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Abstract The unusual properties of quasicrystals (QCs) have attracted tremendous
attention from researchers. In this paper, a semi-analytical solution is presented for the
static response of a functionally graded (FG) multilayered two-dimensional (2D) decago-
nal QC rectangular plate with mixed boundary conditions. Based on the elastic theory
of FG 2D QCs, the state-space method is used to derive the state equations composed
of partial differential along the thickness direction. Besides, the Fourier series expansion
and the differential quadrature technique are utilized to simulate the simply supported
boundary conditions and the mixed boundary conditions, respectively. Then, the prop-
agator matrix which connects the field variables at the upper interface to those at the
lower interface of any homogeneous layer can be derived based on the state equations.
Combined with the interface continuity condition, the static response can be obtained
by imposing the sinusoidal load on the top surfaces of laminates. Finally, the numerical
examples are presented to verify the effectiveness of this method, and the results are very
useful for the design and understanding of the characterization of FG QC materials in
their applications to multilayered systems.

Key words two-dimensional (2D) quasicrystal (QC) laminate, functionally graded
material (FGM), mixed boundary condition, static response, differential quadrature tech-
nique

Chinese Library Classification O343.8
2010 Mathematics Subject Classification 52C23, 74K20, 74B99

∗ Citation: FENG, X., ZHANG, L. L., WANG, Y. X., ZHANG, J. M., ZHANG, H., and GAO, Y.
Static response of functionally graded multilayered two-dimensional quasicrystal plates with mixed
boundary conditions. Applied Mathematics and Mechanics (English Edition), 42(11), 1599–1618
(2021) https://doi.org/10.1007/s10483-021-2783-9
† Corresponding author, E-mail: gaoyangg@gmail.com

Project supported by the National Natural Science Foundation of China (Nos. 11972354, 11972365,
and 12102458) and the China Agricultural University Education Foundation (No. 1101-2412001)

c©Shanghai University 2021



1600 Xin FENG et al.

1 Introduction

Quasicrystals (QCs), which possess the long-range quasi-periodic translational order and the
long-range orientational order, were first discovered by Shechtman et al.[1]. Due to their unique
quasi-periodic structure, QCs have many excellent properties, such as high hardness, high
toughness, high abrasion resistance, high resistivity, low friction coefficient, and low thermal
conductivity[2–4]. These attractive properties of QCs enable them to have many potential
applications, such as solar thin film, thermoelectric converter, and structural enhancement phase
of composites[5–8]. In particular, when QC thin film was used for solar panels, the mismatch of
the material coefficients between the thin film and substrate materials may initiate debonding
and micro-cracks[9–10]. Thus, functionally gradient materials (FGMs) can be introduced to
overcome these defects[11].

Moreover, FGMs can also be utilized to surmount the delamination and cracking problems
of multilayered composite structure models. Due to their special structural features, FGMs
have attracted attention from scientists. Based on the modified couple-stress theory, Guo et
al.[12–13] presented the three-dimensional (3D) size-dependent multilayered model for simply
supported and functionally graded (FG) anisotropic elastic composite plates. According to the
two-dimensional (2D) higher-order deformation theory, Matsunaga[14] derived the solution of
free vibration and stability for FG shallow shells. By virtue of the state-space method, Huang
et al.[15] derived the benchmark solutions for FG thick plates resting on the two-parameter
foundation model. After that, Lu et al.[16] presented the free vibration analysis of FG thick
plates on an elastic foundation by using the same method. Based on 3D thermoelasticity, Ying
et al.[17] investigated the thermal-mechanical behavior of FG thick plates.

Meanwhile, researchers have also studied the mechanical properties of FG QC materials.
Based on the linear elastic theory of QCs , Huang et al.[18] presented a mechanical model of FG
one-dimensional (1D) hexagonal piezoelectric QC laminates by using the state vector method,
and investigated the influence of FG exponential factor on the static response of the laminates.
Zhang et al.[19] derived the static bending deformation of FGM 1D hexagonal piezoelectric QC
laminates with a nonlocal effect. Li et al.[20] obtained the exact solution for the FG multilayered
1D orthorhombic QC plate. By virtue of the pseudo-Stroh method and the propagator matrix
method, Li et al.[21] investigated the thermo-elastic solution of FG multilayered 2D decagonal
QC plates with simply supported boundary conditions. Furthermore, Li et al.[22] obtained
the exact solution of FGM 2D piezoelectric QC laminate by using the same methods. Other
numerous studies on the dynamic behaviors of QC plates such as free vibration[23] and harmonic
response[24] of FG QC laminates have been performed. However, in the studies mentioned above,
the FG QC laminates were analyzed with simply supported boundary conditions. Although the
pseudo-Stroh formalism[10,12,20–21] and the state-space method[15–18] have been used to derive
the FG plates with simply supported boundary conditions according to the general solutions
of the extended displacements and stresses, the plates with clamped-supported and mixed
boundary conditions cannot be solved.

