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Abstract This paper is a review, which focuses on our work, while including an analysis
of many works of other researchers in the field of quaternionic regularization. The regular
quaternion models of celestial mechanics and astrodynamics in the Kustaanheimo-Stiefel
(KS) variables and Euler (Rodrigues-Hamilton) parameters are analyzed. These models
are derived by the quaternion methods of mechanics and are based on the differential
equations of the perturbed spatial two-body problem and the perturbed spatial central
motion of a point particle. This paper also covers some applications of these models.
Stiefel and Scheifele are known to have doubted that quaternions and quaternion matrices
can be used efficiently to regularize the equations of celestial mechanics. However, the
author of this paper and other researchers refuted this point of view and showed that the
quaternion approach actually leads to efficient solutions for regularizing the equations of
celestial mechanics and astrodynamics.

This paper presents convenient geometric and kinematic interpretations of the KS
transformation and the KS bilinear relation proposed by the present author. More gen-
eral (compared with the KS equations) quaternion regular equations of the perturbed
spatial two-body problem in the KS variables are presented. These equations are derived
with the assumption that the KS bilinear relation was not satisfied. The main stages
of the quaternion theory of regularizing the vector differential equation of the perturbed
central motion of a point particle are presented, together with regular equations in the KS
variables and Euler parameters, derived by the aforementioned theory. We also present
the derivation of regular quaternion equations of the perturbed spatial two-body problem
in the Levi-Civita variables and the Euler parameters, developed by the ideal rectangular
Hansen coordinates and the orientation quaternion of the ideal coordinate frame.

This paper also gives new results using quaternionic methods in the perturbed spatial
restricted three-body problem.
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1 Introduction

Celestial mechanics and astrodynamics are based on Newtonian differential equations of the
perturbed spatial two-body problem and the perturbed spatial restricted three-body problem.
Newtonian equations of the perturbed spatial two-body problem degenerate when the second
body (body of interest) collides with the first (central) body, i.e., when the distance between
the bodies is zero. This makes these equations inconvenient for studying the motion of the
second body in the near neighborhood of the central body or its motion along highly eccen-
tric orbits. Singularity in the coordinate origin creates not only theoretical, but also practical
(computational) difficulties in the two-body problem. Analogously, Newtonian equations of the
perturbed spatial restricted three-body problem degenerate when the body of interest (with
negligible mass) collides with one of the other two bodies, which have finite masses. This
makes these equations inconvenient for studying the motion of the negligible mass body in the
neighborhood of the first or second gravitating body, and creates not only theoretical but also
practical (computational) difficulties in the restricted three-body problem. The elimination of
singularities (division by zero) induced by gravitational forces in classical (Newtonian) equa-
tions of celestial mechanics and astrodynamics is known as regularization. Equations without
such singularities are called regular. Among regularization methods and regular models of
celestial mechanics and astrodynamics, the use of quaternion methods and models based on
hypercomplex variables, i.e., the Hamilton quaternions, which use Kustaanheimo-Stiefel (KS)
variables or Euler parameters as their components (elements), has recently become widespread.
These methods and models offer a number of analytical and computational advantages.

Various aspects of quaternion regularization of differential equations of the perturbed spa-
tial two-body problem by using the KS variables have been studied by Velte[1], Vivarelli[2–4],
Shagov[5], Deprit et al.[6], Vrbik[7–8], Waldvogel[9–10], Saha[11], Zhao[12], Roa et al.[13–14], Roa
and Pelaez[15], Breiter and Langner[16–18], Ferrer and Crespo[19], and also by the author of this
paper, Chelnokov[20–36]. Stiefel and Scheifele[37], Bordovitsyna[38], Bordovitsyna and
Avdyushev[39], Fukushima[40–41], Pelaez et al.[42], Bau et al.[43], Amato et al.[44], and Bau
and Roa[45] demonstrated the results of comparing the numerical solutions to the equations
of orbital motion of celestial and cosmic bodies in the KS variables, Euler parameters, and
other variables. These results prove the efficiency of the KS variables and Euler parameters in
celestial mechanics and astrodynamics.

Loginov and Chelnokov compared the accuracy of numerical integration of the classical
Newtonian differential equations of the spatial restricted three-body problem (the Earth, the
Moon, and a spacecraft) in the Cartesian coordinates and the regular quaternion differential
equations in the four-dimensional KS variables. The equations were integrated by using the
standard Runge-Kutta method of fourth-order accuracy. The regular quaternion equations
in the KS variables demonstrated much higher accuracy than those in Cartesian coordinates.
The accuracy was higher by 2 orders of magnitude for the circular orbit, by 4 orders for the
perturbed elliptic orbits with medium eccentricity, and by 7 orders for the perturbed elliptic
orbit with high eccentricity.

This work analyzes the regular quaternion methods and models of celestial mechanics and
astrodynamics in the KS variables and Euler parameters. These methods and models are based
on the differential equations of the perturbed spatial two-body problem. This paper also covers
some applications of these methods and models.

In Section 2, preliminary works by Euler[46] and Levi-Civita[47–50] on regularizing the two-
body problem equations are introduced, in which the solutions are provided for one-dimensional
and two-dimensional problems involving the collision of two bodies. The KS regular equa-
tions of the perturbed spatial two-body problem in four-dimensional KS variables in scalar
and matrix forms were presented by Kustaanheimo[51], Kustaanheimo and Stiefel[52], and
Stiefel and Scheifele[37]. Primary analytical and computational advantages of these equations
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were described by Stiefel and Scheifele[37], Brumberg[53], Bordovitsyna[38], Bordovitsyna and
Avdyushev[39], and Fukushima[40–41]. Section 2 also describes regular equations for the two-
body problem in Cartesian coordinates by Bohlin[54], in which the advantages and disadvan-
tages are pointed out, and the development of Bohlin’s idea in the works by Burdet[55–56] is
also mentioned.

Sections 3 and 4 describe and analyze the quaternion methods and models proposed by the
present author in the beginning of the 1980s and 1990s[20–27], which, based on the citations by
publications in this field, are mostly unknown to English-speaking researchers.

Section 3 describes and analyzes the results obtained by the present author in the field
of quaternion regularization for the perturbed spatial two-body problem in the 1980s[20–23].
Soon after the discovery of the KS transformation, the usage of Hamilton quaternions (four-
dimensional hypercomplex numbers) and four-dimensional quaternion matrices for regulariz-
ing the equations of the spatial two-body problem had been examined. However, Stiefel and
Scheifele totally rejected this idea and wrote in their book[37] that “Any attempt to substitute
the theory of the KS matrix by the more popular theory of the quaternion matrices leads to
failure or at least to a very unwieldy formalism.”

We refuted this statement, apparently for the first time, in Refs. [20] and [21], by demonstrat-
ing that actually, the quaternion approach to regularization reveals geometric and kinematic
essence of the KS transformation. This allows the regular equations in the KS variables to be
derived directly and conveniently, makes the fundamental principles of the KS regularization
more intuitive and elegant, and supports the derivation of the more general quaternion regular
equations of the perturbed spatial two-body problem.

Regarding the above-cited statement by Stiefel and Scheifele on quaternion matrices, i.e.,
having no chance of success in the regularization theory, Waldvogel[10] wrote “This statement
was first refuted by Chelnokov (1981) who presented a regularization theory of the spatial
Kepler problem using geometrical considerations in a rotating coordinate system and quaternion
matrices. In a series of papers, including Chelnokov (1992, 1999), the same author extended
the theory of quaternion regularization and also presented practical applications.”

Section 3 provides convenient geometric and kinematic interpretations of the KS transfor-
mation and the KS bilinear relation. This relation, according to Stiefel and Scheifele[37], is
essential to their formulation of regular celestial mechanics. These interpretations were offered
by Chelnokov[20–21], who showed that the regularizing KS transformation of the coordinates
consists of transitioning from the Cartesian coordinates of the second body to the normed Eu-
ler parameters (components of the Hamilton rotation quaternion). These parameters, which
in Russia are usually called Rodrigues-Hamilton parameters, characterize the orientation of
some coordinate frame rotating in the inertial space. Therefore, the KS regular equations can
be derived from the original Newtonian two-body problem equations by rewriting them in the
rotating coordinate frame and using the Euler parameters for defining the orientation of that
coordinate frame. Such a derivation, which uses quaternion matrices and Hamilton quaternions,
was proposed by Chelnokov[20–21]. More general quaternion regular equations (compared with
the KS equations) of the perturbed spatial two-body problem in the KS variables were de-
rived in matrix and quaternion forms, with the assumption that the KS bilinear relation is not
satisfied. These equations are presented in Section 3.

Section 3 describes the regular equations of the perturbed spatial two-body problem in
quaternion osculating (i.e., slowly changing) elements, corresponding to the KS variables and
their first derivatives with respect to fictitious time. These equations were derived by
Chelnokov[28,30] from quaternion regular equations in the KS variables by the method of vari-
ation of arbitrary constants of integration. This section also covers regular equations of the
perturbed spatial two-body problem derived by Chelnokov[21] for the case when the essence of
transformations of the original equations of this problem stays the same, but the KS variables
are not used. These regular equations, which contain the quaternion kinematic equation in the
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Euler parameters (of the first order), are not linear in the case of Keplerian motion, but have
a simple and convenient form.

Chelnokov[22,26–27] used the ideas on quaternion regularization of two-body problem equa-
tions to derive the quaternion theory for regularizing the vector differential equation of the
perturbed motion of a point particle in the central force field with the potential Π(r), which is
assumed to be a random differentiable function of the distance r from the point particle to the
center of that force field, under the influence of the perturbing force with the potential Π∗(t, r)
and the perturbing acceleration p(t, r,dr/dt) (r is the radius vector of a point particle, which
directs from the center of the force field).

The results derived in these works are presented in Section 4. This section presents the
following aspects: the derived general quaternion differential equations of perturbed central
motion of a point particle with three regularizing functions (Subsection 4.1); conditions for
transforming the quaternion equations of perturbed central motion to oscillator form (to the
form of equations of a four-dimensional perturbed oscillator; in the case of unperturbed central
motion, this performs harmonic oscillations with constant frequency), which is convenient for
analytical and numerical study (Subsection 4.2); quaternion equations of perturbed central
motion in normal form (Subsection 4.3); systems of regular quaternion equations of perturbed
central motion, which use the KS variables or Euler parameters (Subsection 4.4); and systems
of quaternion equations of perturbed motion, which contain the generalized Binet equation
(Subsection 4.5).

The presented quaternion systems of equations of perturbed central motion differ in struc-
ture, order, and of dependent and independent variables. We provide the comparison of these
systems and show their properties and fields of use.

In particular, the main advantage of the differential equation systems of perturbed central
motion, which are derived using the Euler parameters and an independent variable τ (dτ =
r−2dt) or an independent variable ϕ (dϕ = cr−2dt), is that in these systems, every second-order
quaternion differential equation in Euler parameters is regular for perturbed motion of a point
particle in a central force field with any arbitrary potential Π(r), where c is the modulus of
moment of momentum of a point particle. Furthermore, in the case of unperturbed central
motion, each of these quaternion equations in the Euler parameters becomes equivalent to
the equation of motion of a four-dimensional single-frequency harmonic oscillator with the
frequency c/2 or 1/2, which is convenient for solving certain problems. In these equation
systems, the equations for the total energy and the modulus of moment of momentum vector
of a point particle are also regular for any potential Π(r). Equations for the distance r, on
the other hand, are regular only if the potential Π(r) has the fourth-order item relative to
the value r−1, which is a reciprocal for the distance to the center of attraction, i.e., if Π(r) =
−a1r

−1 − a2r
−2 − a3r

−3 − a4r
−4, where ai = const.

These systems of regular equations can be used, in particular, to study point particle motion
in the curved spacetime described by the Schwarzschild metric. Point particle trajectories
in such a space match the trajectories of motion in a central force field with the potential
Π(r) = −a1r

−1 − a3r
−3, where ai = const. Therefore, these regular equations can be used to

predict the motion of planets considering the effects of the general theory of relativity (GTR).
We have used them to derive regular quaternion equations of perturbed orbital motion of a solid
body in the Earth’s gravitational field, considering its zonal, tesseral, and sectorial harmonics
(with regularization of equation terms which contain negative power of distance r up to and
including fourth order)[57].

In Subsection 4.6, the efficiency of using the modified four-dimensional regular variables,
proposed by Chelnokov[22,25], instead of the KS variables, is demonstrated using the example
of equations of motion of a satellite in the Earth’s gravitational field considering its zonal
harmonics.

In Subsection 4.7, the equations for unperturbed central motion and for relating the Euler
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parameters and the KS variables to the elements of an orbit[23,29] are presented.
In Subsection 4.8, the solution to the spatial problem of unperturbed central motion in a

uniformized form is presented, which eliminates the necessity to consider branching of solutions
around critical points, such as poles[23,29].

In Subsection 4.9, the quaternion solution to the orbit orientation problem is provided[25].
These relations form the basis for determining the osculating motion if the perturbed Keplerian
motion is defined by differential equations in Euler parameters and variables r and c.

In Subsection 4.10, the equations of perturbed orbital motion of a point particle are pre-
sented, which include the equations in quaternion osculating elements corresponding to Euler
parameters and their first derivatives. These equations were derived by Chelnokov[25] using the
method of variation of constants.

In Subsection 4.11, the solution to the problem of unambiguous estimation of Euler param-
eters and KS variables using the Cartesian coordinates and their derivatives[23,25] is presented.
Note that the equations for calculating the KS variables and their derivatives given in the book
by Stiefel and Scheifele[37] are ambiguous.

Section 5 analyzes the works by other authors on the KS and quaternion regularization of
differential equations of the two-body problem.

Section 6 presents the derivation of regular quaternion equations of the perturbed spatial
two-body problem in Levi-Civita variables and Euler parameters, derived using the ideal rect-
angular Hansen coordinates and the orientation quaternion of the ideal coordinate frame. In
addition to the known advantages of KS regular equations, these equations have their own
additional advantages.

Note that Levi-Civita, regarding his attempts to generalize his regularization of equations of
a two-dimensional two-body problem to the spatial problem, admitted later[49] “The problem
in space has long resisted my efforts, as I tried to approach it by similar coordinate changes.”

Stiefel and Scheifele[37] wrote in their book that Levi-Civita tried hard to generalize his
method of regularizing differential equations of two-dimensional motion in the two-body prob-
lem to the general spatial two-body problem, but without success.

Aarseth and Zare[58] stated that “Because of fundamental difficulties originally clarified by
Hopf (1931)[59] and Hurwitz (1933)[60], it is impossible to generalize the Levi-Civita transfor-
mation to an equivalent set of three-dimensional variables.”

Nevertheless, it has been demonstrated by Chelnokov[31] that the Levi-Civita regulariza-
tion can be applied successfully to derive regular equations of the perturbed spatial two-body
problem. We accomplished that by rewriting the differential equations of the perturbed spa-
tial two-body problem in the ideal coordinate frame (after which the spatial motion equations
become the equations of two-dimensional motion), using the ideal rectangular Hansen coor-
dinates, the regular Levi-Civita variables, the orientation quaternion of the ideal coordinate
frame in the inertial coordinate frame, the Keplerian energy as an additional variable, and a
new independent variable. We describe this quaternion regularization of the perturbed spatial
two-body problem equations in Section 6.

Section 7 briefly describes the development of quaternion regularization of the perturbed
spatial two-body problem equations in our previous work, and introduces the applications
of quaternion regular models of astrodynamics to the development and research of regular
equations of motion of the Earth’s satellite in the Earth’s gravitational field, considering its
zonal, tesseral, and sectorial harmonics; to the solutions to problems of optimal control of
orbital motion of a spacecraft using the principle of maximum; and to the solutions to problems
of autonomous inertial navigation in space.

Section 8 presents the results we obtained on the recently received quaternion regularization
of the perturbed spatial restricted three-body problem equations.

Note that our work described regular quaternion differential equations of the perturbed
spatial two-body problem, which are free from singularities (division by zero) induced by grav-
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itational forces. Other singularities are caused by using angular variables, in particular, Euler
angles, in classical equations of celestial mechanics and astrodynamics. We also obtained new
regular quaternion equations of the perturbed spatial restricted three-body problem, written in
various rotating coordinate frames with the Euler parameters and free from singularities caused
by angular variables. In addition, we obtained regular quaternion equations of the perturbed
spatial restricted three-body problem, free from singularities induced by gravitational forces
obtained from the mentioned equations in the Euler parameters.

The conclusion sums up our research in the field of quaternion regularization of the perturbed
spatial two-body problem equations.

2 KS regularization of the perturbed spatial two-body problem equations

The differential equation of the perturbed spatial two-body problem in a vector form is

d2r

dt2
+

µ

r3
r = p(t, r,dr/dt),

where r is the radius vector of the second body’s (body of interest) center of mass, directing
from the first (central) body’s center of mass, r = |r| is the distance between the bodies, µ is a
product of gravitational constant by the sum of masses of the bodies, and p is the perturbing
acceleration (a function of time t, the radius vector r, and the velocity vector v = dr/dt of the
second body in the coordinate frame OXY Z, the origin of which is in the first body’s center
of mass, and the coordinate axes of which are parallel to the axes of inertial coordinate frame).

The problem of eliminating the singularities in Newtonian differential equations of the per-
turbed spatial two-body problem is known in celestial mechanics and astrodynamics as the
problem of regularizing the perturbed two-body problem differential equations. This prob-
lem dates back to Euler[46] and Levi-Civita[49], who solved one- and two-dimensional problems
of collision of two bodies (for the cases of straight-line motion and two-dimensional motion).
An efficient regularization of spatial two-body problem equations, the so-called spinor or KS
regularization, was proposed by Kustaanheimo[51] and Kustaanheimo and Stiefel[52]. It is a gen-
eralization of the Levi-Civita regularization of two-dimensional motion equations, and it was
described to the fullest extent in a widely known monograph by Stiefel and Scheifele[37]. The
KS regularization takes advantage of the spinor theory, that is, instead of one complex variable
from the Levi-Civita theory, it uses two complex numbers. The generalized Levi-Civita matrix,
called the KS matrix, was also used. We denote it as L(uKS). It is a four-dimensional square
matrix, and its upper left corner contains the two-dimensional square Levi-Civita matrix as
follows:

L(uKS) =




u1 −u2 −u3 u0

u2 u1 −u0 −u3

u3 u0 u1 u2

u0 −u3 u2 −u1


 ,

where uj (j = 0, 1, 2, 3) are the KS variables. Instead of denoting one of the KS variables as u4,
we denote it as u0 here and further on.

The matrix form of the KS transformation is as follows:



x
y
z
0


 =




u1 −u2 −u3 u0

u2 u1 −u0 −u3

u3 u0 u1 u2

u0 −u3 u2 −u1







u1

u2

u3

u0


 = L(uKS)




u1

u2

u3

u0


 ,

where x, y, and z are the Cartesian coordinates of the center of mass of the body in interest in
the coordinate frame OXY Z.
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The scalar form of the relations of the Cartesian coordinates with the KS variables is as
follows:

x = u2
0 + u2

1 − u2
2 − u2

3, y = 2(u1u2 − u0u3), z = 2(u1u3 + u0u2).

It matches the Hopf map[59] except for permutation of subscripts.
The KS equations in the scalar form are as follows:

d2uj

dτ2
−

(h

2

)
uj =

(r

2

)
qj , j = 0, 1, 2, 3,

dh

dτ
= 2

(
q0

du0

dτ
+ q1

du1

dτ
+ q2

du2

dτ
+ q3

du3

dτ

)
,

dt

dτ
= r, r = |r| = u2

0 + u2
1 + u2

2 + u2
3,

q0 = u0px − u3py + u2pz, q1 = u1px + u2py + u3pz,

q2 = −u2px + u1py + u0pz, q3 = −u3px − u0py + u1pz,

where τ is the new independent variable, called the fictitious time, related to time t by the
differential relation dt = rdτ (transformation of time proposed by Sundman[61–62]), h is an
additional variable, which has the meaning of Keplerian energy and is defined by the relation
h = (1/2)v2− f(m+M)r−1 (v = |v|, v = dr/dt), where f is the gravitational constant, m and
M are masses of the second and first bodies, respectively, and px, py, and pz are the projections
of the perturbing acceleration p of the second body’s center of mass on the axes of coordinate
frame OXY Z, which match its projections on the axes of inertial coordinate frame.

These equations form a system of ten ordinary nonlinear, nonstationary in a general case,
differential equations for four KS variables uj (j = 0, 1, 2, 3), their first derivatives duj/dτ with
respect to the new independent variable τ , and for the Keplerian energy h and time t.

They are equivalent to the matrix equation

d2uKS

dτ2
−

(h

2

)
uKS =

(r

2

)
LT(uKS)PKS,

where uKS is the four-dimensional column vector of KS variables, uKS = (u1, u2, u3, u0), and
PKS is the four-dimensional column vector of projections px, py, and pz of the vector of per-
turbing acceleration p, PKS = (px, py, pz, 0).

Let us list the main well-known advantages of the KS equations. Unlike the Newtonian
equations, they are regular at the center of attraction, they are linear for the unperturbed
Keplerian motion (for the elliptic Keplerian motion, when the Keplerian energy h = const. (h <
0), these equations in variables uj are equivalent to the motion equations of the four-dimensional
single-frequency harmonic oscillator in time τ , the squared frequency of which equals the halved
Keplerian energy taken with a negative sign), they allow to develop a unified approach to
studying all three types of Keplerian motion, they are close to linear equations for the perturbed
Keplerian motion, and they allow to present the right-hand sides of differential equations for the
motion of celestial and cosmic bodies in the polynomial form, which is convenient for solving
them with computers.

These circumstances made it possible to develop the efficient methods for finding analytical
or numerical solutions to such problems as the study of motion in the vicinity of attracting
masses or motion along high-eccentric orbits. These problems are difficult for classical methods,
since in the classical models of astrodynamics, there are singularities, e.g., division by zero when
passing through the center of attraction and small denominators when a particle passes near
the attracting body. In these models, there are significant nonlinearities. However, equations
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in the KS variables do not have such singularities. Moreover, they are close (in the presence
of perturbations) to linear equations. In particular, Stiefel and Scheifele[37], Bordovitsyna[38],
and Bordovitsyna and Avdyushev[39] showed that regular equations in the KS variables allow
to increase the accuracy of numeric solutions for a number of problems in celestial mechanics
and astrodynamics (e.g., the problem of the perturbed motion of an Earth’s artificial satellite
along high-eccentricity orbits) by three to five orders compared with the solutions obtained
with the classical (Newtonian) equations. Fukushima[40–41] also wrote, “The KS regularization
resulted in a very efficient integration scheme, improving the accuracy and speed of numerical
integration. This comes not only from the structure of the equations, but also from the use of
several techniques that bring important advantages to the numerical scheme.”

