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Abstract In this study, the first-order shear deformation theory (FSDT) is used
to establish a nonlinear dynamic model for a conical shell truncated by a functionally
graded graphene platelet-reinforced composite (FG-GPLRC). The vibration analyses of
the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets
(GPLs) of the FG-GPLRC truncated conical shell with three different distribution
patterns, the modified Halpin-Tsai model is used to calculate the effective Young’s
modulus. Hamilton’s principle, the FSDT, and the von-Karman type nonlinear geometric
relationships are used to derive a system of partial differential governing equations of the
FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary
differential equations of the truncated conical shell. Then, the analytical nonlinear
frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance
method. The effects of the weight fraction and distribution pattern of the GPLs, the
ratio of the length to the radius as well as the ratio of the radius to the thickness of the
FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are
discussed. This study culminates in the discovery of the periodic motion and chaotic
motion of the FG-GPLRC truncated conical shell.
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1 Introduction

The outstanding material properties of graphene composites, e.g., excellent thermal,
mechanical, physicochemical, and electronic properties, have attracted the attention of many
researchers. For example, Young’s modulus of graphene can be as high as 1 TPa, the ultimate
strength can be as high as 130GPa[1], the thermal conductivity is 5 000W ·m−1 ·K−1[2], and
the electrical conductivity of graphene is 6 000 S · cm−1[3]. Rafiee et al.[4] found that the
critical buckling load of graphene-reinforced composite material is increased by 52% by adding
0.1% weight fraction of graphene sheets to an epoxy resin matrix. The conical shell is a
well-known important structural unit in many engineering fields, e.g., rocket propulsion systems,
aircraft, pressure, and piping vessels, and ship structures[5–6]. Because the graphene-reinforced
composite conical shell structure has extensive application prospects in many engineering fields,
it is necessary to predict and discover nonlinear vibration characteristics.

Researchers have increasingly paid attention to graphene-reinforced composite structures
because of their exceptional mechanical properties. Yang and his group conducted numerous
studies to assess the bending, vibration, and buckling of beam and plate structures of the
functionally graded graphene platelet-reinforced composite (FG-GPLRC)[7–11]. Zhao et al.[12]

reviewed recent studies dedicated to characterizing the mechanical and structural behavior
of FG-GPLRC beams, plates, and shells with various loadings or boundary conditions, and
discussed the challenges associated with and the future directions for FG-GPLRC structures.
Shen et al.[13–14] studied the nonlinear vibration and postbuckling of an FG graphene reinforced
composite cylindrical panel in thermal environments. The size-dependent postbuckling
characteristics of FG-GPLRC multilayer microtubes containing initial geometrical imperfection
were investigated by Lu et al.[15]. Their work could provide theoretical guidelines for the safety
assessment and optimal design of GRC tubular structures. Yas and Rahimi[16] presented a study
on the thermal vibration of FG porous nanocomposite beams reinforced by graphene platelets
(GPLs) based on the Timoshenko beam theory. Blooriyan et al.[17] proposed an analytical
approach to investigate the postbuckling behavior of FG GPL reinforced polymer composite
circular cylindrical shells subject to lateral pressure and axial compression. Nguyen et al.[18]

developed a computational approach to investigate the dynamic responses, free vibrations, and
active control behavior of smart FG metal foam plates reinforced with GPLs. Gao et al.[19]

derived the governing equations for the FG metal foam plates by using the Hamilton principle
based on three different plate theories, and investigated the effects on the wave dispersion
relations of the geometrical and material properties of the plates. Wang et al.[20] employed the
Hamilton principle and the improved Donnell nonlinear shell theory to formulate a model for
a metal foam cylindrical shell reinforced by GPLs and investigated the nonlinear vibration
characteristics. Liu et al.[21] studied the free vibrations, forced vibrations, and transient
responses of the GPLs-FG plates.

A number of papers have reported the investigations of the vibrational characteristics of
conical shell structures. A review on the buckling and vibrational characteristics of functionally
graded material (FGM) conical shells was published by Sofiyev[22]. Song et al.[23] studied the free
vibration of the conical shells subject to an elastic constraint and inertia force under arbitrary
boundary conditions. Based on the assumptions of uncoupled thermo-elasticity, Akbari et
al.[24] analyzed the thermal vibrations of an FGM conical shell. Ansari et al.[25] employed the
higher-order shear deformation shell theory to study the free vibrations and large-amplitude
forced vibrations of a composite conical shell reinforced by FG carbon nanotubes. Chan et
al.[26–27] investigated the nonlinear dynamic behavior of the truncated eccentrically stiffened
FG conical shell and truncated FG conical panel. The Haar wavelet method was used to derive
the frequencies of a truncated rotating conical shell[28]. Rahmani et al.[29] investigated the
vibrations of temperature dependent sandwich truncated conical shells under various thermal
conditions. Hao et al.[30–31] analyzed the nonlinear flutter characteristics of the truncated FG
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conical panels and shells.
In the past few years, a large number of scholars have focused on the buckling and

