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Marne-la-Vallée F-77454, France;

3. School of Mechanical Engineering, Southwest Jiaotong University,

Chengdu 610031, China

(Received Jul. 16, 2020 / Revised Mar. 12, 2021)

Abstract The present work is concerned with a two-dimensional (2D) Stokes flow
through a channel bounded by two parallel solid walls. The distance between the walls
may be arbitrary, and the surface of one of the walls can be arbitrarily rough. The main
objective of this work consists in homogenizing the heterogeneous interface between the
rough wall and fluid so as to obtain an equivalent smooth slippery fluid/solid interface
characterized by an effective slip length. To solve the corresponding problem, two efficient
numerical approaches are elaborated on the basis of the method of fundamental solution
(MFS) and the boundary element methods (BEMs). They are applied to different cases
where the fluid/solid interface is periodically or randomly rough. The results obtained by
the proposed two methods are compared with those given by the finite element method
and some relevant ones reported in the literature. This comparison shows that the two
proposed methods are particularly efficient and accurate.

Key words effective slip length, method of fundamental solution (MFS), boundary
element method (BEM), Stokeslet, micro-channel, fluid/solid interface

Chinese Library Classification O343.3
2010 Mathematics Subject Classification 74Q15

∗ Citation: TRAN, A. T., LE QUANG, H., HE, Q. C., and NGUYEN, D. H. Mathematical modelling
and numerical computation of the effective interfacial conditions for Stokes flow on an arbitrarily
rough solid surface. Applied Mathematics and Mechanics (English Edition), 42(5), 721–746 (2021)
https://doi.org/10.1007/s10483-021-2733-9

† Corresponding author, E-mail: hung.lequang@univ-paris-est.fr
Project supported by the Vietnam National Foundation for Science and Technology Development
(NAFOSTED) (No. 107.02-2017.310)

c©Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2021



722 A. T. TRAN, H. LE QUANG, Q. C. HE, and D. H. NGUYEN

1 Introduction

In mechanics of fluids, the interface between fluid and solid is usually assumed to be smooth.
However, in a variety of situations of theoretical or/and practical interest, for example, in the
fabrication of superhydrophobic surfaces, this assumption may appear to be no longer valid
and the consideration of rough interfaces becomes necessary. More fundamentally, an interface
which is nominally smooth at a coarse scale is generally rough at a finer scale. The problem of
determining the effective interfacial conditions for an interface at the macroscopic scale while
accounting for interfacial roughness at microscopic and mesoscopic scales has been investigated
over the past two decades but is still far from being solved. The present work aims to study
the problem of a pressure-driven Stokes flow through a channel between two parallel walls in
the case where the interface between the fluid and one wall of the channel is arbitrarily rough.
This work can be viewed as a continuation of Ref. [1], in which the interfaces were assumed to
be periodically rough.

In modeling and simulating the flow of a fluid over a solid surface, the classical uniform
fluid/solid interfacial condition is usually adopted in the case where the solid surface is smooth.
However, when the solid surface exhibits roughness, the uniform fluid/solid interfacial hypoth-
esis is often no longer applicable and has to be replaced by a mixed or heterogeneous interfacial
condition. One efficient way to deal with a rough fluid/solid interface consists in replacing it by
a smooth slippery fluid/solid interface characterized by an effective slip length. The problem
of determining such an effective slip length for a rough fluid/solid interface has been studied
for more than two decades. We cite, for example, Refs. [2]–[8] for the shear-driven Stokes flow
and Refs. [9]–[15] for the pressure-driven Stokes flow. In particular, the effective slip lengths of
some special microstructures of rough surfaces have been analytically determined by Feuillebois
et al.[16] for the case of a Stokes flow through a thin channel between two parallel rough walls.
It is useful to remark that, when the channel thickness is thin, there is a mathematical corre-
spondence of the problem of determining the effective slip length to the one of determining the
effective bi-dimensional permeability. Consequently, all results obtained for the effective perme-
ability are directly applicable to the effective slip length. In the other “extreme” case where the
channel is thick, Belyaev and Vinogradova[13] obtained an analytical expression of the effective
slip length for unidirectionally periodic rough surfaces. In addition, by using a semi-analytical
method, Vinogradova and Belyaev[15] provided the effective slip length for the case where the
channel thickness is arbitrary but the rough surface is only unidirectionally periodic. Recently,
in Ref. [1], a semi-analytical method has been proposed to determine the effective slip length for
the case where the channel thickness is arbitrary and the rough surface can be periodic along
two directions. However, up to now, the works reported in the literature have been limited
to the case where the channel thickness is thin or the microstructure of the rough surface is
periodic along one direction or two directions. In view of this situation, the present work aims
mainly to solve the open problem of pressure-driven and shear-driven Stokes flows through a
channel of arbitrary thickness between two parallel walls whose surfaces are arbitrarily rough.
To achieve this objective, we develop, in particular, two approaches to homogenizing a rough
interface so as to replace it by an equivalent smooth interface characterized by an effective slip
length.

