ(ξ) = ξ
pψ (1− ξ)qψ , (49)

where pm and qm (m = w, u, ψ) denote the exponents corresponding to the boundary conditions.
Table 1 gives the boundary exponents for different supported edges.

Table 1 Various values of the boundary exponents for different supported edges

Boundary condition
Left end Right end

pw pu pψ qw qu qψ

H-H tube 1 1 0 1 0 0
C-C tube 1 1 1 1 1 1
C-H tube 1 1 1 1 0 0
C-F tube 1 1 1 0 0 0

Application of the Lagrange equations to the 3D FGM Timoshenko tube yields

d
dt

( ∂Γ
∂ϑ̇m

)
− ∂Γ

∂ϑm
= 0, m = 1, 2, · · · , 3N, (50)
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where

ϑm =





Am, m = 1, 2, · · · , N,

Bm−N , m = N + 1, N + 2, · · · , 2N,

Cm−2N , m = 2N + 1, 2N + 2, · · · , 3N.

(51)

Substituting Eqs. (43)–(45) into Eq. (50) yields



K1 0 K3

0 K5 K6

K7 K8 K9







A(τ)
B(τ)
C(τ)


 +




M1 0 0
0 M5 M6

0 M8 M9







Ä(τ)
B̈(τ)
C̈(τ)


 = 0, (52)

where Km and Mm are the stiffness and mass matrices, respectively. It is mentioned here that
the stiffness and mass matrices are symmetric and in the size of N × N . Their elements are
listed as follows:





Klm
1 =

∫ 1

0

Θ3(ξ)k̃sD55
∂µlw

∂ξ

∂µmw

∂ξ
dξ, Klm

3 =
∫ 1

0

Θ3(ξ)k̃sD55
∂µlw

∂ξ
µmψdξ,

Klm
5 =

∫ 1

0

Θ1(ξ)χ1
∂µlu

∂ξ

∂µmu

∂ξ
dξ, Klm

6 =
∫ 1

0

Θ1(ξ)χ2
∂µlu

∂ξ

∂µmψ

∂ξ
dξ,

Klm
7 =

∫ 1

0

Θ3(ξ)k̃sD55µlψ
∂µmw

∂ξ
dξ, Klm

8 =
∫ 1

0

Θ1(ξ)χ2
∂µlψ

∂ξ

∂µmu

∂ξ
dξ,

Klm
9 =

∫ 1

0

Θ1(ξ)χ3
∂µlψ

∂ξ

∂µmψ

∂ξ
dξ +

∫ 1

0

Θ3(ξ)k̃sD55µlψµmψdξ,

(53)





M lm
1 =

∫ 1

0

Θ2(ξ)λ10µlwµmwdξ, M lm
5 =

∫ 1

0

Θ2(ξ)λ10µluµmudξ,

M lm
6 =

∫ 1

0

Θ2(ξ)λ11µluµmψdξ, M lm
8 =

∫ 1

0

Θ2(ξ)λ11µlψµmudξ,

M lm
9 =

∫ 1

0

Θ2(ξ)λ12µlψµmψdξ.

(54)

Based on Eq. (52), the QR decomposition method in the MATLAB software is used to solve
the standard eigenvalue problems. Then, we can determine the natural frequencies of the 3D
FGM Timoshenko tube under different boundary conditions.
3.3 FEM

We also use the FEM based on the COMSOL software to solve the free vibration of the 3D
FGM Timoshenko tube. The detailed steps are as follows.

(i) According to the geometric parameters used in the DQM, we establish a 3D entity model
for the circular cylinders by virtue of Boolean operations. Then, the material properties are set
with the help of importing the mixture rule that the volume fraction of body varies along the
axial, radial, and circumferential directions in the built-in functions.

