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Abstract  The natural dynamic characteristics of a circular cylindrical tube made
of three-directional (3D) functional graded material (FGM) based on the Timoshenko
beam theory are investigated. Hamilton’s principle is utilized to derive the novel motion
equations of the tube, considering the interactions among the longitudinal, transverse,
and rotation deformations. By dint of the differential quadrature method (DQM), the
governing equations are discretized to conduct the analysis of natural dynamic charac-
teristics. The Ritz method, in conjunction with the finite element method (FEM), is
introduced to verify the present results. It is found that the asymmetric modes in the
tube are controlled by the 3D FGM, which exhibit more complicated shapes compared
with the unidirectional (1D) and bi-directional (2D) FGM cases. Numerical examples
illustrate the effects of the axial, radial, and circumferential FGM indexes as well as the
supported edges on the natural dynamic characteristics in detail. It is notable that the
obtained results are beneficial for accurate design of smart structures composed from
multi-directional FGM.
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1 Introduction

Functionally graded material (FGM) is a class of advanced composite structures, which
usually contains two or more constitutions with desired characteristics by designing the volume
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fraction of the body according to a certain mixture rule. Due to the continuous and smooth
variation in the graded element, there are some outstanding features including high resistance,
lightweight, and flexibilityl" . Consequently, the superior composites have a wide range of
applications under hash working conditions, e.g., the plasma surface of fusion reactor and
spacecraft heat shield. It is not surprising that FGM structures, e.g., FGM beam!*, FGM
plate®, FGM shelll®, and FGM pipel™®!, are developed as perfect candidates to construct the
main element in the machine construction.

Another famous structure applied in a great number of engineering fields, e.g., aerospace,
civil, mechanical, and naval engineering, is hollow cylinder, which is selected as the necessary
unit from micro to macro scales, e.g., microtubule, carbon nanotube, and fuel tank®19. Hollow
cylinder in service often withstands severe complex loads, which directly affects the structural
stability, reliability, and integrity. In order to optimize the tube responses for improving me-
chanical behaviors, FGM has been utilized to construct hollow circular cylinders. The dynamic
characteristics and mechanics of FGM hollow cylinders are of interesting topics, and have re-
ceived vast attention. By virtue of the semi-analytical finite element method (FEM), Kadoli
and Ganesan!'!] investigated the buckling and vibration of FGM cylinders with the action of
thermal stresses. By dint of a two-step perturbation technique, Fu et al.'? investigated the
thermal buckling and postbulking problems of FGM tubes with material properties varying
graded along the radial direction according to the power-law function. With the help of a
refined higher-order beam and the modified couple stress theories, Lu et al.'® 14 used a func-
tionally graded (FG) graphene platelet reinforced composite (GPLRC) multilayer to construct
microtubes, and studied the free vibration, stability, and postbuckling behaviors. Fuselages of
aerospace crafts and shuttles!!! often endure super-high thermal loads in two or three orien-
tations. Conventional unidirectional (1D) FGM can no longer satisfy the demand of several
physical fields. To fulfill the increasing requirements of advanced materials undergoing multi-
directional loads, multi-directional FGM is proposed so as to meet the design potential in more
general physical fields, e.g., multi-directional severe variations of temperature.

In recent years, scholars have widely focused on multi-directional FGM, owing to its out-
standing superiority over 1D FGM. In order to acquire effective applications of multi-directional
FGM, several researchers have carried out investigations on the mechanical characteristics of bi-
directional (2D) FGM, e.g., flexural responsel*6], buckingm], vibration(t8-19] pos‘cbucking[QO]7
hygro-thermal behavior?!), and magneto-electro-elastic coupling mechanism[?223]. However,
the number of analyses on structures made of three-directional (3D) FGM is still limited. Hadi
et al.?4 took the advantage of the differential quadrature technique to study the natural dy-
namic characteristics of 3D FGM nanobeams with the nonlocal strain gradient theory.

To the best of the authors’ knowledge, most of previous works related to the static and
dynamic characteristics of FGM circular cylindrical tubes address uni-directional FGM. The
novelty of the present work is to use 3D FGM to construct circular cylindrical tubes for resisting
multi-directional loads. It has been shown from our previous investigations that 2D FGM may
induce asymmetric modes in free vibration, which significantly affects the structural behavior.
It is confirmed that 3D FGM tubes exhibit different dynamic characteristics over conventional
FGM tubes. In this paper, the dynamic characteristics of a circular cylindrical Timoshenko
tube made of 3D FGM under general boundary conditions are investigated by means of the
differential quadrature method (DQM), the Ritz method, and the FEM. In Section 2, the
relative theory and formulation are introduced. In Section 3, the solution procedure is described.
The numerical results are presented in Section 4. The main conclusions are summarized in
Section 5.

