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Abstract Due to the conflict between equilibrium and constitutive requirements,
Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of
engineering interest. As an alternative, the stress-driven model has been recently
developed. In this paper, for higher-order shear deformation beams, the ill-posed issue
(i.e., excessive mandatory boundary conditions (BCs) cannot be met simultaneously)
exists not only in strain-driven nonlocal models but also in stress-driven ones. The
well-posedness of both the strain- and stress-driven two-phase nonlocal (TPN-StrainD
and TPN-StressD) models is pertinently evidenced by formulating the static bending
of curved beams made of functionally graded (FG) materials. The two-phase nonlocal
integral constitutive relation is equivalent to a differential law equipped with two
restriction conditions. By using the generalized differential quadrature method (GDQM),
the coupling governing equations are solved numerically. The results show that the
two-phase models can predict consistent scale-effects under different supported and
loading conditions.
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1 Introduction

Beam-like micro-/nano-structures are essential parts and are often utilized in the engineering
design of micro-/nano-electromechanical systems (MEMSs/NEMSs). In such applications, both
experiments and atomistic simulations show that the size-effect must be comprehensively and
rigorously considered. Owing to the lack of any inherent length characteristic parameter, the
classical elasticity theory fails to address such size-dependent problems. Molecular dynamics
(MD) simulations require high computational costs, and experiments are often difficult to
implement at a micro-/nano-scale. Therefore, several non-classical continuum theories are
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suggested to account for the size-effects, thereby overcoming the breakdown of classical
elasticity. Among the higher-order continuum theories, the nonlocal elasticity model[1–3] is
a popular tool.

Unlike the classical local elasticity theory, the nonlocal stress is expressed as a convolution
integral of a decaying kernel and the strain fields at each point, which is the so-called averaging
kernel. At the same time, a length-scale parameter is introduced to evaluate the size-effect. In
practical applications[4–6], integral constitutive relations are usually converted into a differential
form that is easier to solve. However, some paradoxes appear when applying the differential
form of Eringen’s strain-driven model to bounded beam structures. In particular, Refs. [7] and
[8] have shown that the results based on Eringen’s model coincided with the local one in the
case of a cantilever beam subjected to tip forces, which are inconsistent with the results under
other supported conditions. As for a reason, Romano et al.[9] systematically studied Eringen’s
nonlocal differential model over the bounded continuous domains and recently pointed out
that such inconsistencies are induced by the neglect of the two constraint conditions related
to the differentiation process of the originally integral equation, and these two constraint
conditions happen to conflict with the equilibrium requirement in the case of cantilever beams
under point-loading conditions. Alternatively, the two-phase formulation of the nonlocal model
suggested by Eringen is used to bypass such ill-posed issues. Wang et al.[10–11] employed such a
model to study the Euler-Bernoulli and Timoshenko beams, in which the integral constitutive
equation is utterly equivalent to a differential equation with two higher-order constitutive
boundary conditions (BCs). Zhang et al.[12] investigated the scale-dependent bending response
of circular beams. The two-phase nonlocal integral equations are solved directly via the Laplace
transform method.

Another option for removing the defects mentioned above is the so-called stress-driven
nonlocal integral elasticity theory[13–14]. The philosophy of such a novel theory is similar
to Eringen’s strain-driven nonlocal model, but by exchanging the positions of stress and
strain terms, the integral constitutive relation is expressed as an integral convolution of the
stress field instead of the strain field. Therefore, the constitutive BCs are converted from
force-described ones to displacement-described ones, thereby eliminating the conflicts in BCs.
So far, the stress-driven nonlocal model has been successfully used to investigate static and
dynamic mechanical behaviors of beam structures, in which a consistently stiffening effect is
captured[15–16]. However, the research objects of these studies focus on the classical or first-order
shear beam models (i.e., the Euler-Bernoulli beam theory and the Timoshenko beam theory,
respectively).

In fact, the Euler-Bernoulli beam theory is the most straightforward beam theory and
is inaccurate for estimating the deformation of non-slender beams owing to the neglect
of the shear-deformable effect. Although the Timoshenko beam theory can overcome the
Euler-Bernoulli beam theory’s limitations by taking into account the shear-deformable effect,
it does not satisfy free shear stress on the upper and lower surfaces of the beam. As a result,
a shear correction factor needs to be introduced to compensate for the difference between the
actual stress state and the assumed one. To remove these defects and better predict beam
behaviors, various types of higher-order shear deformation beam theory are developed, such
as the third-order one, the sinusoidal one, the hyperbolic one, the exponential one, and the
exponential one[17]. The shear strain distribution across the beam section is governed by
a shear shape function, which meets the free traction conditions on surfaces, and thus no
shear correction factor is required. Furthermore, Vo and Thai[18] presented a refined shear
deformation theory, which divided the components of transverse displacement into bending
components and shear components. In this model, the bending and shear forces are only
determined by the bending component and the shear component of the beams, respectively.
Also, the bending component is similar to the expressions in the Euler-Bernoulli beam theory,
and the shear component is expressed as a specific high-order variation of shear strain[18].
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Therefore, the shear stress will also vanish at the top and bottom surfaces. After that, various
higher-order refined shear deformation beam theories (HORSDBTs) have been proposed[19–21].
Up to now, although several authors have studied the mechanical behavior of nanostructures
based on the higher-order shear deformation theories[22–24], most of the existing literature is
still based on Eringen’s ill-posed constitutive relation, that is, the inherent constitutive BCs
are rarely considered.