post-buckling behaviors of conical shell structures. The dynamic instability of the truncated
FG conical shell and the FG orthotropic conical shell was studied by Deniz and Sofiyev[32] and
Sofiyev et al.[33] who used the first-order shear deformation theory (FSDT). Hoa et al.[34] studied
the nonlinear thermo-mechanical buckling and post-buckling behaviors of a truncated eccentric
stiffener-FGM conical shell. The effects of the foundations, stiffeners, geometric dimensions,
temperatures, and material properties on the stability of the truncated eccentric stiffener-FGM
conical shell were determined. With the classical shell theory, Chan et al.[35–36] analyzed the
nonlinear buckling of the truncated stiffened FG conical shell and a conical shell reinforced by
FG carbon nanotubes under an axial compressive load. Kiani[37] conducted a buckling analysis
for a composite laminated conical shell reinforced by graphene sheets. Jiao et al.[38] investigated
the dynamic buckling behaviors of an FG carbon nanotube composite cylindrical shell subject to
a dynamic displacement load by using a semi-analytical approach. Dung et al.[39] investigated
the buckling characteristics of an imperfect thin conical plate subject to the simply supported
condition. Bich et al.[40] studied the buckling characteristics of an FGM conical plate with
external and axial loads.

To date, a large number of scholars have therefore analyzed the vibrational and buckling
characteristics of conical shell structures. Nevertheless, few scholars have paid attention to
graphene-reinforced composite truncated conical shell structures. This motivates our study,
which involves nonlinear vibrational analyses of the FG-GPLRC truncated conical shell. Our
study considers three distribution patterns of the GPLs in the FG-GPLRC truncated conical
shell, and the effective Young’s modulus is calculated by utilizing the modified Halpin-Tsai
model. Based on the von-Karman nonlinear relations, FSDT, and Hamilton principle, we
establish a dynamic model of the FG-GPLRC truncated conical shell, which can be expressed
as ordinary differential equations via the Galerkin method. Then, the analytical nonlinear
frequencies of the FG-GPLRC truncated conical shell are solved by using the harmonic balance
method. The effects of the distribution pattern of the GPLs and the weight fraction, the ratio
of the radius to the thickness as well as the ratio of the length to the radius of the FG-GPLRC
truncated conical shell on the nonlinear vibrational behavior are discussed. This study leads to
the discovery of the chaotic and periodic motions of the FG-GPLRC truncated conical shell.

2 Formulation of a model of the FG-GPLRC truncated conical shell

An FG-GPLRC truncated conical shell with the length L, the thickness h, the minor inner
radius r1, and the semi-vertex angle β is considered as shown in Fig. 1. In addition, the radius
of the arbitrary point can be computed as R = r1 + x sinβ along the meridional direction. In
Fig. 1, the curvilinear coordinate system (x, θ, z) is located on the mid-surface of the FG-GPLRC
truncated conical shell along the axial, circumferential, and radial directions, respectively. The
displacement components u, v, and w indicate the displacements of an arbitrary point of the
FG-GPLRC truncated conical shell in the directions x, θ, and z, respectively. The transverse
excitation F cos(Ωt) is loaded on the outside surface of the FG-GPLRC truncated laminated
conical shell along the z-direction.

GPLs are introduced into the truncated conical shell structures to improve the performance.
Three different distribution patterns of the GPLs in the FG-GPLRC truncated conical shell are
considered, namely, the GPL-U pattern, the GPL-X pattern, and the GPL-O pattern, as shown
in Fig. 2. For the GPL-U pattern, the volume fractions of the GPLs maintain the same value
along the thickness direction. The exterior and interior surfaces of the FG-GPLRC truncated
conical shell are rich in the GPL-X pattern, whereas the GPL-O pattern prevails in the central
region of the FG-GPLRC truncated conical shell, as shown in Fig. 2.

The volume fractions of the GPLs for the FG-GPLRC truncated conical shell change linearly
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Fig. 1 Model and curvilinear coordinate system of an FG-GPLRC truncated conical shell (color
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Fig. 2 Distribution patterns of three GPLs in FG-GPLRC materials (color online)

along the thickness direction[41], as shown in Fig. 3, and they are expressed as follows:

VGPL =





V ∗, GPL-U,

2V ∗ 2 |z|
h

, GPL-X,

2V ∗
(
1− 2|z|

h

)
, GPL-O,

(1)

where V ∗ is the total volume fraction of the GPLs of the FG-GPLRC truncated conical shell,
and can be obtained from the weight fraction of the GPLs WGPL as follows:

V ∗ =
WGPL

WGPL + (1−WGPL)(ρGPL/ρM)
, (2)

in which ρGPL and ρM are the mass densities of the GPLs and the matrix, respectively.
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Fig. 3 Volume fractions of the GPLs for the FG-GPLRC truncated conical shell (color online)
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The experiment proved that Young’s modulus can be determined more accurately with the
modified Halpin-Tsai model, and the rule of mixture enables the other properties to be computed
accurately[42–43]. To reduce the amount of calculation and ensure calculation efficiency and
accuracy, we use a modification of the Halpin-Tsai model for determining the effective Young’s
modulus, and the rule of mixture for the other properties.