Some semi-analytical numerical methods[25–27] can be used to derive the solutions of the
static response and free vibration for plates with arbitrary boundary conditions. However,
the differential quadrature method (DQM) has been approved to be highly efficient for the
rapid solution of differential equations governing boundary/initial problems during the past
decades[28–29]. In addition, it is convenient for this method to deal with arbitrary supporting
conditions and reduce the dimension of the final governing equations. The DQM is a numerical
method that can be used to solve ordinary differential, partial differential, integral, and inte-
grodifferential equations[30]. It has potential application prospects in various typical boundary
value and initial value problems. Wang[28] collected more than sixty related documents to sum-
marize the application status of the DQM in the field of structural mechanics, and pointed out
the urgent problems to be manipulated. By using the DQM, Lu et al.[27] analyzed the free
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vibration of laminated plates under mixed boundary conditions. Under the arbitrary bound-
ary conditions, Zhou et al.[29,31] used the same method to analyze the dynamic response of
piezoelectric plates and the cylindrical bending with imperfect interfaces for piezoelectric lam-
inates. Yas et al.[32] and Yas and Moloudi[33] presented the solution of the free vibration for a
piezoelectric ring plate with changes exponentially along the thickness direction, and studied
the influence of the Winkler elastic foundation constant on the natural frequency of the plate
under different boundary conditions.

In this paper, the state-space based differential quadrature method (SS-DQM) is developed
to investigate the static response problems for FG 2D QC thick plates with mixed boundary
conditions. We extend the state-space method to the FG 2D QC material with multiple phys-
ical coupling fields, from which the basic elasticity equation is converted to a linear control
system. Compared with the general solution of the extended displacements and stresses for
the four-side simple supported QC plate[20–21], the Fourier series expansion and the differential
quadrature technique are effective methods to satisfy the simply supported boundary condi-
tions and the mixed boundary conditions. The propagator matrix method is used to obtain
the semi-analytical solution of the FG 2D QC laminates. Finally, numerical examples are pre-
sented to verify the accuracy of the SS-DQM and illustrate the influence of different boundary
conditions, stacking sequences, and FG exponential factors on the phonon and phason vari-
ables. The numerical results indicate that the hybrid method is an effective tool to predict the
accurate behavior of FG QC composite laminated structures with mixed boundary conditions.
Meanwhile, the numerical results can also serve as a reference for verifying existing or future
FG QC plate theories.

2 Basic formulations

Consider an M -layer FG 2D QC rectangular plate with the total thickness H in the vertical
direction and horizontal dimensions x×y = Lx×Ly, as shown in Fig. 1. The atomic arrangement
of the 2D decagonal QC is quasi-periodic in the xy-plane and periodic along the z-direction. The
relationship between the global Cartesian coordinate system and the local material coordinate
system of the plates is assumed to be (x, y, z) = (x1, x2, x3). The pth-layer with the thickness
hp = zp − zp−1 (p = 0, 1, 2, 3, · · · ,M) is defined as p in the multilayer plate. It follows that the
bottom and top surfaces of the laminate are z0 = 0 and zM = H, respectively. Each layer is
defined as homogeneous or FG with exponentially varying material properties.

H Layer p
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z

zM
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z0

Fig. 1 An M -layered FG 2D QC laminate (color online)

2.1 Basic equations
According to the linear elastic theory of QCs[34–36], the generalized relationship of strain-
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displacement for 2D QCs are

εij = (ui,j + uj,i)/2, wαj = wα,j , (1)

where i, j = 1, 2, 3, and α = 1, 2. εij and wαj represent the strains in the phonon and phason
fields, respectively, ui and wα are the phonon and phason displacements, respectively, and the
subscript comma denotes partial differentiation with respect to the axis.

The static equilibrium equations without the body force can be written as[37–40]

σij,j = 0, Hαj,j = 0, (2)

where σij denote the phonon stresses, and Hαj are the phason stresses.
The stress-strain relationship for 2D decagonal QCs with point groups 10mm, 1022, 10m2,

and 10/mmm can be expressed as[41–43]




σ11 = C11ε11 + C12ε22 + C13ε33 + R1(w11 + w22),
σ22 = C12ε11 + C11ε22 + C13ε33 −R1(w11 + w22),
σ33 = C13ε11 + C13ε22 + C33ε33, σ23 = σ32 = 2C44ε23,

σ31 = σ13 = 2C44ε13, σ12 = σ21 = 2C66ε12 −R1w12 + R1w21,

H11 = R1(ε11 − ε22) + K1w11 + K2w22,

H22 = R1(ε11 − ε22) + K1w22 + K2w11,

H23 = K4w23, H12 = −2R1ε12 + K1w12 −K2w21,

H13 = K4w13, H21 = 2R1ε12 −K2w12 + K1w21,

(3)

where C11, C12, C13, C33, and C44 are the elastic constants with the relationship 2C66 =
C11−C12 in the phonon field, and Kl (l = 1, 2, 4) and R1 represent the phason elastic constants
and the phonon-phason coupling elastic constant, respectively.