Motivated by these reasons mentioned above, this work aims to extend those well-posedness
nonlocal models to the application of higher-order refined shear deformation beams. The main
novelty of this paper is a discovery that the stress-driven model is also ill-posed in higher-order
refined shear deformation beams. As a remedy, the well-posedness and the consistency of both
the strain- and stress-driven two-phase local/nonlocal mixed models are pertinently evidenced
by studying the size-dependent bending of various high-order refine shear deformation beams.
The content of this article is arranged as follows. In Section 2, the mathematical formulation of
the bending problem of a functionally graded (FG) curved beam is established by using different
versions of nonlocal elasticity. Such a beam model can degenerate into a homogeneous beam
or a straight beam by adjusting related parameters. In Section 3, the ill-posedness of pure
nonlocal elasticity of both the stress- and strain-driven types is pointed out, and the necessity
to use the two-phase nonlocal models is illustrated. In Section 4, an effective method named
as the generalized differential quadrature method (GDQM) is introduced to solve the coupling
governing equations of curved beams. In Section 5, several numerical examples are considered
to validate the consistency of the predicted scale-effects. Finally, the conclusions are given in
Section 6.

2 Problem formulation

2.1 Higher-order refined shear deformation curved beam made of FG materials
A slightly curved FG beam having the length L, the width b, the thickness h, and the

constant curvature radius R together with the coordinate system is shown in Fig. 1. The
properties of the beam are assumed to vary smoothly through the thickness of the beam by a
power-law. Therefore, the useful material properties of the beam, including Young’s modulus
E, Poisson’s ratio ν, and the shear modulus G are given by





E(z) = (E2 − E1)
(

z

h
+

1
2

)α

+ E1,

ν(z) = (ν2 − ν1)
(

z

h
+

1
2

)α

+ ν1, G(z) =
E(z)

2(1 + ν(z))
,

(1)

in which subscripts 1 and 2 denote the properties of materials 1 and 2, respectively. α is a
non-negative power-law index, which governs the material distribution along the beam section.
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Fig. 1 Schematic of FG curved beam (color online)
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It is easy to know that α = 0 indicates homogenous cases (i.e., the full material 2), while α →∞
indicates the full material 1.

According to the assumption of the HORSDBTs, the general forms of the circumferential
displacement field ux and the radial displacement field uz of a curved beam can be expressed
as follows[25]:

ux =
(
1 +

z

R

)
u(x)− zw′b(x)− f(z)w′s(x), uz = wb(x) + ws(x), (2)

in which u(x) is the tangential displacement of any point on the central axis, and wb(x) and
ws(x) stand for the bending and shear components of radial displacement, respectively. Also, a
shape function f(z) is taken into account to determine the shear strain and stress distributions
across the beam’s thickness. In this paper, the following various shape functions[26–27] are
adopted.

(I) The third-order polynomial type of the HORSDBT (HORSDBT-T)

f(z) =
4z3

3h2
. (3)

(II) The sinusoidal type of the HORSDBT (HORSDBT-S)

f(z) = z − h

π
sin

(πz

h

)
. (4)

(III) The hyperbolic type of the HORSDBT (HORSDBT-H)

f(z) = z − h sinh
z

h
+ z cosh

1
2
. (5)

(IV) The exponential type of the HORSDBT (HORSDBT-E)

f(z) = z − ze(−2z2/h2). (6)

Moreover, a limit case f(z) = z corresponds to the Euler-Bernoulli beam theory.
The non-zero strains of the curved beam can be given by[28]





εxx =
(
1 +

z

R

)
u′ − zw′′b − f(z)w′′s +

wb + ws

R
,

γxz =
(
1− df(z)

dz

)
w′s = g(z)w′s,

(7)

where the prime symbol represents the differential with respect to the coordinate x.
It can be seen that the shape function form depends on the satisfaction of stress-free BCs

on the top and bottom surfaces of the beam without utilizing a shear correction coefficient.
The variational principle of virtual work is used to derive the governing equations and BCs,

which states

δ(Uε −We) = 0, (8)

where the variation of strain energy is

δUε =
∫

V

(σxxδεxx + σxzδγxz)dV

=
(
−

∫ L

0

(
N ′ +

M ′
b

R

)
δudx +

∫ L

0

(N

R
−M ′′

b

)
δwbdx +

∫ L

0

(N

R
−M ′′

s −Q′
)
δwsdx

+
(
N +

Mb

R

)
δu

∣∣∣
L

0
+ M ′

bδwb

∣∣L
0

+ (M ′
s + Q)δws

∣∣L
0
−Mbδw′b

∣∣L
0
−Msδw

′
s

∣∣L
0

)
, (9)
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and the virtual work done by the distributed external force q0 and the concentrated force at
beam ends is given by

δWe =
∫ L

0

q0δ(wb + ws)dx + Q̂δ(wb + ws)
∣∣L
0
. (10)

By inserting Eqs. (9) and (10) into Eq. (8) and setting the coefficients of δu, δwb, and δws

to zero, one can obtain the following governing equations:




N ′ +
M ′

b

R
= 0,

N

R
−M ′′

b − q0 = 0,

N

R
−M ′′

s −Q′ − q0 = 0,

(11)

and the corresponding BCs at x = 0, L are




N +
Mb

R
= 0 or u = 0, M ′

b − Q̂ = 0 or wb = 0,

M ′
s + Q− Q̂ = 0 or ws = 0, Mb = 0 or w′b = 0, Ms = 0 or w′s = 0.

(12)

Those resultants in the above equations are defined as

(N, Mb,Ms) =
∫

A

(1, z, f(z))σxxdA, Q =
∫

A

g(z)σxzdA, (13)

where A stands for the cross-sectional area of the beam.
2.2 Different versions of nonlocal constitutive relation
2.2.1 Strain-driven type

Eringen’s strain-driven nonlocal model assumes that the nonlocal stress σij at any point
is assumed to be a convolution integral of the strain εij at each point in the domain and a
decaying kernel ψ. In this framework, the constitutive relation for a one-dimensional case is
given by

σij(x) =
∫ x2

x1

ψ(|x− x|, χ)Eijklεij(x)dx, (14)

in which the so-called nonlocal parameter χ is used to depict long-range interactions in the
region [x1, x2].