According to the modified Halpin-Tsai model[43–44], the effective Young’s modulus E of the
FG-GPLRC truncated conical shell is assumed to be

E =
3
8

1 + ξLηLVGPL

1− ηLVGPL
EM +

5
8

1 + ξW ηW VGPL

1− ηW VGPL
EM (3)

with

ηL =
EGPL
EM

− 1
EGPL
EM

+ ξL

, ηW =
EGPL
EM

− 1
EGPL
EM

+ ξW

, (4a)

ξL =
2lGPL

hGPL
, ξW =

2wGPL

hGPL
, (4b)

where EM is Young’s modulus of the matrix, and EGPL, hGPL, wGPL, and lGPL are Young’s
modulus, thickness, width, and length of the GPLs, respectively.

The effective mass density ρ, the effective Poisson’s ratio ν, and the coefficient of the thermal
expansion α of the FG-GPLRC truncated conical shell are determined with the rule of mixture
as follows:

ρ = ρGPLVGPL + ρM(1− VGPL), (5)
ν = νGPLVGPL + νM(1− VGPL), (6)
α = αGPLVGPL + αM(1− VGPL), (7)

where νGPL and νM are Poisson’s ratios of the GPLs and the matrix, respectively. The thermal
expansion coefficient of the FG-GPLRC truncated conical shell does not change considerably
over a certain temperature range[45–46]. Thus, we consider the thermal expansion coefficient to
be constant.

According to the FSDT[47], the displacement fields of the FG-GPLRC truncated conical
shell are assumed to be

u(x, θ, z, t) = u0(x, θ, t) + zϕx(x, θ, t), (8a)
v(x, θ, z, t) = v0(x, θ, t) + zϕθ(x, θ, t), (8b)
w(x, θ, z, t) = w0(x, θ, t), (8c)

where u0, v0, and w0 denote the mid-plane displacements in the x-, θ-, and z-directions,
respectively. In addition, ϕx and ϕθ represent the rotations of the radial normal in the θ-
and x-directions, respectively.

Substituting the displacement field equation (8) into the von Karman nonlinear
strains-displacement relationships, the nonlinear strains of the FG-GPLRC truncated conical
shell are rewritten as

εx =
∂u0

∂x
+ z

∂ϕx

∂x
+

1
2

(∂w0

∂x

)2

, (9a)

εθ = <∂v0

∂θ
+ z<∂ϕθ

∂θ
+ <w0 cos β + <(u0 + zϕx) sin β +

1
2
<2

(∂w0

∂θ

)2

, (9b)
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γxθ = <∂u0

∂θ
+ z<∂ϕx

∂θ
−<(v0 + zϕθ) sin β +

∂v0

∂x
+ z

∂ϕθ

∂x
+ <∂w0

∂x

∂w0

∂θ
, (9c)

γθz = ϕθ + <∂w0

∂θ
−<v0 cos β, (9d)

γxz =
∂w0

∂x
+ ϕx, (9e)

where εx and εθ are the principal strains, and γxθ, γθz, and γxz denote the shear strains.
Furthermore, < = 1/R in the above equations.

The temperature increment of the FG-GPLRC truncated conical shell in the radial direction
varies linearly,

∆T (z) = Ti +
z

h
(To − Ti), (10)

where To represents the external temperature of the FG-GPLRC truncated conical shell, and
Ti is the internal temperature.

The constitutive relation of the FG-GPLRC truncated conical shell is written as[42–43]




σx

σθ

σxθ

σθz

σxz




=




Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55










εx

εθ

γxθ

γθz

γxz



−




α
α
0
0
0




∆T




, (11)

where Qij (i, j = 1, 2, 4, 5, 6) represent the stiffness coefficients of the FG-GPLRC truncated
conical shell, and they are denoted as

Q11 = Q22 =
E

1− ν2
, Q12 =

νE

1− ν2
, Q66 = Q44 = Q55 =

E

2(1 + ν)
. (12)

Hamilton’s principle is used to obtain the system of nonlinear partial differential equations
of the FG-GPLRC truncated conical shell, which is expressed as

∫ t2

t1

(δU − δK + δW )dt = 0, (13)

where δU and δK denote the virtual strain energy and virtual kinetic energy, respectively. The
virtual strain energy δU is derived as follows:

δU =
∫ 2π

0

∫ L

0

∫ h
2

−h
2

(
σxδεx + σθδεθ + σθzδγθz + σzxδγzx + σxθδγxθ

)
Rdzdxdθ. (14)

The virtual kinetic energy δK is obtained as

δK =
∫ 2π

0

∫ L

0

∫ h
2

−h
2

ρ
(
uδu̇ + vδv̇ + wδẇ

)
Rdzdxdθ. (15)

The virtual work δW resulting from transverse excitation is expressed as

δW =
∫ 2π

0

∫ L

0

F cos(Ωt)δwRdxdθ. (16)

Substituting Eqs. (14)–(16) into Eq. (13) and utilizing Hamilton’s principle enable a system
of nonlinear partial differential equations of the FG-GPLRC truncated conical shell to be derived
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as follows:

Nxx,x + <Nxθ,θ + <Nxx sinβ −<Nθθ sinβ = I0ü0 + I1ϕ̈x, (17a)
Nxθ,x + <Nθθ,θ + 2<Nxθ sinβ + <Qθ cos β = I0v̈0 + I1ϕ̈θ, (17b)