It is assumed that the material properties of the FG QC are exponentially distributed along
the z-direction. Therefore, the material constants in Eq. (3) can be rewritten as

F (z) = F 0eηz, (4)

where η is the exponential factor characterizing the degree of the material gradient in the z-
direction, and F 0 indicates the initial values of the material constants in Eq. (3). It follows that
η = 0 represents the homogeneous QC material case.
2.2 Formulation of state-space method

Substituting Eqs. (1) and (3) into Eq. (2), and according to the state-space method for the
QC plate[18], we derive the state equations in matrix forms as

∂

∂z
θ = Dθ, (5)

where θ = [ux, uy, wx, wy, σzz, σxz, σyz,Hxz,Hyz, uz]T is called the basic variable matrix, in
which the superscript ‘T’ denotes transpose, and the state transition matrix D is

D =
(

0 D1

D2 0

)
. (6)

The submatrices D1 and D2 in Eq. (6) are

D1 =




a2

0 a2 Sym.
0 0 b3

0 0 0 b3

− ∂

∂x
− ∂

∂y
0 0 0




,
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D2 =




−a1
∂2

∂x2
− a6

∂2

∂y2

−(a3 + a6)
∂2

∂x∂y
−a6

∂2

∂x2
− a1

∂2

∂y2
Sym.

−b1
∂2

∂x2
+ b1

∂2

∂y2
2b1

∂2

∂x∂y
−b2

∂2

∂x2
− b2

∂2

∂y2

−2b1
∂2

∂x∂y
−b1

∂2

∂x2
+ b1

∂2

∂y2
0 −b2

∂2

∂x2
− b2

∂2

∂y2

a4
∂

∂x
a4

∂

∂y
0 0 a5




, (7)

where Sym. denotes a symmetric matrix. The coefficients in Eq. (7) and the following equations
can be found in Appendix A.

The remaining stress components in the plate can be expressed as




σxx = a1
∂ux

∂x
+ a3

∂uy

∂y
+ b1

∂wx

∂x
+ b1

∂wy

∂y
− a4σzz,

σyy = a3
∂ux

∂x
+ a1

∂uy

∂y
− b1

∂wx

∂x
− b1

∂wy

∂y
− a4σzz,

σxy = a6
∂ux

∂y
+ a6

∂uy

∂x
− b1

∂wx

∂y
+ b1

∂wy

∂x
,

Hxx = b1
∂ux

∂x
− b1

∂uy

∂y
+ b2

∂wx

∂y
+ b4

∂wy

∂y
,

Hyy = b1
∂ux

∂x
− b1

∂uy

∂y
+ b4

∂wx

∂x
+ b2

∂wy

∂y
,

Hxy = −b1
∂ux

∂y
− b1

∂uy

∂x
+ b2

∂wx

∂y
− b4

∂wy

∂x
,

Hyx = b1
∂ux

∂y
+ b1

∂uy

∂x
− b4

∂wx

∂y
+ b2

∂wy

∂x
.

(8)

Consider the simply supported boundary conditions of the FG 2D QC laminate in the y-
direction,

Ly : ux = uz = wx = σyy = Hyy = 0 at y = 0. (9)

We assume that the general solutions[31,44] of laminate are



ux(x, y, z)
uy(x, y, z)
wx(x, y, z)
wy(x, y, z)
σzz(x, y, z)
σxz(x, y, z)
σyz(x, y, z)
Hxz(x, y, z)
Hyz(x, y, z)
uz(x, y, z)




=
∞∑

n=1




ũx(x, z) sin(qy)
ũy(x, z) cos(qy)
w̃x(x, z) sin(qy)
w̃y(x, z) cos(qy)
σ̃zz(x, z) sin(qy)
σ̃xz(x, z) sin(qy)
σ̃yz(x, z) cos(qy)
H̃xz(x, z) sin(qy)
H̃yz(x, z) cos(qy)
ũz(x, z) sin(qy)




, (10)
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where q = nπ/Ly, n is the number of superposition, and ũx, ũy, w̃x, w̃y, σ̃zz, σ̃xz, σ̃yz, H̃xz, H̃yz,
and ũz are unknown functions.

Incorporating Eq. (5) with Eq. (10) yields

∂

∂z
θ̃ = D̃θ̃, (11)

where θ̃(x, z) = (ũx, ũy, w̃x, w̃y, σ̃zz, σ̃xz, σ̃yz, H̃xz, H̃yz, ũz)T, and D̃ is the coefficient matrix.
Substituting Eq. (10) into Eq. (8), the equations can be rewritten as





σ̃xx = a1
∂ũx

∂x
− a3qũy + b1

∂w̃x

∂x
− b1qw̃y − a4σ̃zz,

σ̃yy = a3
∂ũx

∂x
− a1qũy − b1

∂w̃x

∂x
+ b1qw̃y − a4σ̃zz,

σ̃xy = a6qũx + a6
∂ũy

∂x
− b1qw̃x + b1

∂w̃y

∂x
,

H̃xx = b1
∂ũx

∂x
+ b1qũy + b2

∂w̃x

∂x
− b4qw̃y,

H̃yy = b1
∂ũx

∂x
+ b1qũy + b4

∂w̃x

∂x
− b2qw̃y,

H̃xy = −b1qũx − b1
∂ũy

∂x
+ b2qw̃x − b4

∂w̃y

∂x
,

H̃yx = b1qũx + b1
∂ũy

∂x
− b4qw̃x + b2

∂w̃y

∂x
.