However, some ill-posed issues appear when studying bounded structures. As a remedy,
the strain-driven two-phase nonlocal (TPN-StrainD) model is proposed initially by Eringen, in
which the stress-strain relation is expressed as a combination of classical local elasticity and
nonlocal elasticity through a volume fraction ξ,

σij(x) = (1− ξ)Eijklεij(x) + ξ

∫ x2

x1

ψ(|x− x|, χ)Eijklεij(x)dx. (15)

In this paper, the classical Helmholtz kernel is adopted for all the nonlocal models mentioned,

ψ =
1
2κ

e−
|x−x|

κ , (16)

in which κ = χle = e0a is a nonlocal length-scale parameter, and a and le denote the internal and
external characteristic lengths, respectively. e0 is the non-negative nonlocal material constant.

A combination of Eqs. (7), (13), (15), and (16) gives the strain-driven nonlocal constitutive
equations of the FG curved beams,



936 Pei ZHANG and Hai QING




N = (1− ξ)
(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)

+
ξ

2κ

∫ L

0

e−
|x−x|

κ

(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
(x)dx,

Mb = (1− ξ)
(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)

+
ξ

2κ

∫ L

0

e−
|x−x|

κ

(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
(x)dx,

Ms = (1− ξ)
(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)

+
ξ

2κ

∫ L

0

e−
|x−x|

κ

(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
(x)dx,

Q = (1− ξ)B3w
′
s +

ξ

2κ

∫ L

0

e−
|x−x|

κ B3w
′
s(x)dx,

(17)

where the sectional rigidities are determined by




(A0, A1, A2, A3, B1, B2)T =
∫

A

E(z)(1, z, z2, zf(z), f(z), f2(z))TdA,

B3 =
∫

A

G(z)g2(z)dA.

(18)

Such a formula can revert to the strain-driven pure nonlocal and classical local theories by
setting ξ = 1 and ξ = 0, respectively.
2.2.2 Stress-driven type

As another innovative strategy, a stress-driven nonlocal integral model was presented in
Refs. [9], [13], and [14], which expresses the strain field at a certain point as a convolution
integral of the stress field and the kernel at all points in the region,

Eijklεij(x) =
∫ x2

x1

ψ(|x− x|, χ)σij(x)dx. (19)

Following the successful application of the stress-driven nonlocal integral model to various
size-dependent static and dynamic problems of simple beam models, Barretta et al.[29] also
developed the stress-driven type of two-phase local/nonlocal mixed formulation,

Eijklεij(x) = (1− ξ)σij(x) + ξ

∫ x2

x1

ψ(|x− x|, χ)σij(x)dx. (20)

Such a two-phase strategy seems more applicable than the pure nonlocal model, because
two control parameters can be used to reflect the nonlocal effect of different materials and
structures.

Using the TPN-StressD strategy with the Helmholtz kernel (see Eq. (16)), the constitutive
relations of the one-dimensional FG curved beams become



(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
= (1− ξ)N +

ξ

2κ

∫ L

0

e−
|x−x|

κ N(x)dx,

(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
= (1− ξ)Mb +

ξ

2κ

∫ L

0

e−
|x−x|

κ Mb(x)dx,

(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
= (1− ξ)Ms +

ξ

2κ

∫ L

0

e−
|x−x|

κ Ms(x)dx,

B3w
′
s = (1− ξ)Q +

ξ

2κ

∫ L

0

e−
|x−x|

κ Q(x)dx.

(21)
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This formulation corresponds to the stress-driven pure nonlocal theory and the classical
local theory as ξ = 1 and ξ = 0, respectively.
2.3 Non-dimensional problem formulation

By introducing the following non-dimensional quantities:





(x∗, u∗, w∗b, w∗s , κ∗, R∗)T =
(x, u, wb, ws, κ, R)T

L
, I2 =

∫

A

z2dA,

(N∗,M∗
b ,M∗

s , Q∗, Q̂∗, q∗0)T =

(
NL2,MbL,MsL,QL2, Q̂L2, q0L

3
)T

E2I2
,

(A∗0, A
∗
1, A

∗
2, A

∗
3, B

∗
1 , B∗

2 , B∗
3)T =

(
A0L

2, A1L,A2, A3, B1L,B2, B3L
2
)T

E2I2
,

(22)

one can obtain the equilibrium equations in non-dimensional forms as (hereafter, dropping the
asterisks for convenience)

N ′ +
M ′

b

R
= 0,

N

R
−M ′′

b − q0 = 0,
N

R
−M ′′

s −Q′ − q0 = 0, (23)

and the corresponding BCs at x = 0, 1 are





N +
Mb

R
= 0 or u = 0, M ′

b − Q̂ = 0 or wb = 0,

M ′
s + Q− Q̂ = 0 or ws = 0, Mb = 0 or w′b = 0, Ms = 0 or w′s = 0.

(24)

Besides, the non-dimensional constitutive equations under the two different types of nonlocal
models are, respectively, as follows.

(i) TPN-StrainD model
According to Ref. [29], one can derive the following equivalent differential TPN-StrainD

constitutive equations:





(
1− κ2 d2

dx2

)
N =

(
1− (1− ξ)κ2 d2

dx2

)(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
,

(
1− κ2 d2

dx2

)
Mb =

(
1− (1− ξ)κ2 d2

dx2

)(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
,

(
1− κ2 d2

dx2

)
Ms =

(
1− (1− ξ)κ2 d2

dx2

)(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
,

(
1− κ2 d2

dx2

)
Q =

(
1− (1− ξ)κ2 d2

dx2

)
B3w

′
s

(25)

with the following constitutive BCs:




(
1− κ

d

dx

)
N = (1− ξ)

(
1− κ

d

dx

)(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
, x = 0,

(
1 + κ

d

dx

)
N = (1− ξ)

(
1 + κ

d

dx

)(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
, x = 1,

(26)





(
1− κ

d

dx

)
Mb = (1− ξ)

(
1− κ

d

dx

)(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
, x = 0,

(
1 + κ

d

dx

)
Mb = (1− ξ)

(
1 + κ

d

dx

)(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
, x = 1,

(27)
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



(
1− κ

d

dx

)
Ms = (1− ξ)

(
1− κ

d

dx

)(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
, x = 0,

(
1 + κ

d

dx

)
Ms = (1− ξ)

(
1 + κ

d

dx

)(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
, x = 1,

(28)





(
1− κ

d

dx

)
Q = (1− ξ)

(
1− κ

d

dx

)
B3w

′
s, x = 0,

(
1 + κ

d

dx

)
Q = (1− ξ)

(
1 + κ

d

dx

)
B3w

′
s, x = 1.