Bohlin[54] discovered that the equations of the unperturbed spatial two-body problem (for
the Keplerian motion) can be transformed to the following form:

d2r

dτ2
− 2h

α2
r +

A

α2
= 0, rdτ = αdt,

where h and A are the energy and the Laplace vector, respectively, which in this case are
constants, and the constant α is the length scale, which is introduced to give the new variable
τ a physical time dimension.

Therefore, Bohlin proposed the two-body problem equations in the Cartesian coordinates
x, y, and z, which for the elliptic Keplerian motion have a form of three-dimensional single-
frequency harmonic oscillator under the influence of acceleration that is constant in modulus and
direction in an inertial coordinate frame. The nonhomogeneous part in the analytical solution
to the Bohlin equations makes it difficult to derive the equations of the perturbed two-body
problem in slowly-changing variables with the method of variation of integration constants.

Bohlin’s ideas were used in works of Burdet[55–56].

3 Quaternion regular equations of the perturbed spatial two-body problem

The KS regularization is based on the nonlinear ambiguous transformation of Cartesian
coordinates of the body in interest (a so-called KS transformation, which generalizes the Levi-
Civita transformation). This transformation converts the three-dimensional space of Cartesian
coordinates into the four-dimensional space of new coordinates (KS variables). Because of
that, Stiefel and Scheifele suggested that direct derivation of regular equations in the three-
dimensional (i.e., spatial) case is impossible. In their book, Stiefel and Scheifele[37] postulated
the matrix regular equation of the spatial two-body problem, which they constructed using the
analogy to the matrix regular Levi-Civita equation of two-dimensional motion, and proved with
the help of several theorems that the old vector Newtonian equation is satisfied.

Soon after the discovery of the KS transformation, the usage of Hamilton quaternions and
four-dimensional quaternion matrices for regularizing the equations of the spatial two-body
problem has been examined. However, in their book, Stiefel and Scheifele[37] dismissed that
idea. In Chapter 11 of that book, devoted to the geometry of the KS transformation, they
wrote, “Any attempt to substitute the theory of the KS matrix by the more popular theory of
the quaternion matrices leads to failure or at least to a very unwieldy formalism.”

This statement has been refuted, apparently for the first time, by the author of this
paper[20–23] that the quaternion approach to regularization actually makes it possible to unfold
the geometric and kinematic essence of the KS transformation (including the geometric mean-
ing of its ambiguity), and to derive directly and conveniently the regular equations in the KS
variables, makes the fundamental principles of KS regularization more intuitive and elegant,
and allows to derive the theory, which generalizes the KS regularization, and to propose the
new, more general, quaternion regular equations of the perturbed spatial two-body problem.
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Chelnokov[20] derived the quaternion regular equations of the perturbed spatial two-body
problem using the four-dimensional quaternion matrix as follows:




u0 −u1 −u2 −u3

u1 u0 u3 −u2

u2 −u3 u0 u1

u3 u2 −u1 u0


 ,

which consists of the KS variables uj . This matrix is different from the KS matrix. If we
interpret the elements uj of this matrix as the Euler parameters λj , it becomes the well-known
quaternion rotation matrix, which describes the rotation in a three-dimensional space.

In the work of Chelnokov[21], the Hamilton quaternion u proposed by Hamilton[63–64] was
used for this purpose. The elements of that quaternion are the KS variables uj ,

u = u0 + u1i + u2j + u3k.

Here, i, j, and k are imaginary units of Hamilton’s vector.
The quaternion form of the relations between the Cartesian coordinates x, y, and z and the

KS variables is as follows[37]:

rin = xi + yj + zk = u ◦ i ◦ u, u = u0 − u1i− u2j − u3k,

where an overline denotes the quaternion conjugate, and ◦ stands for quaternion product.
Chelnokov[20–21] showed that regularizing KS transformation of coordinates converts the

Cartesian coordinates of the second body’s center of mass in the inertial coordinate frame to
the new variables that are the specifically normed components of the conjugate quaternion of
rotation λ = λ0 − λ1i − λ2j − λ3k, which characterizes the orientation of a coordinate frame
η rotating in the inertial coordinate frame. The axis η1 of that coordinate frame is directed
along the radius vector r of the second body’s center of mass. The origin of that coordinate
frame is at the center of mass of that body. The norming constant equals the square root of the
distance r from the center of mass of the second body to the center of attraction. Therefore,
the variables u and λ are connected by the following relation:

u = r1/2λ.

The bilinear KS relation is

u1
du0

dτ
− u0

du1

dτ
+ u3

du2

dτ
− u2

du3

dτ
= 0,

which correlates the KS variables uj and their first derivatives with respect to the new indepen-
dent variable τ , and as Stiefel and Scheifele[37] wrote, plays a central role in their formulation
of regular celestial mechanics and puts an additional non-holonomic constraint on the motion
of the coordinate system η. This constraint is that the projection ω1 of the absolute angular
velocity vector of the coordinate system η on the direction of radius vector r (axis η1) should
be zero,

ω1 = 2(λ0λ̇1 − λ1λ̇0 − λ2λ̇3 + λ3λ̇2) = 2r−1(−u0u̇1 + u1u̇0 − u2u̇3 + u3u̇2) = 0,

where a dot above a symbol means differentiation with respect to time t.
Therefore, transitioning from the Cartesian coordinates of the second body’s center of mass

to the KS variables in the equations of the spatial two-body problem actually means rewriting
these equations in the rotating coordinate frame η, using the four-dimensional Euler parameters
λj , which are components of the rotation quaternion of this coordinate frame, as orientation
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parameters of the said coordinate frame. Further transformations of these equations have to
do with norming the Euler parameters (the rotation quaternion) in the above-mentioned way
and transitioning to the KS variables uj , and also with introducing the Keplerian energy h and
time t as additional dependent variables, and transitioning to the new independent variable τ .

Note that Chelnokov[20–21] derived the more general (compared with the KS equations)
matrix (using quaternion matrices) and quaternion regular equations for the perturbed spatial
two-body problem in the KS variables for the case when the above-mentioned KS bilinear
relation is not satisfied. These equations are more complex and contain additional terms, with
the projections ω1 and ε1 of vectors of angular velocity and angular acceleration of the moving
coordinate system η on the direction of a radius vector r of the second body’s center of mass
(one of these projections is an arbitrary parameter).

These equations were derived by using the eight-dimensional screw-motion parameters λj

and λ0
j (j = 0, 1, 2, 3) of the introduced coordinate frame η, which moves translationally

and rotates, and also the matrix[20] and quaternion[21] differential equations of the perturbed
motion of a point particle (second body) in the Newtonian gravitational field, derived in these
variables. In these works, it was noted that the variables λj and λ0

j are the components of the
Rodrigues-Hamilton (Euler) dual parameters Λj = λj + sλ0

j (s is the Clifford symbol, s2 = 0),
which, in turn, are the components of the Clifford finite displacement biquaternion[65],

Λ = Λ0 + Λ1i + Λ2j + Λ3k = λ0 + λ1i + λ2j + λ3k + s(λ0
0 + λ0

1i + λ0
2j + λ0

3k) = λ + sλ0
0,

which describes the motion of a moving coordinate frame η, in which the motion equations of
a point particle are written.

The used equations of point particle motion contain the differential equations in variables
λj and λ0

j , written in the matrix form using the quaternion matrices[20], or in the quaternion
form[21] using the quaternion variables λ and λ0

0. In the work of Chelnokov[21], it was noted
that the used quaternion differential equations in variables λ and λ0

0 are equivalent to one
biquaternion (dual quaternion) kinematic equation[66],

2
dΛ
dt

= Λ ◦U , Λ = λ + sλ0, U = ω + sv = (ω1 + sv1)i + (ω2 + sv2)j + (ω3 + sv3)k,

where ω is the angular velocity vector of a moving coordinate frame η, v is the vector of linear
velocity of the origin of that coordinate frame, which coincides with the point particle, and ωk

and vk are the projections of these vectors on the axes of the moving coordinate frame η.
The Cartesian coordinates of the center of mass of a body in interest x, y, and z in the

coordinate frame OXY Z are correlated with the variables λj and λ0
j by scalar relations,

x = 2(−λ1λ
0
0 + λ0λ

0
1 − λ3λ

0
2 + λ2λ

0
3),

y = 2(−λ2λ
0
0 + λ3λ

0
1 + λ0λ

0
2 − λ1λ

0
3),

z = 2(−λ3λ
0
0 − λ2λ

0
1 + λ1λ

0
2 + λ0λ

0
3),

which have the following quaternion form:

rin = xi + yj + zk = 2λ0 ◦ λ.

If in these scalar relations, we assume

λ0 = r−1/2u0, λi = −r−1/2ui, i = 1, 2, 3,

λ0
0 =

1
2
r1/2u1, λ0

1 =
1
2
r1/2u0, λ0

2 = −1
2
r1/2u3, λ0

3 =
1
2
r1/2u2,
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we can derive the KS formulas as follows:

x = u2
0 + u2

1 − u2
2 − u2

3, y = 2(u1u2 − u0u3), z = 2(u1u3 + u0u2).

Therefore, it is shown that the KS transformation is a particular case of a more general
transformation, which describes the spatial screw motion.

The described scalar relations, which correlate the Cartesian coordinates x, y, and z with the
screw motion parameters λj and λ0

j , were first derived algebraically by Study[67] as formulas
for finding the origin of the new coordinate frame, which was obtained by applying to the
old coordinate frame a certain screw motion that is determined by biquaternion operation
Λ◦(·)◦Λ. The derivation of these relations was also described by Kotelnikov[68] with the theory
of referencing biquaternions and bivectors to a chosen reference point, and by Chelnokov[66,69]

with the theory of finite displacements of a solid body.
Note that the projections η1, η2, and η3 of the radius vector r of the second body’s center

of mass on the axes of a moving coordinate frame η are correlated with the variables λj and λ0
j

by the following quaternion relation:

rη = η1i + η2j + η3k = 2λ ◦ λ0.

The regular equations of the perturbed spatial two-body problem in the KS variables of a
matrix form are as follows[20]:




u′′1
u′′0
−u′′3
u′′2


− 1

2
ω1




0 −x− 3r −y −z
x + 3r 0 −z y

y z 0 −x + 3r
z −y x− 3r 0







u′1
u′0
−u′3
u′2




− 1
2




h + ω2
1r2 −r2ε1 0 0

r2ε1 h + ω2
1r2 0 0

0 0 h + ω2
1r2 r2ε1

0 0 −r2ε1 h + ω2
1r2







u1

u0

−u3

u2


 =

1
2
r




q1

q0

−q3

q2


 ,

h′ = 2(q0u
′
0 + q1u

′
1 + q2u

′
2 + q3u

′
3),

t′ = r, r =|r |= u2
0 + u2

1 + u2
2 + u2

3.

Here and elsewhere, a prime symbol (·)′ means differentiating with respect to the independent
variable τ . qj and the variables x, y, and z are defined by the formulas given after the KS
equations in a scalar form and after the matrix form of the KS transformation.

The regular quaternion equations for this problem in the KS variables are as follows[21] (in
this work, these equations were written in a different form, which corresponds to the above-
mentioned matrix form of these equations):

u′′ +
3
2
rω1i ◦ u′ +

1
2
(r2ε1 + ω1u

′ ◦ u) ◦ i ◦ u− 1
2
(h + r2ω2

1)u = −1
2
ri ◦ u ◦ pin, (1)

h′ = pin · (u ◦ i ◦ u)′, t′ = r,

u = u0 + u1i + u2j + u3k, r = u ◦ u = u ◦ u = u2
0 + u2

1 + u2
2 + u2

3,

ω′1 = rε1, pin = pxi + pyj + pzk,

where u, h, and t are unknown functions of the independent variable τ , u is the conjugate for
the quaternion u, the projections px, py, and pz of the vector p of the perturbing acceleration
on the axes of the inertial coordinate frame are specified functions of time t and variables
x, y, z, ẋ, ẏ, ż (uj , u

′
j), ω1 and ε1 are the projections of the angular velocity vector ω and the

angular acceleration vector ε of the trihedral η on the axis η1, respectively, and are specified
functions of variables t, uj , and u′j , and the central dot stands for scalar product.
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The projections of the radius vector r and the velocity vector v = ṙ of the center of mass
of the body in interest on the axes of the inertial coordinate frame (the coordinates x, y, z and
their time derivatives ẋ, ẏ, ż with respect to time t) can be found from the variables uj and u′j
according to the following relations:

rin = xi + yj + zk = u ◦ i ◦ u, vin = ṙin = ẋi + ẏj + żk = 2r−1u ◦ i ◦ u′. (2)

Therefore, more general regular equations of the perturbed spatial two-body problem were
derived than those by the KS. However, these equations are more complex than the KS equa-
tions. Above all, they represent theoretical interest by demonstrating that regularization can
be achieved even when ω1 6= 0, i.e., when a bilinear relation, which is central to the KS regular-
ization theory, is not satisfied. It is possible that these equations will be efficient for numerical
computations with high-accuracy, because they can be integrated without satisfying the bilinear
relation, which is invariably going to be violated during numerical integration due to systematic
and computational errors.

By assigning ω1 = 0 and ε1 = 0, from Eq. (1), we obtain the quaternion form of the KS
regular equations as follows:

u′′ − 1
2
hu =

1
2
rq, h′ = 2scal(u′ ◦ q), t′ = r,

where scal(u′ ◦ q) is the scalar part of quaternion u′ ◦ q.
Chelnokov[28,30] also proposed the regular equations of the perturbed spatial two-body prob-

lem in quaternion osculating (i.e., slowly changing) elements, derived from the quaternion reg-
ular equations in the KS variables by the method of variation of integration constants. These
equations are as follows:

dα

dτ∗
= − sin

(τ∗

2

)
f ,

dβ

dτ∗
= cos

(τ∗

2

)
f ,

dν

dτ∗
= − 1

2ν

( du

dτ∗
, q

)
,

dτe

dτ∗
=

µ

8ν3
+

( r

8ν3

)
(u, q)− 2

ν2

( dν

dτ∗

)(
u,

du

dτ∗

)
,

f =
2
ν

( r

8ν
q −

( dν

dτ∗

) du

dτ∗

)
, q = −i ◦ u ◦ pin.

Here, α and β are the quaternion osculating elements, related to the quaternion variables u
and du/dτ∗ by

u = cos
(τ∗

2

)
α + sin

(τ∗

2

)
β,

du

dτ∗
=

1
2

(
− sin

(τ∗

2

)
α + cos

(τ∗

2

)
β

)
,

ν and τe are the scalar osculating elements, (b, c) is the scalar product of four-dimensional
vectors b and c, µ = f(m + M), and r = (u, u).

The element ν has the meaning of frequency and is related to the energy h by ν = (−h/2)1/2,
where h < 0, and the time element τe is related to time t and variables uj ,duj/dτ∗ (j = 0, 3)
by

t = τe −
(1

ν

)(
u,

du

dτ∗

)
,
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where τ∗ is the new independent variable, which is related to the variable τ , used in the initial
equations, by the differential equation,

dτ∗ = 2νdτ = 2
(
− h

2

)1/2

dτ, h < 0.

The Cartesian coordinates of the body in interest in the coordinate frame OXY Z and the
projections of its velocity can be found using

rin = u ◦ i ◦ u, vin =
(4ν

r

)
u ◦ i ◦ du

dτ∗
.

For the unperturbed Keplerian motion,

τ∗ = 2ντ = 2
(
− h

2

)1/2

τ, ν =
(
− h

2

) 1
2

= const.

These equations are the quaternion equivalents for the spatial two-body problem equations
in regular elements, derived by Stiefel and Scheifele[37]. These equations have the following
advantages. First, they are regular (they do not have a singularity at the coordinate origin).
Second, in the case of the perturbed elliptic motion, their right parts are slowly and evenly
changing functions, and in the case of unperturbed Keplerian motion, the equations are inte-
grated without systematic errors. The disadvantage of these equations is that they are limited
to the elliptic motion when h < 0.

Note that Chelnokov[21] showed that regularization of differential equations of the perturbed
spatial two-body problem could be achieved when the meaning of the transformations of the
initial equations of this problem stayed the same, but the KS variables were not used, that is,
the equations were written in the rotating coordinate frame η, the Keplerian energy h was used
as an additional variable, and the new time τ , related to real time t by the differential equation
dt = rdτ , was used as an independent variable.

The first-order regular equations derived are not linear in the case of Keplerian motion, but
have a simple and convenient form as follows[21]:

r′ = rv1, v′1 − h +
1
2
v2
1 −

1
2
r2(ω2

2 + ω2
3) = rp1,

ω′3 + 2ω3v1 + rω1ω2 = p2, ω′2 + 2ω2v1 − rω1ω3 = −p3,

2λ′ = rλ ◦ ωη, λ = λ0 + λ1i + λ2j + λ3k, ωη = ω1i + ω2j + ω3k,

h′ = r(p1v1 + rp2ω3 − rp3ω2), t′ = r,

where p1, p2, and p3 are the projections of the perturbing acceleration p of the center of mass
of the second body on the axes of the rotating coordinate frame η, and the variables are the
distance r between the bodies, the projection v1 = dr/dt of the velocity vector of the body
in interest on the radial direction (on the direction of the radius vector r), two projections ω2

and ω3 of the vector of angular velocity of the rotating coordinate frame on its own coordinate
axes (its first projection ω1 can be assigned arbitrarily and, in particular, can be prescribed to
zero, in which case the equations become significantly simpler), the orientation quaternion λ
(the equations include the corresponding quaternion differential equation of orientation of the
rotating coordinate frame), the energy h, and time t.

Also note that the algebraic relations (2), which are used to find the projections of the
velocity of the second body on the axes of the inertial coordinate frame from the KS variables
uj and their first derivatives u′j with respect to the new independent variable τ , are singular
when r = 0, but the algebraic relations

rin = xi + yj + zk = rλ ◦ i ◦ λ,

vin = Ṙ = ẋi + ẏj + żk = λ ◦ vη ◦ λ,

vη = v1i + rω3j − rω2k,
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for finding the mentioned velocity projections from variables r, v1, ω2, ω3, and λj , which are
used in the regularization method discussed here, are free from that singularity.

By introducing new variables v2 = rω3 and v3 = −rω2 into the mentioned regular equations,
which have the meaning of the projections of the velocity vector of the second body on the axes
of the rotating coordinate frame η, and assuming ω1 = 0, we can obtain the regular equations
of the two-body problem in the different, simpler, and convenient forms[30],

r′ = rv1, v′1 + h +
1
2
(v2

1 − v2
2 − v2

3) = rp1,

v′2 + v1v2 = rp2, v′3 + v1v3 = rp3,

h′ = −r(p · v) = −r(p1v1 + p2v2 + p3v3), t′ = r,

2λ′ = λ◦(−v3j + v2k).

4 Quaternion regular equations of the perturbed central motion

Chelnokov[22,26–27,29] used the idea of quaternion regularization of the two-body problem
equations to develop the quaternion theory of regularizing the vector differential equation of
perturbed motion of the point particle M in the central force field, which is as follows:





d2r

dt2
= − 1

m

(dΠ
dr

r

r
+

∂Π∗

∂r

)
+ p, r =|r |, Π = Π(r),

Π∗ = Π∗(t, r) = Π∗(t, x, y, z),
∂Π∗

∂r
= grad Π∗ =

∂Π∗

∂x
x +

∂Π∗

∂y
y +

∂Π∗

∂z
z,

p = p(t, r,dr/dt) = p(t, x, y, z, ẋ, ẏ, ż).

(3)

Here, r is the radius vector of the point particle M , directed from the center O of the force
field. m is the mass of a point particle. Π is the potential of the central force field, which is
assumed to be an arbitrary differentiable function of the distance r from the point particle M
to the center O. Π∗ is the perturbing potential, which is assumed to be an arbitrary function
of time t and the position coordinates x, y, and z of the point particle M in the coordinate
frame OXY Z, moving translationally relative to the inertial coordinate frame. The perturbing
acceleration p is assumed to be an arbitrary function of time t, the radius vector r, and the
velocity vector v = dr/dt of the point particle M in the coordinate frame OXY Z, and x,y,
and z are the unit vectors of the axes OX, OY , and OZ, respectively.

The differential equation of unperturbed central motion of a point particle in the vector
form is derived from Eq. (3) when Π∗ = 0 and p = 0.

In these works, the general quaternion differential equations of perturbed central motion of
a point particle with three regularizing functions are derived, and the necessary and sufficient
conditions are stated for transforming these equations to the oscillator form (equations of a four-
dimensional perturbed oscillator, which, in the case of unperturbed central motion, performs
harmonic oscillations with constant frequency), which is convenient for analytical and numerical
studies. Various new (including new regular) systems of the quaternion differential equations
of perturbed central motion of a point particle in normal and oscillator forms are derived,
which differ by structure, dimensionality, and dependent and independent variables used. The
comparison of these systems is given, and their properties and fields of use are described.

To derive the regular equations of perturbed central motion of a point particle, the above-
stated vector equation was written in the rotating coordinate frame η, the axis η1 of which was
directed along the radius vector r of a point particle. Four-dimensional Euler parameters λj

were used as orientation parameters for that coordinate frame. Equations of motion of a point
particle, written in a rotating coordinate frame, include the following differential equations:
the scalar equation of the second order for the distance r, two scalar equations of the first
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order for the projections ω2 and ω3 of the angular velocity vector of the coordinate frame η
on its own coordinate axes η2 and η3, and the quaternion equation of the first order for the
quaternion λ, which describes the orientation of the coordinate frame η in the inertial space
and is equivalent to four scalar equations for the Euler parameters λj . The projection ω1 of
the angular velocity of the coordinate frame η on the direction of the radius vector r of a point
particle is an arbitrary parameter, and it is assumed to be zero. After that, the projections
c2 and c3 of the moment of velocity vector c of a point particle on the axes of the coordinate
frame η, defined by c2 = r2ω2 and c3 = r2ω3 (projection c1 = 0), were introduced instead
of the variables ω2 and ω3. To derive the regular equations, the differential equations for the
Keplerian energy h of a point particle, its total energy h∗, and the modulus c of vector c of the
moment of velocity of a point particle, or the square of that modulus, were used.