(12)

2.3 Formulations of SS-DQM
For a QC laminate with boundary conditions in the x-direction other than the simply sup-

ported conditions in Eq. (9), it is difficult to obtain the general solutions satisfying these bound-
ary conditions. However, the SS-DQM can be utilized to overcome the difficulty. Theoretically,
the discrete pattern in the x-direction can be divided into five kinds. However, the distribution
of grid points has a direct effect on the convergence and computational stability of the algorithm
in the differential quadrature technique. This paper adopts the Chebyshev-Gauss-Lobatto grid
space model in the in-plane discrete direction[45–46],

xr =
Lx

2

(
1− cos

( r − 1
N − 1

π
))

, r = 1, 2, 3, · · · , N, (13)

where N is the number of sampling points.
Consider the following two typical supporting conditions[47] at x = 0 and x = Lx:

Simply supported (S): ũyd = ũzd = w̃yd = σ̃xxd = H̃xxd = 0, (14)
Clamped supported (C): ũxd = ũyd = ũzd = w̃xd = w̃yd = 0, (15)

where d = 1 or N ; ‘S’ indicates the simply supported boundary condition, and ‘C’ is the
clamped supported boundary condition. For example, ‘CSCS’ denotes a plate with the clamped
supported boundary condition at x = 0 and x = Lx, and the simply supported conditiion at
y = 0 and y = Ly.

Applying the rules in Eqs. (11) and (13), the variables in Eq. (11) are discretized in the x-
direction, and the ordinary differential equation at the arbitrary discrete point can be rewritten
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as follows:



dũxr

dz
= a2σ̃xzr −

N∑

k=1

X
(1)
rk ũzk,

dũyr

dz
= a2σ̃yzr − qũzr,

dw̃xr

dz
= b3H̃xzr,

dw̃yr

dz
= b3H̃yzr,

dσ̃zzr

dz
= −

N∑

k=1

X
(1)
rk σ̃xzr + qσ̃yzr,

dσ̃xzr

dz
= −a1

N∑

k=1

X
(2)
rk ũxk + a6q

2ũxr + (a3 + a6)q
N∑

k=1

X
(1)
rk ũyk − b1

N∑

k=1

X
(2)
rk w̃xk

− b1q
2w̃xr + 2b1q

N∑

k=1

X
(1)
rk w̃yk + a4

N∑

k=1

X
(1)
rk σ̃zzk,

dσ̃yzr

dz
= −(a3 + a6)q

N∑

k=1

X
(1)
rk ũxk − a6

N∑

k=1

X
(2)
rk ũyk + a1q

2ũyr

+ 2b1q
N∑

k=1

X
(1)
rk w̃xk − b1

N∑

k=1

X
(2)
rk w̃yk − b1q

2w̃yr + a4qσ̃zzr,

dH̃xzr

dz
= −b1

N∑

k=1

X
(2)
rk ũxk − b1q

2ũxr − 2b1q
N∑

k=1

X
(1)
rk ũyk − b2

N∑

k=1

X
(2)
rk w̃xk + b2q

2w̃xr,

dH̃yzr

dz
= −2b1q

N∑

k=1

X
(1)
rk ũxk − b1

N∑

k=1

X
(2)
rk ũyj − b1q

2ũyr − b2

N∑

k=1

X
(2)
rk w̃yk + b2q

2w̃yr,

dũzr

dz
= a4

N∑

k=1

X
(1)
rk ũxk − a4qũyr + a5σ̃zzr,

(16)

where X
(m)
rk (1 6 m 6 N − 1) are the differential quadrature weight coefficients.

Similarly, at the same discrete point, Eq. (12) can be rewritten as




σ̃xxr = a1

N∑

k=1

X
(1)
rk ũxk − a3qũyr + b1

N∑

k=1

X
(1)
rk w̃xk − b1qw̃yr − a4σ̃zzr,

σ̃yyr = a3

N∑

k=1

X
(1)
rk ũxk − a1qũyr − b1

N∑

k=1

X
(1)
rk w̃xk + b1qw̃yr − a4σ̃zzr,

σ̃xyr = a6qũxr + a6

N∑

k=1

X
(1)
rk ũyk − b1qw̃xr + b1

N∑

k=1

X
(1)
rk w̃yk,

H̃xxr = b1

N∑

k=1

X
(1)
rk ũxk + b1qũyr + b2

N∑

k=1

X
(1)
rk w̃xk − b4qw̃yr,

H̃yyr = b1

N∑

k=1

X
(1)
rk ũxk + b1qũyr + b4

N∑

k=1

X
(1)
rk w̃xk − b2qw̃yr,

H̃xyr = −bqũxr − b1

N∑

k=1

X
(1)
rk ũyk + b2qw̃xr − b4

N∑

k=1

X
(1)
rk w̃yk,

H̃yxr = b1qũxr + b1

N∑

k=1

X
(1)
rk ũyk − b4qw̃xr + b2

N∑

k=1

X
(1)
rk w̃yk.

(17)
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Three boundary conditions of SSSS, CSCS, and CSSS are considered in this paper, and the
state equations which satisfy the corresponding boundary conditions are listed in Appendix A.