(29)

(ii) TPN-StressD model
According to Ref. [29], the TPN-StressD constitutive equations can be equivalent to




(
1− κ2 d2

dx2

)(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
= N − (1− ξ)κ2N ′′,

(
1− κ2 d2

dx2

)(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
= Mb − (1− ξ)κ2M ′′

b ,

(
1− κ2 d2

dx2

)(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
= Ms − (1− ξ)κ2M ′′

s ,

(
1− κ2 d2

dx2

)
B3w

′
s = Q− (1− ξ)κ2Q′′

(30)

with the following constitutive BCs:




(
1− κ

d

dx

)(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
= (1− ξ)

(
1− κ

d

dx

)
N, x = 0,

(
1 + κ

d

dx

)(
A0

(
u′ +

wb + ws

R

)
+ A1

(u′

R
− w′′b

)
−B1w

′′
s

)
= (1− ξ)

(
1 + κ

d

dx

)
N, x = 1,

(31)





(
1− κ

d

dx

)(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
= (1− ξ)

(
1− κ

d

dx

)
Mb, x = 0,

(
1 + κ

d

dx

)(
A1

(
u′ +

wb + ws

R

)
+ A2

(u′

R
− w′′b

)
−A3w

′′
s

)
= (1− ξ)

(
1 + κ

d

dx

)
Mb, x = 1,

(32)





(
1− κ

d

dx

)(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
= (1− ξ)

(
1− κ

d

dx

)
Ms, x = 0,

(
1 + κ

d

dx

)(
B1

(
u′ +

wb + ws

R

)
+ A3

(u′

R
− w′′b

)
−B2w

′′
s

)
= (1− ξ)

(
1 + κ

d

dx

)
Ms, x = 1,

(33)





(
1− κ

d

dx

)
B3w

′
s = (1− ξ)

(
1− κ

d

dx

)
Q, x = 0,

(
1 + κ

d

dx

)
B3w

′
s = (1− ξ)

(
1 + κ

d

dx

)
Q, x = 1.

(34)

3 Ill-posedness of pure nonlocal models

3.1 Strain-driven type
In the frame of Eringen’s strain-driven pure nonlocal model, the static bending of

higher-order refined shear deformation curved beams is governed by the equilibrium equation
(23) and the constitutive law (25) with ξ = 1. At the same time, the natural BCs (24) and the
constitutive BCs (26)–(29) with ξ = 1 are mandatory.

Now, assuming ξ = 1 and substituting first three equations of Eq. (25) into Eq. (23), one can
easily find that the paradox existing in classical simple beam theories is still unavoidable; that is,
the problem has more BCs than those required (i.e., 18 mandatory BCs and 12 required BCs).
Since all BCs cannot be satisfied simultaneously, the problem may be over-constrained and
usually cannot be solved. Besides, the influence of nonlocal parameter on the deformation of the
cantilever beams under end-point load is inconsistent with that of other supported boundaries,
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which is mainly due to the conflict between the natural BCs (see the second equation to the
fifth one of Eq. (24)) and the constitutive BCs (see Eqs. (27)–(28)).

In the frame of Euler-Bernoulli and Timoshenko beam theories, such paradoxes of Eringen’s
strain-driven pure nonlocal model can be entirely overcome by using the stress-driven model. By
exchanging stress and strain terms in the integral constitutive relation, the inherent constitutive
BCs are transformed from stress-described ones into strain-described ones, thereby eliminating
the conflict between the natural BCs and the constitutive BCs. Also, swapping the positions of
the strain field and the stress field in the constitutive equation increases the number of required
BCs, and thus the problem becomes solvable[16,30]. However, for higher-order shear deformation
beam models, this is not the case.
3.2 Stress-driven type

In the frame of the stress-driven pure nonlocal model, the equilibrium equation and
constitutive laws for the problem can be obtained from Eqs. (23) and (30) through setting
ξ = 1. In this way, the expressions of those internal forces (N, Mb,Ms, Q) can be obtained
directly from the constitutive equations. After bringing them into the equilibrium equations,
one can find that the number of required BCs for the problem now becomes 16, i.e., the problem
of excess BCs still exists.

All in all, the two commonly used pure nonlocal elasticity models are both ill-posed when
analyzing nonlocal higher-order refined beam models. Therefore, it is necessary and mandatory
to try another strategy, i.e., two-phase nonlocal formulation.