2 Theory and formulation

As seen in Fig. 1, we present a circular cylindrical Timoshenko tube made of 3D FGM, in
which L is the length, R; is the inner radius, and R, is the outer radius. In the tube system,
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we define two types of coordinate systems, i.e., the Cartesian coordinates (x,y,z) and the
cylindrical coordinates (6,r,x). It is noted that the relationship between the two coordinate
systems is 72 = 22 + 92, y = rcosf, and z = rsinf. We assume that the 3D FGM Timoshenko
tube has a continuous and smooth property varying along the axial, radial, and circumferential
orientations, so that the elastic modulus E(z,r,6), the density p(z,r,6), and Poisson’s ratio
v(z,r,0) are

B0 =0u)(F (z=y) (3) +2°(- (=) G2 0
a0 =) (= 5) (57) + (- (7=w) () ©
o0 =0u) (v (5=x) (32) v~ (=w) G @
where ©1(x), ©3(z), and O3(x) are arbitrary functions. n and k denote the radial and circum-
ferential FGM indexes, respectively, which are relevant to the volume fraction varied along the

radial and circumferential orientations. The superscripts ¢ and m represent the corresponding
properties of pure ceramic and metal, respectively.

(a) Main view (b) Cross-section view

Fig. 1 Schematic diagram of a circular cylindrical Timoshenko tube made of 3D FGM (color online)

According to the Timoshenko beam theory, the displacement fields (w1, U2, u3) of the 3D
FGM tube are introduced as follows:

up = Ug(x,t) + Z’l[)c(li,t), Uy = 0, Uz = wh(sc,t), (4)

where ug and wy, represent the axial and transverse deflections of any point in the 3D FGM
tube on the z-axis, and 1. denotes the rotation of the tube cross-section. Introduce the strain-
displacement relationship as follows:

~ _ 3&1 _ 3U0 61/10 ~ _ 6’(71 8ﬁ3 _ awh
S T e T T ae Y ©®

According to Hooke’s law and the assumption of small deformations, the stresses in the 3D
FGM tube are

Ea:z = Egﬂ:zy ?zz = p];sé§w27 (6)

where ES denotes the shear correction factor, which is employed to account for the non-uniform
shear stress distribution, and G is the shear modulus of the tube defined by G = E/(2(1+ ¥)).
On the basis of Cartesian coordinates, the potential energy of the 3D FGM tube takes the
following form:

1 ~
1_[U = _/ (5$ng£€ + ;wzﬁxz)dva (7)
2 )y
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where V is the volume of the tube. Substituting Eqgs. (5) and (6) into Eq. (7) yields
L[5 (s Ouo o O dwn n
Ty = 5/0 i (Um% T Ot Oz + m( ox wc))dAdx
1 ~ Oug —~ O0%wy owy,
NA S0 LA L e
2/0 2, HMaTge + Qa (T, +v)d (8)

where A is the cross-sectional area of the tube. The axial force N, A, the bending moment Ma,
and the shear force Qa are defined by
(Vs Ma, @a) = [ GorFua o)A, o)
A
Substituting Eqgs. (5)—(6) into Eq. (9) yields

~ 0 O,
Na = BLOW) 52 + BLO1 () Ve

(10)
5= BL01(0) 50 + B,01(s >%"; G = FuDss (20 1),
in which
2m
(B, 82,55 = [ / = (o)
—|—Em(1 - ( ) ( ) )) (1,7sin @, r? sin? §)rdrde, (11)
Ds5(x /277/1% 5 rdrd@ (12)
The kinetic energy of the 3D FGM tube can be obtained as
tly = %/ﬁ((%f+ () )av

/ O (x mbrO 85;0) +2mbr1%%+ br2<a$ic) +mbr0(%)2)dwa (13)

where the inertia components my,.q, Mpr1, and my.o are

p 2
Mpr0, M1, Mpr2) = —(1,2,2°)dA
(Mbro, Mpr1, Mir2) /292(3:)( )

27 R, C pon .
[ baR) G (- (R) G))
- (1,7sin @, r? sin? 9)rdrdd.

(14)
Hamilton’s principle is introduced as

ta
/t (8T — 6T1,)dt = 0. (15)
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Substituting Egs. (8) and (13) into Eq. (15) and then integrating by parts to the solutions
yield the governing equations