For the pth-layer of the plate, Eq. (16) can be written as the following unified matrix form:

d
dz

δ(p) = T (p)δ(p), (18)

where δ(p) = [uT
x ,uT

y ,wT
x ,wT

y ,σT
zz,σ

T
xz,σ

T
yz,H

T
xz,H

T
yz,u

T
z ] such as uT

x = ũxr. T (p) is the
coefficient matrix of the pth-layer at the appropriate discrete points. Since the elastic constant
changes with the thickness, T (p) is a variable coefficient matrix. At the same time, it needs
to be artificially divided layers in the process of calculation, which will not lead to numerical
instability[27,31] and is conducive to calculation.

According to the theory of ordinary differential equation, the solutions to Eq. (18) are derived
through the propagator matrix[48–49] which connects the field variables at the upper and lower
interfaces of the pth-layer,

δ(p)(z) = exp(T (p)(z − zp−1))δ(p)(zp−1), zp−1 6 z 6 zp. (19)

Let z = zp in Eq. (19). We find

δ
(p)+
1 = M (p)δ

(p)−
0 , (20)

where M (p) = exp((zp − zp−1)T (p)) = exp(hpT
(p)), and “−” and “+” represent the lower and

upper surfaces of the pth-layer, respectively.
If the interfaces are the perfect bonding condition, the tractions and displacements along

the z-direction are continuous through this interface. Then, the propagator relation can be
expressed as

δ
(M)+
1 = Pδ

(1)−
0 , (21)

where the matrix P = M (M)M (M−1) · · ·M (p) · · ·M (1) =
1∏

p=M

M (p) is the global propagator

matrix.
We rewrite Eq. (21) as follows:

δ
(M)
1 =

(
U(H)
Y (H)

)
=

(
P11 P12

P21 P22

)
δ

(1)
0 =

(
P11 P12

P21 P22

)(
U(0)
Y (0)

)
, (22)

where U(z) = (uT
x ,uT

y ,uT
z ,wT

x ,wT
y )T, and Y (z) = (σT

xz,σ
T
yz,σ

T
zz,H

T
xz,H

T
yz)

T. According
to the processing of the state space method, the total numbers of equations and unknowns
in Eq. (22) for laminates with three boundary conditions need to be consistent with those
of Appendix A, respectively. For example, the total numbers of equations and unknowns in
Appendix A for the laminate with boundary condition CSCS are both 10N − 20.

It is assumed that the mechanical boundary conditions on the top and bottom surfaces of
the plate can be expressed as

{
σT

xz = σT
yz = HT

xz = HT
yz = 0, σT

zz = σT
0 sin(qy) at z = H,

σT
zz = σT

xz = σT
yz = HT

xz = HT
yz = 0 at z = 0,

(23)

where

σT
0 = (σ0 sin(πx2/Lx), · · · , σ0 sin(πxr/Lx), · · · , σ0 sin(πxN−1/Lx))T, 2 6 r 6 N − 1 (24)
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with the load amplitude σ0.
Incorporating Eq. (23) with Eq. (22) yields

δ
(M)
1 =

(
U(H)
Y (H)

)
=

(
P11 P12

P21 P22

)
δ

(1)
0 =

(
P11 P12

P21 P22

)(
U(0)

0

)
, (25)

where Y (H) = (0,0,σT
zz,0,0)T. Then, the solution of the FG 2D QC plate can be obtained

through Eq. (25).

3 Numerical examples

In this section, the layered FGM plate subject to a normal force at the top surface with
different boundary conditions is studied. The laminate is composed of three single plates,
and each layer has an equal thickness. The horizontal dimensions of this FG QC plate are
Lx × Ly = 10mm × 10mm, and its total thickness is H = 3mm. We fix the load amplitude
σ0 = 1 N/m2 and the superposition n = 1 in Eq. (10). Meanwhile, the discrete points are taken
as N = 13. Two kinds of materials are considered[44,47]. One is the QC material Al-Ni-Co
(called QC), and the other is the crystal material BaTiO3 (called C). The material properties
for Al-Ni-Co and BaTiO3 are listed in Table 1. For the FGM plate, we assume that the middle
layer is homogeneous, and the material properties of the top and bottom layers are symmetric
exponential distribution along the z-direction, as shown in Fig. 2. Five different exponential
factors, i.e., η = −0.4,−0.2, 0.0, 0.2, and 0.4, are studied. The crystal material BaTiO3 lacks
the phason field. In order to avoid the appearance of a singular matrix in the calculation
process, we assume that the phason elastic constant Ki of the crystal is 10−8 times that of the
QC[44].

Table 1 Material properties (C0 in 109 N/m2, K0 in 109 N/m2, R0 in 108 N/m2)

Material C0
11 C0

12 C0
13 C0

33 C0
44 K0

1 K0
2 K0

4 R0
1

Al-Ni-Co 234.33 57.41 66.63 232.22 70.19 122 24 12 8.846
BaTiO3 166 77 78 162 43

3.1 Validation
In this part, we present one numerical example of the QC/QC/QC plate to verify the

validity and accuracy of the proposed method and the numerical solution. In the calculation
process, the FG exponential factors are fixed at η = 0, and the horizontal coordinate is fixed
at (x, y) = (0.75Lx, 0.75Ly). Furthermore, the material parameters, the shape and size of the
plate, and the mechanical quantities used are consistent with those in Ref. [37]. The phonon
displacement, the phason displacement, the phonon stress, and the phason stress are normalized
by their maximum values among these four variables along the thickness direction.