The first approach to be elaborated is based on the method of fundamental solution (MFS).
The latter, which can be considered as one of the boundary-discretization methods (with-
out needing to discretize the computational domain), has emerged as an efficient technique
for numerically calculating a fluid flow in recent years. We can cite here, for example, the
investigations[17–21]. In these studies, the MFS was applied to solve two-dimensional (2D) or
three-dimensional (3D) Stokes flows. The specific feature of the MFS resides in using a set
of singularized force elements of unknown intensities located at the source points to induce
the flow fields. When these intensities are determined, the fluid quantities, such as velocity,
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pressure, and stress, can be approximated by employing the free-space Green’s functions, called
also Stokeslets. In the approach based on the MFS, the collocation points and source points
have the same number and are placed on the physical boundary and the fictitious boundary,
respectively (see Fig. 1(a)); the force strength can be determined with the aid of the boundary
conditions for the whole of collocation points.

In this study, we develop an extended MFS, called XMFS, based on the classical MFS,
and use it to compute the velocity and pressure solution fields of a Stokes flow through a
parallel-plate channel of arbitrary channel thickness. In the XMFS, instead of Stokeslet, Green’s
function for a semi-infinite space is used, which includes the effect of one wall in the solution.
The modified Green’s function has the advantage that the number of discrete points is reduced,
yielding a less number of unknown strength.

In the second approach to be proposed, we use the boundary element method (BEM) to
solve the boundary integral equation (BIE) governing a Stokes flow in a confined 2D domain.
This method has been successfully used for laminar incompressible flows in many previous
investigations[22–26]. The BEM is one of the most efficient numerical techniques for solving a
BIE. In this equation, the solution fields are presented in terms of integrals (integral repre-
sentations of the solution), involving the unknown tractions and velocities over the boundaries
(also called boundary values). These boundary values are then obtained by solving a system
of linear equations, which results from matching the prescribed boundary conditions. Finally,
the fluid quantities in the domain are computed by the associated integral representation of the
solution. It is well-known that singular integrals are a difficulty needed to overcome when using
the BEM, and the accuracy in evaluating them is essential to obtaining accurate solutions. In
this work, these singular integrals are evaluated analytically. An important distinction between
the MFS and the BEM is that the boundary in the MFS is discretized discontinuously by a
system of collocation points and no mesh is required, while the boundary in the BEM is di-
vided successively into a finite number of segments, which are called boundary elements (see
Fig. 1(b)).

Physical boundary

(a) (b)

Boundary element
Fictitious boundary

∂Ω ∂Ω

ΩΩ

Fig. 1 Discretization schematic of (a) MFS and (b) BEM (color online)

The paper is organized as follows. In Section 2, the setting of the problem under investigation
is specified. In particular, the local governing equations, the description of the rough interface,
and the macroscopic constitutive equations are given. Section 3 is dedicated to elaborating
the approaches based on the MFS and XMFS to determine the velocity solution field of the
Stokes flow and to find the effective slip length for the rough interface. Section 4 describes
the details of the BEM and the relevant procedure for computing the effective slip length. In
Section 5, the derived results for the effective slip length of a rough interface obtained from the
two elaborated approaches are compared with the corresponding numerical results obtained by
the finite element method and the main relevant results reported in the literature. Finally, a
few concluding remarks are provided in Section 6.
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2 Problem setting

In this work, we consider a 2D steady Stokes flow through a channel between two parallel
walls of distance Ĥ and length Ŵ . The fluid, with its dynamic viscosity denoted by μ and
confined in the channel, is assumed to be incompressible, Newtonian, and driven either by an
applied pressure gradient of intensity ρ or by a translation with a constant speed Û∗ = ρŴ Ĥ/μ
of the upper channel’s wall.