861( ) 62u0 82wc
o = O (mun gt mun '), (16)
001 (2)Qa 0wy,
T = @2($)mbT0W, (17)
90, ()M, ~ 0> 8.
$ —04(2)Qa = @2(x)mb,.187u20 + eg(x)m,,ﬂa—;ﬁ (18)
and the boundary conditions
u=0 or Oi(x)N, =0,
wp =0 or QA =0,
—~ 19

Ye=0 or Oi(z)Ma =0, (19)

% =0 or @A =0.

or

Substituting Eq. (10) into Egs. (16)—(18) yields the dynamic equations in terms of ug, wy,
and 1. as follows:

8L (29610 + 2061 w) + 82, (S 01 + oot )
= 05(a) (o 2 s 0, (20
mg@&(% + %) - Dg5(a:)kb(a(;t;h + ) = Oafa )m,,ma;z‘;h, (21)
52,290, + 2901w) + 5, (2 1e0uw) + 2201 (@) - Dunfara (2 + )
= 0(a) (s 510 1y ), 2

Assume that the material properties change exponentially in the axial orientation. Then,
we obtain

01(z) = Oa(z) = O3(z) = €7, (23)

where @ stands for the axial FGM index. Substituting Eq. (23) into Egs. (20)—(22) yields

%uy s Oug 8,0 0% s oY 8
1 0 Tz vto Tz c Lm c Lz
”(6:526 + Bz © L>+B”“<8x er ox L)
B4 8271,0 a2¢c
—eL (mbTOW + Mpr1 W), (24)
~ 10%w O s 0w
D55((£)ks( ath + aw ) + D55 ) - egwmbTOWQha (25)
uy s dug 8.0 0? 8 0Ye 8.0 ~ 0w
2 0 Zg 70 Zx M Zx zre Fx _ h
Bm( Ox? er ox e L) ( er ox e L) D55(m)ks< ox +¢C)
8 0%uy 0%,
= egx (mb’rl o2 + Mpro a;ﬁ ) (26)
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Let us introduce the following dimensionless variables:

_Mo oo Wh g 5 Y z_P

ug_Lﬂ_, whg_L7 f—ﬂ' ¢ 7_[_7 5_71_7
Dss L2 M
| g2 ps _ Dssl? _ Moo
(X1: X2, Xx3) = (Bgos Biar Bia) 0 Gmm = Do’ Ao = mgroﬂgﬁ (27)
Mpr1 Mpr2 1 BO

A Aiz) = (T, B2 :
( " 12) L L2 mgro T L2 mbrO

where mg,, = [; p™dA, and BY, = IR E™22dA. Substituting Eq. (27) into Eqgs. (24)—(26)
yields the dimensionless governing equations for the 3D FGM Timoshenko tube as follows:

xie? (a2ug + augﬁ) + Xzeﬁg(82$Cg P ) Eg<)‘10 i + )‘1182?%)’ (28)

ag ¢ o 0t or? or?
() S ) S oo
Xae “(Z;g + —;ﬁ) +xs "5(822)? agggﬁ) - ksGmm(ag”;‘g + oy
— I (w2 4 a2 0), (30)

From Eq. (27), one can divide the end supports of Eq. (19) into the following cases:
Ug(0,7) =TUg(1,7) =0, Whe(0,7) = Wnge(1l,7) =0,

whgé T) _ whg(E ) =0, ¢u(0,7) = (1,7) =0

for a clamped-clamped (C-C) Timoshenko tube,

Ug(0,7) =Ug(1,7) =0, Whe(0,7) =Whe(1l,7) =0,

Pwng(0,7) _ PWig(L7) _ 0beg(0.7) _ 0beg(1,7) _ 0 (32)
o o ’ o€ ¢

for a hinged-hinged (H-H) Timoshenko tube,

Ug(0,7) =Ug(1,7) =0, Wne(0,7) = Whe(1,7) =0,

2 _ ) 1 33
Moel07) _ Psll) g (0,7 = LesllT) o
23 o€ o€
for a clamped-hinged (C-H) Timoshenko tube, and
27
7 (0,7) = 0 UgE;.,T) 0, Wig(0,7) 0 whégl ) ~o,
23 73
OWng (0 D3 Whg (1 0?0, (1,7) (34
— ) T
whg(* ’T) = whg,g 77-) = 07 ¢cg(07 T) = Cg72 =0
o¢ o€ o€

for a clamped-free (C-F) Timoshenko tube.
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3 Solution procedure

3.1 DQM
The DQM is put forward for conducting the solving procedure. According to the DQM, g,
Whg, Pcg, and their mth derivatives can be expressed as follows:

(ﬂgv Whg, acg Z KJJ mhg’ d)cg) (35)
—_ oy =(m) —j —j —J
7 (T o sz, = 2 50 (@ e ) (30
J=1

where N is the number of mesh points, &; (€) means Lagrange interpolation polynomials, and
E,(;j") is the mth-order weighting coeflicient in which the mathematical formula can be presented

by the previous literaturel25l. By virtue of the Chebyshev-Gauss-Lobatto technique, we obtain
the distribution of mesh points as follows:

1
2

km

§p = N1

(1—(:05 ), k=1,2,--- N. (37)

Substituting Egs. (35) and (36) into Egs. (28)—(30) yields a series of ordinary differential
equations as follows:

N .
WIS+ T ER) 4 (S, T )

= i
B* . =k
=e gk (Aloﬂg + Allqscg) (38)
. ( ( ) . =(1)
7 —(2)— —(1) (1 1
@mq HW%+Z%JQ+Z%pJ ( kw@wﬁ
i=1 =1
=P /\wﬁ'ﬁg, (39)
N N .
BE —(2)—4 a2 —(1)—j BE —(2 —(1)T.
xze € ( SV RS zi(cj)“é) + xae” € (Z = Oig + Z ~§j)¢ig)
j=1 j=1 j=1
N k 37 k =k
~ . - . -
G (Y, 1 3L) = 7 Oy + M) (40
i=1

where the over dot stands for the differentiation with respect to 7. With the similar procedure,
the boundary conditions can be discretized. Define the unknown vector as follows:

i g —J .
A= ((ué)Tv(wig)T(d)cg)T)Tv Jj=L12---,N. (41)
Assembling the matrices corresponding to the end supports and Eqgs. (38)—(40) yields
MA+KA=0, (42)
where K and M are the stiffness and mass matrixes, respectively. Calculating the standard

eigenvalue issue, one can obtain the dimensionless natural frequencies and the corresponding
mode shapes of the 3D FGM Timoshenko tube.
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3.2 Ritz method

To illustrate the correctness of the DQM, we use the Ritz method to determine the natural
dynamic characteristics of the 3D FGM Timoshenko tube. Based on Egs. (7) and (13), the
potential energy and the kinetic energy of the tube are transformed into the following forms:

0

iy =2 [Cou0) (v (52) + 2 2 + (%))

+ O3(&)ksDss ((ag);g)Q + 281;?¢cg + $§g>dga (43)
rr =55 [ 00 (o G52) "+ 20 GEGE () (%) ek o

The energy function of the 3D FGM tube can be written as
=1y — . (45)

To apply the standard Ritz procedure, the axial, transverse, and rotational deflections of
the tube are approximated by a series of auxiliary functions as follows:

N

Wig = > AWt @), i @) = (", (46)
m=1

Uy =Y B pma(©), @) = nu(©F" (47)
N

Pex = > Coa(Mmw @), (€ = 1", (48)

where A, (7), Bp(7), and Cy,(7) stand for unknown time-dependent coefficients. 7,,, 7., and
ny are the Ritz trial functions adopted to satisfy the geometric end supports. The Ritz trial
functions can be written as follows:

nw(€) =" (1=0%, 7. (=" 1-9%, n@=E"(1-9v, (49)

where p,,, and ¢,,, (m = w, u, 1)) denote the exponents corresponding to the boundary conditions.
Table 1 gives the boundary exponents for different supported edges.

Table 1 Various values of the boundary exponents for different supported edges

Left end Right end
Boundary condition
Pw Pu Py qu qu Qv
H-H tube 1 1 0 1 0 0
C-C tube 1 1 1 1 1 1
C-H tube 1 1 1 1 0 0
C-F tube 1 1 1 0 0 0

Application of the Lagrange equations to the 3D FGM Timoshenko tube yields
d ( or ) or

5 @ _%:0’ m:172773N7 (50)
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where

Am7 m:1a25"'aNa
U = Bn-n, m:N+17N+2772N7 (51)
Conony m=2N+1,2N+2,--- 3N.