Qx,x + <Qθ,θ + <Qx sinβ −<Nθθ cos β + Nxx,x
∂w0

∂x
+ Nxx

∂2w0

∂x2
+ <Nxx

∂w0

∂x
sinβ

+ <2Nθθ,θ
∂w0

∂θ
+ <2Nθθ

∂2w0

∂θ2
+ <Nxθ,θ

∂w0

∂x
+ 2<Nxθ,θ

∂2w0

∂x∂θ

+ <Nxθ,x
∂w0

∂θ
+ F cos(Ωt) = I0ẅ0, (17c)

Mxx,x + <Mxθ,θ −<Qx + <Mxx sinβ −<Mθθ sinβ = I1ü0 + I2ϕ̈x, (17d)
Mxθ,x + <Mθθ,θ −<Qθ + 2<Mxθ sinβ = I1v̈0 + I2ϕ̈θ, (17e)

where one overdot represents the first-order derivative with respect to time, and two overdots
denote the second-order derivative. Iη is the mass moment of inertia, expressed as

Iη =
∫ h

2

−h
2

ρzηdz, η = 0, 1, 2. (18)

The stress resultants and moment resultants of the FG-GPLRC truncated conical shell can
be calculated as








Nxx

Nθθ

Nxθ


 =

∫ h
2

−h
2

[A,B]
[
ε(0)

ε(1)

]
dz +




NT
xx

NT
θθ

0


 ,




Mxx

Mθθ

Mxθ


 =

∫ h
2

−h
2

[B,D]
[
ε(0)

ε(1)

]
dz +




MT
xx

MT
θθ

0


 ,

(19)

[
Qx

Qθ

]
= K

∫ h
2

−h
2

A

[
γxz

γθz

]
dz, (20)







NT
xx

NT
θθ

NT
xθ


 ,




MT
xx

MT
θθ

MT
xθ





 =

∫ zk+1

zk




Q11 Q12 0
Q12 Q22 0
0 0 Q66







α
α
0


 [∆T, ∆Tz]dz, (21)

where K = 5/6 is the shear correction coefficient.
In the above equations, the tensile rigidity Aij , the bending-tensile coupling rigidity Bij ,

and the bending rigidity Dij of the FG-GPLRC truncated conical shell are expressed as

[Aij , Bij , Dij ] =
∫ h

2

−h
2

Qij [1, z, z2]dz, i, j = 1, 2, 6, (22)

Aij =
∫ h

2

−h
2

Qij [1, z, z2]dz, i, j = 4, 5. (23)

Substituting Eqs. (17)–(23) into Eq. (16), the nonlinear partial differential governing
equations can be expressed by the generalized displacements u0, v0, w0, ϕx, and ϕθ of the
FG-GPLRC truncated conical shell, as shown in Appendix A.

In this study, the boundary condition of the FG-GPLRC truncated conical shell is considered
to be simply supported at both ends, and is expressed by

v0 = w = Nx = Mx = Mxθ = 0 at x = 0, L. (24)
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The displacements u0, v0, w0, ϕx, and ϕθ of the FG-GPLRC truncated conical shell, which
is subject to the simply supported boundary condition, are expressed as the double Fourier sine
series,

u0 =
M∑

m=1

N∑
n=1

umn(t) cos
(mπx

L

)
cos(nθ), (25a)

v0 =
M∑

m=1

N∑
n=1

vmn(t) sin
(mπx

L

)
sin(nθ), (25b)

w0 =
M∑

m=1

N∑
n=1

wmn(t) sin
(mπx

L

)
cos(nθ), (25c)

ϕx =
M∑

m=1

N∑
n=1

ϕxmn(t) cos
(mπx

L

)
sin(nθ), (25d)

ϕθ =
M∑

m=1

N∑
n=1

ϕθmn(t) sin
(mπx

L

)
sin(nθ), (25e)

where umn(t), vmn(t), wmn(t), ϕxmn(t), and ϕθmn(t) are the time varying coefficients, and m
and n are the generatrix half wave and circumferential wave numbers, respectively.

The transverse excitation F can also be expanded as

F =
M∑

m=1

N∑
n=1

fmn(t) sin
(mπx

L

)
sin(nθ). (25f)

The effects of the inertia terms of u0, v0, ϕx, and ϕθ on the nonlinear vibration characteristics
of the FG-GPLRC truncated conical shell are much smaller than those of the radial inertia
term[48–49]. Hence, the inertia terms u0, v0, ϕx, and ϕθ can be omitted from Eq. (16).
Employing the Galerkin method and neglecting the inertia terms of u0, v0, ϕx, and ϕθ, the
general rotation and in-plane displacements can be represented as functions of the transverse
displacement. Furthermore, a system of second-order ordinary differential equations for the
FG-GPLRC truncated conical shell can be yielded as

ẅmn + ω2
l wmn + ςw3

mn = fmn, (26)

where ωl is the linear natural frequency of the conical shell, and ς is the coefficient of the cubic
term of the system. This system is the Duffing differential equation.