At the microscopic scale, the interface between the Stokes flow and the top wall of this
channel is assumed to be smooth, and a no-slip interfacial condition is adopted to characterize
this interface. In contrast with the top wall, the bottom interface between the Stokes flow and
the bottom wall of the channel is considered to be rough, and a mixed interfacial condition is now
applied at this bottom interface. Precisely, the bottom interface is assumed to be decomposed of
n interfacial regions, each of which is characterized by its intrinsic (or microscopic) slip length,
denoted by λ̂s (s = 1, 2, · · · , n).

Next, we denote by Ω the 2D domain occupied by a representative surface element (RSE)
of the Stokes flow confined in the channel. We designate by ∂ΩT and ∂ΩB the top and bottom
interfaces between the Stokes flow and the top and bottom walls of the channel, respectively.
Let {x̂ŷ} be a 2D cartesian coordinate system associated with Ω in such a way that the x̂-
direction represents the flow direction and the top wall is located at ŷ = ω̂ whereas the bottom
wall is situated at ŷ = ω̂ − Ĥ (see Fig. 2).

Solid wall

Rough interface

Fluid

O

y

x

W

H

Fig. 2 Problem schematic: Stokes flow inside a channel with non-homogeneous boundary conditions
(color online)

The Stokes equations governing the fluid flow under consideration take the following form:

μΔÛ(x̂) = ∇p̂(x̂), (1)

∇ · Û(x̂) = 0, (2)

where Û(x̂) =
(
Û(x̂), V̂ (x̂)

)
denotes the velocity vector field, and p̂(x̂) designates the pressure

field of the 2D fluid flow.
In addition, the velocity vector of the Stokes flow must verify the following boundary con-

ditions at the top and bottom interfaces:
(i) At the top smooth interface ∂ΩT, the no-penetration and no-slip conditions imply that

Û(x̂) = 0. (3)

(ii) At the bottom rough interface ∂ΩB =
n∪

s=1
∂ΩB

s , the no-penetration and slip conditions
can be expressed by

Û(x̂) · n(x̂) = 0, (4)
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Û(x̂) · t(x̂) = λ̂(x̂)
( − σ̂(x̂) · n(x̂)

) · t(x̂), (5)

where n(x̂) is the unit vector normal to the boundary, oriented from the fluid into the bottom
wall, t(x̂) is the unit tangential vector in the anti-clockwise direction, and the local slip length
λ̂(x̂) of the bottom interface is characterized by λ̂(x̂) = λ̂s if x̂ ∈ ∂ΩB

s . σ̂ denotes the stress
tensor field in the fluid.

At the macroscopic scale, the bottom rough interface between the fluid and the inferior wall
of the channel is homogenized so as to be replaced with an equivalent smooth interface whose
effective interfacial condition is expressed by〈

Û(x̂) · t(x̂)
〉

= b̂
( − σ̂(x̂) · n(x̂)

) · t(x̂)
〉

with x̂ = (x̂, ω̂ − Ĥ), (6)

where b̂ is defined as the effective slip length of the equivalent smooth interface, and the symbol
〈∗〉 denoting the length average of a local quantity ∗ on the bottom interface characterized by
ŷ = ω̂ − Ĥ is defined by

〈∗〉 =
1

|∂ΩB|
∫

∂ΩB
∗ dx̂, (7)

where |∂ΩB| designates the length of ∂ΩB.
Due to the fact that the Stokes flow problem is linear, the superposition principle can be

applied by decomposing the velocity vector field Û(x̂) into two parts as follows:

Û(x̂) = ûH(x̂) + û(x̂). (8)

Here, ûH(x̂) is the homogeneous part of the velocity field obtained when no-slip interfacial
conditions are applied at both the top and bottom interfaces. It is clear that ûH(x̂) corresponds
exactly to the classical solution of the Poiseuille or Couette flow. The second part û(x̂), viewed
as the perturbation part of the velocity vector solution and due to the presence of the roughness
on the bottom fluid/solid interface, will be determined exhaustively in the next two sections.
It is well-known that, under an applied pressure gradient or a translation of upper wall, the
velocity vector field, ûP(x̂) and ûC(x̂), of the classical Poiseuille and Couette flow are given by