4 Solution procedure for two-phase nonlocal models

4.1 Equations in terms of displacements
Since the derived equations with two-phase nonlocal models are lengthy and complex, it is

hard to obtain their analytical solutions accurately. As an alternative, a numerical solution
method, named as the GDQM, is adopted in this paper. Before this process, the governing
equations and the corresponding BCs should be expressed in terms of displacements u,wb, ws

and variable Q.
4.1.1 With TPN-StrainD model

Using the TPN-StrainD model, the governing equations can be re-expressed in terms of the
displacement components,

g11u
′′′′ + g12u

′′ + g13w
′′
b
′′′ + g14w

′′′
b + g15w

′
b + g16w

′′
s
′′′ + g17w

′′′
s + g18w

′
s = 0, (35)

g21u
′′′ + g22u

′ + g23w
′′′
b
′′′ + g24w

′′
b
′′ + g25w

′′
b + g26wb + g27w

′′′
s
′′′ + g28w

′′
s
′′

+ g29w
′′
s + g210ws −R2q0/(R2 + κ2) = 0, (36)

g31u
′′′ + g32u

′ + g33w
′′′
b
′′′ + g34w

′′
b
′′ + g35w

′′
b + g36wb + g37w

′′′
s
′′′ + g38w

′′
s
′′

+ g39w
′′
s + g310ws −R2q0/(R2 + κ2) = 0, (37)

(1− ξ)κ2B3w
′′′
s −B3w

′
s − κ2Q′′ + Q = 0, (38)

and the constitutive BCs become



c11u
′′′′ + c12u

′′′ + c13u
′′ + c14u

′ + c15w
′′′
b
′′ + c16w

′′
b
′′ + c17w

′′′
b + c18w

′′
b + c19w

′
b

+ c110wb + c111w
′′′
s
′′ + c112w

′′
s
′′ + c113w

′′′
s + c114w

′′
s + c115w

′
s + c116ws

− Rκ2q0

R2 + κ2
= 0 at x = 0,

c21u
′′′′ + c22u

′′′ + c23u
′′ + c24u

′ + c25w
′′′
b
′′ + c26w

′′
b
′′ + c27w

′′′
b + c28w

′′
b + c29w

′
b

+ c210wb + c211w
′′′
s
′′ + c212w

′′
s
′′ + c213w

′′′
s + c214w

′′
s + c215w

′
s + c216ws

− Rκ2q0

R2 + κ2
= 0 at x = 1,

(39)
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



c31u
′′′′ + c32u

′′′ + c33u
′′ + c34u

′ + c35w
′′′
b
′′ + c36w

′′
b
′′ + c37w

′′′
b + c38w

′′
b + c39w

′
b

+ c310wb + c311w
′′′
s
′′ + c312w

′′
s
′′ + c313w

′′′
s + c314w

′′
s + c315w

′
s + c316ws

+ q0κ
2R2/(R2 + κ2) = 0 at x = 0,

c41u
′′′′ + c42u

′′′ + c43u
′′ + c44u

′ + c45w
′′′
b
′′ + c46w

′′
b
′′ + c47w

′′′
b + c48w

′′
b + c49w

′
b

+ c410wb + c411w
′′′
s
′′ + c412w

′′
s
′′ + c413w

′′′
s + c414w

′′
s + c415w

′
s + c416ws

+ q0κ
2R2/(R2 + κ2) = 0 at x = 1,

(40)





c51u
′′′′ + c52u

′′′ + c53u
′′ + c54u

′ + c55w
′′′
b
′′ + c56w

′′
b
′′ + c57w

′′′
b + c58w

′′
b + c59w

′
b

+ c510wb + c511w
′′′
s
′′ + c512w

′′
s
′′ + c513w

′′′
s + c514w

′′
s + c515w

′
s + c516ws − κ3Q′′

+ κ2Q′ + q0κ
2R2/(R2 + κ2) = 0 at x = 0,

c61u
′′′′ + c62u

′′′ + c63u
′′ + c64u

′ + c65w
′′′
b
′′ + c66w

′′
b
′′ + c67w

′′′
b + c68w

′′
b + c69w

′
b

+ c610wb + c611w
′′′
s
′′ + c612w

′′
s
′′ + c613w

′′′
s + c614w

′′
s + c615w

′
s + c616ws + κ3Q′′

+ κ2Q′ + q0κ
2R2/(R2 + κ2) = 0 at x = 1,

(41)

{
(1− ξ)B3(w′s − κw′′s )− (Q− κQ′) = 0 at x = 0,

(1− ξ)B3(w′s + κw′′s )− (Q + κQ′) = 0 at x = 1.
(42)

The natural BCs for different supported types can also be expressed in terms of
displacements, which are not listed here for simplicity. Moreover, the explicit expressions for
the coefficients nij ,mij , gij , and cij are not listed here owing to the limited space of the article.
4.1.2 With TPN-StressD model

For the TPN-StressD model, the governing equations can also be expressed in terms of
displacements, namely,

G11u
′′′′ + G12u

′′ + G13w
′′
b
′′′ + G14w

′′′
b + G15w

′
b + G16w

′′
s
′′′ + G17w

′′′
s + G18w

′
s = 0, (43)

G21u
′′′ + G22u

′ + G23w
′′′
b
′′′ + G24w

′′
b
′′ + G25w

′′
b + G26wb + G27w

′′′
s
′′′ + G28w

′′
s
′′

+ G29w
′′
s + G210ws + (R2/(R2 + κ2(1− ξ))− 2)q0 = 0, (44)

G31u
′′′ + G32u

′ + G33w
′′′
b
′′′ + G34w

′′
b
′′ + G35w

′′
b + G36wb + G37w

′′′
s
′′′ + G38w

′′
s
′′

+ G39w
′′
s + G310ws + (R2/(R2 + κ2(1− ξ))− 2)q0 = 0, (45)

κ2B3w
′′′
s −B3w

′
s + Q− (1− ξ)κ2Q′′ = 0, (46)

and the constitutive BCs become




C11u
′′′′ + C12u

′′′ + C13u
′′ + C14u

′ + C15w
′′′
b
′′ + C16w

′′
b
′′ + C17w

′′′
b + C18w

′′
b + C19w

′
b

+ C110wb + C111w
′′′
s
′′ + C112w

′′
s
′′ + C113w

′′′
s + C114w

′′
s + C115w

′
s + C116ws

+ Rκ2(1− ξ)2q0/(R2 + κ2(1− ξ)) = 0 at x = 0,

C21u
′′′′ + C22u

′′′ + C23u
′′ + C24u

′ + C25w
′′′
b
′′ + C26w

′′
b
′′ + C27w

′′′
b + C28w

′′
b + C29w

′
b

+ C210wb + C211w
′′′
s
′′ + C212w

′′
s
′′ + C213w

′′′
s + C214w

′′
s + C215w

′
s + C216ws

+ Rκ2(1− ξ)2q0/(R2 + κ2(1− ξ)) = 0 at x = 1,

(47)