Figure 3 shows the variations of the displacements and stresses of phonon and phason fields
for the QC/QC/QC plate with the boundary condition SSSS under the mechanical load. It can
be proved that the solutions based on the SS-DQM are in good agreement with the results by
Yang et al.[37], as shown in Fig. 3. Therefore, the method in this paper has high precision and
good convergence. Furthermore, when the discrete points are taken as N = 9, the maximal
relative error of the present solution is only about 0.001% for the solution in Ref. [37]. With the
increase in the discrete points N , this solution becomes more accurate. However, by comparing
the calculation results, when N > 21, numerical instability is encountered. Thus, to ensure
the accuracy and convergence of the solution, the discrete points are taken as N = 13 in
the following examples. It should be mentioned that the numerical instabilities are always
encountered during the present solution procedure in the case of high aspect ratio of H/Ly,
large discrete point number, and high-order frequencies[27]. In this paper, since H/Ly = 0.3
and N = 13, the solutions are stable.
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3.2 FG QC laminate with boundary condition SSSS
In this part, we present the solution of the C/QC/C plate with the boundary condition

SSSS. The FG exponential factors are set as η = −0.4,−0.2, 0.0, 0.2, and 0.4. The horizontal
coordinate is fixed at (x, y) = (0.75Lx, 0.75Ly).

The variations of the displacements and stresses for the C/QC/C plate along the thickness
direction under the mechanical load are presented in Fig. 4. With the increase in the FG
exponential factors, the absolute maximum values of the field variables (see Figs. 4(a)–4(e)) for
the FG QC laminates decrease continuously. The magnitude of ux (ux = uy) in Fig. 4(a) is much
larger than that of wx (wx = −wy) in Fig. 4(b). Since we did not use the plane assumption
in the 2D theory of thick plate bending, the distributions of σxz (see Fig. 4(c)) and Hxz (see
Fig. 4(d)) are nonlinear. Corresponding to ux and wx, the similar relationships of stresses are
σxz = σyz and Hxz = −Hyz, respectively.
3.3 FG QC laminate with boundary condition CSCS

In this part, we present the solution of the QC/C/QC plate with the boundary condition
CSCS. The FG exponential factors are set as η = −0.4,−0.2, 0.0, 0.2, and 0.4. To show
the distribution of field variables along the z-direction, the horizontal coordinate is fixed at
(x, y) = (0.25Lx, 0.5Ly).

The variations of the phonon and phason displacements for the QC/C/QC plate along the
thickness direction under the mechanical load are presented in Fig. 5. With the increase in the
FG exponential factor η, the absolute values of the field variables (see Figs. 5(a)–5(d)) on the
upper and lower surfaces of the plate decrease continuously. The values of ux (see Fig. 5(a))
and uy are not equal due to different boundary conditions on the four edges. Furthermore,
the distribution of ux along the thickness direction changes explicitly rather than linear or
polynomial form as assumed in the thin plate theory and the thick plate theory. The values
of uz (see Fig. 5(b)) of the upper and lower surfaces are different for the QC/C/QC plate,
indicating that the extrusion deformation cannot be ignored. wx and wy (see Figs. 5(c) and
5(d)) vary nonlinearly in the QC layer and return to zero in the crystal layer due to the fact
that the phason coefficients are almost zero for the material BaTiO3, and this transformation
can be used to identify the stacking sequence of materials.

The variations of the phonon and phason stresses for the QC/C/QC plate along the thickness
direction under the mechanical load are presented in Fig. 6. The value of σxz (see Fig. 6(a)) in-
creases with the increase in η. When the horizontal coordinate is fixed at (x, y) = (0.25Lx, 0.5Ly),
the value of σzz (see Fig. 6(b)) on the upper surface is 0.707 11, and its distribution changes
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online)

slightly with the increase in η. The phonon stress σxx is discontinuous between different mate-
rial layers in Fig. 6(c). Based on the classic laminate theory, only the local stress of the basic
equation of the QC is considered. However, in fact, the stress state also includes the strong
interlayer stress between the interfaces. The high-interlayer stress is considered to be one of the
special failure mechanisms of composite materials in engineering applications. The values of
Hxz for the QC/C/QC plate in Fig. 6(d) are zero in the crystal layers and change with varying
η from −0.4 to 0.4 in the QC layer. With the increase in η, the values of Hyz (see Fig. 6(e))
in the QC layer increase continuously. Hxx (see Fig. 6(f)) is discontinuous at z = 1 mm or
z = 2 mm, and the interlayer stress value decreases with the increase in η.
3.4 FG QC laminate with boundary condition CSSS

In this part, we present the solutions of five kinds of stacking sequence plates (QC/QC/QC,
C/QC/QC, QC/C/QC, C/QC/C, and QC/C/C) with the boundary condition CSSS. The FG
exponential factors are set as η = 0. To show the distribution of field variables along the
z-direction, the horizontal coordinate is fixed at (x, y) = (Lx, 0.5Ly).