3 Harmonic balance method

In this section, the nonlinear natural frequency of the FG-GPLRC truncated conical shell is
analyzed by using the harmonic balance method. For natural frequency analysis, the transverse
excitation fmn can be neglected. We assume the approximated periodic solution of the Duffing
differential equation (26) as

wmn(t) = A0 + A1 cos ψ, (27)

where ψ = ωnlt + β0, in which ωnl is the nonlinear natural frequency of the conical shell.
Introducing Eq. (27) into the Duffing differential equation (26) and combining the coefficients

of the cosine functions yield the following equation:

ωl + ςA3
0 +

3
2
ςA0A

2
1 +

(
ωlA1 − ω2

nlA1 + 3ςA2
0A1 +

3
4
ςA2

1

)
cos ψ

+
3
2
ςA0A

2
1 cos(2ψ) +

1
4
ςA3

1 cos(3ψ) = 0. (28)
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By using the harmonic balance method, setting the coefficients of the constant terms and
cos ψ in Eq. (28) to zero, a series of algebraic equations can be obtained as follows:

ωl + ςA3
0 +

3
2
ςA0A

2
1 = 0, (29a)

ωlA1 − ω2
nlA1 + 3ςA2

0A1 +
3
4
ςA3

1 = 0. (29b)

Compared with the amplitude A1 of the FG-GPLRC truncated conical shell, the shift A0 is
very small. Thus, A2

0 and A3
0 in Eq. (29) can be neglected. For the nonlinear free vibration of

the FG-GPLRC truncated conical shell, the initial condition provided in Eq. (26) can be set as
follows:

wmn

∣∣
t=0

= wmax,
∂wmn

∂t

∣∣∣
t=0

= 0, (30)

where wmax is the maximum amplitude of the FG-GPLRC truncated conical shell.
Setting A1 = wmax in Eq. (29) to zero, the natural frequency of the FG-GPLRC truncated

conical shell can be obtained as

ωnl =

√
ωl +

3
4
ςw2

max. (31)

Thus, the frequency ratio ωnl/ωl of the FG-GPLRC truncated conical shell is indicated as

ωnl/ωl =
√

1 +
3

4ωl
ςw2

max. (32)

4 Free vibrations

To evaluate the aforementioned formulations and the programs we developed, the
dimensionless natural frequency Ωn = ωnR

√
(1− ν2)ρ/E is calculated. The dimensionless

natural frequency of the pure metal truncated conical shell and the results of Najafov and
Sofiyev[50], Kerboua et al.[51], and Liew et al.[52] are compared in Table 1. The geometric
relations (β = π/6, R/h = 100, and L = 0.25R sinβ) of the pure metal truncated conical shell
are considered. Specifically, our results are in good agreement with the previous results in
Refs. [50]–[52] for the pure metal truncated conical shell.

Table 1 Dimensionless natural frequency of the pure metal truncated conical shell

n Najafov and Sofiyev[50] Kerboua et al.[51] Liew et al.[52] Present study

2 0.794 3 0.790 9 0.790 4 0.792 2
3 0.708 5 0.728 2 0.727 4 0.708 9
4 0.619 9 0.634 9 0.633 9 0.635 7

The method proposed in this paper is validated by comparing the nonlinear to linear
frequency ratios of an isotropic square plate. The geometrical parameters of the isotropic
square plate are a/b = 1 and a/h = 10. It should be noted that these nonlinear to linear
frequency ratios are in excellent agreement with the results in Refs. [53]–[54].

Table 2 Nonlinear to linear frequency ratios of an isotropic square plate

wmax/h 0.2 0.4 0.6 0.8

Teng and Wang[53] 1.033 1.027 1.268 1.443

Chen et al.[54] 1.033 1.027 1.280 1.453
Present 1.033 1.027 1.268 1.443
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4.1 Linear natural frequencies
In the following analysis, the FG-GPLRC truncated conical shell with a thickness of h =

0.002 m and a semi-vertex angle of β = 30◦ is considered. The material properties of the
GPLs and matrix are EM = 3.0 GPa, ρM = 1 200 kg/m3, νM = 0.34, EGPL = 1 010 GPa,
ρGPL = 1060 kg/m3, and νGPL = 0.186. The geometries of the GPLs with wGPL = 1.5 µm,
hGPL = 1.5 nm, and lGPL = 2.5 µm are utilized[42]. The temperature of the inner surfaces of
the FG-GPLRC truncated conical shell is Ti = 300 K. The thermal expansion coefficients are
αGPL = 5× 10−6 K−1 and αM = 60× 10−6 K−1 [46].

Table 3 lists the linear natural frequencies of the FG-GPLRC truncated conical shell for the
three GPL distribution patterns when the ratio of the radius to the thickness is r1/h = 50,
the ratio of the length to the radius is L/R = 2, and the weight fraction of the GPLs is
WGPL = 0.01%. Consequently, the linear natural frequencies of the FG-GPLRC truncated
conical shell increase with an increase in both m and n for the three GPL distribution patterns.
The minimum frequency appears when m = 1 and n = 1, and it is the fundamental natural
frequency.