Further regularizing transformations of the mentioned equations, which we have performed,
include the following stages:

(i) Transition from the differential equations of the first order for variables c2, c3, and λ to
the quaternion differential equation of the second order for the variable λ = λ0+λ1i+λ2j+λ3k.
To achieve this, the initial equation of the first order for the variable λ is differentiated with
respect to time t, and the differential equations for the variables c2 and c3 are taken into account.

(ii) Complement the derived quaternion equation for the variable λ with the scalar differen-
tial equations of the second order for the distance r and the scalar differential equations of the
first order for the energies h, h∗, and modulus c of the vector of velocity moment. The right
parts of the equations for h, h∗, and c in this case are written in terms of the Euler parameters
λj and the distance r.

(iii) Replace the variable λ in the derived quaternion equation of the second order with the
new four-dimensional variable u = u0+u1i+u2j+u3k using the formula λ = κ(r)u, where κ(r)
is the regularizing function (which is a twice differentiable function with respect to the variable
r). When κ(r) = r−1/2, the new scalar variables uj (the components of the quaternion variable
u) are the KS variables. As a result, we obtain the main differential quaternion equation of the
second order for the variable u with the regularizing function κ(r).

On this same stage, the variables λj are replaced with the new variables uj in the equations
for the variables r, h, h∗, and c using the following formulas:

λ0 = κ(r)u0, λi = −κ(r)ui, i = 1, 2, 3.

(iv) Apply the regularizing transformation of real time t. In order to do that, we transi-
tion from time t in the derived differential quaternion equation for the variable u to the new
independent variable τ using the formula dt = ν(r)dτ , where ν(r) is the second regularizing
function of the distance r. As a result, we obtain the main differential quaternion equation of
the second order for the variable u with two regularizing functions κ(r) and ν(r).

A similar transition from time t to the new variable τ1 using the formula dt = ν1(r)dτ1,
where ν1(r) is the third regularizing function of the distance r, is performed for the equation of
the second order for the distance r. As a result, we derive a differential equation of the second
order for the distance r, which includes the regularizing function ν1(r).
4.1 Quaternion equations of the perturbed central motion with regularizing func-

tions
As a result of the described transformations, we obtain the following set of quaternion

equations and relations for the problem of perturbed central motion of a point particle with
three regularizing functions κ, ν, and ν1.

The relation between the generalized KS variables (u-variables) and the Euler (Rodrigues-
Hamilton) parameters is

λ = κ(r)u, λ0 = κ(r)u0, λi = −κ(r)ui, i = 1, 2, 3,

λ̇ = κ̇u + κu̇, κ = κ(r).
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The generalized KS transformation (u-transformation) is as follows.
For the distance,

(κ(r))2(u2
0 + u2

1 + u2
2 + u2

3) = 1.

For the Cartesian coordinates,

rin = xi + yj + zk = rλ ◦ i ◦ λ = r(κ(r))2u ◦ i ◦ u.

For the projections of velocity,

vin = ẋi + ẏj + żk = λ ◦ i ◦ µ = µ ◦ i ◦ λ, µ = ṙλ + 2rλ̇,

λ = κ(r)u, λ̇ = κ̇u + κu̇.

For the perturbing forces,

Q = q − r−1/2

2m

∂Π∗

∂u∗
, P1 = κ(r) scal (u ◦Q),

q = −κ(r)i ◦ u ◦ pin,
∂Π∗

∂u∗
=

∂Π∗

∂u∗0
+

∂Π∗

∂u∗1
i +

∂Π∗

∂u∗2
j +

∂Π∗

∂u∗3
k,

Π∗ = Π∗(t, rin) = Π∗(t,u∗ ◦ i ◦ u∗), u∗ = r1/2κ(r)u,

pin = pxi + pyj + pzk = pin(t, rin, ṙin), rin = rκ(r)2u ◦ i ◦ u.

The main differential quaternion equation for the generalized KS variables (u-variables) is




2
d2u

dτ2
+ 2

(
2(rκ)−1 d(rκ)

dτ
− ν−1 dν

dτ

)du

dτ
+ (rκ)−1ν2αu

= (rκ)−1ν2
(
Q−

(
2r

dκ

dr
+ κ

)
P1u

)
,

α = α(r, c2, h) = 2r
( 2

m
(h−Π)− c2

r2

)d2κ

dr2
+ 2

( 4
m

(h−Π)− r

m

dΠ
dr

− c2

r2

)dκ

dr
+

c2

2r3
κ.

(4)

The differential equation for the distance is

d2r

dτ2
1

+
1
m

(d(ν2
1Π)

dr
− h

dν2
1

dr

)
+

1
2
c2 d

dr

(ν2
1

r2

)
= ν2

1P1. (5)

The differential equations for the variables h, h∗, c, and c2 are

ḣ = m scal (µ ◦Q),

ḣ∗ =
∂Π∗

∂t
+ m scal (µ ◦ q), h∗ = h + Π∗,

ċ = 2
r3

c
scal (λ̇ ◦Q),

dc2

dt
= 4r3 scal (λ̇ ◦Q).

The equations for time are

dt

dτ
= ν(r),

dt

dτ1
= ν1(r),

dτ

dτ1
=

ν1(r)
ν(r)

.

The above equations form the determined system of differential equations for the perturbed
motion of a point particle, where the unknowns are time t, the parameters uj (the generalized
KS variables), the distance r, the energy h of a point particle if Π∗ = 0 or the energy h∗ of



Quaternion methods and models of regular celestial mechanics and astrodynamics 37

a point particle if Π∗ 6= 0, and the modulus c of vector of the moment of velocity of a point
particle, or the squared modulus c2. Either τ or τ1 can be chosen as an independent variable.

The equation for distance (5) can be excluded from the mentioned system of differential
equations in the cases when the equation (κ(r))2(u2

0 +u2
1 +u2

2 +u2
3) = 1 can be resolved (with a

specified form of function κ = κ(r)) for the distance r, i.e., when the distance r can be expressed
from the variables uj .

Note that after the transition from time t to the new independent variable τ or τ1 in the
equations for h, c, and c2, the form of these equations does not change. Also note that in some
cases, it is efficient to use the equation for the total energy h∗ of a point particle instead of the
equation for the variable h.

To find the coordinates x, y, and z and the projections of the velocity ẋ, ẏ, and ż of a point
particle on the axes of the coordinate frame OXY Z from the variables uj , the distance r, and
their derivatives, it is necessary to use the above-stated relations.
4.2 Conditions for transforming quaternion equations of the perturbed central

motion to the oscillator form
The described equations of perturbed motion of a point particle include the regularizing

functions κ, ν, and ν1 as arbitrary functions of the distance r. They were chosen[22,26–27] in
such a way that the quaternion equation (4) for the variable u and the scalar equation (5)
for the distance r, or at least one of them, can be equivalent to the motion equations for
harmonic oscillators for unperturbed central motion, when Π∗ = 0 and p = 0. Therefore, when
Q = 0, P1 = 0, h = const. and c = const.

To make the main quaternion equation (4) for u equivalent in the said case to the motion
equations of four-dimensional harmonic oscillator, it is necessary that it does not include the
first derivative du/dτ . For this reason, it is required that the functions κ and ν satisfy the
following condition:

2(rκ)−1 d(rκ)
dτ

− ν−1 dν

dτ
= 0. (6)

When the condition is met, the said equation does not contain the derivative du/dτ .
The general solution to Eq. (6) has the following form:

rκ = bν1/2, b = const.

Without lose of generality, we assume b = 1 and further consider such regularizing functions
κ and ν interrelated by

rκ = ν1/2.

This means that after choosing the specific function κ, the function ν will also be unambiguously
defined according to the last equation, and vice versa. Therefore, instead of two arbitrary
functions κ and ν, only one of them is arbitrary, κ or ν. In this case, the choice of the function
ν, as well as the function κ, is limited to the class of continuous differentiable functions.

The quaternion equation (4) for u, considering the relation rκ = ν1/2, takes the form of
motion equation of the four-dimensional nonlinear perturbed oscillator,

2
d2u

dτ2
+ (rκ)3αu = (rκ)3

(
Q−

(
2r

dκ

dr
+ κ

)
P1u

)
. (7)

To make the equation equivalent to the motion equation of the four-dimensional harmonic
oscillator for the case of unperturbed central motion of a point particle, it is necessary to require
the satisfaction of the condition as follows:

(rκ)3α = a = const.,
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where a is some constant value (for example, we can set a = h).
The expanded form of this condition is

(rκ)3
(
2r

( 2
m

(h−Π)− c2

r2

)d2κ

dr2
+ 2

( 4
m

(h−Π)− r

m

dΠ
dr

− c2

r2

)dκ

dr
+

c2

2r3
κ
)

= a

or

(rκ)3α =2r(rκ)3
( 2

m
(h−Π)− c2

r2

)d2κ

dr2

+ (rκ)3
(
2
( 4

m
(h−Π)− r

m

dΠ
dr

− c2

r2

)dκ

dr
+

c2

2r3
κ
)

= a = const., (8)

where we should set h = const. and c = const.
The last relation can be viewed as a differential equation of the second order for finding

the regularizing function κ(r) when the form of potential Π(r) is specified. After finding the
function κ from that equation, the function ν can be unambiguously determined from the
condition rκ = ν1/2. The condition (8) can also be viewed as the differential equation of the
first order for finding the potential Π(r) when the form of regularizing function κ(r) is specified.

Therefore, the relation rκ = ν1/2 and the relation (rκ)3α = a = const., the expansion of
which has the form (8), are the necessary and sufficient conditions for transforming the main
quaternion equation (4) of the perturbed central motion of a point particle to the oscillator form.
They interrelate the regularizing functions κ, ν and the potential Π(r). If the form of Π(r) is
specified and the regularizing functions κ and ν are chosen in such a way that these conditions
are met (recall that we should set h = const. and c = const. in the relation for (rκ)3α = a),
the main quaternion equation (4) for u becomes equivalent to the motion equation of single-
frequency four-dimensional harmonic oscillator with the frequency k =

√
a/2 for the case of

unperturbed central motion of a point particle with the potential Π(r).
In the case of unperturbed central motion, Eq. (5) for the distance r can also be transformed

to the motion equation of harmonic oscillator by choosing an appropriate regularizing function
ν1(r). Indeed, in this case, it takes the form of the equation investigated by Belen’kiy[70]

d2r

dτ2
1

=
1
m

d
dr

(ν2
1(h−Π1)), Π1 = Π(r) +

mc2

2r2
,

which implies the known condition[70],

ν2
1(h−Π1) =

1
2
C∗1r2 + C∗2r + C∗3 , C∗i = const.

for the regularizing function ν1(r) and the above-mentioned potential Π1(r). When this condi-
tion is met, the equation for r is equivalent to the motion equation of the harmonic oscillator.

Unfortunately, this condition and rκ = ν1/2 and (rκ)3α = const. when ν(r) = ν1(r) are
incompatible for the general case, i.e., for an arbitrary form of the potential Π(r).

Thus, it has been determined by Chelnokov[22,26–27] that the vector differential equation (3)
of the perturbed central motion of a point particle can be transformed, when the regularizing
functions are chosen in the above-described way, to the quaternion equation (7), which has the
form of an oscillator. In a general case, this quaternion equation must be complemented with
the scalar equations for the distance r and the variables h or h∗ and c. With the appropriate
choice of regularizing functions, one or two of these equations (for example, the equations for r
and c in the case of KS) will fall out of consideration.
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4.3 Quaternion equations of the perturbed central motion in a normal form
The above-described equations of perturbed central motion of a point particle include the

second-order differential quaternion equation for u as the main equation, which, with the ap-
propriate choice of regularizing functions, takes the form of the perturbed four-dimensional
oscillator motion equation. In some problems of the perturbed central motion of a point parti-
cle, it is efficient to use the perturbed central motion quaternion equations in a normal form,
where the variables are the quaternion λ which describes the orientation of the above-introduced
coordinate frame η rotating in the inertial space, and the projections ci of the vector c of mo-
ment of velocity of a point particle on the axes of that coordinate frame or its projections
cx, cy, cz on the axes of coordinate frame OXY Z which moves translationally in the inertial
coordinate frame. These motion equations have the following form[22,26–27].

The equations in mappings on the rotating coordinate frame η are
{

ċη = −rvect (Q ◦ λ), 2λ̇ = r−2λ ◦ cη,

cη = c2i + c3k, ċη = ċ2i + ċ3k.
(9)

The equations in mappings on the inertial coordinate frame (match the equations in map-
pings on the main coordinate frame OXY Z) are

{
ċin = −rvect (λ ◦Q), 2λ̇ = r−2cin ◦ λ,

cin = cxi + cyj + czk, ċin = ċxi + ċyj + ċzk.
(10)

The relation for the quaternion Q is

Q = q − r−1

2m

∂Π∗

∂λ
,

q = −i ◦ λ ◦ pin, pin = pin(t, rin, ṙin), rin = rλ ◦ i ◦ λ,

Π∗ = Π∗(t, rin) = Π∗(t, rλ ◦ i ◦ λ),
∂Π∗

∂λ
=

∂Π∗

∂λ0
− ∂Π∗

∂λ1
i− ∂Π∗

∂λ2
j − ∂Π∗

∂λ3
k.

Each of these equation sets must be complemented, in the general case, with the equation
for the distance r,





r̈ − c2

r3
+

1
m

dΠ(r)
dr

= scal (λ ◦ q)− 1
m

∂Π∗

∂r
,

c2 = c2
2 + c2

3 = c2
x + c2

y + c2
z.

(11)

The mentioned equations form the determined first-order system of differential equations (9)
and (11) for the perturbed central motion of a point particle relative to the unknown projections
c2 and c3 of the velocity moment vector on the axes of coordinate frame η, the Euler parameters
λj , and the distance r, and also the determined system of Eqs. (10) and (11) relative to the
projections cx, cy, and cz of the velocity moment vector on the axes of coordinate frame OXY Z,
the parameters λj , and the distance r.

The coordinates x, y, z and the velocity projections ẋ, ẏ, ż of a point particle on the axes
of coordinate frame OXY Z can be found from the mentioned variables using the following
relations:

rin = xi + yj + zk = rλ ◦ i ◦ λ,

vin = ẋi + ẏj + żk = λ ◦ vη ◦ λ, vη = i ◦ (ṙ − r−1cη),

vin = r−1rin ◦ (ṙ − r−1cin), vη = λ ◦ vin ◦ λ.
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Note that the order of the system of Eqs. (9) and (11), in which the mappings of vectors c
and ċ on the coordinate frame η are used, is less by one than that of the system of Eqs. (10)
and (11), in which the mappings of these vectors on the coordinate frame OXY Z (therefore,
also on the inertial coordinate frame) are used. Besides, the quaternion equation for λ in the
first of these systems is simpler than that for the variable in the second of these systems, since
the projection c1 of vector c on the axis η1 (on the direction of radius vector r) is zero. Also
note that the first-order equations for c2, c3, cx, cy, cz, and λj , as expected, do not contain Π(r)
which is only present in the second-order equation for r.

In some important cases, the equation systems for the perturbed central motion of a point
particle (9), (11) or (10), (11), which include the first-order quaternion differential equations,
can be transformed (by replacing t and r with new variables) to the systems in which all
differential equations (or most of them) are linear with constant coefficients.

We have used the above-described perturbed central motion quaternion differential equations
to solve a number of problems, i.e., for regularizing the perturbed motion equations (eliminating
the pole-type singularity, which exists when a central body is present); for deriving the solution
of the unperturbed central motion spatial problem for any arbitrary potential Π(r) in the
uniformized representation, which eliminates the necessity to consider branching of solutions
around the critical points; for analytical and numerical investigation of the perturbed motion in
the problems of celestial mechanics and astrodynamics; and also in inertial navigation. These
equations and relations also allowed us to derive the differential equations of perturbed motion
of a point particle, which use quaternion elements instead of angular osculating elements.
4.4 Systems of quaternion regular equations of the perturbed central motion

Chelnokov[22,27,29] discussed the regularization problem, i.e., elimination of singularity in the
differential equations of the perturbed central motion of a point particle when it is close to the
center O of the central force field, i.e., when the distance r is close to zero. The above-stated
quaternion equations of the perturbed central motion with regularizing functions were used, in
which these functions were chosen in a certain way.

In particular, for the regularizing function κ(r), which is defined by the relation κ(r) = r−1/2,
the condition rκ = ν1/2 is derived that the regularizing function ν(r) = r, and the relation for
the coefficient (rκ)3α in the main quaternion equation (4) and Eq. (7) for the variable u has
the following form:

(rκ)3α =
1
m

(d(rΠ(r))
dr

− h
)
.

It is evident that if the regularizing functions are chosen as

κ(r) = r−1/2, ν1(r) = ν(r) = r,

the conditions for transforming the main quaternion equation and Eq. (5) for the distance r to
the oscillator forms are satisfied only for the case of the unperturbed Keplerian motion when

Π(r) = −mµr−1, h = const., Π∗ = 0, p = 0.

By substituting the mentioned expression for regularizing functions κ(r), ν(r), ν1(r) and
the coefficient (rκ)3α in the perturbed central motion equations with regularizing functions,
we have derived the following two equation systems for the perturbed central motion in the KS
variables for any arbitrary potential Π(r) of the central force field.

The system of equations for any arbitrary potential Π(r), which contains the central motion



Quaternion methods and models of regular celestial mechanics and astrodynamics 41

energy h as a variable, is




2
d2u

dτ2
+

1
m

(d(rΠ(r))
dr

− h
)
u = rQ,

d2r

dτ2
+

1
m

(d(r2Π(r))
dr

− 2hr
)

= r scal (u ◦Q),

dh

dτ
= 2m scal

(du

dτ
◦Q

)
,

dt

dτ
= r,

(12)

where




Q = q − 1
2m

∂Π∗

∂u
, q = −i ◦ u ◦ pin, Π∗ = Π∗(t, rin), pin = pin(t, rin,vin),

r = u ◦ u =
3∑

j=0

u2
j , rin = u ◦ i ◦ u, vin = ṙin = 2u ◦ i ◦ u̇ = 2r−1u ◦ i ◦ du

dτ
,

h = 2mr
3∑

j=0

u̇2
j + Π(r) = 2mr−1

3∑

j=0

(duj

dτ

)2

+ Π(r).

(13)

The system of equations for any arbitrary potential Π(r), which contains the total energy
of motion h∗ = h + Π∗, is





2
d2u

dτ2
+

1
m

(d(rΠ(r))
dr

− h∗
)
u = rq − 1

2m

∂(rΠ∗)
∂u

,

d2r

dτ2
+

1
m

(d(r2Π(r))
dr

− 2h∗r
)

= r
(
− 2

m
Π∗ + scal (u ◦Q)

)
,

dh∗

dτ
= r

∂Π∗

∂t
+ 2m scal

(du

dτ
◦ q

)
,

dt

dτ
= r.

(14)

The differential quaternion equations of the perturbed Keplerian motion can be
derived[22,25,27] from Eqs. (12) and (14) with Π = −mµr−1.

The system of regular equations for the perturbed Keplerian motion when Π(r) = −mµr−1,
which contains the Keplerian energy h, is





2
d2u

dτ2
− h

m
u = rQ,

d2r

dτ2
− 2h

m
r − µ = r scal (u ◦Q),

dh

dτ
= 2m scal

(du

dτ
◦Q

)
,

dt

dτ
= r.

(15)

The system of regular equations for the perturbed Keplerian motion, which contains the
total energy h∗, is





2
d2u

dτ2
− h∗

m
u = rq − 1

2m

∂(rΠ∗)
∂u

,

d2r

dτ2
− 2h∗

m
r − µ = r

(
− 2

m
Π∗ + scal (u ◦Q)

)
,

dh∗

dτ
= r

∂Π∗

∂t
+ 2m scal

(du

dτ
◦ q

)
,

dt

dτ
= r.

(16)

The systems of Eqs. (14)–(16) are complemented with Eq. (13) for the quaternion Q, which
describes acting perturbances.
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The systems of Eqs. (15) and (16) are the quaternion forms of the perturbed spatial two-body
problem regular equations in the KS variables, taking into account the effect of the perturbing
force with the potential Π∗ = Π∗(t, rin) = Π∗(t, x, y, z), and contain the Keplerian energy h or
the total energy h∗ as one of the variables. The differential equation for the distance r can be
excluded from these systems because of the relation r = u ◦ u = u2

0 + u2
1 + u2

2 + u2
3.

The systems of regular equations use the Euler parameters.
Other choice of regularizing functions κ(r), ν(r), ν1(r), than for the case of KS, and also

introducing the new variable c2 (squared modulus c of the velocity moment vector) along
with the variable h∗ allow to derive more general regular equations of the perturbed central
motion[22,26–27].

Let us set κ = 1 and ν1(r) = ν(r). Then, according to the condition rκ = ν1/2 for
transforming the main quaternion equation (4) for u to the oscillator form, we get ν = ν1 = r2,
and the condition (8) for the coefficient (rκ)3α in this equation takes the following form:

(rκ)3α =
1
2
c2.

Since c = const. for the unperturbed central motion, from the last relation, it follows that
if the regularizing functions are chosen as κ = 1 and ν = r2, the condition (rκ)3α = const.
for transforming the main quaternion equation to the oscillator form is satisfied for any arbi-
trary potential Π(r). However, the condition for transforming Eq. (5) for the distance r to the
oscillator form is not satisfied when ν1 = ν = r2.