Substituting Eqgs. (43)—(45) into Eq. (50) yields

Ky 0 Ks\ [A(r) My 0 0 A(r)
0 Ks Kg B(T) + 0 Ms Msg B(T) =0, (52)
K7 Kg Kg C(T) 0 MS MQ C(T)

where K, and M, are the stiffness and mass matrices, respectively. It is mentioned here that
the stiffness and mass matrices are symmetric and in the size of N x N. Their elements are
listed as follows:

8/Llw aljlmw ! =7 a/lew
Kim = /e Vs D de, Klm:/e k<D €,
1 3( 55 0 0t § 3 3(§)ksDss —— o€ PompdE
= 8ﬁ’vlu alffmu aﬂlu aﬂm1b
Klm = / o dé, Klm= / Oy ( ,
Lo~ o _ - Oy Otimu =
Klm:/ O5(8)ks D g, Klm:/ S L Zlmu qe
7 ; 3(&)ks Dss pury e 3 8 ; 1(§)x2 0F oF 3
Yo Oy O LR -
Kl = / 01 (E)xs 2t IMime g / 03 &)k Dssttimy IE,
0 o6 ¢
1 _ -~ 1 _ -~
M{m = / @2(5))‘10lelffmwd£a MEl)m = / @2(5))‘10/“”/”’”1“(157
0 0
1 _ . 1 _ -~
Mg™ :/ O2(E) M1 ttruptmpdl,  ME™ :/ O2(&) A1 pu tmud, (54)
0 0
1 — p—
Mém :/ 92(§)A12,uh/)ljf’md)d§-
0

Based on Eq. (52), the QR decomposition method in the MATLAB software is used to solve
the standard eigenvalue problems. Then, we can determine the natural frequencies of the 3D
FGM Timoshenko tube under different boundary conditions.

3.3 FEM

We also use the FEM based on the COMSOL software to solve the free vibration of the 3D
FGM Timoshenko tube. The detailed steps are as follows.

(i) According to the geometric parameters used in the DQM, we establish a 3D entity model
for the circular cylinders by virtue of Boolean operations. Then, the material properties are set
with the help of importing the mixture rule that the volume fraction of body varies along the
axial, radial, and circumferential directions in the built-in functions.

(ii) The constraint conditions are imposed in the end supports of the Timoshenko tube,
which should be satisfied by different boundary conditions, e.g., H-H, C-H, C-C, and C-F. In
order to improve the calculated efficiency and accuracy, we take the advantage of the triangular
mesh uniformly distributed in the radial direction to carry out the grid division.

(iii) On the basis of Egs. (1) and (2), we use the eigenfrequency and modalities in the
COMSOL software to calculate the first- and second-order frequencies and the corresponding
mode shapes of the 3D FGM tube.
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4 Numerical results

In this section, numerical discussions are carried out to study the natural dynamic charac-
teristics of the 3D FGM Timoshenko tube with the general supported edges. In the simulation
procedure, R; = 0.0025m, and R, = 0.005m. The 3D FGM Timoshenko tube are made of
graded composites of steel (SUS304) and silicon nitride (SizN4) with the following material
properties: E™ = 207.7 GPa, E¢ = 322.2 GPa, p™ = 8160kg - m~3, p¢ = 2370kg - m™3,
v™ = 0.31, and v = 0.24. It is also pointed out that the shear correction factor ks of the
Timoshenko tube is chosen as follows['2):

~ 6((%)2+1)2(1+9)2
s = e I
(7+120 + 402) ((R—) + 1) + (34 + 487 + 1672) (F)

(0]

4.1 Verification

In order to verify the effectiveness of the natural frequencies and mode shapes calculated by
the DQM, we first compare the dimensionless fundamental frequencies of the Timoshenko tube
with C-C, H-H, C-H, and C-F end supports obtained by the DQM, FEM, and Ritz method.
The results are shown in Table 2. It is shown that the solutions obtained by the three methods
are similar, which validates the correctness of the present natural frequency. Figure 2 compares
the mode shapes and nephograms of the 3D FGM Timoshenko tube under the H-H boundary
condition determined by the DQM with those predicted by the FEM. It is found that the
difference between the first two modes in the transverse and rotation directions is considerably
small, indicating the effectiveness of the present investigation.

4.2 Parametric study

Tables 3-6 exploit the effects of the axial, radial, and circumferential FGM indexes as well as
the length-radius ratio on the dimensionless fundamental frequency of the 3D FGM Timoshenko
tube with different end supports. For the C-C 3D FGM Timoshenko tube, one may observe
that the dimensionless fundamental frequency increases as the axial FGM index [ increases,

Table 2 Comparison of dimensionless fundamental frequencies of the Timoshenko tube with C-C,
H-H, C-H, and C-F end supports determined by the DQM, FEM, and Ritz method for
different values of the axial, radial, and circumferential FGM indexes (L/R, = 20)

End Method Axial, radial, and circumferential FGM indexes (3, n, k)
etho
support (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (0,1,1) (1,0,1) (1,11
DQM 48.7864  49.0667 31.5699 29.6736 31.7514  25.5575 29.8439 25.7045
C-C FEM 48.2015  48.4685 31.1483 29.5668  31.3223 25.4318 29.7327 25.5732