Table 3 Linear natural frequencies of the FG-GPLRC truncated conical shell

Pattern n m = 1 m = 2 m = 3 m = 4

GPL-U

1 33.475 6 49.527 6 70.259 8 110.248 7
2 48.257 8 75.845 1 100.240 0 142.587 4
3 63.568 9 93.165 4 125.956 0 191.235 0
4 96.587 4 120.874 5 189.954 8 300.251 4

GPL-X

1 33.643 2 51.245 6 80.560 0 124.856 2
2 51.263 8 78.254 1 107.895 2 151.874 2
3 67.251 0 98.451 2 133.658 9 207.569 8
4 102.365 1 127.512 0 201.125 4 312.237 8

GPL-O

1 33.141 2 47.523 6 65.231 4 103.256 4
2 44.231 5 68.263 5 95.458 7 135.264 5
3 58.263 5 85.264 8 120.587 9 185.689 5
4 89.256 4 112.365 8 180.547 8 289.246 5

Figure 4 illustrates the effects of the temperatures of the outer surfaces and the weight
fraction of GPLs on the fundamental natural frequency of the FG-GPLRC truncated conical
shell for the three GPL distribution patterns. Three different colored lines represent three
different GPL distribution patterns. The fundamental natural frequencies of the FG-GPLRC
truncated conical shell are observed to increase significantly when the distribution pattern of
the GPLs increases from 0 to 1%. In addition, the fundamental natural frequencies of the
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Fig. 4 Linear fundamental natural frequencies of the FG-GPLRC truncated conical shell (color
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FG-GPLRC truncated conical shell change gradually as the distribution pattern of the GPLs
changes. The GPL-X and GPL-O patterns give rise to the highest and lowest frequencies,
respectively. The fundamental natural frequencies of the FG-GPLRC truncated conical shell
of the GPL-U pattern are always between the highest and lowest values. The GPL-X pattern
introduces the maximum stiffness to the system, whereas the GPL-O pattern results in the
minimum stiffness of the system.
4.2 Nonlinear natural frequencies

This section presents our study of the nonlinear natural frequency of the FG-GPLRC
truncated conical shells. This is based on Eq. (27), which is used to obtain the fundamental
frequency ratio ωnl/ωl of the FG-GPLRC truncated conical shell.

Figure 5 depicts the effects of the maximum amplitude of the FG-GPLRC truncated
conical shell on the ratio of the nonlinear fundamental frequency to the linear fundamental
frequency ωnl/ωl with the distribution patterns of three GPLs. Figure 5 indicates that the
ratio of the nonlinear fundamental frequency to the linear fundamental frequency ωnl/ωl

increases with an increase in the maximum amplitude of the FG-GPLRC truncated conical
shell. However, for the three GPL distribution patterns, the order in which the ratio of the
nonlinear fundamental frequency to the linear fundamental frequency ωnl/ωl increases is as
follows: GPL-O pattern>GPL-U pattern>GPL-X pattern.

Figure 6 shows the effects of the weight fraction of the GPLs WGPL the FG-GPLRC
truncated conical shell on the ratio of the nonlinear fundamental frequency to the linear
fundamental frequency ωnl/ωl with three GPL distribution patterns. Clearly, the ratio of the
nonlinear fundamental frequency to the linear fundamental frequency ωnl/ωl stays the same as
the weight fraction of the GPLs increases. This is a highly interesting finding. As the weight
fraction of the GPLs increases, the values of the fundamental nonlinear and linear frequencies
increase simultaneously. Thus, the ratio of the nonlinear fundamental frequency to the linear
fundamental frequency ωnl/ωl remains almost the same.

The effects of the ratio of the radius to the thickness r1/h of the FG-GPLRC truncated
conical shell on the ratio of the nonlinear fundamental frequency to the linear fundamental
frequency ωnl/ωl are shown in Fig. 7. It is seen that the ratio of the nonlinear fundamental
frequency to the linear fundamental frequency ωnl/ωl increases as the ratio of the radius to the
thickness r1/h increases. In addition, this phenomenon exists in any of the GPL distribution
patterns of the FG-GPLRC truncated conical shell. Figure 8 depicts the ratio of the nonlinear
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fundamental frequency to the linear fundamental frequency ωnl/ωl versus the ratio of the length
to the radius L/r1 of the FG-GPLRC truncated conical shell. For each of the GPL distribution
patterns, the ratio of the nonlinear fundamental frequency to the linear fundamental frequency
ωnl/ωl decreases with the increase in the ratio of the length to the radius.
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5 Periodic and chaotic motions

This section presents the investigation of the nonlinear forced vibration of the FG-GPLRC
truncated conical shell. To analyze both the chaotic and periodic motions of the system, the
bifurcation diagram, the time history diagrams as well as the phase portraits are obtained by
using the Runge-Kutta algorithm. For the first mode of the FG-GPLRC truncated conical shell,
the initial condition of Eq. (26) is selected as w11 = −0.001 and ẇ11 = −0.001 in the following
numerical simulation.

Figure 9 depicts the bifurcation diagram of the transverse excitation versus the amplitude
of the first mode of the FG-GPLRC truncated conical shell with the GPL-U pattern when the
transverse excitation increases from f = 5 × 105 to f = 10 × 105. This diagram enables us to
visualize the chaotic and periodic motion of the FG-GPLRC truncated conical shell. In general,
the motion law of the FG-GPLRC truncated conical shell that corresponds to an increase in
the transverse excitation from f = 5 × 105 to f = 10 × 105 is given as chaotic motion →

0.5

0.0

−0.5

ω
1
1

×105

5 6 7
f

8 9 10

Fig. 9 Bifurcation diagram of the transverse excitation versus the amplitude of the first mode of the
FG-GPLRC truncated conical shell (color online)
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periodic motion → chaotic motion → periodic motion → chaotic motion → periodic motion →
chaotic motion → periodic motion → chaotic motion. Thus, the periodic motion and chaotic
motion alternate. However, a small chaotic window can be found in the periodic regions, with
excitations such as f = 5.496× 105 and f = 5.548× 105. On the other hand, a small periodic
window can be found in the chaotic regions with excitations such as f = 6.083 × 105 and
f = 9.008 × 105. Thus, the nonlinear dynamic behavior of the FG-GPLRC truncated conical
shell is highly complex.