Taking into account the last two equations and ν1 = r2, from the above-given equations with
regularizing functions, we derive the following quaternion system of differential equations of the
perturbed central motion of a point particle in the oscillator form for any arbitrary potential
Π(r)[22,24,27]:

d2λ

dτ2
+

c2

4
λ =

r3

2
(Q− scal (λ ◦Q)λ), (17)

d2r

dτ2
+ c2r +

1
m

( d
dr

(r4Π(r))− 4(h∗ −Π∗)r3
)

= r4
(
scal (λ ◦ q)− 1

m

∂Π∗

∂r

)
, (18)

dh∗

dτ
= r2 ∂Π∗

∂t
+ m scal (µ∗ ◦ q), µ∗ =

dr

dτ
λ + 2r

dλ

dτ
, (19)

dc2

dτ
= 4r3 scal

(dλ

dτ
◦Q

)
,

dt

dτ
= r2, (20)

where




Q = q − r−1

2m

∂Π∗

∂λ
, q = −i ◦ λ ◦ pin, Q = q − r−1

2m

∂Π∗

∂λ
, q = −pin ◦ λ ◦ i,

Π∗ = Π∗(t, rin), pin = pin(t, rin,vin), rin = rλ ◦ i ◦ λ, vin = r−2λ ◦ i ◦ µ∗,
(21)

in which the unknowns are the Euler parameters λj , the distance r, time t, and the variables
h∗ and c2. The variable τ , which is defined by the differential relation dτ = r−2dt, is an
independent variable.

For the unperturbed central motion, there exists the area integral

r2 dϕ

dt
= c = const.,

where ϕ is a polar coordinate.
Compare this relation with dt = r2dτ which interrelates the new independent variable τ . τ

corresponds to the regularizing function ν = r2 with time t. It follows dϕ = cdτ.
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By introducing a new independent variable ϕ, defined by the differential relation dϕ =
cr−2dt in the perturbed central motion equations (17)–(20) with the independent variable
τ defined by the differential relation dτ = r−2dt, and considering that in the case of the
perturbed motion, c 6= const., we derive the perturbed central motion equations of the following
form[22,24,27]:

d2λ

dϕ2
+

1
4
λ = − 1

2c2

(dc2

dϕ

dλ

dϕ
− r3(Q− scal (λ ◦Q)λ)

)
, (22)

d2r

dϕ2
+ r +

1
mc2

( d
dr

(r4Π(r))− 4(h∗ −Π∗)r3
)

=
1
c2

(
− 1

2
dc2

dϕ

dr

dϕ
+ r4

(
scal (λ ◦ q)− 1

m

∂Π∗

∂r

))
, (23)

dh∗

dϕ
=

r2

c

∂Π∗

∂t
+ m scal (µ∗∗ ◦ q), µ∗∗ =

dr

dϕ
λ + 2r

dλ

dϕ
, (24)

dc2

dϕ
= 4r3 scal

(dλ

dϕ
◦Q

)
,

dt

dϕ
=

r2

c
, c 6= 0, (25)

where the quaternions Q and q describe the acting perturbances, defined by the relations in
Eq. (21), in which

Π∗ = Π∗(t, rin), pin = pin(t, rin,vin), rin = rλ ◦ i ◦ λ, vin = cr−2λ ◦ i ◦ µ∗∗.

Note that the case of linear motion of a point particle (when c = 0) should be excluded
from consideration when using Eqs. (22)–(25) with the independent variable ϕ, because these
equations are not defined for that case.

The main advantage of the differential equation systems of the perturbed central motion
derived using the Euler parameters λj is that each one of the second-order quaternion differential
equations (17) and (22) in the Euler parameters is regular for the perturbed motion of a point
particle in a central force field with any arbitrary potential Π(r) if the equation terms generated
by the perturbing potential Π∗ and the perturbing acceleration p are finite. Besides, in the case
of unperturbed central motion, each one of these quaternion equations becomes equivalent to
the motion equation of four-dimensional single-frequency harmonic oscillator. The frequency of
oscillator, which for this case corresponds to the quaternion equation (17), equals c/2, and its
value depends on the type of motion. However, the frequency of oscillator, which corresponds
to the quaternion equation (22), has the constant value of 1/2 for all types of motion, which
is convenient for solving some problems. The quaternion λ in the case of unperturbed central
motion characterizes the orientation of orbital plane of a point particle. It follows that each
one of Eqs. (17) and (22) for the quaternion λ is a regular quaternion equation of instantaneous
orientation of the perturbed orbit plane.

Each one of Eqs. (19) and (24) for the total energy h∗ and each one of the first equations
from Eqs. (20) and (25) for c2 are also regular for any arbitrary potential Π(r), if that same
condition of finiteness of perturbing forces is satisfied. However, Eqs. (18) and (23) for r are
regular only if Π(r) has the form of

Π(r) = −a1r
−1 − a2r

−2 − a3r
−3 − a4r

−4, ai = const., (26)

for which Eq. (18) becomes

d2r

dτ2
+ c2r − 1

m
(a3 + 2a2r + 3a1r

2)− 4
m

(h∗ −Π∗)r3 = r4
(
scal (λ ◦ q)− 1

m

∂Π∗

∂r

)
.

For this reason, the described systems of Eqs. (17)–(20) and (22)–(25), derived using the
Euler parameters, are generally regular for the perturbed central motion of a point particle in a
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force field with the potential (26), which has the fourth order relative to the inversed distance to
the center of attraction r−1. These equations are more complex than the quaternion equations
in the KS variables, because they include an additional equation for r (as we have mentioned,
the equations in the KS variables can be processed independently from the equation for the
distance r) and the equation for the variable c2. Besides, the equation for the distance is
not linear for unperturbed Keplerian motion. However, the equations in the KS variables
are regular only for the perturbed motion of a point particle in a central force field with the
Newtonian potential Π(r) = −a1r

−1 (if that same condition of finiteness of the perturbing forces
is satisfied). Besides, the main quaternion equation (12) or (14) for the KS variables is nonlinear
for unperturbed central motion with any potential Π(r), except the potential Π(r) = −a1r

−1,
unlike the quaternion equations (17) and (22).

Note that if the perturbing acceleration p and the perturbing potential Π∗ are not explicit
functions of time t, Eqs. (17)–(20) and (22)–(25) can be processed independently from the time
equation. Besides, if the perturbing acceleration from the non-conservative forces p = 0 and
the potential Π∗ of perturbing forces is not an explicit function of time t, the total energy
h∗ = const. and Eqs. (19) and (24) for that variable fall out of consideration.

Also note that nowadays from comparing the obtained results of computations for orbit
elements offsets for planets to the ephemerides data (Simon, Bretagnon, Chapront, Chapront-
Touze, Francon, Laskar 1994) for J2000 epoch, it is determined how the difference in these
data conforms to relativistic effects of the GTR. Additional offset of the perihelion of planets
orbit for one revolution around the Sun, according to the GTR, is determined by the known
Einsteins formula (Explanation of the perihelion motion of Mercury’s from the GTR). This
formula follows from the solution to the problem of motion of a point particle in the curved
spacetime described by the Schwarzschild metric. Point particle trajectories in such a space
match the trajectories of motion in the central force field with the potential

Π(r) = −a1r
−1 − a3r

−3, a1, a3 = const.,

which is a particular case of the potential (26). In such a field, the perturbing acceleration,
which consists only of the radial component proportional to r−4, is added to the Newtonian
acceleration. From the perturbed motion equations in osculating elements, it follows that such
perturbation only affects the behavior of the longitude of perihelion and the eccentricity of
an orbit. It is determined that the relativistic effect for the offset of Mercury’s perihelion is
confirmed. For perihelions of other planets, the effect predicted by the GTR is within the margin
of calculation error. The described regular equations (17)–(20) and (22)–(25) can be used, in
particular, to predict motion of the planets, taking into account the effects of the GTR. Also,
we have used them[57] to derive regular quaternion equations of the perturbed orbital motion
of a solid body in the Earth’s gravitational field, considering its zonal, tesseral, and sectorial
harmonics (with regularization of the equation terms, which contain negative power of the
distance r up to and including the fourth order).

Regular equations of perturbed central motion were also derived[27,30] in two normal quater-
nion forms from Eq. (9) in mappings on the rotating coordinate frame η by introducing the new
independent variable τ according to the formula dt = r2dτ , and the new independent variable
ϕ in these equations.

The equations with the independent variable τ are as follows:

dcη

dτ
= −r3vect (Q ◦ λ), cη = c2j + c3k, (27)

2
dλ

dτ
= λ ◦ cη,

dt

dτ
= r2. (28)

These differential equations of the first order for quaternion variables cη and λ are comple-
mented with differential equations (18) and (19) for the distance r and the total energy h∗, and
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also with the relations (21) for the quaternion Q, which describes the acting perturbances.
The equations with the independent variable ϕ are as follows:

dcη

dϕ
= −r3c−1vect (Q ◦ λ), c = (c2

2 + c2
3)

1/2, (29)

2
dλ

dϕ
= c−1λ ◦ cη,

dt

dϕ
=

r2

c
, c 6= 0. (30)

These equations are complemented with the differential equations (23) and (24) for the distance
r and the total energy h∗, and also with the relations (21) for the quaternion Q.

From Eq. (10), one can derive the equivalent equations in mappings on the inertial coordinate
frame, which are more complex and have the order which is greater by one.

Systems of Eqs. (27), (28), (18), (19) and (29), (30), (23), (24), as well as systems of
Eqs. (17)–(20) and (22)–(25), are regular for the perturbed motion in the central force fields
with the potential (26). However, the order of these systems is 10 (the equation systems in the
KS variables have the same order), which is less by 3 than the order of systems of Eqs. (17)–(20)
and (22)–(25), which contain oscillator type quaternion equations.
4.5 Perturbed motion quaternion equation systems with the generalized Binet

equation
Equation systems (17)–(20) and (22)–(25), as we have noted, have a common disadvantage,

i.e., the included equation for r is not linear for the general case of unperturbed central motion
nor for the important particular case of the unperturbed Keplerian motion. This makes it
difficult to directly use these equations in the analytical research. This disadvantage for the
Keplerian motion can be eliminated by replacing the distance r with the new variable ρ = 1/r,
which implies that we do not consider motion of a point particle when it collides with the
central mass.

By introducing a new variable ρ = 1/r in Eqs. (22)–(25), we derive the equation
system[22,24,27],

d2λ

dϕ2
+

1
4
λ = − 1

2c2

(dc2

dϕ

dλ

dϕ
− 1

ρ3
(Q− scal (λ ◦Q)λ)

)
, (31)

d2ρ

dϕ2
+ ρ +

1
mc2

dΠ(1/ρ)
dρ

= − 1
c2

(1
2

dc2

dϕ

dρ

dϕ
+

1
ρ2

(
scal (λ ◦ q)− 1

m

∂Π∗

∂(1/ρ)

))
, (32)

dc2

dϕ
=

4
ρ3

scal
(dλ

dϕ
◦Q

)
,

dt

dϕ
=

1
cρ2

, c 6= 0, ρ =
1
r
, (33)

where

Q = q − ρ

2m

∂Π∗

∂λ
, q = −i ◦ λ ◦ pin(t, rin,vin), Π∗ = Π∗(t, rin),

rin = ρ−1λ ◦ i ◦ λ, vin = cλ ◦ i ◦
(
2ρ

dλ

dϕ
− dρ

dϕ
λ

)
.

This equation system with the generalized Binet equation (32) is simpler than the system
(22)–(25) because it does not include the equation for the total energy h∗. Besides, Eq. (32)
for the case of the unperturbed Keplerian motion takes the form of harmonic oscillator motion
equation, while Eq. (23) for r for this case stays highly nonlinear. For these reasons, in some
cases of analytical and numerical research of the perturbed motion, the system (31)–(33) is
preferable to the system (22)–(25).

Also note the following advantages of the system (31)–(33). In the case of unperturbed
Keplerian motion, the universal solution to this equation system (i.e., solution, the form of
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which does not depend on the type of motion) can be written in elementary trigonometric func-
tions, while the universal solution to the KS equation system (15) for this case requires special
Stumpff functions[37]. This circumstance is important for analytical and numerical research of
the perturbed motion, because the type of orbit can change under the effect of perturbing forces
acting over finite time spans. Besides, the system (31)–(33) allows to derive the perturbed mo-
tion equations in quaternion osculating elements, which do not contain trigonometric function of
slow variables, are free from singularities associated with them, and are suitable for researching
any arbitrary perturbed central motion, while the perturbed motion equations in quaternion
osculating elements derived from Eq. (15) can only be used for the perturbed elliptic Keplerian
motion.

The described properties of Eqs. (31)–(33) are due to the fact that the quaternion equa-
tion (31) for Euler parameters and Eq. (32) for the variable that is the inverse of the distance
are equivalent to the harmonic oscillator equations for all types of unperturbed Keplerian mo-
tion (elliptic, parabolic, and hyperbolic). Besides, for the case of arbitrary unperturbed central
motion, Eq. (31) is equivalent to the four-dimensional single-frequency harmonic oscillator equa-
tion. However, the KS equations (the first and second equations in system (15)) are equivalent
to harmonic oscillator equations only for elliptic motion when h < 0, for parabolic motion when
h = 0, while for hyperbolic motion when h > 0.

One disadvantage of system (31)–(33) is that it is not regular and is not suitable for research
of motion in the neighborhood of coordinate origin, unlike the systems described before. It
should be noted that such nonregularity is caused by Eq. (32) for the variable ρ. However,
Eqs. (31) and (33) are regular for any arbitrary perturbed central motion.

Note that introducing a new variable ρ = 1/r in the system of Eqs. (29) and (30) leads to
the system of quaternion equations in the normal form of

dcη

dϕ
= − 1

cρ3
vect (Q ◦ λ), cη = c2i + c3k,

2
dλ

dϕ
=

1
c
λ ◦ cη,

dt

dϕ
=

1
cρ2

, c = (c2
2 + c2

3)
1/2 6= 0,

which has to be complemented with the generalized Binet equation (32) for the variable ρ and
the above-stated relations for the quaternion Q, which describes acting perturbances.

This system also has its advantages and disadvantages in comparison to system (29), (30),
(18), and (19), as well as the system (31)–(33) in comparison to the system (22)–(25).
4.6 Problem of motion of an artificial satellite in the Earth’s gravitational field

In the works[22,25], the efficiency of using the modified four-dimensional regular variables
instead of the KS variables was exemplified by the motion equations of a satellite in the Earth’s
gravitational field.

The vector form of the differential equations of motion of an artificial satellite in the Earth’s
gravitational field, considering its central and zonal components, is as follows:

d2r

dt2
= −∂ΠE

∂r
= −

(dΠ
dr

r

r
+

∂Π∗z
∂r

)
,

where

r = |r|, ΠE = Π + Π∗z, Π = Π(r) = −fmEr−1, Π∗z = Π∗z(r),

r is the geocentric radius vector of the satellite’s center of mass, f is the gravitational constant,
mE is the mass of the Earth, ΠE = Π + Π∗z is the potential of the Earth’s gravitational field,
Π = Π(r) is its central component, and Π∗z = Π∗z(r) is its zonal component, which results from
noncentrality of the Earth’s gravitational field (this component contains zonal harmonics of the
Earth’s gravitational field).



Quaternion methods and models of regular celestial mechanics and astrodynamics 47

Note that the right-hand side of the above differential motion equation of an artificial satel-
lite, in contrast to Eq. (3) and other equations of Section 4 (except for Subsection 4.6), does
not contain the factor 1/m, since the below-given potentials Π and Π∗z do not include masses.

The coordinate frame OXY Z, in which the orbital motion of a satellite is considered, is
introduced as follows: its origin O is at the center of the Earth, the axis OZ is directed to
the northern pole of the Earth, and the axis OX is directed to the point of spring equinox.
The Cartesian coordinates of a satellite in this coordinate frame are x, y, and z. Therefore, the
potential Π∗z is the function of these coordinates Π∗z = Π∗z(x, y, z).

The potential which describes zonal harmonics of the Earth’s gravitational field is

Π∗z(x, y, z) = Π∗z(r, γ) =
fmE

r

∞∑
n=2

Jn

(R

r

)n

Pn(γ), γ = sin ϕ = cos ϑ =
z

r
,

where R is the mean equatorial radius of the Earth, Jn are non-dimensional constants, which
characterize the shape of the Earth, Pn is the Legendre polynomial of the nth order, ϑ is the
angle between the axis OZ and the vector r, and ϕ is the geocentric latitude.

In the case of the KS axis, η1 of the above-introduced rotating coordinate frame η is directed
along the radius vector r. The orientation of coordinate frame η in the coordinate frame OXY Z
is characterized by the Euler parameters λj . The coordinates x, y, and z of a satellite in the
coordinate frame OXY Z are interrelated with r and the Euler parameters, and also with the
KS variables uj , by the following relations:





x = r(λ2
0 + λ2

1 − λ2
2 − λ2

3) = u2
0 + u2

1 − u2
2 − u2

3,

y = 2r(λ1λ2 + λ0λ3) = 2(u1u2 − u0u3),
z = 2r(λ1λ3 − λ0λ2) = 2(u1u3 + u0u2),

(34)

where

u0 = r1/2λ0, ui = −r1/2λi, i = 1, 2, 3, r = u2
0 + u2

1 + u2
2 + u2

3. (35)

As a result, the function γ, which is present in the potential Π∗z, can be expressed in terms
of the distance r, the Euler parameters, and the KS variables, in the following way:

γ = cos ϑ = r−1z = 2(λ1λ3 − λ0λ2) = 2r−1(u1u3 + u0u2). (36)

Let us define

Π+
z (r, γ) = rΠ∗z(r, γ) = fmE

∞∑
n=2

Jn

(R

r

)n

Pn(γ).

Let us use the regular equation system for the perturbed Keplerian motion (14), which
contains the total energy h∗. In this case, in the first equation of that system for the regular
quaternion variable u, we should define the perturbing potential as Π∗ = Π∗z and the perturbing
acceleration from non-conservative forces as p = 0. From the third equation of that system,
it follows that in the case of the total energy of a satellite, h∗ = const. As a result, from the
system (14) we derive, taking into account the above-described notations and assumptions, the
quaternion and scalar forms of differential equations for satellite motion are as follows:

d2u

dτ2
− h∗

2
u = −1

4
∂Π+

z

∂u
, (37)

d2uj

dτ2
− 1

2
h∗uj =

1
2

((γ

r

∂Π+
z

∂γ
− ∂Π+

z

∂r

)
uj −

(1
r

∂Π+
z

∂γ

)
u∗j

)
, j = 0, 1, 2, 3, (38)
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where

u∗0 = u2, u∗1 = u3, u∗2 = u0, u∗3 = u1,

h∗ = h + Π∗z = const., h = 2r
3∑

j=0

u̇2
j −

fmE

r
=

2
r

3∑

j=0

(duj

dτ

)2

− fmE

r
,

Π+
z = rΠ∗z(r, γ), r = u2

0 + u2
1 + u2

2 + u2
3, γ = 2r−1(u1u3 + u0u2).

These equations take into account central and zonal harmonics of the Earth’s gravitational
field, and h∗ is the total energy per unit mass of a satellite (earlier h∗ meant the total energy
of the whole satellite). The right parts of Eqs. (37) and (38) do not depend on time t. Time t
can be calculated by additionally integrating dt/dτ = r.

The differential equation for r of a satellite to the Earth’s center of mass, taking into account
the equation scal (u ◦Q) = −r

∂Π∗z
∂r , is

d2r

dτ2
− 2h∗r = fmE − ∂

∂r
(rΠ+

z ).

Let us direct the axis η3 of the coordinate frame η, instead of the axis η1, along the radius
vector r. In this case, all the above-stated quaternion equations preserve the same form, but
we should replace the unit vector i with the unit vector k (this, by the way, demonstrates the
convenience of quaternion models in astrodynamics). New variables uj defined from the Euler
parameters, as in the case of KS, by Eq. (35), are interrelated with the coordinates x, y, and z
by





x = 2r(λ1λ3 + λ0λ2) = 2(u1u3 − u0u2),
y = 2r(λ2λ3 − λ0λ1) = 2(u2u3 + u0u1),

z = r(λ2
0 − λ2

1 − λ2
2 + λ2

3) = u2
0 − u2

1 − u2
2 + u2

3,

(39)

which have the following quaternion form:

rin = xi + yj + zk = rλ ◦ k ◦ λ = u ◦ k ◦ u,

where the new quaternion variable u = u0 + u1i + u2j + u3k has the meaning different from
the quaternion variable u used earlier.

The distance r, as before, can be calculated from new variables uj according to r = u2
0 +

u2
1 + u2

2 + u2
3.

The variable γ in the potential of the Earth’s gravitational field can be expressed from the
KS variables by the relations (36),

γ = λ2
0 − λ2

1 − λ2
2 + λ2

3 = r−1(u2
0 − u2

1 − u2
2 + u2

3).

From this, taking into account the relation (35) and equation λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1, we
derive

{
γ = 1− 2(λ2

1 + λ2
2) = 2(λ2

0 + λ2
3)− 1 = 1− 2r−1(u2

1 + u2
2) = 2r−1(u2

0 + u2
3)− 1,

r = u2
0 + u2

1 + u2
2 + u2

3.
(40)

Comparing Eqs. (36) and (40), it is clear that the variable γ, on which the potential Π∗z
depends, can be expressed from the new variables uj in two different forms, and these expres-
sions have a simpler and more symmetrical structure, which allows to derive simpler and more
symmetrical satellite motion equations, than those for the case of using the KS variables.
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Quaternion versions of the motion equations of the Earth’s satellite in the KS variables and
modified variables have the same form (37). Scalar version of the satellite’s motion equations in
the Earth’s gravitational field in new (modified) four-dimensional variables uj has the following
form[22,25]:

d2uk

dτ2
− 1

2
h∗uk =

1
2

(γ − 1
r

∂Π+

∂γ
− ∂Π+

∂r

)
uk, k = 0, 3, (41)

d2us

dτ2
− 1

2
h∗us =

1
2

(γ + 1
r

∂Π+

∂γ
− ∂Π+

∂r

)
us, s = 1, 2, (42)

where

h∗ = h + Π∗z = const., Π+
z = rΠ∗z(r, γ),

r = u2
0 + u2

1 + u2
2 + u2

3, γ = 1− 2r−1(u2
1 + u2

2) = 2r−1(u2
0 + u2

3)− 1.

These equations must be complemented with the time equation dt/dτ = r.
The derived motion equations (41) and (42) of new (modified) variables uj have a simpler

and more symmetrical structure compared with Eq. (38) of the KS variables, which simplifies
analytical and numerical research of these equations. The equations produce the determined
system of nonlinear differential equations of the eighth order in relation to the new variables
uj (j = 0, 1, 2, 3) and their first derivatives duj/dτ .