Ritz 48.7904  49.0708  31.5726  29.5471 31.7539  25.5115 29.7168  25.6580
DQM 224781  22.2456  14.5695 13.6716 14.4187 11.7860 13.5308 11.6647
H-H FEM 22,4058 22.1708 14.5186 13.8192 14.3659 11.8708 13.6747 11.7458
Ritz 22,4778  22.2458 14.5692 13.6066 14.4188 11.7618 13.4643 11.6398
DQM 34.4281  32.0731 22.2990 20.9400 20.7735 18.0447 19.5080 16.8100
C-H FEM 34.1837  31.8413 22.1237 21.0348 20.6076 18.0767 19.5966 16.8389
Ritz 34.4282  32.0724 222990 20.8451 20.7729 18.0093 19.4184 16.7768
DQM 8.1725 6.0551 5.296 7 4.9706 3.9251 4.2851 3.6832 3.1755
C-F FEM 8.0751 5.904 3 5.2333 4.9851 3.826 5 4.2807 3.6455 3.1303
Ritz 8.0709 5.896 3 5.2313 4.886 2 3.8219 4.2236 3.569 7 3.0857
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Fig. 2 Comparison of the first two mode shapes of the 3D FGM Timoshenko tube with the H-H end
support determined by the FEM and DQM (8 =1, n =1, and k = 1) (color online)

but the opposite is achieved for the other supported edges. Another observation is that the
increases in both the circumferential FGM index k and the radial FGM index n lead to the
lessening of the dimensionless fundamental frequency. From Tables 36, it is also seen that the
fundamental frequency has an uptrend with respect to the length-to-radius ratio. This means
that the rigidity of the Timoshenko tube increases when the length-to-radius ratio increases,
indicating that the effective stiffness of the structure improves.

The variations of the first three-order frequencies of the 3D FGM Timoshenko tube as
a function of the axial FGM index ( under different boundary conditions are explored in
Fig.3. One may recognize that the effects of the index ( on higher-order frequencies are
the same as those on the fundamental frequency. Moreover, the interesting phenomenon is
that, compared with various supported edges, when the stiffness constraint grows from the C-F
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Table 3 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
H-H boundary condition

k n (L/Ro, B)
(10, 0) (10, 0.5) (10, 1) (10, 1.5) (20, 0) (20, 0.5) (20, 1) (20, 1.5) (30, 0) (30, 0.5) (30, 1) (30, 1.5)

0 21.5601 21.4960 21.3050 20.9902 22.4781 22.4197 22.2456 21.9585 22.6641 22.6075 22.4373 22.1551
1 13.9719 13.9305 13.8067 13.6031 14.5695 14.5318 14.4187 14.2327 14.6907 14.6536 14.5431 14.3602
0 5 10.8586 10.8259 10.7298 10.5708 11.3273 11.2978 11.2098 11.0653 11.4222 11.3933 11.3078 11.1658
20 9.7804 9.7515 9.6648 9.5215 10.2001 10.1737 10.0946 9.9639 10.2849 10.2592 10.1819 10.0537
0 13.1136 13.0747 12.9584 12.7668 13.6716 13.6364 13.5308 13.3562 13.7853 13.7508 13.6471 13.4755
1 11.3016 11.2683 11.1684 11.0031 11.7860 11.7558 11.6647 11.5139 11.8846 11.8551 11.7653 11.6176
1 5 10.0600 10.0298 9.9406 9.7936 10.4917 10.4646 10.3836 10.2491 10.5796 10.5526 10.4734 10.3421
20 9.5504 9.6222 9.4373 9.2979 9.9588 9.9331 9.8558 9.7283 10.0418 10.0167 9.9406 9.816 2
0 11.5793 11.5447 11.4423 11.2733 12.0713 12.0398 11.9468 11.7923 12.1712 12.1410 12.0493 11.8978
1 10.5658 10.5344 10.4408 10.2862 11.0176 10.9893 10.9038 10.7631 11.1093 11.0817 10.9981 10.8599
2 5 9.7999 9.7710 9.6836 9.5404 10.2190 10.1926 10.1134 9.9827 10.3044 10.2787 10.2008 10.0726
20 9.4719 9.4443 9.3601 9.2218 9.8759 9.8508 9.7741 9.647 8 9.958 2 9.9331 9.8583 9.7345

Table 4 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
C-H boundary condition

k n (L/Ro, B)
(10, 0) (10, 0.5) (10, 1) (10, 1.5) (20, 0) (20, 0.5) (20,1) (20, 1.5) (30, 0) (30, 0.5) (30,1) (30,1.5)