(ii) The constraint conditions are imposed in the end supports of the Timoshenko tube,
which should be satisfied by different boundary conditions, e.g., H-H, C-H, C-C, and C-F. In
order to improve the calculated efficiency and accuracy, we take the advantage of the triangular
mesh uniformly distributed in the radial direction to carry out the grid division.

(iii) On the basis of Eqs. (1) and (2), we use the eigenfrequency and modalities in the
COMSOL software to calculate the first- and second-order frequencies and the corresponding
mode shapes of the 3D FGM tube.
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4 Numerical results

In this section, numerical discussions are carried out to study the natural dynamic charac-
teristics of the 3D FGM Timoshenko tube with the general supported edges. In the simulation
procedure, Ri = 0.002 5 m, and Ro = 0.005m. The 3D FGM Timoshenko tube are made of
graded composites of steel (SUS304) and silicon nitride (Si3N4) with the following material
properties: Em = 207.7 GPa, Ec = 322.2 GPa, ρm = 8 160 kg · m−3, ρc = 2 370 kg · m−3,
νm = 0.31, and νc = 0.24. It is also pointed out that the shear correction factor k̃s of the
Timoshenko tube is chosen as follows[12]:

k̃s =
6
(( Ri

Ro

)2

+ 1
)2

(1 + ν̃)2

(7 + 12ν̃ + 4ν̃2)
(( Ri

Ro

)4

+ 1
)

+ (34 + 48ν̃ + 16ν̃2)
( Ri

Ro

)2 . (55)

4.1 Verification

In order to verify the effectiveness of the natural frequencies and mode shapes calculated by
the DQM, we first compare the dimensionless fundamental frequencies of the Timoshenko tube
with C-C, H-H, C-H, and C-F end supports obtained by the DQM, FEM, and Ritz method.
The results are shown in Table 2. It is shown that the solutions obtained by the three methods
are similar, which validates the correctness of the present natural frequency. Figure 2 compares
the mode shapes and nephograms of the 3D FGM Timoshenko tube under the H-H boundary
condition determined by the DQM with those predicted by the FEM. It is found that the
difference between the first two modes in the transverse and rotation directions is considerably
small, indicating the effectiveness of the present investigation.

4.2 Parametric study

Tables 3–6 exploit the effects of the axial, radial, and circumferential FGM indexes as well as
the length-radius ratio on the dimensionless fundamental frequency of the 3D FGM Timoshenko
tube with different end supports. For the C-C 3D FGM Timoshenko tube, one may observe
that the dimensionless fundamental frequency increases as the axial FGM index β increases,

Table 2 Comparison of dimensionless fundamental frequencies of the Timoshenko tube with C-C,
H-H, C-H, and C-F end supports determined by the DQM, FEM, and Ritz method for
different values of the axial, radial, and circumferential FGM indexes (L/Ro = 20)

End
support

Method
Axial, radial, and circumferential FGM indexes (β, n, k)

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 1)

C-C

DQM 48.786 4 49.066 7 31.569 9 29.673 6 31.751 4 25.557 5 29.843 9 25.704 5
FEM 48.201 5 48.468 5 31.148 3 29.566 8 31.322 3 25.431 8 29.732 7 25.573 2
Ritz 48.790 4 49.070 8 31.572 6 29.547 1 31.753 9 25.511 5 29.716 8 25.658 0

H-H

DQM 22.478 1 22.245 6 14.569 5 13.671 6 14.418 7 11.786 0 13.530 8 11.664 7
FEM 22.405 8 22.170 8 14.518 6 13.819 2 14.365 9 11.870 8 13.674 7 11.745 8
Ritz 22.477 8 22.245 8 14.569 2 13.606 6 14.418 8 11.761 8 13.464 3 11.639 8

C-H

DQM 34.428 1 32.073 1 22.299 0 20.940 0 20.773 5 18.044 7 19.508 0 16.810 0
FEM 34.183 7 31.841 3 22.123 7 21.034 8 20.607 6 18.076 7 19.596 6 16.838 9
Ritz 34.428 2 32.072 4 22.299 0 20.845 1 20.772 9 18.009 3 19.418 4 16.776 8