The variations of the phonon and phason displacements for laminates along the thickness
direction under the mechanical load are presented in Fig. 7. It can be observed that ux (see
Fig. 7(a)) is continuous at the interface between layers. Furthermore, the stacking sequence has
few effects on ux. The stacking sequence does not change the magnitude and direction of ux at
the upper and lower surfaces of the laminates. The stacking sequences have an apparent effect
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on wx (see Fig. 7(b)), and wx is zero in the crystal layer.
The variations of the phonon and phason stresses for laminates along the thickness direction

under the mechanical load are presented in Fig. 8. According to the classic laminate theory,
the stresses at the edge of the plate cannot be calculated. However, Figs. 8(a)–8(d) present the
accurate stress solutions on simply supported edges, which also indicate that these solutions
are of theoretical significance. The distributions of σxz and Hxz along the z-direction are not
symmetrical in Figs. 8(a) and 8(b). The distribution of these stresses at x = Lx is consistent
with the in-plane distribution trend, and the value is larger at the boundary. σxy (see Fig. 8(c))
is the same as σxx and σyy, which is discontinuous between different material layers. If the
material properties of each layer are the same, the stress is continuous for the QC/QC/QC
plate. Similarly, Hyx (see Fig. 8(d)) is continuous between two adjacent QC material layers.
For the above physical variables, if the DQM will be also utilized to discretize domains along
the y-direction, the superposition n will not appear in the formulations of the exact solution.
3.5 FG QC laminate with boundary conditions SSSS, CSCS, and CSSS

In this part, we present the solutions of the QC/C/QC plate with different boundary
conditions (SSSS, CSCS, and CSSS) and let η = 0.2. The horizontal coordinate is fixed at
(x, y) = (0.25Lx, 0.5Ly).

The variations of the phonon and phason displacements for the QC/C/QC plate along the
thickness direction under the mechanical load are presented in Fig. 9. It can be observed that
the boundary condition SSSS has greater effects on uy (see Fig. 9(a)) and wy (see Fig. 9(b)) than
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CSCS. This feature indicates that CSCS can bear a greater load. Furthermore, the values of
uy and wy decrease with the increase in the number of clamped supported edges. This feature
is in accord with the law of displacement in elasticity theory.

The variations of the phonon and phason stresses for the QC/C/QC along the thickness
direction under the mechanical load are presented in Fig. 10. The values of σyz and Hyz (see
Figs. 10(a) and 10(b)) with the boundary condition SSSS are greater than those of σyz and Hyz

with CSCS or CSSS. This feature indicates that the clamped supported boundary conditions
are more constrained than the simply supported edge for the phason stresses, and it can bear
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more load. σyy (see Fig. 10(c)) is continuous at z = 1mm and z = 2mm, and the value of
the interlayer stress at z = 2 mm is smaller than that of the interlayer stress at z = 1 mm.
Similarly, when the horizontal coordinate is fixed at (x, y) = (0.25Lx, 0.5Ly), the value of σzz

(see Fig. 10(d)) on the upper surface is 0.707 11, whose distribution is almost unchanged with
three boundary conditions.
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4 Conclusions

In this paper, the semi-analytical SS-DQM, which is composed of the differential quadrature
equations and the state-space method, is constructed to obtain the solution of the static response
of the FG multilayered 2D decagonal QC rectangular plates with mixed boundary conditions.
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The differential quadrature technique is used to discretize the in-plane domains, from which the
simply supported and clamped supported boundary conditions can be directly processed. At the
same time, the thickness direction is analytically solved utilizing the propagator matrix method
and the state-space method. Therefore, this semi-analytical method inherits the advantages of
the two methods, such as high accuracy, rapid convergence, and capability of treating mixed
constraint conditions directly. These advantages of this method are verified in the numerical
examples. Finally, some significant features are listed below.

(i) The distributions of the phonon and phason displacements along the thickness direction
change explicitly rather than the linear or polynomial form as assumed in the thin plate theory
and the thick plate theory of plate bending.

(ii) σxx, σyy, σxy, Hxx, Hyy, and Hyz are discontinuous at the interface between the layers
when the materials of two adjacent layers of the laminated board are different. This interface
stress discontinuity is affected by the strong interlayer stress.

(iii) The values of the variables in the phonon and phason fields vary with η. All comparison
studies for the stacking sequence reveal the obvious effect of it on the physical fields, especially
at the interfaces of the FG multilayered plate.

(iv) The clamped supported boundary conditions have few effects on the phonon and phason
interlayer stresses. The clamped supported boundary conditions are also more constrained than
the simply supported edge for the phason stresses.