Note that Eq. (41) for u0 and u3 of that system, complemented with the equation

d2r

dτ2
− 2h∗r = fmE − ∂

∂r
(rΠ+

z ) (43)

for r, produces the determined system of differential equations of the sixth order. Similarly,
Eq. (42) for u1 and u2 of that system, complemented with Eq. (43) for the distance r, also
produces the determined system of differential equations of the sixth order. This simplifies the
analytical research of satellite motion, because if we use the KS variables, we have to deal with
the determined system of differential equations of the eighth order in the considered case.

Also note that the modified variables (denoted by u∗j ) are interrelated with the KS variables
uj by the following relations:

u∗ = u ◦ π, π =
1
2
(1 + i + j + k),

u∗0 =
1
2
(u0 + u1 + u2 + u3), u∗1 =

1
2
(u0 − u1 − u2 + u3),

u∗2 =
1
2
(u0 + u1 − u2 − u3), u∗3 =

1
2
(u0 − u1 + u2 − u3).

4.7 Equations of unperturbed central motion
Equations of spatial unperturbed central motion of a point particle are derived from the

perturbed motion equations (7), (8), and (5), taking into account the relations p = 0 and
Π∗ = 0, and have the following form[23,29]:

2
d2u

dτ2
+ (rκ)3αu = 0, (44)

α =
2
m

(
2(h−Π1)r

d2κ

dr2
+

(
4(h−Π1)− r

dΠ1

dr

)dκ

dr

)
+

c2

2r3
κ,

rκ = ν1/2, κ = κ(r), ν = ν(r), h = h(0) = const., c = c(0) = const.,

d2r

dτ2
1

=
1
m

d
dr

(ν2
1(h−Π1)), (45)
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Π1 = Π(r) +
mc2

2r2
, ν1 = ν1(r),

dt

dτ
= ν(r),

dt

dτ1
= ν1(r),

dτ

dτ1
= ν−1(r)ν1(r). (46)

Equations (44)–(46) must be complemented with the following relations:

rin = rλ ◦ i ◦ λ, λ = κ(r)u, (47)

vin = ṙin = λ ◦ i ◦ µ = µ ◦ i ◦ λ, µ = ṙλ + 2rλ̇, (48)

which allow to calculate the coordinates x, y, and z and the projections of velocity ẋ, ẏ, and ż
of a point particle from uj , r, and their derivatives.

Equation (45) matches the equation derived by Belen’kiy[70] while considering the problems
of central motion in the polar coordinates r and ϕ.

Assuming that the regularizing function κ = 1, we derive

ν = r2, u = λ, α =
c2

2r3
.

Equations (44) and (46), according to this relation, are as follows:

d2λ

dτ2
+

c2

4
λ = 0, (49)

dt

dτ
= r2,

dt

dτ1
= ν1(r),

dτ

dτ1
= r−2ν1(r). (50)

If we replace the variable τ with the polar angle ϕ, which is related to τ by dϕ = cdτ , then
Eqs. (49)–(50) become

d2λ

dϕ2
+

1
4
λ = 0, (51)

dt

dϕ
=

r2

c
,

dt

dτ1
= ν1(r),

dϕ

dτ1
=

c

r2
ν1(r), c 6= 0. (52)

Let us put the origin of the arc coordinate ϕ to the pericenter. Then, the variable ϕ in
Eqs. (51)–(52) is the true anomaly.

Equations (45), (49), (50), or (45), (51), (52) and relations (47)–(48) (where κ = 1) are the
equations of unperturbed spatial central motion of a point particle. Equations (49) and (51)
are equivalent to the motion equation for single-frequency four-dimensional harmonic oscillator.
The frequency of the oscillator, which corresponds to Eq. (49), in time τ equals c/2, and its
value depends on the type of motion. The frequency of the oscillator, which corresponds to the
quaternion equation (51), in time ϕ has a constant value of 1/2 for all types of motion.

Relations between λ and u-variables and the elements of an orbit are as follows.
The quaternion λ, involved in motion equations for a point particle M , characterizes the

orientation of rotating the coordinate frame η relative to the coordinate frame OXY Z. The
coordinate frame OXY Z has its origin at the center of attraction O, and the directions of its
axes stay the same over time in the inertial coordinate frame. The origin of the coordinate
frame η is located at the point M , and its axis Mη1 is directed along the radius vector r of
a point particle. Besides, we assume that the absolute angular velocity projection ω1 of the
coordinate frame η on the axis Mη1 is zero during the whole timespan of motion.

In the case of unperturbed central motion, it is efficient to orient the axis Mη2 of the
coordinate frame η in the plane of an orbit. Then, the angular position of the coordinate frame
η relative to the coordinate frame OXY Z can be defined by three angles, i.e., the longitude
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of ascending node Ω, the inclination of an orbit I, and the argument of latitude σ = ω∗ + ϕ,
where ω∗ is the angular distance of the pericenter from the node, and ϕ is the true anomaly.
The plane of orbit in this case belongs to the coordinate plane Mη1η2, and the projection
ω1 = İ cos σ + Ω̇ sin I sinσ = 0.

Let us assign intrinsic quaternions of rotation (intrinsic quaternion is the quaternion defined
by its projections in the coordinate frame which is transformed by that quaternion) to the finite
rotations of coordinate frame η by angles Ω, I, and σ. These quaternions are as follows:

λ1 = cos
Ω
2

+ k sin
Ω
2

, λ2 = cos
I

2
+ i sin

I

2
, λ3 = cos

σ

2
+ k sin

σ

2
.

The quaternion λ, associated with the resulting rotation of coordinate frame η relative to the
coordinate frame OXY Z, can be found from the quaternions λi (i = 1, 2, 3) of the component
rotations using the quaternion formula of finite rotations addition,

λ = λ1 ◦ λ2 ◦ λ3. (53)

From the last relations, we derive




λ0 = cos
I

2
cos

Ω + σ

2
, λ1 = sin

I

2
cos

Ω− σ

2
,

λ2 = sin
I

2
sin

Ω− σ

2
, λ3 = cos

I

2
sin

Ω + σ

2
,

(54)

which, together with the relation

σ = ω∗ + ϕ, (55)

interrelates the Euler parameters λj with the classical orbital elements Ω, I, and ω∗.
Taking the relation (55) into account, we rewrite Eq. (53) in the following form:

λ = λ∗ ◦ λϕ, λ∗ = λ1 ◦ λ2 ◦ λω, (56)

λω = cos
ω∗

2
+ k sin

ω∗

2
, λϕ = cos

ϕ

2
+ k sin

ϕ

2
, (57)

where the quaternion λ∗ defines the orientation of the coordinate frame η∗ relative to the
coordinate frame OXY Z. The axis Mη∗1 of this coordinate frame passes through the pericenter,
and the axis Mη∗2 belongs to the plane of an orbit. Therefore, the quaternion λ∗ defines the
orientation of an orbit in space.

Besides, the quaternion λ can be represented as follows:

λ = λ∗ cos
ϕ

2
+ (λ∗ ◦ k) sin

ϕ

2
. (58)

From this relation, we can find the derivative

dλ(ϕ)
dϕ

=
1
2

(
− λ∗ sin

ϕ

2
+ (λ∗ ◦ k) cos

ϕ

2

)
, (59)

which can also be represented as

dλ(ϕ)
dϕ

=
1
2
λ∗ ◦ k ◦ λϕ =

1
2
λ∗ ◦ λϕ ◦ k =

1
2
λ ◦ k. (60)

Equations (54) and (55) and the relations

u0 = κ−1(r)λ0, ui = −κ−1(r)λi, i = 1, 2, 3 (61)
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interrelate the variables uj and the classical orbital elements.
In the quaternion form, we have

u = κ−1(r)λ = κ−1(r)λ3 ◦ λ2 ◦ λ1 = κ−1(r)λϕ ◦ λ
∗
.

Note that the two quaternions +λ and −λ correspond to any given angular position of the
coordinate frame η relative to the coordinate frame OXY Z. Each of these two quaternions
define the same rotation. Therefore, the relations (54) and (55) can be obtained from the
specified angles Ω, I, and σ (or ω∗ and ϕ) and two sets of Euler parameters, which differ only
by sign, +λj and −λj . Each of these sets defines the same angular position of the coordinate
frame η relative to the coordinate frame OXY Z. Similarly, Eqs. (61), (54), and (55) can be
obtained from the specified angles Ω, I, and σ (or ω∗ and ϕ), and two sets of values of variables
uj , +uj and −uj . Assuming κ(r) = r−1/2 in Eq. (61) and taking the Euler parameters found
from the angles Ω, I, and σ according to Eq. (54), with negative signs, we obtain the formulas
which interrelate the KS variables with orbital elements. These formulas match those derived
by Stiefel and Scheifele[37] using a different method.
4.8 Uniformized solution to the spatial problem of unperturbed central motion

To derive the solution to the spatial problem of unperturbed central motion, we can use
either Eqs. (45), (46), and (50), or Eqs. (45), (51), and (52). Let us use the latter.

By integrating Eq. (51), we obtain

λ(ϕ) = α cos
ϕ

2
+ β sin

ϕ

2
, (62)

dλ(ϕ)
dϕ

=
1
2

(
β cos

ϕ

2
−α sin

ϕ

2

)
, (63)

where α and β are constant quaternions defined by

α = λ(0) = λ0, β = 2
(dλ(ϕ)

dϕ

)
0
, (64)

in which λ0 and (dλ/dϕ)0 are the values of quaternions λ and dλ/dϕ at the pericenter (when
ϕ = 0).

The quaternion λ0 in the general case defines the orientation of coordinate frame η0, the axis
Mη0

1 of which directs along the radius vector r0 = r(0), and the axes Mη0
2 and Mη0

3 of which
rotate in the space around the axis Mη0

1 in an arbitrary way (i.e., in the general case, the axis
Mη0

2 may or may not belong to the plane of an orbit). However, if we define the quaternion
λ0 in such a way that the axis Mη0

2 belongs to the plane of an orbit (the axis Mη0
3 in this

case will be orthogonal to that plane), then the general solution to Eq. (51) can be represented
in the form of Eqs. (58), (59), or (56), (57), (60), derived from geometric considerations. By
comparing Eqs. (62) and (63) with Eqs. (58) and (59), we can obtain

α = λ∗, β = λ∗ ◦ k, (65)

where the quaternion λ∗, which defines the orientation of the coordinate frame Y ∗ relative to X
(i.e., the orientation of an orbit), can be found from the orbital elements Ω, I, and ω∗ according
to the second relation from Eq. (56).

From Eqs. (64) and (65), it follows that the quaternions α and β are unit quaternions (i.e.,
with norms equal to one), and the components αj and βj of quaternions α and β satisfy the
condition of orthogonality,

3∑

j=0

αjβj = scal (α ◦ β) = 0.
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Let us consider Eq. (45). By defining the regularizing function ν1(r) for the specified form
of the above-mentioned potential Π1(r) from the relation

ν2
1(h−Π1) =

1
2
C∗1r2 + C∗2r + C∗3 , C∗1 , C∗2 , C∗3 = const., (66)

and from Eqs. (45) and (66), we derive the linear equation for calculating r, which has a form
of the known harmonic oscillator motion equation[70],

d2r

dτ2
1

=
1
m

(C∗1r + C∗2 ).

The general solution to this equation is as follows:

r(τ1) = A cosh(kτ1 + ε)− C∗2
C∗1

, k2 =
C∗1
m

, (67)

where A and ε are the constants of integration.
The relations (62), (63), and (67), or (56), (60), and (67), complemented by

ϕ = c

∫
r−2(τ1)ν1(r(τ1))dτ1 + const., (68)

t =
∫

ν1(r(τ1))dτ1 + const., (69)

rin = r(τ1)λ(ϕ) ◦ i ◦ λ(ϕ), (70)

vin =
(
Akν−1

1 (r(τ1)) sinh(kτ1 + ε)λ(ϕ) + 2cr−1(τ1)
dλ(ϕ)

dϕ

)
◦ i ◦ λ(ϕ), (71)

following from the relations (52), (47), and (48), are the general solution to the spatial problem
of unperturbed central motion[23,29]. The variable τ1 is independent here. The variable ϕ
involved in Eqs. (62)–(63) and (70)–(71) can be expressed from τ1 by the relations (67) and
(68).

Using Eq. (60), we can represent the relation (71) as

vin = λ(ϕ) ◦ (Akν−1
1 (r(τ1)) sinh(kτ1 + ε)i + cr−1(τ1)j) ◦ λ(ϕ). (72)

An equivalent solution to the spatial problem of unperturbed central motion can be derived
using the quaternion equations (49) and (50). In that case, the variable ϕ is replaced by τ .

Let us represent the derived solution in the uniformized form, which eliminates the necessity
to consider branching of solutions around the critical points, such as poles. By using the
solutions for r, ϕ, and t, which describe the motion of a point particle in the uniformized form
derived by Belen’kiy[70] in the two-dimensional case, Chelnokov[23,29] derived the uniformized
solution to the spatial problem of unperturbed central motion as the relations (62), (63), and

r = a(γ(z; g2, g3) + µ∗),

ϕ =
2c

ka2

∫
(γ(z) + µ∗)−3/2ν1(a(γ(z) + µ∗))dz + const., (73)

t =
2
k

∫
(γ(z) + µ∗)1/2ν1(a(γ(z) + µ∗))dz + const.,

rin = a(γ(z) + µ∗)λ(ϕ) ◦ i ◦ λ(ϕ), (74)

vin =
(
ṙλ(ϕ) + 2c(a(γ(z) + µ∗))−1 dλ(ϕ)

dϕ

)
◦ i ◦ λ(ϕ), (75)

ṙ = akν−1
1 (a(γ(z) + µ∗))((γ(z) + µ∗ + l1)2 − l2)1/2.
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Here, γ(z; g2, g3) is the elliptic Weierstrass function, z is the uniformizing variable, and g2 and
g3 are invariants.

The values of constants a, µ∗, l1, l2, and invariants g2, g3 are determined depending on the
signs of values C∗i by the following relations[70]:

C∗2
C∗1

> 0, a =
C∗2
C∗1

, A = ae > 0, µ∗ = −2
3
, l1 = 1, l2 = e2,

g2 = 4
1 + 3e2

3
, g3 = 8

1− 9e2

27
,

C∗2
C∗1

< 0, a =
∣∣∣C

∗
2

C∗1

∣∣∣, A = ae > 0, µ∗ =
2
3
, l1 = −1, l2 = e2,

g2 = 4
1 + 3e2

3
, g3 = −8

1− 9e2

27
,

C∗2
C∗1

= 0, a = A, µ∗ = 0, l1 = −1, l2 = 0, g2 = 4, g3 = 0,

where e is the quazi-eccentricity[70].
ϕ, involved in the relations (62), (63), (74), and (75), must be calculated in advance according

to the relation (73).
Equation (75) can be represented as

vx = λ(ϕ) ◦ (ṙi + c(a(γ(z) + µ∗)−1j) ◦ λ(ϕ).

4.9 Quaternion solution to the orbit orientation problem
In celestial mechanics and astrodynamics, the classical orbital elements have been widely

used for studying the Keplerian motion. These orbital elements are the longitude of ascending
node Ω, the inclination of an orbit I, and the angular distance of the pericenter from node
ω∗. The relations between the λ and u-variables, which we use in our theory, and the orbital
elements, have the form of relations (54), (55), and (61).

From these relations, one can derive, as particular cases, the formulas obtained by Stiefel
and Scheifele[37], which relate the KS variables to the orbital elements. Note that applying
the introduced coordinate frame η and the quaternion formalism makes it trivial to derive the
interrelations of λ and u-variables with the orbital elements. The method for deriving the
relations between the KS variables and orbital elements, proposed by Stiefel and Scheifele, is
much more complicated.

Let us consider the calculation of orientation of orbital plane in space and the orientation
of an orbit in that plane for the unperturbed Keplerian motion. We assume that we know the
initial values of quaternions λ and dλ/dϕ and the variables ρ = 1/r, dρ/dϕ, and c, where ϕ,
as before, is the true anomaly.

Let us define the orientation of an orbit in space by two orthogonal unit vectors a and b.
Let us direct the vector a from the center of attraction to the pericenter, and the vector b along
the vector v(0), where v(0) is the velocity vector of a point particle at the pericenter. To find
a and b, we use

ain = r−1(0)rin(0), bin = v−1(0)vin(0),

where rin(0) and vin(0) are the values of quaternions rin and vin when a point particle is at
the pericenter, and r(0) and v(0) are the moduli of r and v for that same moment.

From Eqs. (47) and (48), we get

rin(0) = r(0)λ(0) ◦ i ◦ λ(0), vin(0) = 2
c

r(0)
λ(0) ◦ i ◦

(dλ

dϕ

)
0
.
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Taking Eq. (64) and v(0) = c/r(0) into account, from the above-described relations, we find

ain = α ◦ i ◦α, bin = α ◦ i ◦ β. (76)

By solving Eqs. (62) and (63) for α and β, we get

α = λ cos
ϕ

2
− 2

dλ

dϕ
sin

ϕ

2
, β = λ sin

ϕ

2
+ 2

dλ

dϕ
cos

ϕ

2
. (77)

To calculate the value of true anomaly ϕ, which corresponds to the specified initial position
of a point particle, it is necessary to use the formulas of Duboshin[71–72],





sinϕ = −P

e

dρ

dϕ
, cos ϕ = e−1(Pρ− 1),

P = µ−1c2, e = µ−1
(
µ2 + c2(c2ρ2 + c2

( dρ

dϕ

)2

− 2µρ)
)1/2

.

(78)

Equations (76)–(78) proposed by Chelnokov[25] provide the quaternion solution for the or-
bit orientation problem for the unperturbed Keplerian motion. These relations are the basis
for determining the osculating motion if the perturbed Keplerian motion is described by the
differential equations in variables λ, ρ, and c.
4.10 Equations in quaternion osculating elements

In the work of Chelnokov[25,29], the following equations of the perturbed orbital motion of a
satellite (a point particle) in osculating elements α, β, and c2 were derived from Eqs. (31) and
(33) by a variation method of arbitrary constants of integration as follows:

dα

dϕ
= −f sin

ϕ

2
,

dβ

dϕ
= f cos

ϕ

2
,

dc2

dϕ
=

4
ρ3

scal
(dλ

dϕ
◦Q

)
,

dt

dϕ
=

1
cρ2

, c 6= 0, ρ =
1
r
,

where

f = − 1
c2

(dc2

dϕ

dλ

dϕ
− 1

ρ3
(Q− scal (λ ◦Q)λ)

)
,

λ = α cos
ϕ

2
+ β sin

ϕ

2
,

dλ

dϕ
=

1
2

(
−α sin

ϕ

2
+ β cos

ϕ

2

)
,

and the quaternion Q is defined by the relations given after Eq. (33).
Quaternion osculating elements α and β are defined from λ, dλ/dϕ, and ϕ, which describe

the rotation of an auxiliary coordinate frame η in the inertial space, by Eq. (77), the scalar
osculating element c2 is the squared modulus of the velocity moment vector c of a point particle
(constant value for unperturbed central motion), and the quaternion Q characterizes acting
perturbances.

Note that the quaternion osculating elements α and β introduced here are different from the
quaternion osculating elements α and β, which were introduced in Section 3 and are interrelated
with the regular quaternion variables u and du/dτ∗.

The equations in elements α, β, and c2 are complemented with the generalized Binet
equation (32), which for the Newtonian central field of gravity (when the potential Π(r) =
−mµr−1 = −mµρ) takes the form of the perturbed oscillator, or with the equations in osculat-
ing elements, derived from the generalized Binet equation and related to the variable ρ = 1/r,
and also the time element equation.

We have also derived the equations for the perturbed orbital motion of a satellite in other
quaternion osculating variables[29], one of which is the quaternion variable λ∗, which is deter-
mined by the second relation from Eq. (56) and characterizes the osculating orientation of an
orbit of a satellite in its perturbed motion.
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4.11 Unambiguous calculation of λ and u-variables from Cartesian coordinates
and their derivatives

Consider the problem with the initial conditions in λ and u-variables. At t = 0, the values
of coordinates x, y, and z and projections of velocity ẋ, ẏ, and ż of a point particle are set.
We need to determine the corresponding values of λj ,dλj/dτ , or uj ,duj/dτ for the moment
τ = 0, which are involved in the initial conditions for integrating the quaternion equations of
the perturbed motion in λ or u-variables. For the sake of simplicity, let us denote the initial
values of variables by the same letters as their current values.

The Euler parameters λj can be found from the Cartesian coordinates x, y, and z according
to the following equation[23,25]:





λ2
0 + λ2

1 =
r + x

2r
, λ2 =

yλ1 − zλ0

r + x
, λ3 =

yλ0 + zλ1

r + x
when x > 0,

λ2
2 + λ2

3 =
r − x

2r
, λ0 =

yλ3 − zλ2

r − x
, λ1 =

yλ2 + zλ3

r − x
when x < 0,

where r = (x2 + y2 + x2)1/2.
By using Eq. (48), we can obtain the derivatives λ̇j as follows:

λ̇ = − 1
2r

(vin ◦ λ ◦ i− ṙλ), ṙ = r−1(xẋ + yẏ + zż).

To find the derivatives dλj/dτ and dλj/dϕ, it is necessary to use

dλ

dτ
= rλ̇,

dλ

dϕ
= c−1r2λ̇.

After we find λj and λ̇j using Eq. (61), it is easy to find uj and their derivatives with respect
to different variables. From the obtained formulas, one can derive, as particular cases, the
formulas for the KS variables and their derivatives, obtained by Stiefel and Scheifele[37].

There is an ambiguity in estimating the values of λj and uj and their derivatives from
specified values of x, y, z and ẋ, ẏ, ż according to the above-described formulas. This ambiguity
is caused by the fact that for finding two variables (λ0 and λ1 for the case of x > 0, or λ2 and λ3

for the case of x < 0), there is only one equation. As a result, the variables λj and uj and their
derivatives are defined ambiguously by x, y, z and ẋ, ẏ, ż according to the above-stated relations.
This ambiguity also exists for finding the KS variables and their derivatives according to the
formulas described by Stiefel and Scheifele[37], since these formulas, as we have noted, are the
particular case of the above-stated formulas.