C31u
′′′′ + C32u

′′′ + C33u
′′ + C34u

′ + C35w
′′′
b
′′ + C36w

′′
b
′′ + C37w

′′′
b + C38w

′′
b + C39w

′
b

+ C310wb + C311w
′′′
s
′′ + C312w

′′
s
′′ + C313w

′′′
s + C314w

′′
s + C315w

′
s + C316ws

+ R2κ2(1− ξ)2q0/(R2 + κ2(1− ξ)) = 0 at x = 0,

C41u
′′′′ + C42u

′′′ + C43u
′′ + C44u

′ + C45w
′′′
b
′′ + C46w

′′
b
′′ + C47w

′′′
b + C48w

′′
b + C49w

′
b

+ C410wb + C411w
′′′
s
′′ + C412w

′′
s
′′ + C413w

′′′
s + C414w

′′
s + C415w

′
s + C416ws

+ R2κ2(1− ξ)2q0/(R2 + κ2(1− ξ)) = 0 at x = 1,

(48)
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



C51u
′′′′ + C52u

′′′ + C53u
′′ + C54u

′ + C55w
′′′
b
′′ + C56w

′′
b
′′ + C57w

′′′
b + C58w

′′
b + C59w

′
b

+ C510wb + C511w
′′′
s
′′ + C512w

′′
s
′′ + C513w

′′′
s + C514w

′′
s + C515w

′
s + C516ws

− κ3(1− ξ)2Q′′ + κ2(1− ξ)2Q′ + R2κ2(1− ξ)2q0/(R2 + κ2(1− ξ)) = 0 at x = 0,

C61u
′′′′ + C62u

′′′ + C63u
′′ + C64u

′ + C65w
′′′
b
′′ + C66w

′′
b
′′ + C67w

′′′
b + C68w

′′
b + C69w

′
b

+ C610wb + C611w
′′′
s
′′ + C612w

′′
s
′′ + C613w

′′′
s + C614w

′′
s + C615w

′
s + C616ws

+ κ3(1− ξ)2Q′′ + κ2(1− ξ)2Q′ + R2κ2(1− ξ)2q0/(R2 + κ2(1− ξ)) = 0 at x = 1,

(49)

{
B3(w′s − κw′′s )− (1− ξ)(Q− κQ′) = 0 at x = 0,

B3(w′s + κw′′s )− (1− ξ)(Q + κQ′) = 0 at x = 1.
(50)

Similarly, the natural BCs in displacement forms are not listed here for brevity. Moreover,
the explicit expressions for the coefficients Nij ,Mij , Gij , and Cij are not listed here owing to
the limited space of the article.

Remark 1 According to the above formulation, it can be found that, when using the
TPN-StrainD or TPN-StressD model, the orders of the unknown variables, i.e., u,wb, ws, and
Q, are 4, 6, 6, and 2, respectively, which means that 18 BCs are required. This number is
exactly equal to the number of mandatory BCs for the problem (i.e., 10 natural BCs and 8
constitutive BCs). That is to say, the ill-posedness in the pure nonlocal models is utterly
avoided by using two-phase nonlocal strategies. Therefore, when solving the size-dependent
problems of the higher-order refined beam models, a two-phase nonlocal strategy must be used
to replace the pure nonlocal model, regardless of the strain- and stress-driven nonlocal types.
4.2 Solution procedure

By using the GDQM[31], the coupled differential equations with arbitrary BCs can be solved.
First, for faster convergence and better calculation accuracy, the grid points are considered

as

xj =
1
2

(
1− cos

(
(j − 1)π
n− 1

))
, j = 1, 2, · · · , n. (51)

Thereafter, the following vectors are defined:




du = (u1, u2, · · · , un, u′1, u
′
n) ,

dwb = (wb1, wb2, · · · , wbn, w′b1, w
′
bn, w′′b1, w

′′
bn) ,

dws = (ws1, ws2, · · · , wsn, w′s1, w
′
sn, w′′s1, w

′′
sn) ,

dQ = (Q1, Q2, · · · , Qn) ,

d =
(
du, dwb , dws , dQ

)T
,

(52)

while the approximation forms of the unknown variables can be expressed by using different
interpolation functions,





u(x) ∼=
n∑

j=1

ϕu
j (x)uj + ψu

1 (x)u′1 + ψu
n(x)u′n,

wb(x) ∼=
n∑

j=1

ϕw
j (x)wbj + ψw

1 (x)w′b1 + ψw
n (x)w′bn + ϑw

1 (x)w′′b1 + ϑw
n (x)w′′bn,

ws(x) ∼=
n∑

j=1

ϕw
j (x)wsj + ψw

1 (x)w′s1 + ψw
n (x)w′sn + ϑw

1 (x)w′′s1 + ϑw
n (x)w′′sn,

Q(x) ∼=
n∑

j=1

lj(x)Qj ,

(53)
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where n is the number of the grid points, ϕu/w(x), ψu/w(x), and ϑw(x) are the Hermite
interpolation functions[31–32], and lj(x) denotes the Lagrange interpolation function.

Based on these assumptions, the governing equations and BCs of the problem can be
expressed in matrix forms as below,

K(4n+10)×(4n+10)d = F(4n+10)×1, (54)

through which the unknown variables can be carried out.