0 31.4429 30.3321 29.2055 28.0544 34.4281 33.2475 32.0731 30.8919 35.0878 33.8921 32.7065 31.5202
1 20.3267 19.6086 18.8810 18.1370 22.2990 21.5344 20.7735 20.0082 22.7357 21.9604 21.1926 20.4235
0 5 157978 15.2399 14.6738 14.0951 17.3366 16.7422 16.1503 15.5553 17.6777 17.0752 16.4777 15.8801
20 14.2490 13.7457 13.2349 12.7128 15.6175 15.0822 14.5493 14.0134 15.9203 15.3781 14.8403 14.3018
0 19.1248 18.4493 17.7638 17.0632 20.9400 20.2224 19.5080 18.7892 21.3415 20.6145 19.8932 19.1719
1 16.4594 15.8782 15.2882 14.6857 18.0447 17.4264 16.8100 16.1911 18.3959 17.7688 17.1474 16.5254
1 5 14.6530 14.1353 13.6100 13.0734 16.0636 15.5126 14.9647 14.4130 16.3759 15.8179 15.2644 14.7108
20 13.9210 13.4297 12.9308 12.4206 15.2505 14.7278 14.2075 13.6841 15.5446 15.0149 14.4897 13.9644
0 16.8930 16.2961 15.6910 15.0721 18.4908 17.8568 17.2260 16.5920 18.8439 18.2018 17.5653 16.9282
1 15.3982 14.8541 14.3024 13.7382 16.8716 16.2929 15.7174 15.1381 17.1971 16.6109 16.0303 15.4485
2 5 142817 13.7771 13.2651 12.7417 15.6483 15.1117 14.5776 14.0410 15.9511 15.4070 14.8685 14.3288
20 13.8098 13.3216 12.8271 12.3213 15.1255 14.6071 14.0907 13.5717 15.4164 14.8911 14.3703 13.8488

Table 5 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
C-C boundary condition

k n (L/Ro, B)
(10, 0) (10, 0.5) (10, 1) (10,1.5) (20, 0) (20, 0.5) (20, 1) (20, 1.5) (30, 0) (30,0.5) (30, 1) (30, 1.5)

0 42.3644 42.4165 42.5761 42.8482 48.7864 48.8562 49.0667 49.4229 50.3516 50.4263 50.6525 51.0339
1 27.3143 27.3482 27.4519 27.6278 31.5699 31.6151 31.7514 31.9814 32.6116 32.6600 32.8064 33.0533
0 5 21.2328 21.2592 21.3396 21.4759 24.5446 24.5798 24.6860 24.8651 25.3564 25.3941 25.5078 25.7001
20 19.1782 19.2020 19.2743 19.3974 22.1225 22.1539 22.2494 22.4109 22.8419 22.8758 22.9782 23.1517
0 25.7673 25.7994 25.8961 26.0620 29.6736 29.7157 29.8439 30.0606 30.6255 30.6707 30.8083 31.0408
1 22,1451 22.1727 22.2557 22.3983 25.5575 25.5939 25.7045 25.8911 26.3919 26.4308 26.5496 26.7494
1 5 107173 19.7418 19.8159 19.9428 22.7520 22.7847 22.8827 23.0492 23.4941 23.5293 23.6342 23.8126
20 18.7465 18.7698 18.8401 18.9608 21.6066 21.6374 21.7310 21.8887 22.3047 22.3380 22.4379 22.6069
0 227690 22.7973 22.8827 23.0291 26.2059 26.2436 26.3567 26.5483 27.0435 27.0837 27.2049 27.4098
1 20.7314 20.7571 20.8350 20.9682 23.9012 23.9352 24.0382 24.2129 24.6753 24.7118 24.8224 25.0096
2 5 10.2272 19.2511 19.3233 19.4471 22.1690 22.2004 22.2959 22.4580 22.8865 22.9211 23.0235 23.1969
20 18.6001 18.6234 18.6937 18.8131 21.4313 21.4615 21.5545 21.7109 22.1212 22.1545 22.2538 22.4215

end supports to the C-C end supports, the natural frequencies caused by the index § gradu-
ally vary from downtrend to uptrend. This means that the constraint of end supports has a
significant effect on the frequency variation versus the axial FGM index. The effects of the
circumferential and radial FGM indexes on the first three-order frequencies of the 3D FGM
Timoshenko tube under various boundary conditions are presented in Figs.4-5. It is shown
that, for all end supports, the downtrend of higher-order frequencies is obtained when the ra-
dial and circumferential FGM indexes increase, and the trend becomes more remarkable as the
mode order increases.