ûH(x̂) =

{
ûP(x̂) = (ûP, 0) for the Poiseuille flow,

ûC(x̂) = (ûC, 0) for the Couette flow
(9)

with

ûP = −ρ(ŷ + Ĥ − ω̂)2

2μ
+

ρĤ(ŷ + Ĥ − ω̂)
2μ

, (10)

ûC(x̂) =
ρŴ (ŷ + Ĥ − ω̂)

μ
. (11)

3 MFS

3.1 Classical MFS
The perturbation part û(x̂) of the velocity vector Û(x̂) and the pressure field p̂(x̂) can be

determined by applying the MFS. For the bi-dimensional case, according to this method, the
source point ξ̂j = (ξ̂j , η̂j) (j = 1, 2, · · · , N) with unknown strength τ̂j = (τ̂j , ν̂j) is located out-
side the flow domain and situated at an artificial boundary of distance ε̂ between the fictitious
and physical boundaries. For simplicity, the source points are assumed to be regularly dis-
tributed at this fictitious boundary. By applying the superposition principle, the perturbation
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part of the velocity vector solution field can be determined at any point of observation x̂ ∈ Ω
by the following approximation:

û(x̂) =
1

4πμ

N∑
j=1

Ŝ(x̂, ξ̂j)τ̂j(ξ̂j), (12)

where Ŝ(x̂, ξ̂) is the individual free-space Green’s tensor function associated with the velocity
vector field, called also Stokeslet (see Ref. [27]). Physically, the component Ŝαβ(x̂, ξ̂) of Ŝ(x̂, ξ̂)
with α and β given by x or y represents the value of the velocity vector at the observation point
x̂ in the α-direction due to a point source of unit strength applied at ξ̂ in the β-direction. More
precisely, the expressions of Ŝ(x̂, ξ̂) take the following form:

Ŝαβ(x̂, ξ̂) = −δαβ ln r̂ +
r̂αr̂β

r̂2
. (13)

In this equation, r̂ = x̂ − ξ̂, r̂ = ‖r̂‖, and δαβ stands for Kronecker’s symbol if δxx = δyy = 1
and δαβ = 0 otherwise. By choosing Ŵ as the length scale and ρ as the reference of pressure
gradient, we obtain the following dimensionless parameters:⎧⎨⎩x = x̂/Ŵ , y = ŷ/Ŵ , H = Ĥ/Ŵ , ξ = ξ̂/Ŵ , η = η̂/Ŵ ,

u = ûμ/(ρŴ 2), v = v̂μ/(ρŴ 2), τ = τ̂ /(ρŴ 2), ν = ν̂/(ρŴ 2).

Therefore, the perturbation part of the velocity vector field takes the following dimensionless
form:

u(x, y) =
1
4π

N∑
j=1

(((x − ξj)2

r2
j

− ln rj

)
τj +

((x − ξj)(y − ηj)
r2
j

)
νj

)
, (14)

v(x, y) =
1
4π

N∑
j=1

(( (x − ξj)(y − ηj)
r2
j

)
τj +

( (y − ηj)2

r2
j

− ln rj

)
νj

)
. (15)

To determine the unknown strength τj with j = 1, 2, · · · , N , the same number of boundary
collocation points xi (i = 1, 2, · · · , N) distributed on the physical boundary ∂Ω should be
considered (see Fig. 3). Note that N is the total number of collocation points determined by

N = NT + NB with NB =
n∑

s=1

Ns, (16)

where NT and NB are the numbers of collocation points on the two top and bottom interfaces,
∂ΩT and ∂ΩB, respectively, and Ns corresponds to the number of collocation points on the sth
interfacial region ∂ΩB

s of the bottom wall. Then, the boundary conditions (3)–(5) of the pertur-
bation flow at the top and bottom interfaces can be expressed in the equivalent dimensionless
forms as follows:

(i) At the top smooth interface ∂ΩT,

u(xk, ω) = v(xk, ω) = 0. (17)