C-F

DQM 8.172 5 6.055 1 5.296 7 4.970 6 3.925 1 4.285 1 3.683 2 3.175 5
FEM 8.075 1 5.904 3 5.233 3 4.985 1 3.826 5 4.280 7 3.645 5 3.130 3
Ritz 8.070 9 5.896 3 5.231 3 4.886 2 3.821 9 4.223 6 3.569 7 3.085 7
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Fig. 2 Comparison of the first two mode shapes of the 3D FGM Timoshenko tube with the H-H end
support determined by the FEM and DQM (β = 1, n = 1, and k = 1) (color online)

but the opposite is achieved for the other supported edges. Another observation is that the
increases in both the circumferential FGM index k and the radial FGM index n lead to the
lessening of the dimensionless fundamental frequency. From Tables 3–6, it is also seen that the
fundamental frequency has an uptrend with respect to the length-to-radius ratio. This means
that the rigidity of the Timoshenko tube increases when the length-to-radius ratio increases,
indicating that the effective stiffness of the structure improves.

The variations of the first three-order frequencies of the 3D FGM Timoshenko tube as
a function of the axial FGM index β under different boundary conditions are explored in
Fig. 3. One may recognize that the effects of the index β on higher-order frequencies are
the same as those on the fundamental frequency. Moreover, the interesting phenomenon is
that, compared with various supported edges, when the stiffness constraint grows from the C-F
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Table 3 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
H-H boundary condition

k n
(L/Ro, β)

(10, 0) (10, 0.5) (10, 1) (10, 1.5) (20, 0) (20, 0.5) (20, 1) (20, 1.5) (30, 0) (30, 0.5) (30, 1) (30, 1.5)

0

0 21.560 1 21.496 0 21.305 0 20.990 2 22.478 1 22.419 7 22.245 6 21.958 5 22.664 1 22.607 5 22.437 3 22.155 1
1 13.971 9 13.930 5 13.806 7 13.603 1 14.569 5 14.531 8 14.418 7 14.232 7 14.690 7 14.653 6 14.543 1 14.360 2
5 10.858 6 10.825 9 10.729 8 10.570 8 11.327 3 11.297 8 11.209 8 11.065 3 11.422 2 11.393 3 11.307 8 11.165 8
20 9.780 4 9.751 5 9.664 8 9.521 5 10.200 1 10.173 7 10.094 6 9.963 9 10.284 9 10.259 2 10.181 9 10.053 7

1

0 13.113 6 13.074 7 12.958 4 12.766 8 13.671 6 13.636 4 13.530 8 13.356 2 13.785 3 13.750 8 13.647 1 13.475 5
1 11.301 6 11.268 3 11.168 4 11.003 1 11.786 0 11.755 8 11.664 7 11.513 9 11.884 6 11.855 1 11.765 3 11.617 6
5 10.060 0 10.029 8 9.940 6 9.793 6 10.491 7 10.464 6 10.383 6 10.249 1 10.579 6 10.552 6 10.473 4 10.342 1
20 9.550 4 9.522 2 9.437 3 9.297 9 9.958 8 9.933 1 9.855 8 9.728 3 10.041 8 10.016 7 9.940 6 9.816 2

2

0 11.579 3 11.544 7 11.442 3 11.273 3 12.071 3 12.039 8 11.946 8 11.792 3 12.171 2 12.141 0 12.049 3 11.897 8
1 10.565 8 10.534 4 10.440 8 10.286 2 11.017 6 10.989 3 10.903 8 10.763 1 11.109 3 11.081 7 10.998 1 10.859 9
5 9.799 9 9.771 0 9.683 6 9.540 4 10.219 0 10.192 6 10.113 4 9.982 7 10.304 4 10.278 7 10.200 8 10.072 6
20 9.471 9 9.444 3 9.360 1 9.221 8 9.875 9 9.850 8 9.774 1 9.647 8 9.958 2 9.933 1 9.858 3 9.734 5