The described method for finding the variables λj and uj is inconvenient not only because
there is an ambiguity in it, but also because in the case of unperturbed central motion, if we
use that method for estimating the variables λj and uj , the corresponding coordinate plane
Mη1η2 may not match the plane of an orbit, and the axis Mη3 may not match the normal to
that plane.

Let us propose another method for finding the values of λj and uj and their derivatives from
specified values of variables x, y, z and ẋ, ẏ, ż, which is free from the mentioned disadvantages of
the above-described method and was proposed in works of Chelnokov[23,25]. In order to do that,
we need an additional assumption about the orientation of trihedral η at the considered (initial)
moment of time. Let us require that for that moment of time, the axis Mη3 is perpendicular
to the plane, to which r and v = dr/dt belong, by directing it along the vector c = r × v,
where c, as before, is a vector of velocity moment of a moving point particle M relative to the
attracting center. The axis Mη1, as before, is assumed to be directed along the radius vector
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r. Then, we have
{

rin = xi + yj + zk = rλ ◦ i ◦ λ, cin = cxi + cyj + czk = cλ ◦ k ◦ λ,

c = (c2
x + c2

y + c2
z)

1/2, r = (x2 + y2 + z2)1/2,
(79)

where the projections cx, cy, and cz of the vector c on the coordinate frame OXY Z are defined
in terms of the variables x, y, z and ẋ, ẏ, ż by

cx = yż − zẏ, cy = zẋ− xż, cz = xẏ − yẋ. (80)

From the relations for the quaternions rin and cin, we get the following vector equations:

(rin − ri) · λv = 0, λ0(rin − ri) + (rin + ri)× λv = 0,

(cin − ck) · λv = 0, λ0(cin − ck) + (cin + ck)× λv = 0,

where λv = vect λ = λ1i + λ2j + λ3k is the vector part of the quaternion λ, the unit vectors
i, j, and k of the hypercomplex space from now on are equated to the unit vectors of some
orthogonal three-dimensional coordinate frame, i.e., they conform to common rules of vector
algebra.

Let us introduce ϑ of finite rotation of coordinate frame η relative to the coordinate frame
OXY Z as follows:

ϑ = ϑ1i + ϑ2j + ϑ3k =
λv

λ0
, ϑi =

λi

λ0
. (81)

Considering that λv = λ0ϑ and assuming that λ0 6= 0 (thus eliminating the half-turns of
coordinate frame η relative to the coordinate frame OXY Z from consideration), from the vector
equations, we derive

{
(rin − ri) · ϑ = 0, (rin − ri) + (rin + ri)× ϑ = 0,

(cin − ck) · ϑ = 0, (cin − ck) + (cin + ck)× ϑ = 0.
(82)

For estimating the vector ϑ , from Eq. (82), we can use either the second and third equations,
or the first and fourth equations of this equation set. As a result, we get

ϑ =
C− ×R−

R+ ·C− =
R− ×C−

C+ ·R− , (83)

R+ ·C− = −C+ ·R− = rcx − cz 6= 0, (84)

R+ = rin + ri, R− = rin − ri, C+ = cin + ck, C− = cin − ck.

Note that the condition (84) means, in particular, that r and v should not belong at the
considered moment of time to the fixed plane OXY .

After we find the projections ϑi of vector ϑ from the specified values of x, y, z and ẋ, ẏ, ż
according to the relations (83), (84), and (79)–(81), from the following equations:

λ0 = (1 + ϑ2)−1/2; λi = λ0ϑi, ϑ2 = ϑ2
1 + ϑ2

2 + ϑ2
3,

we can estimate the values of the Euler parameters λj , and after that, we can estimate the
values of their derivatives according to

λ̇ = − 1
2r

(vin ◦ λ ◦ i− ṙλ), ṙ = r−1(xẋ + yẏ + zż),
dλ

dτ
= rλ̇,

dλ

dϕ
= c−1r2λ̇.
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The values of uj and their derivatives can be found using Eq. (61).
The proposed method for finding the values of λj and uj and their derivatives from the

specified values of variables x, y, z and ẋ, ẏ, ż at the considered moment of time, as opposed to
the method described at the beginning of this subsection, not only allows to unambiguously
calculate the initial conditions for integrating the perturbed motion quaternion equations in λ
and u-variables, but also allows to find for the case of unperturbed central motion such values
of quaternions λ and u, for which the coordinate plane Mη1η2 matches the plane of an orbit
of a point particle, and the axis Mη3 is orthogonal to that plane, which is important in some
cases, for example, for defining the osculating motion in the variables λj or uj from the specified
values of x, y, z and ẋ, ẏ, ż.

5 Works on the KS and quaternion regularization of the two-body problem
equations by other authors

By means of quaternions in vector notation, the work of Velte[1] in 1978 gave a new deriva-
tion of the KS transformation acting from a four-dimensional parameter space into the three-
dimensional physical space. Using the quaternions in vector notation allowed to assign an
immediate geometrical interpretation to each step in the derivation. In particular, the KS
transformation appears as the Levi-Civita transformation, formulated in a rotated coordinate
system. As a simple application, the explicit formulas are given for the KS transformation in
the case of an elliptic Kepler motion in space.

In the introduction part, Velte noted that Volk and Waldvogel pointed out a geometrical
interpretation of the KS transformation involving the Eulerian angles of a rotated coordinate
system[71].

Velte also noted that in this paper, Volk pointed out that the KS transformation already
occurred in a letter of Euler to Christian Goldbach by way of a special case of the so-called
Euler identity[73].

In the note of Vivarelli[2], the KS transformation introduced by Kustaanheimo and Stiefel
into celestial mechanics was formulated in terms of hypercomplex numbers as the product of
a quaternion and its antiinvolute. Therefore, it represents a particular morphism of the real
algebra of quaternions for image of a three-dimensional real linear subspace, and also a natural
generalization of the Levi-Civita transformation. It is shown that the quaternion matrix of the
product leads to the KS matrix, and the bilinear relation and the two identities which play
a central role in the KS theory are easily derived using quaternions. A suitable quaternion
gauge-transformation is given, which leads to the well-known fibration of the four-dimensional
space. In addition, several geometrical interpretations are brought out.

Vivarelli, in particular, noted, “the product of two quaternions suggests the interpretation
of the KS transformation as a transformation of the Euclidean space R4, i.e., a rotation and an
expansion about the origin, the ratio of expansion being the norm of q”, where q is a quaternion
composed of the KS variables. Note that the work of Vivarelli[2] (“The KS transformation in
hypercomplex form”) did not introduce a rotating coordinate system and the Euler parameters
characterizing its rotation in the inertial space and associated with the KS variables, as done by
Chelnokov[20]. Also, Vivarelli did not give a kinematic interpretation of the KS bilinear relation
proposed by Chelnokov[20]. We also note that the work of Vivarelli was received by the editors
of the journal on December 21, 1981, and the work of the present author was received on March
15, 1979.

We should note that the quaternion q used by Vivarelli has the following form:

q = u1 + u2i + u3j + u4k,

where, as before, i, j, and k are the imaginary units of Hamilton’s vector.
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The KS transformation was presented by Vivarelli in the following quaternion form:

x = x1 + x2i + x3j = qq∗, q∗ = kqk−1 = u1 + u2i + u3j − u4k,

where q∗ is the quaternion antiinvolute to the quaternion q.
Stiefel and Scheifele[37] studied the perturbed Keplerian motion not only using the regular

equations in the oscillator form and the methods of the oscillation theory, but also using the
regular equations in the canonical form, for which they developed the theory of canonical KS
transformation. The canonical approach to the regularization problem, which uses the KS
transformation, was developed by Lidov[74–76] and has been widely used. In a more recent
work[77], Poleshchikov considered the generalized KS matrix and associated transformations in
the theory of regularizing the canonical equations of the two-body problem.

We should also note the work by Shagov[5], in which the differential motion equations of
a spacecraft were derived for the perturbed spatial two-body problem. These equations were
written in the orbital coordinate frame. For describing the motion in the inertial space, the
rotation quaternion normed by means of a multiplier was used, which equals the square root
of modulus c of the velocity moment vector of a spacecraft. In these equations, τ , related to
time t by the differential relation dτ = (1/2)cr−2dt, was used as the independent variable. The
equations of τ are linear for the unperturbed Keplerian motion of a satellite.

In the works of Deprit et al.[6], the matrix KS theory was presented in terms of quaternions.
The authors considered the KS transformation independently from its possible application to
Keplerian systems and refined several theorems formulated by Stiefel.

The abstract reads, “Concerning Stiefel’s own contribution to the question, on the one
hand, we abandon the formalism of the matrix theory to proceed exclusively in the context
of quaternion algebra; on the other hand, we explain how, in the hierarchy of hypercomplex
systems, both the KS transformation and the classical projective decomposition emanate by
doubling from the Levi-Civita transformation.”

The introduction notes, “Free as we are now of computational servitudes, we even put
ourselves to the task of resetting the whole KS theory in terms of quaternions. By the time
Stiefel and Scheifele had completed their monograph, they became aware of the close connection
between their matrix formalism and the theory of quaternions. It was suggested that they take
advantage of it; they reacted to the suggestion in excessive terms (Stiefel and Scheifele[37],
page 286). Did they really believe that a transfer from matrices to quaternions would lead to
“failure or at least to a very unwieldy formalism”? Stiefel’s dire predictions notwithstanding,
we accepted the challenge. Did we fail? The reader is our jury. Building the KS transformation
as the emanation of an alternate bilinear form over the algebra of quaternions costs no more
in complications than the matrix formalism of Stiefel and Scheifele. Besides, we find rewards
in the exercise: theorems are sharpened, some to a significant extent; proofs are shortened; the
overall design of Stiefel comes out much enhanced as to its global and intrinsic meaning, not
to mention as a collateral a programming style for manipulating quaternions through general
purpose Symbol Processors.”

Deprit et al.[6] also considered the linearization of motion equations in cylindrical, spherical,
and orbital coordinate frames by introducing new variables and a new independent variable
instead of time t.

Deprit et al.[6] proposed their own transformation, that is, the DEF-transformation, as
an alternative to the KS transformation. About this transformation and the known Burdet-
Ferrandiz (BF) transformation, which they also considered, the following is stated.

“About alternatives to the KS transformation, Stiefel and Scheifele (1971, page 288) issued
a warning little short of an injunction: ’the authors are convinced that the search for other
transformations is not very promising.’ To many readers, their omen conveyed the impression
that the KS technique is unique in achieving jointly regularization, linearization, and dimension-
raising for three-dimensional Keplerian systems. The facts disallow the claim. Kustaanheimo,
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Stiefel, and Scheifele never mentioned that the decisive step Fock (1935; 1936) had taken in that
direction thirty five years earlier, not even in their brief allusion to the same step taken, but
independently, by Moser (1970). We have room here for the latest entry in the competition, the
BF transformation due to Burdet (1969) for the coordinate part and completed by Ferrfindiz
(1986a; 1986b; 1987; 1988) for the moment part. We supplement it with a transformation of
our own, the DEF-transformation, which we claim achieves equally well all the objectives of
the KS transformation-linearization, regularization, and canonicity-although, we are inclined
to believe, in a simpler and more intuitive way (Subsection 4.1). Admittedly, the construction
involves heavy algebraic manipulations, no more however than is the case with the KS or the
BF transformation. Besides, we pass the chore to the symbol processor. Yet, lest we create
misunderstandings we hasten to emphasize the obvious, that a symbol processor is no more than
a mathematical accountant. However efficient its accounting methods are, it cannot relieve users
from the responsibility of creating simplifications toward clamping final results in their most
significant form.”

The eight-dimensional DEF-transformation of the Cartesian coordinates and the projec-
tions of velocity of a point particle are as follows (using the notation of the authors of that
transformation):

x = u0u, X = U0u +
1
u0

(u×U)× u = U0u +
1
u0

((u · u)U − (u ·U)u),

where x = r is the radius vector of a point particle, X = v = ṙ is its velocity vector, and u0, U0

and u,U are the new scalar and three-dimensional vector variables.
The independent variable (time t) is replaced with the generalized true anomaly f such that

u2
0df = β2Qdt, Q = ‖Q‖, Q = u×U =

1
β2

x×X,

where β is a parameter.
The DEF-transformation has much in common with the BF-transformation, which is as

follows:

x = u0u,

X =
1

‖u‖2
(

U0u +
1
u0

(u×U)× u

)
=

1
‖u‖2

(
U0u +

1
u0

((u · u)U − (u ·U)u)
)

.

After transitioning to the generalized true anomaly f as the independent variable, the motion
equations of a point particle in the Newtonian gravitational field (43)[6] in the DEF variables
are as follows:

du0

df
=

u2
0

Q
U0,

dU0

df
=

Q

u0
− µ

β3Q
,

du

df
=

1
Q

Q× u,
dU

df
=

1
Q

Q×U − u2
0

β4

(
2h + 3

µ

βu0

)
u,

dt

df
=

u2
0

β2Q
,

where µ is the gravitational constant, Q = const. is the angular momentum, and h is the
Keplerian energy (constant value).

By differentiating the third equation of the described equation system relative to f , Deprit
et al.[6] derived the linear differential equation of the second order relative to the vector variable
u,

d2u

df2
+ u = 0.
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For the new scalar variable σ = Q2/(µu0), which is introduced instead of u0, considering
the first and second equations of the above system, we obtain the following linear differential
equation relative to the scalar variable σ[6]:

d2σ

df2
+ σ =

1
β3

.

After derivation of two last equations, Deprit et al.[6] stated that this completes the lineariza-
tion of Keplerian systems in three dimensions by means of the DEF-transformation. There are
no comments in Ref. [6] about the main fourth dynamic equation of motion of a point particle
(equation of the first order for U) of the derived equation system, even though it contains in
the right part of the vector term,

u2
0

β4

(
2h + 3

µ

βu0

)
u,

which, after substituting into the analytical solutions u0 = u0(f) and u = u(f), derived as a
result of integrating the last two equations, becomes a nonstationary expression which is an
explicit function of time f . Moreover, the equation for U becomes a differential nonhomo-
geneous linear vector equation, the homogeneous part of which has constant coefficients and
the nonhomogeneous part is an explicit function of time f , which does not allow to derive an
analytical solution to this equation in a simple form.

The quaternion equations of motion of a point particle in the Newtonian gravitational field
in the KS variables are as follows:

d2u

dτ2
− 1

2
hu = 0,

dt

dτ
= r = u ◦ u = u2

0 + u2
1 + u2

2 + u2
3, h = const.

The first quaternion equation is equivalent to the system of four independent linear homo-
geneous differential equations of the second order relative to the components uj of quaternion
variable u (the KS variables). These equations have constant coefficients equal to the halved
constant Keplerian energy h of a point particle, taken with a negative sign, and are easily inte-
grated in elementary functions for the case of an elliptic Keplerian motion, when h < 0, or, for
any sign of energy h, in Stumpff functions. The initial conditions for integrating these equa-
tions are expressed from the initial values of the Cartesian coordinates of a point particle in the
inertial coordinate frame and the projection of its velocity vector on the axes of that coordinate
frame. The equation for time t can be integrated independently from these equations.

In our opinion, comparing the described equations shows that the equations in the KS
variables are advantageous to the equations in the DEF variables. Note that the equations in
the KS variables[28] lead to the equations in quaternion osculating elements (in slow quaternion
variables), which are convenient for researching perturbed elliptic motion of a point particle.

Among other early works, we should note the papers by Vrbik[7–8] which showed the efficiency
of using quaternions to solve the perturbed Kepler problem.

In particular, the paper by Vrbik[8] supplied a proof of formulas for constructing a pertur-
bative solution to the perturbed Kepler problem by utilizing the quaternion algebra of the KS
formulation of equations. The main advantage of this approach is a removal, from the corre-
sponding solution, of fast oscillations (in the case of conservative forces) and small divisors (in
the case of time-dependent forces).

Among more recent works, we should note the papers by Waldvogel[9–10], who has works
in collaboration with Stiefel and Waldvogel[78] and Stiefel et al.[79]. Waldvogel[10] in his work
“Quaternions for regularizing celestial mechanics: the right way” stated that quaternions have
been found to be the ideal tool for describing and developing the theory of spatial regularization
in celestial mechanics.
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Waldvogel[10] wrote, “This article corroborates the above statement. Beginning with a sum-
mary of quaternion algebra, we will describe the regularization procedure and its consequences
in an elegant way. Also, an alternative derivation of the theory of Kepler motion based on
regularization will be given. Furthermore, we will consider the regularization of the spatial
restricted three-body problem, i.e., the spatial generalization of the Birkhoff transformation.
Finally, the perturbed Kepler motion will be described in terms of regularized variables.”

Waldvogel acknowledged the authority of the author of this paper in the field of quaternion
regularization of differential equations of the perturbed spatial two-body problem and, talking
about the above-cited statement by Stiefel and Scheifele on the futility of using quaternion ma-
trices in the regularization theory, wrote, “This statement was first refuted by Chelnokov (1981)
who presented a regularization theory of the spatial Kepler problem using geometrical consider-
ations in a rotating coordinate system and quaternion matrices. In a series of papers, including
Chelnokov (1992, 1999), the same author extended the theory of quaternion regularization and
also presented practical applications.”

Let us note the main characteristics of the quaternion regularization method of Waldvogel[10].
For regularization, he proposed to use “star conjugate of the quaternion”,

u∗ = −kuk = u0 + iu1 + ju2 − ku3,

where u = u0 + iu1 + ju2 + ku3, and also the mapping

u ∈ U → x = uu∗.

This mapping uses nonconventional representation of the three-dimensional vector x by
the quaternion x = x0 + ix1 + jx2 with zero k-component (note that Waldvogel did not use
the special symbol ◦ for quaternion multiplication). x is a formal generalization (extension)
of the complex variable x = x0 + ix1, used by Levi-Civita in the theory of regularizing the
two-dimensional motion equations.

The above-stated Waldvogel mapping, considering his previous formula, becomes

x = uu∗ = −ukuk.

In the scalar form from the last formula, we get

x0 = u2
0 − u2

1 − u2
2 + u2

3, x1 = 2(u0u1 − u2u3), x2 = 2(u0u2 + u1u3),

“which is exactly the KS transformation in its classical form or up to a permutation of the
indices, the Hopf mapping” (statement by Waldvogel[10]).

Note that Waldvogel quaternions x, u, and u∗ match Vivarelli[2] quaternions x, q, and q∗
up to a designation of the indices of their components.

In the classical quaternion theory, a three-dimensional vector x is associated with the quater-
nion x = ix1 + jx2 + kx3 with zero scalar part. In the works by the author of this paper, the
quaternion variable u = u0 + iu1 + ju2 + ku3, which differs (by meaning) from the Waldvogels
quaternion variable, and the quaternion x = ix1 + jx2 + kx3 with zero scalar part are used for
regularization. These works used the mapping

x = uiu

and also the mapping

x = uku.

The scalar version of the first of these mappings is exactly the KS transformation,

x = u2
0 + u2

1 − u2
2 − u2

3, y = 2(u1u2 − u0u3), z = 2(u1u3 + u0u2),
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the form of which differs from the above-described Waldvogel transformation.
We should note that Waldvogel[9–10] derived the elegant quaternion representation of the

Birkhoff spatial mapping[80] which was used in the theory of regularization of the restricted
three-body problem equations. The same mapping, known as the Joukowsky mapping, was
used in aerodynamics for mapping the cross sections of aerodynamic surfaces to approximately
circular shape. In the work of Waldvogel[10], this mapping was called the Joukowsky-Birkhoff
mapping. Waldvogel presented this mapping as an addition to his early works on the regular-
ization theory proposed by Stiefel and Waldvogel[78] and Stiefel et al.[79].

Saha[11] showed that the KS transformation in the quaternion form can be interpreted as a
rotation in three dimensions using the rotation axis and the angle of rotation, who wrote, “The
KS transform turns a gravitational two-body problem into a harmonic oscillator, by going to
four dimensions. In addition to the mathematical-physics interest, the KS transform has proved
very useful in N -body simulations, where it helps handle close encounters. Yet the formalism
remains somewhat arcane, with the role of the extra dimension being especially mysterious. This
paper shows how the basic transformation can be interpreted as a rotation in three dimensions.
For example, if we slew a telescope from zenith to a chosen star in one rotation, we can think of
the rotation axis and angle as the KS transform of the star. The non-uniqueness of the rotation
axis encodes the extra dimension. This geometrical interpretation becomes evident on writing
KS transforms in quaternion form, which also helps derive concise expressions for regularized
equations of motion.”

Zhao[12] presented the KS regularization of a spatial Kepler problem in symplectic and
quaternion approaches.

Roa and Pelaez[15] showed two fully regular and universal solutions to the problem of space-
craft relative motion derived from the Sperling-Burdet (SB) and KS regularizations. There are
no singularities in the resulting solutions, and their form is not affected by the type of reference
orbit (circular, elliptic, parabolic, or hyperbolic). In addition, the solutions to the problem are
given in compact tensorial expressions and directly refer to the initial state vector of the leader
spacecraft. The SB and KS formulations introduce a fictitious time by means of the Sundman
transformation. Because of an alternative independent variable, the solutions are built based on
the theory of asynchronous relative motion. This technique simplifies the required derivations.
Closed-form expressions of the partial derivatives of orbital motion with respect to the initial
state are provided explicitly.

Among the latest works on KS transformations, we should note the works by Roa et al.[14]

“Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration” and Ferrer
and Crespo[19] “Alternative angle-based approach to the KS map. An interpretation through
symmetry”.

Among the latest works on Levi-Civita and KS transformations, we should also note the
works by Breiter and Langner[16–18]. Breiter and Langner[18] noted that “The KS transforma-
tion gained popularity in the matrix-vector formulation of Kustaanheimo and Stiefel (1965),
but it is much easier to interpret and generalize in the language of quaternion algebra, very
closely related to the original spinor formulation of Kustaanheimo (1964).”

Saha[11] described the KS transformation in a quaternion form, proposed its generalized def-
inition, developed the geometric interpretation of the KS variables, and considered the bilinear
form and its generalization.

Note, however, that the main goal of the work by Breiter and Langner[18] was “to derive an
alternative set of the action-angle variables which is not based upon the notion of an orbital
plane (thus avoiding singularities when the orbit degenerates into a straight segment) and to
test it on some well-known astronomical problem (Lidov-Kozai problem).”