(ii) At the bottom rough interface ∂ΩB =
n∪

s=1
∂ΩB

s ,

v(xi, ω − H) = 0, (18)

u(xi, ω − H) = λi

(∂u

∂y
(xi, ω − H) + χ

)
, (19)
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where χ = H/2 for the pressure-driven flow, χ = 1 for the shear-driven flow, and λi = λ̂i/Ŵ is
the normalized intrinsic slip length at an arbitrary point xi = (xi, ω −H) ∈ ∂ΩB

s . By applying
the point collocation method[5], a set containing NT collocation points xi (i = 1, 2, · · · , NT) sit-
uated at the top interface ∂ΩT and a set comprising NB collocation points xi (i = 1, 2, · · · , NB)
located at the bottom interface of the channel are introduced. For simplicity, the collocation
points are assumed to be regularly distributed at the top and bottom interfaces ∂ΩT and ∂ΩB.
Accounting for the boundary conditions (17)–(19), we obtain the following system of equations
with 2N unknown strengths {τj , νj} for the 2D Stokes flow problem:

(i) At the top smooth interface ∂ΩT,

N∑
j=1

( (xi − ξj)2

r2
ij

− ln rij

)
τj +

N∑
j=1

((xi − ξj)(yi − ηj)
r2
ij

)
νj = 0, (20)

N∑
j=1

( (xi − ξj)(yi − ηj)
r2
ij

)
τj +

N∑
j=1

((yi − ηj)2

r2
ij

− ln rij

)
νj = 0. (21)

(ii) At the bottom rough interface ∂ΩB,

N∑
j=1

( (xi − ξj)2

r2
ij

− ln rij + λi
(yi − ηj)

r2
ij

+ λi
2(xi − ξj)2(yi − ηj)

r4
ij

)
τj

+
N∑

j=1

( (xi − ξj)(yi − ηj)
r2
ij

− λi
(xi − ξj)

r2
ij

+ λi
2(xi − ξj)(yi − ηj)2

r4
ij

)
νj = 4πλiχ, (22)

N∑
j=1

( (xi − ξj)(yi − ηj)
r2
ij

)
τj +

N∑
j=1

((yi − ηj)2

r2
ij

− ln rij

)
νj = 0, (23)

where rij is the distance from the source point j to the observation point i.
The system of 2N linear equations (20)–(23) can be recast in the matrix form as follows:

Aτ = c, (24)

where A is a 2N ×2N matrix, c is a vector of 2N components whose expressions take the right-
hand side of Eqs. (20)–(23), and τ = {τ1, τ2, · · · , τN , ν1, ν2, · · · , νN}T represents the unknown
strength vector. The expressions of A and c can be found in Appendix A.

Finally, the solution provided by the system of linear equations (24) allows us to calculate
the velocity solution field through Eq. (8) together with Eqs. (10), (11), (14), and (15). The
effective normalized slip length can be determined by using the following equivalent form of
Eq. (6):

b =

NB∑
i=1

u(xi, ω − H)

NB∑
i=1

(∂u

∂y
(xi, ω − H) + χ

) . (25)

3.2 XMFS
It should be mentioned here that the classical MFS previously established requires a dis-

cretization of collocation points at both the top and bottom interfaces between the flow and two
walls of the channel. However, in this paper, because the top interface between the flow and the
bottom wall of the channel is assumed to be smooth and non-slippery, we are interested only
to determine the effective interfacial condition of the bottom rough interface. Hence, instead
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of the free-space Green’s function employed in the previous section, we propose now to use the
new Green’s function associated with a domain bounded by a solid plane wall (see Refs. [22] and
[27]). This Green’s function allows us to reduce the quantity as well as the times of calculation
by incorporating the effect of the top wall into the fundamental solution. Therefore, only the
bottom interface must be discretized. This discretization is illustrated in Fig. 4.