The semi-analytical method constructed in this paper has high precision and fast convergence
for deriving the solutions of the FG 2D QC laminates with mixed boundary conditions. Some
special cases such as the multi-field coupled QC, FG 1D and 3D QC, and piezoelectric QC
plates could all be investigated according to the present solutions. Furthermore, the methods
and numerical results in this paper can be utilized to verify the accuracy of other numerical
methods and serve for the analysis and design of intelligent QC material laminates.
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Appendix A

Some parameters are

a1 = C0
11 − C0

13C
0
13

C0
33

, a2 =
1

C0
44

, a3 = C0
12 − C0

12C
0
23

C0
33

, a4 = −C0
13

C0
33

,

a5 =
1

C0
33

, a6 = C0
66, b1 = R0

1, b2 = K0
1 , b3 =

1

K0
4

, b4 = K0
2 .

The state equations for SSSS are

dũxr

dz
= a2σ̃xzr −

N−1∑

k=2

X
(1)
rk ũzk (1 6 r 6 N),

dũyr

dz
= a2σ̃yzr − qũzr (2 6 r 6 N − 1),

dw̃xr

dz
= b3H̃xzr (1 6 r 6 N),

dw̃yr

dz
= b3H̃yzr (2 6 r 6 N − 1),

dσ̃zzr

dz
= −

N∑

k=1

X
(1)
rk σ̃xzk + qσ̃yzr (2 6 r 6 N − 1),

dσ̃xzr

dz
= − a1

N∑

k=1

(X
(2)
rk − frk)ũxk + a6q

2ũxr + (a3 + a6)q

N−1∑

k=2

X
(1)
rk ũyk − b1

N∑

k=1

(X
(2)
rk − frk)w̃xk

− b1q
2w̃xr + 2b1q

N−1∑

k=2

X
(1)
rk w̃yk + a4

N−1∑

k=2

X
(1)
rk σ̃zzk (1 6 r 6 N),

dσ̃yzr

dz
= − (a3 + a6)q
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k=1

X
(1)
rk ũxk − a6
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k=2

X
(2)
rk ũyk + a1q

2ũyr
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k=1
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rk w̃xk − b1

N−1∑
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X
(2)
rk w̃yk − b1q

2w̃yr + a4qσ̃zzr (2 6 r 6 N − 1),

dH̃xzr

dz
= − b1
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k=1

X
(2)
rk ũxk − b1q

2ũxr − 2b1q

N−1∑

k=2

X
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X
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dH̃yzr

dz
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rk ũyk − b1q
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dũzr

dz
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rk ũxk − a4qũyr + a5σ̃zzr (2 6 r 6 N − 1).

The state equations for CSCS are

dũxr

dz
= a2σ̃xzr −

N−1∑

k=2

X
(1)
rk ũzk,

dũyr

dz
= a2σ̃yzr − qũzr,

dw̃xr

dz
= b3H̃xzr,
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dz
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X
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frkũzk,
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dz
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X
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4
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2ũxr + (a3 + a6)q
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X
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rk ũyk − b1

N−1∑
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X
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rk w̃xk

− b1q
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k=2

X
(1)
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k=2

X
(1)
rk σ̃zzk,
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dσ̃yzr

dz
= − (a3 + a6)q

N−1∑

k=2

X
(1)
rk ũxk − a6

N−1∑

k=2

X
(2)
rk ũyk + a1q

2ũyr

+ 2b1q

N−1∑

k=2

X
(1)
rk w̃xk − b1

N−1∑

k=2

X
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rk w̃yk − b1q
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dH̃xzr

dz
= − b1

N−1∑

k=2

X
(2)
rk ũxk − b1q

2ũxr− 2b1q

N−1∑

k=2

X
(1)
rk ũyk− b2

N−1∑
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X
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where 2 6 r 6 N − 1.
The state equations for CSSS are

dũxr

dz
= a2σ̃xzr −

N−1∑

k=2

X
(1)
rk ũzk (2 6 r 6 N),

dũyr

dz
= a2σ̃yzr − qũzr (2 6 r 6 N − 1),

dw̃xr

dz
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dw̃yr

dz
= b3H̃yzr (2 6 r 6 N − 1),

dσ̃zzr

dz
= −

N∑
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X
(1)
rk σ̃xzk + qσ̃yzr − 1

a2
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rk ũyk
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X
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(1)
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rk ũxk − a6
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X
(2)
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2ũyr

+ 2b1q

N∑
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X
(1)
rk w̃xk − b1

N−1∑
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X
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rk w̃yk − b1q

2w̃yr + a4qσ̃zzr (2 6 r 6 N − 1),

dH̃xzr

dz
= − b1

N∑

k=2

X
(2)
rk ũxk − b1q

2ũxr− 2b1q

N−1∑

k=2

X
(1)
rk ũyk − b2

N∑

k=2

X
(2)
rk w̃xk + b2q

2w̃xr (2 6 r 6 N),

dH̃yzr

dz
= − 2b1q

N∑

k=2

X
(1)
rk ũxk − b1

N−1∑

k=2

X
(2)
rk ũyk − b1q

2ũyr

− b2

N−1∑

k=2

X
(2)
rk w̃yk + b2q

2w̃yr (2 6 r 6 N − 1),

dũzr

dz
= a4

N∑

k=2

X
(1)
rk ũxk − a4qũyr + a5σ̃zzr (2 6 r 6 N − 1)

with f1rk = X
(1)
r1 X

(1)
1k , fNrk = X

(1)
rNX

(1)
Nr, and frk = f1rk + fNrk.