In relation to that, the work stated, “But those who want to benefit from the wealth of
canonical formalism require a set of action angle variables of the regularized Kepler problem.
The first step in this direction can be found in the monograph by Stiefel and Scheifele (1971),
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where the symplectic polar coordinates are introduced for each separate degree of freedom.
However, this approach does not account for degeneracy of the problem and thus is unfit for
the averaging-based perturbation techniques. Moreover, no attempt was made to relate this
set to the constraint known as the “bilinear invariant”, effectively reducing the system to three
degrees of freedom. Both problems have been resolved by Zhao (2015), who proposed the
LCF variables [presumably named after Levi-Civita (1906) and Fejoz (2001)]. In his approach,
the motion in the KS variables is considered in an osculating “Levi-Civita plane” (Deprit et
al. 1994) as a two-degree-of-freedom problem. The third degree of freedom is added by the
pair of action-angle variables orienting the plane. The redundant fourth degree is hidden in
the definition of the Levi-Civita plane. The transformed Keplerian Hamiltonian depends on
a single action variable, the other two actions being closely related to the angular momentum
and its projection on the polar axis. Interestingly, the result is identical to the “isoenergetic
variables” found by Levi-Civita (1913) without regularization.”

Breiter and Langner[18] also analyzed the Lidov-Kozai problem in terms of LKS variables,
which allow a direct study of stability for all equilibria except the circular equatorial and the
polar radial orbits.

Many other works compared the accuracy of numerical solution to the regular equations in
KS variables with the solutions to other regular equations proposed in these works.

Pelaez et al.[42] performed a comparison with the equations proposed in this work, includ-
ing the equations in the Euler parameters, which characterize the orientation of an orbital
coordinate frame, and used the distance, its derivative with respect to the new independent
variable (and then the values which are the integration constants in the solutions to the unper-
turbed motion equations for these variables), the Euler parameters, and the moment of orbital
momentum.

Bau et al.[43] proposed seven spatial elements as state variables of the new special pertur-
bation method for the two-body problem. These elements included the element inverse to the
doubled total energy and two first integrals of the unperturbed motion and the time element.
The new elements retain zero eccentricity and inclination and negative total energy. The new
motion equations were proposed, written in the orbital coordinate frame, the orientation of
which was described with the Euler parameters. Equations for the Euler parameters were writ-
ten in scalar and matrix forms. The results were compared with the numerical solutions to the
proposed equations and other equations, including the equations in the KS variables. From the
results of the numeric solutions, we can conclude that for the considered problems, the equa-
tions in the KS variables and the equations proposed by the authors provide better accuracy.
Moreover, the solutions to the new equations have smaller errors than those to the equations
in the KS variables.

Amato et al.[44] showed that special perturbation methods based on regularized formulations
can compete and even outperform the semi-analytical methods for the long-term propagations
(on the order of decades) of objects orbiting around the Earth. For this kind of applications,
the Cowell formulation has never been used because of the required small integration step
sizes, which causes strong accumulation of round-off error and long computational time. They
developed a FORTRAN code, named THALASSA, which included Cowell’s method, EDromo,
the KS regularization[52], and a set of regular elements obtained by Stiefel and Scheifele[37] from
the equations in the KS variables. A sophisticated numerical solver, named Livermore solver
for ordinary differential equations with automatic root-finding (LSODAR), has been included
to integrate the differential equations of motion.

The authors of that work noted that they presented a collection of non-averaged methods
based on the integration of existing regularized formulations of the equations of motion through
an adaptive solver, and that they showed for the first time that efficient implementations of
non-averaged regularized formulations of the equations of motion, and especially of non-singular
element methods, are attractive candidates for the long-term study of high-altitude and highly
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elliptical Earth satellite orbits.
Bau and Roa[45] presented a new method for computing orbits in the perturbed two-body

problem, in which the position and velocity vectors of the propagated object in the Cartesian
coordinates were replaced by eight orbital elements, i.e., constants of unperturbed motion. Two
of them are related to radial motion, and the next four, given by the Euler parameters, define the
orientation of the intermediate coordinate frame, the evolution of which follows the orientation
of the orbital plane and the direction of reference on it. The total energy and the time element
complete the state vector. Numerical tests are included to evaluate the performance of the
proposed special perturbation method. On the example of orbital motion of two comets, it
is shown that the computation with this method is much more accurate and faster than the
classical computation of the orbits in Cartesian coordinates.

6 Quaternion regularization of the equations for the perturbed spatial two-
body problem using Levi-Civita variables and Euler parameters

In the introduction, we have already noted that Levi-Civita, regarding his attempts to
generalize his regularization of equations of two-dimensional two-body problem to the spatial
problem, admitted later[48] that the problem in space has long resisted his efforts, as he tried
to approach it by similar coordinate changes.

Stiefel and Scheifele[37] also wrote that Levi-Civita tried hard to generalize his method of
regularizing the differential equations of two-dimensional motion in the two-body problem to
the general spatial two-body problem, but without success.

Aarseth and Zare[58] wrote that because of fundamental difficulties originally clarified by
Hopf[59] and Hurwitz[60], it is impossible to generalize the Levi-Civita transformation to an
equivalent set of three-dimensional variables. The Levi-Civita transformation was also covered
by Arseth[81].

However, Chelnokov[31] demonstrated that the Levi-Civita regularization can be used suc-
cessfully to derive the regular equations of the perturbed spatial two-body problem. We ac-
complished that by using ideal rectangular Hansen coordinates, regular Levi-Civita variables,
the orientation quaternion of ideal coordinate frame (this name for the coordinate frame was
apparently introduced by Deprit[82], in which the differential equations of the perturbed spatial
two-body problem were written), the Keplerian energy as an additional variable, and a new
independent variable. Let us consider this quaternion regularization of the perturbed spatial
two-body problem equations, which was proposed by Chelnokov[31].
6.1 Two-body problem equations, written in orbital and ideal coordinate frames

using the quaternion osculating element
The perturbed spatial two-body problem equations, written in orbital and ideal coordinate

frames using the quaternion osculating element, are as follows[24–25,31]:

v̇1 = c2/r3 − µ/r2 + p1, ṙ = v1, ċ = rp2, ϕ̇ = c/r2, (85){
2Λ̇0 = −Ω1Λ1 − Ω2Λ2, 2Λ̇1 = Ω1Λ0 − Ω2Λ3,

2Λ̇2 = Ω2Λ0 + Ω1Λ3, 2Λ̇3 = Ω2Λ1 − Ω1Λ2,
(86)

Ω1 = (r/c)p3 cos ϕ, Ω2 = (r/c)p3 sinϕ. (87)

2Λ̇ = Λ◦Ωξ, Ωξ = Ω1i + Ω2j = (r/c)p3(cos ϕi + sinϕj). (88)

Equation (88) is the quaternion version of the scalar system of differential equations (86)
and (87) in the Euler parameters Λj , which characterize the orientation of the ideal coordinate
frame in the inertial coordinate frame. The quaternion variable Λ has a meaning of quaternion
osculating element of an orbit of the second body. When the component p3 of the perturbing
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acceleration vector of the center of mass of the second body (body in interest), which is per-
pendicular to the plane including the radius vector r and the velocity vector v of that body,
i.e., the plane of instantaneous orbit of the second body, is zero, the quaternion Λ = const.

Equations (85)–(87) or (85) and (88) are the motion equations of the second body, written
in two rotating coordinate frames, i.e., the orbital coordinate frame η and the ideal coordinate
frame ξ. Equation (85) is written in the orbital coordinate frame, and Eqs. (86) and (87)
(or (88)) are written in the ideal coordinate frame. In these equations, the variables are the
distance r from the center of mass of the second body to the center of mass of the first body, the
derivative ṙ (the projection v1 of the velocity vector v of the center of mass of the second body
on the direction of radius vector r (on the axis η1 of the orbital coordinate frame)), the modulus
of orbital velocity moment of the second body c = |r×v|, the generalized true anomaly ϕ, and
the Euler (Rodrigues-Hamilton) parameters Λj (j = 0, 3), which characterize the orientation of
the ideal coordinate frame ξ in the inertial coordinate frame OXY Z. pk are the projections of
p of the perturbing acceleration of the center of mass of the second body on the axes of orbital
coordinate frame η.

Ω of the absolute angular velocity of the ideal coordinate frame ξ is parallel to the radius
vector r of the center of mass of the second body and is defined by

Ω = (p3/c)r.

The projections Ωi of Ω on the axes of the ideal coordinate frame ξ are

Ω1 = (r/c)p3 cos ϕ = (Ξ1/c)p3, Ω2 = (r/c)p3 sinϕ = (Ξ2/c)p3, Ω3 = 0,

where Ξi are the projections of r on the axis ξi.
The Cartesian coordinates x, y, z in the inertial coordinate frame and the projections vk of

the velocity vector of the center of mass of the second body on the axes of orbital coordinate
frame can be found from the mentioned variables using

x = r(λ2
0 + λ2

1 − λ2
2 − λ2

3), y = 2r(λ1λ2 + λ0λ3), z = 2r(λ1λ3 − λ0λ2),
v1 = ṙ, v2 = c/r, v3 = 0,

where λj are the Euler parameters, which characterize the orientation of the orbital coordinate
frame in the inertial coordinate frame and are calculated in advance from the variables Λj using

Λ0 = λ0ϕ0 + λ3ϕ3, Λ1 = λ1ϕ0 − λ2ϕ3, Λ2 = λ2ϕ0 + λ1ϕ3, Λ3 = −λ0ϕ3 + λ3ϕ0

ϕ0 = cos(ϕ/2), ϕ3 = sin(ϕ/2),

or using the quaternion formula

Λ = λ ◦ (cos(ϕ/2)− k sin(ϕ/2)).

The projections vx, vy, and vz of the velocity vector of the center of mass of the second body
on the axes of the inertial coordinate frame are defined by the quaternion relations,

vin = vxi + vyj + vzk = λ ◦ vη ◦ λ = λ ◦ (ṙi + r−1cj) ◦ λ,

and the relations of the projections px, py, and pz of the perturbing acceleration vector p on
the axes of the inertial coordinate frame with their projections pk on the axes of the orbital
coordinate frame are defined by the quaternion remapping relations,

pin = pxi + pyj + pzk = λ ◦ pη ◦ λ, pη = p1i + p2j + p3k = λ ◦ pin ◦ λ,
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where the quaternion λ must be calculated in advance from the quaternion Λ according to

λ = Λ ◦ (cos(ϕ/2) + k sin(ϕ/2)).

Note that the perturbed Keplerian motion equations, written in the ideal coordinate frame,
which include the equations for polar coordinates and the equations for angular variables,
which describe the orientation of the ideal coordinate frame, were derived by Andoyer[83] and
Musen[84].
6.2 Two-body problem equations, written in the ideal coordinate frame using the

ideal rectangular Hansen coordinates and the quaternion osculating element
Let us introduce the ideal rectangular Hansen coordinates Ξi, which are the projections of

the radius vector r of the center of mass of the second body on the axes of the coordinate frame
ξ. These coordinates are related to r and ϕ by

Ξ1 = r cos ϕ, Ξ2 = r sinϕ, Ξ3 = 0. (89)

By differentiating these relations twice with respect to time and using Eq. (85), we derive

Ξ̈1 + µr−3Ξ1 = pξ1, Ξ̈2 + µr−3Ξ2 = pξ2, r2 = Ξ2
1 + Ξ2

2, (90){
2Λ̇0 = −Ω1Λ1 − Ω2Λ2, 2Λ̇1 = Ω1Λ0 − Ω2Λ3,

2Λ̇2 = Ω2Λ0 + Ω1Λ3, 2Λ̇3 = Ω2Λ1 − Ω1Λ2,
(91)

Ω1 = (Ξ1/c)p3, Ω2 = (Ξ2/c)p3, c = Ξ1Ξ̇2 − Ξ2Ξ̇1, p3 = pξ3. (92)

The Cartesian coordinates x, y, z of the center of mass of the second body in the inertial
coordinate frame and the projections vx, vy, vz of the absolute velocity vector v of the center
of mass of the second body on the axes of orbital coordinate frame can be found from the ideal
Hansen coordinates Ξi and their derivatives Ξ̇i using





x = (Λ2
0 + Λ2

1 − Λ2
2 − Λ2

3)Ξ1 + 2(Λ1Λ2 − Λ0Λ3)Ξ2,

y = 2(Λ1Λ2 + Λ0Λ3)Ξ1 + (Λ2
0 − Λ2

1 + Λ2
2 − Λ2

3)Ξ2,

z = 2(Λ1Λ3 − Λ0Λ2)Ξ1 + 2(Λ2Λ3 + Λ0Λ1)Ξ2,

(93)





vx = ẋ = (Λ2
0 + Λ2

1 − Λ2
2 − Λ2

3)Ξ̇1 + 2(Λ1Λ2 − Λ0Λ3)Ξ̇2,

vy = ẏ = 2(Λ1Λ2 + Λ0Λ3)Ξ̇1 + (Λ2
0 − Λ2

1 + Λ2
2 − Λ2

3)Ξ̇2,

vz = ż = 2(Λ1Λ3 − Λ0Λ2)Ξ̇1 + 2(Λ2Λ3 + Λ0Λ1)Ξ̇2.

(94)

The projections pξk of vector p on the axes of ideal coordinate frame ξ are related to their
projections px, py, pz on the axes of inertial coordinate frame OXY Z by the remapping relations,





pξ1 = (Λ2
0 + Λ2

1 − Λ2
2 − Λ2

3)px + 2(Λ1Λ2 + Λ0Λ3)py + 2(Λ1Λ3 − Λ0Λ2)pz,

pξ2 = 2(Λ1Λ2 − Λ0Λ3)px + (Λ2
0 − Λ2

1 + Λ2
2 − Λ2

3)py + 2(Λ2Λ3 + Λ0Λ1)pz,

pξ3 = 2(Λ1Λ3 + Λ0Λ2)px + 2(Λ2Λ3 − Λ0Λ1)py + (Λ2
0 − Λ2

1 − Λ2
2 + Λ2

3)pz.

(95)

Equations (91) and (93)–(95) in the quaternion form are[31]

{
2Λ̇ = Λ ◦Ωξ, Λ = Λ0 + Λ1i + Λ2j + Λ3k,

Ωξ = Ω1i + Ω2j = pξ3(Ξ1Ξ̇2 − Ξ2Ξ̇1)−1(Ξ1i + Ξ2j),
(96)

rin = Λ ◦ rξ ◦Λ, rin = xi + yj + zk, rξ = Ξ1i + Ξ2j, (97)

vin = Λ ◦ vξ ◦Λ, vin = vxi + vyj + vzk, vξ = Ξ̇1i + Ξ̇2j, (98)

pξ = Λ ◦ pin ◦Λ, pξ = pξ1i + pξ2j + pξ3k, pin = pxi + pyj + pzk. (99)
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Equations (90)–(92) or (90), (96) are the motion equations of the second body, written in
the ideal coordinate frame ξ. In these equations, the variables are the ideal rectangular Hansen
coordinates Ξi, their first derivatives with respect to time Ξ̇i, and the Euler parameters Λj

(j = 0, 3), which characterize the orientation of the ideal coordinate frame ξ in the inertial
coordinate frame OXY Z. pξk are the projections of p of the perturbing acceleration of the
center of mass of the second body on the axes of the ideal coordinate frame ξ.

Note that the scalar equations of the perturbed Keplerian motion in the Hansen coordinates
and Euler parameters, written in the ideal coordinate frame, were derived earlier in other
forms and by other methods by Stiefel and Waldvogel[78] and Brumberg[53]. Equations (90)–
(92), derived independently by the author of this paper, match the equations of Deprit and
Brumberg.
6.3 Quaternion regular equations of the perturbed spatial two-body problem in

Levi-Civita variables and Euler parameters
Let us introduce the rotating coordinate frame Oξ with the origin in the center of attraction

(center of mass of the first body) and with the coordinate axes parallel to the axes of the
above-introduced ideal coordinate frame ξ. The orientation of the orbital coordinate frame η in
the coordinate frame Oξ is characterized by the rotation quaternion Φ, which is as follows:

Φ = cos(ϕ/2) + sin(ϕ/2)k. (100)

The components Φj (j = 0, 3) are defined by

Φ0 = cos(ϕ/2), Φ1 = Φ2 = 0, Φ3 = sin(ϕ/2). (101)

The above-introduced ideal rectangular Hansen coordinates Ξi, which are defined by Eq. (89),
are the Cartesian coordinates of the center of mass of the second body in the coordinate frame
Oξ and are related to r and Φj by

Ξ1 = r cos ϕ = r(Φ2
0 − Φ2

3), Ξ2 = r sinϕ = 2rΦ0Φ3, Ξ3 = 0. (102)

Let us introduce the Levi-Civita variables as follows:

U0 = r1/2Φ0, U3 = −r1/2Φ3, (103)

which are related to the Hansen coordinates by

Ξ1 = U2
0 − U2

3 , Ξ2 = −2U0U3. (104)

The projections of velocity vector of the center of mass of the second body on the axes of
the coordinate frame Oξ (on the axes of the ideal coordinate frame ξ) are related to the time
derivatives of Levi-Civita variables by





vξ1 = v1 cos ϕ− v2 sinϕ = Ξ̇1 = 2(U0U̇0 − U3U̇3),

vξ2 = v1 sinϕ + v2 cos ϕ = Ξ̇2 = −2(U3U̇0 + U0U̇3),

vξ3 = v3 = Ξ̇3 = 0.

(105)

The Keplerian energy h and the modulus c of the orbital velocity moment vector of the
second body are defined by

{
h = (1/2)v2 − µr−1 = (1/2)(Ξ̇2

1 + Ξ̇2
2)− µ(Ξ2

1 + Ξ2
2)
−1/2,

c = |r × v| = Ξ1Ξ̇2 − Ξ2Ξ̇1,
(106)
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while in new Levi-Civita variables, they are as follows:

h = 2r(U̇2
0 + U̇2

3 )− µr−1, r = U2
0 + U2

3 , c = 2(U2
0 + U2

3 )(U3U̇0 − U0U̇3). (107)

Let us introduce the new Levi-Civita variables Ui using Eqs. (104)–(105) and the new inde-
pendent variable τ according to the differential relation dt = rdτ , in the motion equations of
the second body (90)–(92), written in the ideal coordinate frame ξ using the ideal rectangular
Hansen coordinates Ξi. Also let us introduce, as an additional variable, the Keplerian energy h
defined by Eqs. (106)–(107) and satisfying the differential equation dh/dt = p · v. As a result,
we derive the following regular equations of motion of the second body (regular equations of
the perturbed spatial two-body problem)[31]:

d2U0

dτ2
−

(h

2

)
U0 =

(r

2

)
Q0,

d2U3

dτ2
−

(h

2

)
U3 =

(r

2

)
Q3, (108)

dh

dτ
= 2

(
Q0

(dU0

dτ

)
+ Q3

(dU3

dτ

))
, (109)





2
dΛ0

dτ
= −r(Ω1Λ1 + Ω2Λ2), 2

dΛ1

dτ
= r(Ω1Λ0 − Ω2Λ3),

2
dΛ2

dτ
= r(Ω2Λ0 + Ω1Λ3), 2

dΛ3

dτ
= r(Ω2Λ1 − Ω1Λ2),

(110)

dt

dτ
= r, (111)

r =|r |= U2
0 + U2

3 , (112)

c = 2
(
U3

(dU0

dτ

)
− U0

(dU3

dτ

))
, (113)

Ω1 = c−1(U2
0 − U2

3 )p3, Ω2 = −2c−1U0U3p3, p3 = pξ3, (114)
Q0 = U0pξ1 − U3pξ2, Q3 = −U3pξ1 − U0pξ2. (115)

These equations must be complemented with the remapping relations (93)–(95).
Note that the regular equations (108)–(115) contain, as a sub-system, Eqs. (108), (109),

(111), (112), and (115), which have the form of Levi-Civita regular equations of the two-
dimensional two-body problem.

Let us rewrite the regular equations (108)–(115) in the quaternion form[31],

d2U

d
τ2 −

(h

2

)
U =

(r

2

)
Q, (116)

dh

dτ
= 2 scal

((dU

dτ

)
◦Q

)
, (117)

2
dΛ
dτ

= rΛ◦Ωξ =
(r

c

)
pξ3Λ◦((U2

0 − U2
3 )i− 2U0U3j), (118)

dt

dτ
= r, (119)

U = U0 + U3k, Λ = Λ0 + Λ1i + Λ2j + Λ3k,

r =‖U ‖2= U ◦U = U ◦U = U2
0 + U2

3 , c = 2
(
U3

(dU0

dτ

)
− U0

(dU3

dτ

))
,

Q = −i ◦U ◦ Pξ, Pξ = pξ1i + pξ2j,

rξ = ξ1i + ξ2j = U ◦ i ◦U ,

vξ =
drξ

dt
= ξ̇1i + ξ̇2j = 2U ◦ i ◦ dU

dt
= 2r−1U ◦ i ◦ dU

dτ
.
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Equations (116)–(119) must be complemented with the quaternion remapping relations (97)–
(99).

Equations (108)–(111) or (116)–(119) are the regular equations of the perturbed spatial two-
body problem, derived by the ideal rectangular Hansen coordinates. In the scalar equations
(108)–(111), the regular variables are the Levi-Civita variables U0 and U3, which describe
the motion of the center of mass of the second body in the ideal coordinate frame Oξ, the
Keplerian energy h, time t, and the Euler parameters Λj (j = 0, 3), which characterize the
orientation of the ideal coordinate frame in the inertial coordinate frame. In Eqs. (116)–(119),
the regular variables are the quaternion U , which describes the motion of the center of mass
of the second body in the ideal coordinate frame Oξ, the Keplerian energy h, time t, and the
quaternion Λ (quaternion osculating element), which characterizes the orientation of the ideal
coordinate frame in the inertial coordinate frame. pξk are the projections of p of the perturbing
acceleration of the center of mass of the second body on the axes of the ideal coordinate frame.
These values are calculated from the projections of p on the axes of inertial coordinate frame
using the above-described remapping relations.

The regular equations (108)–(111) or (116)–(119) of the perturbed spatial two-body problem
form the system of nonlinear nonstationary differential equations of the tenth order (the KS
regular equations have the same order) and have all the advantages of the KS equations.