Source point

y

x

l

ε
H

O
Boundary field point

Fig. 3 Distribution of boundary field points
and source points (color online)

l

H

xO

Discretization is not required

y

ε

Fig. 4 Discretization of the bottom rough
interface and distribution of source
points (color online)

Here, let us assume that the perturbation part of the velocity solution field is induced by an
array of source points ξ̂j (j = 1, 2, · · · , NB) located at the distance ε = ε̂/Ŵ from the bottom
wall (see Fig. 4). Therefore, the perturbation part of the velocity field can be expressed as

û(x̂) =
1

4πμ

NB∑
j=1

ĜW (x̂, ξ̂j)τ̂ (ξ̂j). (26)

In this equation, the individual Green’s function ĜW (x̂, ξ̂j) represents the velocity field at x̂ of
the fluid bounded by a plane wall located at ŷ = ω̂ produced by a unit force at a source point
ξ̂j . This individual Green’s function can be expressed as the sum of four contributions as

ĜW (x̂, ξ̂) = Ŝ(x̂, ξ̂) − Ŝ(x̂, ξ̂′) + 2ĥ2ĜD(x̂, ξ̂′) − 2ĥĜSD(x̂, ξ̂′), (27)

where ξ̂′ is the mirror image of the source point ξ̂ with respect to the upper wall (see Fig. 5),
ĥ = η̂ − ω̂, and the tensors ĜD(x̂, ξ̂) and ĜSD(x̂, ξ̂′) are defined as

ĜD
αβ(x̂, ξ̂′) = κ

∂

∂R̂β

(R̂α

R̂2

)
= κ

(δαβ

R̂2
− 2

R̂αR̂β

R̂4

)
, (28)

ĜSD
αβ (x̂, ξ̂′) = κ

∂

∂R̂β

Ŝαy(x̂, ξ̂′) = R̂yĜD
αβ(x̂, ξ̂′) + κ

δβyR̂α − δαyR̂β

R̂2
. (29)

In Eqs. (28) and (29),⎧⎪⎪⎨⎪⎪⎩
κ =

{
1, β = x,

− 1, β = y,

R̂ = x̂ − ξ̂′, R̂x = x̂ − ξ̂, R̂y = ŷ + η̂ − 2ω̂, R̂ = ‖R̂‖.
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Fig. 5 Location of Stokeslet and image for a computation of Green’s function in a semi-infinite space
(color online)

The formulae of the perturbation part of the velocity vector field are now expressed in the
dimensionless forms by using the same normalized parameters proposed in the previous subsec-
tion,

u(x, y) =
1
4π

NB∑
j=1

((GW
xx(x, ξj)τj + GW

xy(x, ξj)νj), (30)

v(x, y) =
1
4π

NB∑
j=1

(GW
yx(x, ξj)τj + GW

yy(x, ξj)νj), (31)

where the expressions of GW
αβ(x, ξj) are detailed by

GW
xx(x, ξj) =

(x − ξj)2

r2
j

− ln rj − (x − ξj)2

R2
j

+ ln Rj + 2h2
j

( 1
R2

j

− 2(x − ξj)2

R4
j

)
−2hj

((y + ηj − 2ω)
R2

j

− 2(x − ξj)2(y + ηj − 2ω)
R4

j

)
, (32)

GW
xy(x, ξj) =

(x − ξj)(y − ηj)
r2
j

− (x − ξj)(y + ηj − 2ω)
R2

j

+ 4h2
j

(x − ξj)(y + ηj − 2ω)
R4

j

+2hj

((x − ξj)
R2

j

− 2(x − ξj)(y + ηj − 2ω)2

R4
j

)
, (33)

GW
yx(x, ξj) =

(x − ξj)(y − ηj)
r2
j

− (x − ξj)(y + ηj − 2ω)
R2

j

− 4h2
j

(x − ξj)(y + ηj − 2ω)
R4

j

+2hj

((x − ξj)
R2

j

+
2(x − ξj)(y + ηj − 2ω)2

R4
j

)
, (34)

GW
yy(x, ξj) =

(y − ηj)2

r2
j

− ln rj − (y + ηj − 2ω)2

R2
j

+ ln Rj − 2h2
j

( 1
R2

j

− 2(y + ηj − 2ω)2

R4
j

)
+2hj

((y + ηj − 2ω)
R2

j

− 2(y + ηj − 2ω)3

R4
j

)
(35)
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with hj = ηj − ω.
Next, the 2NB unknown strengths {τj , νj} with j = 1, 2, · · · , NB related to NB source point