Table 4 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
C-H boundary condition

k n
(L/Ro, β)

(10, 0) (10, 0.5) (10, 1) (10, 1.5) (20, 0) (20, 0.5) (20, 1) (20, 1.5) (30, 0) (30, 0.5) (30, 1) (30, 1.5)

0

0 31.442 9 30.332 1 29.205 5 28.054 4 34.428 1 33.247 5 32.073 1 30.891 9 35.087 8 33.892 1 32.706 5 31.520 2
1 20.326 7 19.608 6 18.881 0 18.137 0 22.299 0 21.534 4 20.773 5 20.008 2 22.735 7 21.960 4 21.192 6 20.423 5
5 15.797 8 15.239 9 14.673 8 14.095 1 17.336 6 16.742 2 16.150 3 15.555 3 17.677 7 17.075 2 16.477 7 15.880 1
20 14.249 0 13.745 7 13.234 9 12.712 8 15.617 5 15.082 2 14.549 3 14.013 4 15.920 3 15.378 1 14.840 3 14.301 8

1

0 19.124 8 18.449 3 17.763 8 17.063 2 20.940 0 20.222 4 19.508 0 18.789 2 21.341 5 20.614 5 19.893 2 19.171 9
1 16.459 4 15.878 2 15.288 2 14.685 7 18.044 7 17.426 4 16.810 0 16.191 1 18.395 9 17.768 8 17.147 4 16.525 4
5 14.653 0 14.135 3 13.610 0 13.073 4 16.063 6 15.512 6 14.964 7 14.413 0 16.375 9 15.817 9 15.264 4 14.710 8
20 13.921 0 13.429 7 12.930 8 12.420 6 15.250 5 14.727 8 14.207 5 13.684 1 15.544 6 15.014 9 14.489 7 13.964 4

2

0 16.893 0 16.296 1 15.691 0 15.072 1 18.490 8 17.856 8 17.226 0 16.592 0 18.843 9 18.201 8 17.565 3 16.928 2
1 15.398 2 14.854 1 14.302 4 13.738 2 16.871 6 16.292 9 15.717 4 15.138 1 17.197 1 16.610 9 16.030 3 15.448 5
5 14.281 7 13.777 1 13.265 1 12.741 7 15.648 3 15.111 7 14.577 6 14.041 0 15.951 1 15.407 0 14.868 5 14.328 8
20 13.809 8 13.321 6 12.827 1 12.321 3 15.125 5 14.607 1 14.090 7 13.571 7 15.416 4 14.891 1 14.370 3 13.848 8

Table 5 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
C-C boundary condition

k n
(L/Ro, β)

(10, 0) (10, 0.5) (10, 1) (10, 1.5) (20, 0) (20, 0.5) (20, 1) (20, 1.5) (30, 0) (30, 0.5) (30, 1) (30, 1.5)

0

0 42.364 4 42.416 5 42.576 1 42.848 2 48.786 4 48.856 2 49.066 7 49.422 9 50.351 6 50.426 3 50.652 5 51.033 9
1 27.314 3 27.348 2 27.451 9 27.627 8 31.569 9 31.615 1 31.751 4 31.981 4 32.611 6 32.660 0 32.806 4 33.053 3
5 21.232 8 21.259 2 21.339 6 21.475 9 24.544 6 24.579 8 24.686 0 24.865 1 25.356 4 25.394 1 25.507 8 25.700 1
20 19.178 2 19.202 0 19.274 3 19.397 4 22.122 5 22.153 9 22.249 4 22.410 9 22.841 9 22.875 8 22.978 2 23.151 7