The periodic motion (see Fig. 10) and chaotic motion (see Fig. 11) of the FG-GPLRC
truncated conical shell are visually contrasted for different values of the transverse excitation
(f = 6.3 × 105 and f = 6.6 × 105). Each of these figures includes the phase portrait and the
time history diagram. The amplitude and velocity of the chaotic motion are larger than those
of the periodic motion.
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.

6 Conclusions

This study focuses on the analyses of the nonlinear vibrations of the FG-GPLRC truncated
conical shell. Hamilton’s principle, the FSDT, and the von-Karman type nonlinear geometric
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relationship are used to derive a system of partial differential equations for the FG-GPLRC
truncated conical shell. The ordinary differential equations of the FG-GPLRC truncated conical
shell are obtained according to the Galerkin method. Then, the analytical nonlinear frequencies
of the FG-GPLRC truncated conical shell are solved by utilizing the harmonic balance method.
The proposed method is validated by comparing its performance with that of existing methods
in the literature. A parametric study is proposed to assess the effects of the GPL weight
fraction, the GPL distribution pattern, the ratio of the radius to the thickness, and the ratio
of the length to the radius of the FG-GPLRC truncated conical shell on the nonlinear free
vibration behavior. In addition, the chaotic and periodic motions of the FG-GPLRC truncated
conical shell are discovered. It can be concluded as follows.

(i) The GPL distribution pattern, the weight fraction, the ratio of the radius to the thickness
as well as the ratio of the length to the radius have significant effects on the free vibration
characteristics of the FG-GPLRC truncated conical shell.

(ii) The GPL-X pattern maximizes while the GPL-O pattern minimizes the stiffness of the
system.

(iii) An increase in the weight fraction of the GPLs is accompanied by a concomitant
increase in the values of the fundamental nonlinear and linear frequencies, and the ratio of
the fundamental nonlinear frequency to the linear frequency ωnl/ωl remains almost the same.

(iv) The nonlinear dynamic behavior of the FG-GPLRC truncated conical shell is highly
complex, and the periodic and chaotic motions are discovered.
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Appendix A

The nonlinear equations of motion are expressed by the generalized displacements of the FG-GPLRC
truncated conical shell as follows:
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∂θ
sin β + A66

∂2v0

∂x2
+ <2A22

∂2v0

∂θ2

−<2 (
KA44 cos2 β + A66 sin2 β

)
v0 + <A66

∂w0

∂θ

∂2w0

∂x2
+ <3A22

∂2w0

∂θ2

∂w0

∂θ
+ <A66

∂v0

∂x
sin β

+ < (A12 + A66)
∂2w0

∂x∂θ

∂w0

∂x
+ <2A66

∂w0

∂θ

∂w0

∂x
sin β + <2A22

∂w0

∂θ
cos β

+ < (B12 + B66)
∂2ϕx

∂x∂θ
+ <2 (B22 + B66)

∂ϕx

∂θ
sin β + <B66

∂ϕθ

∂x
sin β + <B22

∂2ϕθ

∂θ2

+ <2KA44
∂w0

∂θ
cos β +

(<KA44 cos β −<2B66 sin2 β
)
ϕθ = I0v̈0 + I1ϕ̈θ, (A2)

2<2B66
∂2w0

∂x∂θ

∂ϕx

∂θ
+ 0.5<2A11

(∂w0

∂x

)3

sin β −<NT
θθ cos β + < (B11 + B22)

∂ϕx

∂x

∂w0

∂x

−<2A66
∂v0

∂θ

∂w0

∂x
sin β −<3 (A12 + A66)

∂2w0

∂θ2

∂w0

∂x
+ 2<2 (A12 + 2A66)

∂2w0

∂x∂θ

∂w0

∂θ

∂w0

∂x

−<2B66
∂ϕθ

∂x

∂w0

∂x
sin β + A11

∂2u0

∂x2

∂w0

∂x
+ B11

∂2ϕx

∂x2

∂w0

∂x
+ < (A12 + A66)