(i) Unlike the Newtonian equations, they are regular at the attraction center.
(ii) For the unperturbed Keplerian motion, they are linear and are as follows:

d2Ui

dτ2
−

(h

2

)
Ui = 0, i = 0, 3,

h = const., Λj = const., j = 0, 1, 2, 3,

or

d2U

dτ2
−

(h

2

)
U = 0, h = const., Λ = const.

For the elliptic Keplerian motion, when the Keplerian energy h < 0, these equations are equiv-
alent to the motion equations of the two-dimensional single-frequency harmonic oscillator, the
squared frequency of which equals the halved Keplerian energy, taken with a negative sign.

(iii) They allow to develop a unified approach to study all three types of Keplerian motion.
(iv) They are close to the linear equations for the perturbed Keplerian motion.
(v) They allow to present the right-hand sides of differential equations for the motion of

celestial and cosmic bodies in the polynomial form, which is convenient for solving them using
computers.

In addition, these regular equations have significant differences.
(i) For the unperturbed elliptic Keplerian motion of the body in interest, they are equivalent

not to the motion equations of four-dimensional single-frequency harmonic oscillator, as in the
case of KS, but to the motion equations of two-dimensional single-frequency harmonic oscillator,
because the orientation quaternion of an ideal coordinate frame, for which the new motion
equations are written, is constant for this case.

(ii) For the perturbed motion of the body in interest, the orientation quaternion of the ideal
coordinate frame is a quaternion osculating element (i.e., slowly changing quaternion variable),
which is also a useful property of these equations, which allows to efficiently use the methods
of nonlinear mechanics.

Note, however, that these equations are not suitable for studying rectilinear orbits, when
the modulus of orbital velocity vector of the second body c = |r × v| becomes zero, because
the quaternion differential equation of orientation of the ideal coordinate frame degenerates in
this case.
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Note that Brumberg[53] described the application of Euler parameters for derivation of the
perturbed spatial two-body problem motion equations in Hansen coordinates and showed the
possibility to further transform the perturbed motion equations, derived by him, using the
Levi-Civita parabolic coordinates.

7 Developing the quaternion regularization of the two-body problem equa-
tions in the work of the author of this paper and the applications of
quaternion regular models

7.1 Developing the quaternion regularization of the two-body problem equations
Chelnokov[31] considered other singularities (divisions by zero) resulting from the classi-

cal equations in angular variables (in particular, in Euler angles) in celestial mechanics and
astrodynamics, and eliminated using the Euler (Rodrigues-Hamilton) parameters and Hamil-
ton quaternions. Fundamental regular in the described sense quaternion models of celestial
mechanics and astrodynamics is considered, i.e., the equations of orbital motion written in
non-holonomic, orbital, and ideal moving trihedrals, the rotational motion defined using the
Euler parameters and rotation quaternions, and the quaternion equations of orientation of in-
stantaneous orbit of a celestial body (spacecraft). Also, the new quaternion regular equations
of the perturbed spatial two-body problem (free from singularities of classical equations of this
problem, induced by the Newtonian gravitational force) are derived in Levi-Civita variables
and Euler parameters, which, along with the known advantages of regular KS equations, have
their own additional advantages.

In all works on the problem of regularization of differential equations of the perturbed
spatial two-body problem known to the author of this paper, the regularization of equations of
motion of the center of mass of the second body (body in interest) relative to the coordinate
frame moving translationally in relation to the inertial coordinate frame is considered, i.e.,
the regularization of equations of absolute motion of the body in interest is considered. In
our work[35], the regularization of equations of relative motion of the body in interest was
considered within the context of the perturbed spatial two-body problem. We proposed the
regular quaternion differential equations of perturbed motion of the center of mass of the second
body (body in interest) relative to the coordinate frame, which rotates in relation to the inertial
coordinate frame in accordance to an arbitrarily specified law, and also in relation to the
coordinate frame associated with the Earth, which is viewed as the first (central) body. The first
integrals and the analytical solution were derived for regular quaternion differential equations
of unperturbed motion of a body in interest relative to the Earth using the Stumpff functions.
The proposed equations can be used, for example, for studying the motion of an artificial
satellite (or a planetary satellite) of the Earth in relation to the coordinate frame associated
with the Earth (or another planet). These equations were convenient to study the motion of
an Earth artificial satellite, since many forces acting on the satellite, and primarily the Earth’s
gravity force (the potential of the Earth‘s gravitational field), depend on relative coordinates
of the satellite location (on its geographical coordinates, latitude, and longitude), instead of its
absolute coordinates (in the coordinate system moving translationally in relation to the inertial
coordinate frame).
7.2 Applications of quaternion regular models in the theory of orbital motion of

a solid body (spacecraft and artificial satellite) in the Earth’s gravitational
field

Chelnokov[36] derived the regularized quaternion equations of the perturbed motion of an
artificial satellite in the Earth’s gravitational field, taking into account its zonal, tesseral, and
sectorial harmonics in four-dimensional KS variables and in modified four-dimensional variables,
for which the motion equations of a satellite have a simpler and more symmetrical structure
compared with those in the KS variables. These equations use energy of motion of a satellite and
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time as additional variables. The new independent variable is related to time by a differential
relation, which includes the distance from a satellite to the Earth’s center of mass.

Chelnokov[57] proposed the regularized quaternion models of perturbed orbital motion of a
solid body, which are free from native singularities of classical models, for a case when a body
is moving in the Newtonian gravitational field and, in the general case, when a body is moving
in a central force field, the potential of which is a polynomial of negative powers of the distance
to the center of attraction of the fourth order.

Different from the models proposed in Ref. [36], Chelnokov[57] proposed regularized quater-
nion models of orbital motion of a solid body in the Earth’s gravitational field, which was
defined considering not only central (Newtonian), but also zonal, tesseral, and sectorial har-
monics of the gravitational field potential, which take into account nonsphericity of the Earth.
In these models, the negative powers of distance to the center of attraction were lower by several
orders in terms that define the effect of zonal, tesseral, and sectorial harmonics of the Earth’s
gravitational field potential on the orbital motion of a solid body. The main variables are the
Euler parameters, the distance from the center of mass of a body to the center of attraction,
the total energy of orbital motion of a body, and the squared modulus of orbital velocity mo-
ment vector of a body (or the projections of this vector). The models used a new independent
variable, related to time by the differential relation which involves the squared distance from
the center of mass of a body to the center of attraction.

The convenience and efficiency of using the regularized quaternion models of orbital motion
of a solid body, derived by Chelnokov[36,57], for analytical research of motion of a body, are
exemplified by the motion of a body in the Earth’s gravitational field, which is defined taking
into account the central and zonal harmonics of the gravitational field potential. The first
integrals are found for the derived orbital motion equations. The substitutions of variables and
transformations are proposed for these equations, which allow to derive, in order to study the
motion of a body, the determined systems of differential equations of lower orders, in particular,
the system of equations of the third order for distance, for the sine of geocentric latitude and
for the squared modulus of orbital velocity moment vector. The equations proposed in these
works are convenient for applying the methods of nonlinear mechanics and for high accuracy
numeric calculations.
7.3 Optimal control of orbital motion of a spacecraft, inertial navigation

Based on the earlier works, Chelnokov[28] analyzed the optimal motion control for a point
particle in the Newtonian (central) gravitational field using the maximum principle and the
quaternion models of orbital motion, written in various rotating coordinate frames (including
the orbital coordinate frame), which include the quaternion equations of angular motion of these
coordinate frames in the Euler parameters, and also using the quaternion models in the regular
KS variables. In particular, the differential equations were derived for the perturbed elliptic
motion of a point particle (taking into account the perturbing and controlling accelerations)
in quaternion osculating elements, which correspond to the quaternion regular variables u and
u/dτ (dt = rdτ). The advantages of using the quaternion regular models of orbital motion of a
point particle for solving the problems of optimal control of that point particle are listed. The
new quaternion first integrals for the differential boundary problems of optimal control of orbital
motion of a point particle and the regular quaternion analytical solutions for differential phase
and adjoint equations for the passive motion sections are described. The analytical solution
is derived for the quaternion equations of orbital motion in KS variables for the case when an
external force, which is constant by modulus and direction (in an inertial coordinate frame),
is applied to a point particle. It is shown that the efficiency of analytical investigation and
numerical solution of the boundary-value problems of optimal control of a point particle can be
increased by applying quaternion regular models of orbital motion.

Also note that the book of Chelnokov (in Russian)[29], in particular, presented the quaternion
method for regularizing the differential equations of the perturbed spatial two-body problem
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and the perturbed central motion of a point particle, described the quaternion regular models
for celestial mechanics and astrodynamics, and demonstrated their applications to a number of
problems of optimal control of the trajectory motion of a spacecraft.

Chelnokov[30,32] also considered regularization of the models of celestial mechanics and as-
trodynamics, derived within the context of the perturbed spatial two-body problem and the
perturbed central motion of a point particle. The fundamental regular quaternion models in
celestial mechanics and astrodynamics, which are free from singularities induced by gravitation
and other central forces, are presented. It is shown that the efficiency of analytical investigation
and numerical solution of boundary-value problems of optimal control of trajectory motion of
spacecrafts center of mass can be increased by applying quaternion models of astrodynamics.

In particular, Chelnokov[32] analyzed the basic problems, which arise when solving the prob-
lems of optimal control of spacecraft trajectory motion using the maximum principle (including
the Lyapunov instability of solutions for conjugate equations of the maximum principle). The
use of quaternion models of astrodynamics is shown to allow the elimination of singularities
in the differential phase and conjugate equations and in their partial analytical solutions, the
derivation of the new quaternion first integrals, the derivation of general solutions to differential
equations for phase and conjugate variables on the sections of spacecraft passive motion in the
simplest and most convenient form, which is important for solving the problems of optimal
spacecraft impulse transfers, the extension of the possibilities for the analytical investigation
of differential equations of boundary-value problems with the purpose of identifying the basic
laws of spacecraft optimal control and motion, the improvement of computational stability of
the solution of boundary value problems, and the decrease in required amount of computation.

The quaternion regular models of astrodynamics in the KS variables, derived by us, were
used to efficiently solve a number of boundary problems of optimal control of orbital motion of
a spacecraft[85–87] using the maximum principle, and also to derive the new regular quaternion
equations and algorithms for inertial navigation in space[88–89].

In particular, Chelnokov[88–89] proposed the new quaternion regular equations and algo-
rithms for spatial inertial navigation systems with azimuthally stabilized platform and with
gyrostabilized platform, which retains its orientation in an inertial reference frame, and also
proposed strapdown inertial navigation systems in regular four-dimensional KS variables and in
the versions of these variables. These equations take into account the zonal, tesseral, and secto-
rial harmonics of the Earth’s gravitational field and are dynamically analogous to the quaternion
regular equations of the perturbed spatial two-body problem in the KS variables, which allows
to use the results, obtained in the theory of regular celestial mechanics and astrodynamics, for
space inertial navigation.

8 Perspectives of quaternion regularization development: the restricted
three-body problem

Further development of the ideas of quaternion regularization of equations of celestial me-
chanics and astrodynamics is associated, in our opinion, with the construction of regular quater-
nion equations of the perturbed restricted spatial three-body problem. Some of them were
obtained by Chelnokov[33–34].

In this paper, we consider the regular quaternion equations of the two-body problem, free
from the singularity (division by zero) caused by gravitational forces. Other singularities are
caused by using angular variables, in particular, the Euler angles, in classical equations of
celestial mechanics and astrodynamics.

In this relation, we should note that the efficiency of solving a number of problems in
celestial mechanics and astrodynamics is increased by using the two-body problem equations,
written in some rotating coordinate frames. In such equations, the variables are the values
which characterize the form, size, and orientation of an instantaneous orbit or orbital plane
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of the body in interest, or the orientation of a rotating coordinate frame. Traditionally, the
Euler angles or direction cosines are used in mechanics and astrodynamics as such variables.
Using the Euler angles provides geometrical clarity to the description of orbital motion, but
then the equations contain cumbersome trigonometric expressions and additional singularities,
where the equations degenerate. For example, the widely used Newton-Euler equations for
osculating elements (slowly changing variables) include the differential equations for angular
elements, i.e., the longitude of ascending node, the inclination of an orbit, and the angular
distance from the pericenter to the node. These equations are highly nonlinear and degenerate
when the inclination of an instantaneous orbit of a body in interest is zero or 180 degrees. Using
the direction cosines allows to eliminate mentioned singularities of motion equations of a body
in interest, but leads to significant increase in the order of the system of motion equations and
to the loss of geometrical clarity. The disadvantages of using the Euler angles and direction
cosines can be avoided by using Euler parameters as the orientation parameters of the used
rotating coordinate frame or the instantaneous orbit of a body in interest. In this case, it is
convenient to use the Hamilton rotation quaternion, the components of which are the Euler
parameters, to define the orientation of that coordinate frame or orbit of a body in interest.
Consequently, the equations of orbital motion include the quaternion differential equation of
angular motion of the used rotating coordinate frame or instantaneous orbit or orbital plane of
a body in interest, which has a compact, symmetric, and non-degenerating structure.

Till now, we and a number of other researchers have proposed equations of celestial me-
chanics and astrodynamics that are regular in the indicated sense, obtained using the Euler
parameters and Hamiltonian quaternions of rotation on the basis of the differential equations
of the perturbed spatial problem of two bodies. We have obtained various new, regular in
the above sense, differential equations of the perturbed spatial restricted three-body problem,
written in various rotating coordinate frames; in non-holonomic (azimuthally free) coordinate
frames as follows: M0X

nh
0 Y nh

0 Znh
0 and M1X

nh
1 Y nh

1 Znh
1 , the axes M0X

nh
0 and M1X

nh
1 of which

are directed along radius vectors r0 and r1 of a point particle in interest M , which are di-
rected from gravitating points M0 and M1; in orbital coordinate frames, M0X

orb
0 Y orb

0 Zorb
0 and

M1X
orb
1 Y orb

1 Zorb
0 ; in orbital and ideal coordinate frames, M0X

id
0 Y id

0 Z id
0 and M1X

id
1 Y id

1 Z id
0 ; and

in ideal coordinate frames.
Each of the derived regular equation systems consists of two equation groups, i.e., equations

defining the motion of a point particle in interest M with negligible mass in the coordinate
frame M0X0Y0Z0, which has its origin at the gravitating point M0, and equations defining the
motion of this point in the coordinate frame M1X1Y1Z1, which has its origin at the gravitating
point M1. The axes of these coordinate frames are parallel to the corresponding axes of the
inertial coordinate frame.

In these equations, we use the Euler parameters and Hamilton rotation quaternions to
describe the orientation of the used rotating coordinate frames. The equations include the
corresponding quaternion kinematic equations of rotational motion of these coordinate frames
in Euler parameters.

The independent variable in the equations is time t, and the dependent variables are Euler
parameters and one of the four groups of the following variables:

(i) the distances r0 and r1 from the point M to points M0 and M1 and the projections
c02, c03 and c12, c13 of vectors c0 and c1 of velocity moments of the point M in relation to
points M0 and M1 on the axes of non-holonomic coordinate frames,

(ii) the distances r0 and r1 and moduli c0 and c1 of velocity moment vectors of the point
particle M ,

(iii) the distances r0 and r1, moduli c0 and c1 of velocity moment vectors of the point particle
M , and the angular variables ϕ0 and ϕ1, which characterize the rotation of the ideal coordinate
frames in relation to orbital coordinate frames,

(iv) the ideal rectangular Hansen coordinates Xi, Yi, Zi = 0 (i = 0, 1) of the point particle
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M in ideal coordinate frames.
We also obtain the equations of the perturbed spatial restricted three-body problem in

complex variables composed from Hansen coordinates and in complex Cayley-Klein parameters.
These equations are of the smallest order. They allow the use of a non-positional number
system of residual classes, which is self-correcting and which increases the accuracy of numerical
solutions of differential equations of orbital motion.

From the above-described (constructed by us) equations of the three-body problem, we
obtain various new regular quaternion differential equations of the perturbed spatial restricted
three-body problem, written in a nonholonomic, orbital, and ideal coordinate frames. By regular
equations, we note that the equations free of singularities are caused by gravitational forces.

Each of the obtained systems of regular equations consists of two groups of equations, i.e.,
the equations defining the motion of a point particle in interest M with negligible mass in the
coordinate frame M0X0Y0Z0, which has its origin at the gravitating point particle M0, and the
equations defining the motion of this point particle in the coordinate frame M1X1Y1Z1, which
has its origin at the gravitating point particle M1. The axes of these coordinate frames are par-
allel to the corresponding axes of the inertial coordinate frame. The first one of these equation
groups (i = 0) is used for studying the motion of the point particle M in the neighborhood of
the point particle M0 when the distances r0 and r1 satisfy the inequation m1r

2
0 6 m0r

2
1, and

the second one of these equation groups (i = 1) is used for studying the motion of the point
particle M in the neighborhood of the point particle M1 when the distances r0 and r1 satisfy
the inequation m0r

2
1 < m1r

2
0 (m0 and m1 here are the masses of point particles M0 and M1).

The variables in the equation systems written in nonholonomic coordinate frames
M0X

nh
0 Y nh

0 Znh
0 and M1X

nh
1 Y nh

1 Znh
1 are the KS variables u0j and u1j (j = 0, 1, 2, 3), the

Keplerian energy h0 and h1, and time t, and the variables in the equation systems written in
orbital coordinate frames M0X

orb
0 Y orb

0 Zorb
0 and M1X

orb
1 Y orb

1 Zorb
0 are the distances r0 and r1,

the moduli c0 and c1 of velocity moment vectors of the point particle M , the Keplerian energy
h0 and h1 of motion of the point particle M in coordinate frames M0X0Y0Z0 and M1X1Y1Z1,
the Euler parameters or corresponding rotation quaternions, which characterize the orientation
of orbital coordinate frames in the inertial coordinate frame, and also time t. These equation
systems use the new independent variables τ0 and τ1 defined by dt = r0dτ0 and dt = r1dτ1.
Each system also includes the additional differential equation to correlate time τ0 and τ1.

From the equations written in orbital coordinate frames, we derive the regular equations
in which the new independent variables are the angular variables ϕ0 and ϕ1, related to time t
by differential relations dt = (r2

0/c0)dϕ0 and dt = (r2
1/c1)dϕ1. The equations are also derived

with the variables ρ0 = 1/r0 and ρ1 = 1/r1, the moduli c0 and c1 of velocity moment vectors
of the point particle M , the Euler parameters or corresponding rotation quaternions, which
characterize the orientation of orbital coordinate frames in the inertial coordinate frame, and
also time t.

The variables in the equation systems written in ideal coordinate frames M0X
id
0 Y id

0 Z id
0 and

M1X
id
1 Y id

1 Z id
0 are the Levi-Civita variables U00, U03 and U11, U13, the Keplerian energy h0 and

h1 of motion of the point particle M in coordinate frames M0X0Y0Z0 and M1X1Y1Z1, the
Euler parameters or corresponding rotation quaternions, which characterize the orientation of
ideal coordinate frames in the inertial coordinate frame, and also time t. The equations use
the above-mentioned independent variables τ0 and τ1. Each system includes the additional
differential equation to correlate time τ0 and τ1.

We also obtain new regular quaternion differential equations of the perturbed spatial re-
stricted three-body problem, in which some of the variables are the total energy of motion
of the point particle M in the coordinate frames M0X0Y0Z0 and M1X1Y1Z1 or the variables,
which are the first Jacobi integrals for the case of the unperturbed spatial circular restricted
three-body problem.



76 Y. N. CHELNOKOV

9 Conclusions

Our work analyzes the quaternion regularization methods and the regular quaternion models
of celestial mechanics and astrodynamics, derived on the basis of differential equations of the
perturbed spatial two-body problem and the perturbed central motion of a point particle using
the KS variables and their modified versions, and also using the Levi-Civita variables and the
Euler (Rodrigues-Hamilton) parameters. Some applications of these methods and models are
also discussed.

In spite of the negative opinion of Stiefel and Scheifele on the efficiency of using the quater-
nion matrices for regularizing the two-body problem equations, quaternion matrices and quater-
nions proved to be convenient and efficient tools for regularizing the perturbed spatial two-body
problem equations, for eliminating the singularities (divisions by zero) induced in the two-body
problem equations by Newtonian gravitational forces.

Also, in spite of the existing opinion that the Levi-Civita transformation cannot be general-
ized to the case of three-dimensional space, it turned out that the Levi-Civita variables can be
successfully used to derive the regular differential equations of the perturbed spatial two-body
problem. We accomplish that by using the ideal rectangular Hansen coordinates, the regular
Levi-Civita variables, and the orientation quaternion of the ideal coordinate frame, in which the
original differential equations of the perturbed spatial two-body problem are written, and also
by using the Keplerian energy as an additional variable and using the new independent variable.
The regular equations of the perturbed spatial two-body problem, derived by us, include the
equations in the Levi-Civita variables, which have the form of the regular Levi-Civita equations
for the two-dimensional problem.

We also show that it is convenient to use the perturbed spatial two-body problem equa-
tions, written in the rotating coordinate frame, to efficiently derive regular models of celestial
mechanics and astrodynamics. This naturally leads to the introduction of the four-dimensional
Euler parameters and Hamilton quaternions in the orbital motion equations to define the orien-
tation of the rotating coordinate frame, and to introduce with their help the four-dimensional
KS variables and their modified versions. Therefore, quaternions, which are used widely and
efficiently today to define the rotational (angular) motion of a solid body and to derive the
analytically and numerically convenient kinematic and dynamic equations of rotational motion
of a solid body, and which are also efficiently used in many technical applications (for example,
for determining the orientation of various moving objects and for controlling their rotational
motion), are naturally included in the dynamics of the orbital (trajectory) motion of a point
particle.

The efficiency of applying the regular quaternion models of celestial mechanics and astrody-
namics, based on the differential equations of the perturbed spatial two-body problem and the
perturbed central motion of a point particle, is demonstrated in the problem of predicting the
motion of celestial and cosmic objects, in the problem of studying the motion of the Earth’s
satellite, considering not only central, but also zonal, tesseral, and sectorial harmonics of the
Earth’s gravitational field, in the problem of optimal control of spacecraft orbital motion us-
ing the maximum principle, and also in the problem of autonomous inertial navigation in space.
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