1

0 25.767 3 25.799 4 25.896 1 26.062 0 29.673 6 29.715 7 29.843 9 30.060 6 30.625 5 30.670 7 30.808 3 31.040 8
1 22.145 1 22.172 7 22.255 7 22.398 3 25.557 5 25.593 9 25.704 5 25.891 1 26.391 9 26.430 8 26.549 6 26.749 4
5 19.717 3 19.741 8 19.815 9 19.942 8 22.752 0 22.784 7 22.882 7 23.049 2 23.494 1 23.529 3 23.634 2 23.812 6
20 18.746 5 18.769 8 18.840 1 18.960 8 21.606 6 21.637 4 21.731 0 21.888 7 22.304 7 22.338 0 22.437 9 22.606 9

2

0 22.769 0 22.797 3 22.882 7 23.029 1 26.205 9 26.243 6 26.356 7 26.548 3 27.043 5 27.083 7 27.204 9 27.409 8
1 20.731 4 20.757 1 20.835 0 20.968 2 23.901 2 23.935 2 24.038 2 24.212 9 24.675 3 24.711 8 24.822 4 25.009 6
5 19.227 2 19.251 1 19.323 3 19.447 1 22.169 0 22.200 4 22.295 9 22.458 0 22.886 5 22.921 1 23.023 5 23.196 9
20 18.600 1 18.623 4 18.693 7 18.813 1 21.431 3 21.461 5 21.554 5 21.710 9 22.121 2 22.154 5 22.253 8 22.421 5

end supports to the C-C end supports, the natural frequencies caused by the index β gradu-
ally vary from downtrend to uptrend. This means that the constraint of end supports has a
significant effect on the frequency variation versus the axial FGM index. The effects of the
circumferential and radial FGM indexes on the first three-order frequencies of the 3D FGM
Timoshenko tube under various boundary conditions are presented in Figs. 4–5. It is shown
that, for all end supports, the downtrend of higher-order frequencies is obtained when the ra-
dial and circumferential FGM indexes increase, and the trend becomes more remarkable as the
mode order increases.

The effects of the axial, radial, and circumferential FGM indexes on the first two mode
shapes (the dimensionless transverse deflection whg and the rotation angle φcg) of the 3D FGM
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Table 6 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
C-F boundary condition

k n
(L/Ro, β)

(10, 0) (10, 0.5) (10, 1) (10, 1.5) (20, 0) (20, 0.5) (20, 1) (20, 1.5) (30, 0) (30, 0.5) (30, 1) (30, 1.5)

0

0 8.143 0 7.086 8 6.081 5 5.039 7 8.172 5 7.049 7 6.055 1 5.169 2 8.174 4 7.037 8 6.043 8 5.178 6
1 5.276 0 4.593 6 3.940 8 3.259 1 5.296 7 4.569 1 3.925 1 3.349 6 5.298 6 4.562 2 3.917 6 3.356 5
5 4.102 9 3.572 0 3.064 9 2.534 6 4.118 6 3.553 1 3.051 7 2.604 4 4.119 9 3.547 5 3.046 7 2.610 0
20 3.695 1 3.216 4 2.759 6 2.285 2 3.708 3 3.199 4 2.748 3 2.345 5 3.709 6 3.194 4 2.742 6 2.349 9

1

0 4.953 0 4.310 3 3.698 9 3.065 6 4.970 6 4.287 6 3.683 2 3.144 1 4.971 9 4.280 7 3.676 3 3.149 8
1 4.269 4 3.716 5 3.188 7 2.639 6 4.285 1 3.697 0 3.175 5 2.710 6 4.287 0 3.690 7 3.169 2 2.715 6
5 3.800 7 3.308 1 2.838 7 2.349 9 3.814 5 3.291 1 2.826 8 2.412 7 3.815 8 3.285 5 2.821 2 2.417 8
20 3.607 8 3.139 7 2.694 2 2.231 8 3.621 0 3.123 4 2.682 9 2.290 2 3.621 6 3.118 3 2.677 9 2.294 6