5 Results and discussion

5.1 Validation
Since the ill-posedness of the pure nonlocal models exists, and there is no relevant research on

higher-order refined beams related to the two-phase nonlocal models, the efficiency and accuracy
of the present solution procedure are validated by comparing the results of a degradation case
(i.e., ξ = 0.000 1, κ = 0.001) with those of the local elasticity theory. In calculations, the
number of grid points is set as n = 21. For comparison, the FG parameter is set as α = 0, and
the material properties of the beam are assumed to be the same as in Ref. [26],

E1 = 70 GPa, E2 = 380 GPa, ν1 = ν2 = 0.3, L = 10 nm, b = 1 nm, (55)

while the following non-dimensional deflections are defined[26]:

wb = 100
w∗bE1h

3

q0L3
, ws = 100

w∗s E1h
3

q0L3
, wb = 10

w∗bE1h
3

Q̂L2
, ws = 10

w∗s E1h
3

Q̂L2
. (56)

From Table 1, one can see that, for different values of the length to height ratio L/h, as the
curvature radius R = 10 000 (i.e., approximately regarded as infinite), the difference between
the present solutions and the results of those straight beams in Ref. [26] can be negligible,
regardless of TPN-StrainD and TPN-StressD models.

Table 1 Comparison of non-dimensional midpoint deflections wb(0.5) + ws(0.5) of simply-supported
(SS) curved beams (R = 10 000) subjected to uniformly distributed loads, predicted by TPN
models (with ξ = 0.000 1, κ = 0.001) and local theory

Beam theory
TPN-StrainD TPN-StressD Local theory[26]

L/h = 5 L/h = 20 L/h = 5 L/h = 20 L/h = 5 L/h = 20

HORSDBT-T 3.165 370 2.896 241 3.165 374 2.896 244 3.165 4 2.896 2
HORSDBT-S 3.164 890 2.896 215 3.164 894 2.896 219 3.164 9 2.896 2
HORSDBT-H 3.165 372 2.896 240 3.165 376 2.896 244 3.165 4 2.896 2
HORSDBT-E 3.163 520 2.896 134 3.163 524 2.896 138 3.163 5 2.896 1

Moreover, a comparison between a limit case (f(z) = z, g(z) = 0) of present models and the
two-phase nonlocal Euler-Bernoulli beam model[29] is made in Table 2. Also, good agreement
is obtained for both the TPN-StrainD and TPN-StressD models. These comparative results
show that the present solution procedure is effective and accurate.
5.2 Consistency of nonlocal effects

In this subsection, the numerical examples are considered to study the consistency of
current two-phase nonlocal integral models for addressing the size-effect in bending behavior
of various higher-order refined shear deformation curved beams (i.e., based on all of the
shear functions HORSDBT-T, HORSDBT-S, HORSDBT-H, and HORSDBT-E) made of FG
materials. Different boundary edges and loading conditions are considered, including SS,
clamped-clamped (CC), and CF beams subjected to a uniformly distributed load q0, as well as
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Table 2 Comparison of non-dimensional tip deflections wb(1) + ws(1) of clamped-free (CF) curved
beams (R = 10 000) subjected to concentrated load

ξ κ
TPN-StrainD TPN-StressD

Ref. [29] Present Ref. [29] Present

0.1 0.343 813 0.343 814 0.323 533 0.323 534
0.2 0.2 0.353 419 0.353 416 0.314 869 0.314 871

0.3 0.361 469 0.361 455 0.307 899 0.307 894
0.1 0.363 066 0.363 066 0.308 833 0.308 833

0.5 0.2 0.392 050 0.392 046 0.287 172 0.287 176
0.3 0.418 242 0.418 253 0.269 746 0.269 747

CF beams under an end-point load Q̂. Moreover, it is worth mentioning that, unless otherwise
stated, the definitions (see Eqs. (55) and (56)) in Subsection 5.1 will continue to be used in
subsequent sections.

In Figs. 2–5, the subfigure (a) depicts the variation of the dimensionless midpoint or tip
deflections versus the volume fraction parameter ξ with a fixed dimensionless nonlocal parameter
κ = 0.15, and the subfigure (b) presents the dimensionless midpoint or tip deflections versus
the dimensionless nonlocal parameter κ with a fixed volume fraction parameter ξ = 0.3. In
calculations, the FG power-law index, the dimensionless curvature radius, and the length to
height ratio of the beam are assumed to be α = 0, R = 10, and L/h = 10.
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Fig. 2 Non-dimensional midpoint deflections wb(0.5) + ws(0.5) of SS beams subjected to uniformly
distributed load versus (a) volume fraction ξ with κ = 0.15 and (b) nonlocal length-scale
parameter κ with ξ = 0.3 when α = 0, L/h = 10, and R = 10 (color online)

It can be seen from these pictures that, for all boundary types, the TPN-StainD nonlocal
integral model shows a consistent softening impact on beam deformations. Increasing the
value of the dimensionless length-scale nonlocal parameter κ or the volume fraction of nonlocal
part ξ leads to an increase in dimensionless deflections of the beam. On the contrary, there
is a stiffening effect on the beams for the stress-driven strategy as the nonlocal length-scale
parameter increases. Moreover, the larger the volume fraction of the nonlocal stress part,
the more significant the stiffening effect of the nonlocal length-scale parameter on beams.
That is to say, both types of two-phase nonlocal models can predict consistent size-dependent
responses. Therefore, the two-phase nonlocal integral strategies are suitable for addressing the
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Fig. 3 Non-dimensional midpoint deflections wb(0.5) + ws(0.5) of CC beams subjected to uniformly
distributed load versus (a) volume fraction ξ with κ = 0.15 and (b) nonlocal length-scale
parameter κ with ξ = 0.3 when α = 0, L/h = 10, and R = 10 (color online)
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Fig. 4 Non-dimensional tip deflections wb(1)+ws(1) of CF beams subjected to uniformly distributed
load versus (a) volume fraction ξ with κ = 0.15 and (b) nonlocal length-scale parameter κ
with ξ = 0.3 when α = 0, L/h = 10, and R = 10 (color online)

size-dependent behaviors of bounded structures. The different nonlocal responses of such two
models provide more flexible options for studying a wide range of structural problems of interest
in nanoscience. Besides, it is found that there is almost no difference between the results of
various HORSDBTs for all boundary cases considered.
5.3 Parametric analysis