∂2v0

∂x∂θ

∂w0

∂x

+ < (B12 + B66)
∂2ϕθ

∂x∂θ

∂w0

∂x
+ <2A66

∂2u0

∂θ2

∂w0

∂x
+ <(KA55 + NT

xx)
∂w0

∂x
sin β
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+
3

2
A11

∂2w0

∂x2

(∂w0

∂x

)2

+ 0.5<2 (A12 + 2A66)
∂2w0

∂θ2

(∂w0

∂x

)2

+ 0.5<2A12

(∂w0

∂x

)2

cos β

+ < (A11 + A12)
∂w0

∂x

∂u0

∂x
sin β + <2A12

∂2w0

∂θ2

∂u0

∂x
−A12

∂u0

∂x
cos β + A11

∂2w0

∂x2

∂u0

∂x

+ 2<A66
∂2w0

∂x∂θ

∂v0

∂x
−<2A66

∂w0

∂θ

∂v0

∂x
+ <A12

∂2w0

∂x2
w0 cos β + <3A22

∂2w0

∂θ2
w0 cos β

−<2A22w0 cos β + <B12
∂2w0

∂x2
ϕx sin β + <3B22

∂2w0

∂θ2
ϕx sin β + 0.5<3A22

∂2w0

∂θ2
cos β

+
(<KA55 −<2B22 cos β

)
ϕx sin β + <3B66

∂w0

∂θ
ϕθ sin2 β −<2B66

∂2w0

∂x∂θ
ϕθ sin β

+ <3A22
∂2w0

∂θ2
u0 sin β −<3A22u0 sin β cos β + <2A12

∂2w0

∂x2
u0 sin β +

(
KA55 + NT

xx

)∂2w0

∂x2

+ <3A66
∂w0

∂θ
v0 sin2 β − 2<2A66

∂2w0

∂x∂θ
v0 sin β + <2(KA44 + NT

θθ

)∂2w0

∂θ2
+ <B66

∂2ϕθ

∂x2

∂w0

∂θ

+ <3 (B22 −B66)
∂ϕx

∂θ

∂w0

∂θ
+ <A66

∂2v0

∂x2

∂w0

∂θ
+ 0.5< (A12 + 2A66)

∂2w0

∂x2

(∂w0

∂θ

)2

+ <2 (B12 + B66)
∂2ϕx

∂x∂θ

∂w0

∂θ
+ <3A66

∂2v0

∂θ2

∂w0

∂θ
+ <3B22

∂2ϕθ

∂θ2

∂w0

∂θ
+ 2<3A66

∂2w0

∂x∂θ

∂u0

∂θ

+ 0.5<3A22
∂2w0

∂θ2

(∂w0

∂θ

)2

+ <A12
∂2w0

∂x2

∂v0

∂θ
+ <3A22

∂2w0

∂θ2

∂v0

∂θ
+ KA55

∂ϕx

∂x

−<2 (KA44 + A22)
∂v0

∂θ
cos β + B11

∂2w0

∂x2

∂ϕx

∂x
−<B12

∂ϕx

∂x
cos β + <2B12

∂2w0

∂θ2

∂ϕx

∂x

+ 2<B66
∂2w0

∂x∂θ

∂ϕθ

∂x
−<2B66

∂w0

∂θ

∂ϕθ

∂x
sin β + <3 (A22 −A66)

∂w0

∂θ

∂u0

∂θ
sin β

+ <2B66
∂2ϕx

∂θ2

∂w0

∂x
+ <2 (A12 + A66)

∂2u0

∂x∂θ

∂w0

∂θ
+ F cos (Ωt) = I0ẅ0, (A3)

B11
∂2u0

∂x2
+ <2B66

∂2u0

∂θ2
+ <B11

∂u0

∂x
sin β −<2B22u0 sin2 β + < (B12 + B66)

∂2v0

∂x∂θ
+ <2D66

∂2ϕx

∂θ2

−<2 (B22 + B66)
∂v0

∂θ
sin β + 0.5<2 (B11 −B12)

∂2w0

∂x2
sin β −<2B22w0 sin β cos β + D11

∂2ϕx

∂x2

+ <B12
∂w0

∂x
cos β + B11

∂2w0

∂x2

∂w0

∂x
+ <2B66

∂2w0

∂θ2

∂w0

∂x
−KA55

∂w0

∂x
+ < (D12 + D66)

∂2ϕx

∂x∂θ

− 0.5<2 (B12 + B22)
∂2w0

∂θ2
sin β + <2 (B12 + B66)

∂2w0

∂x∂θ

∂w0

∂θ
−

(
KA55 +

1

R2
D22

)
ϕx

+ <D11
∂ϕx

∂x
sin β −<2 (D22 + D66)

∂ϕθ

∂θ
sin β + <MT

xx sin β −<MT
θθ sin β = I1ü0 + I2ϕ̈x, (A4)

< (B12 + B66)
∂2u0

∂x∂θ
+ <2 (B22 + B66)

∂u0

∂θ
sin β + B66

∂2v0

∂x2
+ <B66

∂2w0

∂x2

∂w0

∂θ
+ <3B22

∂2w0

∂θ2

∂w0

∂θ

+
(<KA44 cos β −<2B66 sin2 β

)
v0 + <2B66

∂w0

∂x

∂w0

∂θ
sin β +

(<2B22 cos β −<KA44

) ∂w0

∂θ

+ <2 (D22 + D66)
∂ϕθ

∂θ
+ <2D22

∂2ϕθ

∂θ2
+ <D66

∂ϕθ

∂x
− (

KA44 + <2D66 sin2 β
)
ϕθ + <2B22

∂2v0

∂θ2

+ <B66
∂v0

∂x
sin β + < (B12 + B66)

∂2w0

∂x∂θ

∂w0

∂x
+ < (D12 + D66)

∂2ϕx

∂x∂θ
+ D66

∂2ϕθ

∂x2

= I1v̈0 + I2ϕ̈θ. (A5)