2

0 4.373 1 3.805 7 3.266 0 2.707 4 4.388 8 3.785 6 3.251 5 2.775 9 4.390 1 3.779 3 3.245 9 2.780 9
1 3.991 1 3.474 0 2.980 7 2.468 7 4.005 5 3.455 8 2.968 2 2.533 4 4.006 8 3.450 1 2.962 5 2.538 4
5 3.702 1 3.222 0 2.765 2 2.289 6 3.715 2 3.205 1 2.753 3 2.349 9 3.716 5 3.200 0 2.748 3 2.354 3
20 3.577 6 3.113 9 2.672 2 2.213 6 3.590 8 3.097 6 2.660 9 2.271 4 3.591 5 3.092 6 2.655 9 2.275 8
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Fig. 3 Variations of the first three-order frequencies of the 3D FGM Timoshenko tube as a function
of the axial FGM index with different end supports (L/Ro = 20, n = 1, and k = 1) (color
online)

Timoshenko tube with the C-C, H-H, C-H, and C-F end supports are examined in Figs. 6–9. It
is observed that, for all types of end supports, the 3D FGM indexes may induce the asymmetric
modes of the Timoshenko tube, and the mode shapes for the transverse displacement whg and
the rotation angle φcg significantly depend on the axial FGM index. One could draw a conclusion
that the 3D FGM structures conspicuously affect the mode shapes of the Timoshenko tube,
which may further tailor/tune the dynamics by 3D FGM composites.
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Fig. 4 Variations of the first three-order frequencies of the 3D FGM Timoshenko tube versus the
circumferential FGM index with different end supports (L/Ro = 20, β = 1, and n = 1) (color
online)
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Fig. 6 Effects of the axial, radial, and circumferential FGM indexes on the first mode of the 3D
FGM Timoshenko tube (transverse displacement) under different types of boundary conditions
(L/Ro = 20) (color online)
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Fig. 8 Effects of the axial, radial, and circumferential FGM indexes on the first mode of the 3D FGM
Timoshenko tube (rotation angle) under different types of boundary conditions (L/Ro = 20)
(color online)
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Fig. 9 Effects of the axial, radial, and circumferential FGM indexes on the second mode of the
3D FGM Timoshenko tube (rotation angle) under different types of boundary conditions
(L/Ro = 20) (color online)
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5 Conclusions

In this study, we introduce 3D FGM to construct the Timoshenko tube for resisting 3D
directional loads. The natural dynamic characteristics of the novel tube with general end sup-
ports are comprehensively investigated. Considering the interactions among the longitudinal,
transverse, and rotation deformations and taking the advantage of Hamilton’s principle, we
establish a novel model for the tube with the aid of the Timoshenko beam theory. The DQM
in association with the Ritz method is utilized to solve the governing equations with variable
coefficients. Numerical simulations are conducted to reveal the effects of the FGM indexes and
boundary conditions on the natural frequencies and mode shapes of the Timoshenko tube. The
main conclusions are included as follows.

(I) The comparison of the dimensionless frequencies and mode shapes of the 3D FGM
Timoshenko tube obtained by the DQM with those predicted by the Ritz method and FEM
confirms the correctness of the present results.

(II) The natural frequencies of the 3D FGM Timoshenko tube have an ascending trend with
respect to the radial FGM index under the C-C boundary condition but an opposite trend
under the other boundary conditions. When the constraint stiffness grows from the C-F end
supports to the C-C end supports, the natural frequencies caused by the index β vary gradually
from downtrend to uptrend.

(III) The natural frequencies of the 3D FGM Timoshenko tube with various supported edges
decrease when the radial and circumferential FGM indexes increase.

(IV) The increasing axial FGM index gives rise to the anti-symmetry of the first two mode
shapes for the transverse deflection and rotation angle.

The results are expected to provide important guidelines for improving multi-directional
FGM tubes to resist 3D load-bearing in engineering.
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