The effects of the axial, radial, and circumferential FGM indexes on the first two mode
shapes (the dimensionless transverse deflection Wy, and the rotation angle acg) of the 3D FGM
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Table 6 Dimensionless fundamental frequency of the 3D FGM Timoshenko tube with different values
of the length-radius ratio and the axial, radial, and circumferential FGM indexes under the
C-F boundary condition

k n (L/Ro, B)
(10,0) (10,0.5) (10,1) (10,1.5) (20,0) (20,0.5) (20,1) (20,1.5) (30,0) (30,0.5) (30,1) (30, 1.5)
0 81430 7.0868 6.0815 5.0397 8.1725 7.0497 6.0551  5.1692 8.1744  7.0378 6.0438  5.1786
1 5.2760  4.5936 3.9408  3.2591 5.2967  4.5691 3.9251  3.3496 5.2986  4.5622 3.9176  3.3565
0 5 41029 3.5720 3.0649  2.5346 4.1186  3.5531 3.0517  2.6044 4.1199  3.5475 3.0467  2.6100
20 3.6951  3.2164 2.7596  2.2852 3.7083  3.1994 2.7483  2.3455 3.7096  3.1944 2.7426  2.3499
0 4.9530 4.3103 3.6989  3.0656 4.9706  4.2876 3.6832  3.1441 4.9719  4.2807 3.6763  3.1498
1 4.2694  3.7165 3.1887  2.6396 4.2851  3.6970 3.1755  2.7106 4.2870  3.6907 3.1692  2.7156
1 5 38007 3.3081 2.8387 2.3499 3.8145 3.2911 2.8268 2.4127 3.8158 3.2855 2.8212  2.4178
20 3.6078  3.1397 2.6942  2.2318 3.6210  3.1234 2.6829  2.2902 3.6216  3.1183 2.6779  2.2046
0 4.3731 3.8057 3.2660  2.7074 4.3888  3.7856 3.2515  2.7759 4.3901  3.7793 3.2459  2.7809
1 3.9911  3.4740 2.9807  2.4687 4.0055  3.4558 2.9682  2.5334 4.0068  3.4501 2.9625  2.5384
2 5 37021  3.2220 2.7652  2.2896 3.7152  3.2051 2.7533  2.3499 3.7165  3.2000 2.7483  2.3543
20 3.5776  3.1139 26722  2.2136 3.5908  3.0976 2.6609  2.2714 3.5915  3.0926 2.6559  2.2758
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online)

Timoshenko tube with the C-C, H-H, C-H, and C-F end supports are examined in Figs. 6-9. It
is observed that, for all types of end supports, the 3D FGM indexes may induce the asymmetric
modes of the Timoshenko tube, and the mode shapes for the transverse displacement wy, and
the rotation angle gcg significantly depend on the axial FGM index. One could draw a conclusion
that the 3D FGM structures conspicuously affect the mode shapes of the Timoshenko tube,
which may further tailor/tune the dynamics by 3D FGM composites.
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5 Conclusions

In this study, we introduce 3D FGM to construct the Timoshenko tube for resisting 3D
directional loads. The natural dynamic characteristics of the novel tube with general end sup-
ports are comprehensively investigated. Considering the interactions among the longitudinal,
transverse, and rotation deformations and taking the advantage of Hamilton’s principle, we
establish a novel model for the tube with the aid of the Timoshenko beam theory. The DQM
in association with the Ritz method is utilized to solve the governing equations with variable
coefficients. Numerical simulations are conducted to reveal the effects of the FGM indexes and
boundary conditions on the natural frequencies and mode shapes of the Timoshenko tube. The
main conclusions are included as follows.

(I) The comparison of the dimensionless frequencies and mode shapes of the 3D FGM
Timoshenko tube obtained by the DQM with those predicted by the Ritz method and FEM
confirms the correctness of the present results.

(IT) The natural frequencies of the 3D FGM Timoshenko tube have an ascending trend with
respect to the radial FGM index under the C-C boundary condition but an opposite trend
under the other boundary conditions. When the constraint stiffness grows from the C-F end
supports to the C-C end supports, the natural frequencies caused by the index 3 vary gradually
from downtrend to uptrend.

(III) The natural frequencies of the 3D FGM Timoshenko tube with various supported edges
decrease when the radial and circumferential FGM indexes increase.

(IV) The increasing axial FGM index gives rise to the anti-symmetry of the first two mode
shapes for the transverse deflection and rotation angle.

The results are expected to provide important guidelines for improving multi-directional
FGM tubes to resist 3D load-bearing in engineering.
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