Figure 6 presents the non-dimensional midpoint or tip deflections of the curved beam versus
the dimensionless nonlocal length-scale parameter for different values of the length to height
ratio L/h. The non-dimensional nonlocal length-scale parameter is ranging in an interval [0, 0.6].
Since there is no difference between the results of various HORSDBTs, only the HORSDBT-T
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end versus (a) volume fraction ξ with κ = 0.15 and (b) nonlocal length-scale parameter κ with
ξ = 0.3 when α = 0, L/h = 10, and R = 10 (color online)
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Fig. 6 Non-dimensional midpoint deflections wb(0.5) + ws(0.5) of (a) SS and (b) CC curved beams
subjected to uniformly distributed load, as well as non-dimensional tip deflections wb(1) +
ws(1) of CF curved beams subjected to (c) uniformly distributed load and (d) concentrated
load at beam end versus nonlocal length-scale parameter, with different length-height ratios
L/h = 5, 10, and 20 when α = 0, R = 10, and ξ = 0.3 (color online)
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is considered in Fig. 6. One can find that the dimensionless deflections of SS and CC beams
decrease significantly with an increased length to height ratio. When the slenderness ratio is
greater than 10, the deflection change of the CF beams is relatively tiny.

Figure 7 illustrates the variation of the non-dimensional midpoint or tip deflections versus
the curvature radius of different supported curved beams based on both TPN-StrainD and
TPN-StressD models with different volume fractions ξ = 0.25, 0.5, and 0.75. The HORSDBT-S
is utilized. In contrast to the stress-driven pure nonlocal model[30], increasing the curvature
radius leads to the increased beam deflections for all boundary types. Moreover, with the
increase in the curvature radius, the nonlocal effects on SS and CC curved beams are enhanced
by increasing the volume fraction ξ. However, for cantilever beams, the effect of nonlocal
volume fraction seems to have nothing to do with the radius of curvature of the curved beams,
because the shapes of the deflection curves are almost the same at different values of the radius
of curvature.

Figure 8 presents the dimensionless transverse displacement at midpoint or end point of
the curved beam under different boundary edges versus the FG power-law index of curved
beams with different BCs based on both TPN-StrainD and TPN-StressD models with different
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Fig. 7 Non-dimensional midpoint deflections wb(0.5) + ws(0.5) of (a) SS and (b) CC curved beams
subjected to uniformly distributed load, as well as non-dimensional tip deflections wb(1) +
ws(1) of CF curved beams subjected to (c) uniformly distributed load and (d) concentrated
load at beam end versus curvature radius, with different volume fractions ξ = 0, 0.25, 0.5,
and 0.75 when α = 0, L/h = 10, and κ = 0.1 (color online)
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Fig. 8 Non-dimensional midpoint deflections wb(0.5) + ws(0.5) of (a) SS and (b) CC curved beams
subjected to uniformly distributed load, as well as non-dimensional end deflections wb(1) +
ws(1) of CF curved beams subjected to (c) uniformly distributed load and (d) concentrated
load at beam end versus FG parameter, with different volume fractions ξ = 0, 0.25, 0.5, and
0.75 when L/h = 10, R = 10, and κ = 0.1 (color online)

volume fractions ξ = 0.25, 0.5, and 0.75. It can be seen that the non-dimensional deflections
of all beams consistently increase with the increase in the FG parameter. As the FG index α
increases, the proportion of the material 1 increases, making the sectional stiffness of the beams
decrease. As the index α continues to increase, the FG influence gradually stabilizes.

6 Conclusions

In this paper, the ill-posedness of both the strain- and stress-driven models for higher-order
refined beam models is uncovered. As a remedy, the well-posedness of the two-phase strategy of
nonlocal integral models is illustrated by analyzing the scale-effected bending of a curved beam
made of FG materials. The governing equations and the corresponding BCs are established by
invoking the variational principle of virtual work. The two-phase nonlocal integral constitutive
law is converted to an equivalent differential one with two constraint BCs. With the GDQM,
the coupling governing equations are solved numerically. Then, several numerical examples
are given for investigating the consistency of the two-phase nonlocal models. From the above
results, the conclusions are given below.

(i) Unlike the case based on the classical simple beam theories, the strain- and stress-driven
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pure nonlocal models are both ill-posed for higher-order refined shear deformation beam models.
There are too many BCs in such problems to be met simultaneously, thereby leading to ill-posed
issues.

(ii) With the utilization of the two-phase nonlcoal strategy, the number of mandatory BCs
for the problem happens to equal the number of BCs required, and the consistent size-effects
can be predicted for different boundary and loading conditions. Therefore, it is necessary and
mandatory to adopt the two-phase local/nonlocal formulation when analyzing the higher-order
shear deformation beam models, regardless of the strain- and stress-driven types.

(iii) Furthermore, the effects of the length to height ratio, the curvature radius, and FG
materials are investigated extensively. It is found that the dimensionless deflections decrease
with the increase in the length to height ratio. Increasing the curvature radius leads to an
increase in beam deflections. With the increase in the curvature radius, the nonlocal effect of the
volume fraction ξ on SS and CC curved beams is significantly enhanced. The non-dimensional
deflections of curved beams under all supported conditions consistently increase with the
increase in the FG parameter, and as the index α continues to increase, the FG effect on
the beam gradually stabilizes.

This study reveals the ill-posedness of both the strain- and stress-driven pure nonlocal
models for various higher-order refined beam models. The conclusions and the present
solution methods are also applicable to other structural problems related to high-order shear
deformation assumptions.
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