ξj are determined by applying once more the point collocation method presented in the previous
section. However, in the present case, the collocation points are distributed only at the bottom
boundary ∂ΩB and the number of the collocation points xi (i = 1, 2, · · · , NB) is chosen in
such a way that it is equal to the number of the source points. The interfacial conditions (18)
and (19) at ∂ΩB must be satisfied at all interfacial points. This yields a system of 2NB linear
equations as follows:

NB∑
j=1

(
GW

xx(xi, ξj) − λi
∂GW

xx

∂y
(xi, ξj)

)
τj

+
NB∑
j=1

(
GW

xy(xi, ξj) − λi

∂GW
xy

∂y
(xi, ξj)

)
νj = 4πλiχ, (36)

NB∑
j=1

GW
yx(xi, ξj)τj +

NB∑
j=1

GW
yy(x, ξj)νj = 0. (37)

This system can be rewritten in the equivalent matrix form as

A′τ = c′, (38)

where A′ and c′ are a 2NB×2NB matrix and a column vector of 2NB components, respectively,
and τ is a column vector of unknown strengths {τk, νk} with k = 1, 2, · · · , NB. The expressions
of the components of A′ and c′ are provided in Appendix B.

Similar to Subsection 3.1, after solving the system of linear equations (38), the same pro-
cedure can be applied to calculate the velocity solution field and the effective normalized slip
length b.

It is important to notice that the advantage of using Green’s function for a semi-infinite flow
consists in reducing the number of source points considered and, thus, in reducing the number
of unknown strengths. This is achieved by incorporating the no-slip interfacial condition on the
top wall into the formulation. Therefore, the size of matrix A′ is less than that of A with the
same number of discretization points on the bottom interface ∂ΩB. This diminishes the time
and memory needed for calculations.

4 BEM

In this section, the perturbation part of the velocity solution field will be calculated by
using an approach based on the BEM, sometimes called also the boundary integral method.
There are many studies demonstrating the efficiency and accuracy of this method in finding
the solution to the Stokes flow in 2D channels[22–24,28]. In these studies, Green’s function for a
domain between two infinite plane walls was used, and there was no need for a discretization
of these walls. Inspired by the aforementioned works, we propose in this section to use Green’s
function for a semi-infinite fluid domain bounded by a plane wall.

The perturbation part û(x̂0) of the velocity solution field at an arbitrary point x̂0 in a
domain of fluid bounded by an infinite plan wall can be transformed into a boundary integral
representation of solution as follows[27]:

ε(x̂0)û(x̂0) = − 1
4πμ

∫
∂ΩB

τ̂ (x̂) · Ĝ(x̂, x̂0)dl(x̂) − 1
4π

∫
∂ΩB

û(x̂) · (T̂ (x̂, x̂0) · n(x̂)
)
dl(x̂), (39)



Mathematical modeling and numerical computation of the effective interfacial conditions 731

where ε(x̂0) is a parameter depending on the position of the source point x̂0 given by

ε(x̂0) =

⎧⎨⎩
1 for x̂0 inside Ω,

1
2

for x̂0 on the smooth boundary ∂ΩB,
(40)

and Ĝ(x̂, x̂0) is either the velocity Green’s function for a semi-infinite domain of the fluid
bounded by a plane wall ĜW (x̂, x̂0) defined by Eq. (27) or the periodic velocity Green’s function
for the flow in a semi-infinite domain ĜWP(x̂, x̂0) given by

ĜWP(x̂, x̂0) = ŜP(x̂, x̂0) − ŜP(x̂, x̂′
0) + 2ĥ2ĜDP(x̂, x̂′

0) − 2ĥĜSDP(x̂, x̂′
0), (41)

where ŜP(x̂, x̂′
0) stands for the periodic Green’s function in the free space,

ŜP(x̂, x̂′
0) = ŜP(x̂ − x̂′

0) = ŜP(X) =

⎡⎣−A− Y AY + 1 Y AX

Y AX −A + Y AY

⎤⎦ , (42)

where
A(X) =

1
2

ln (cosh (kY ) − cos (kX)) +
1
2

ln 2, AX =
∂A
∂X

, AY =
∂A
∂Y

(43)

with k = 2π denoting the wave number. In addition, the normalized period of the flow is equal
to one. The tensors ĜDP(x̂, x̂′

0) and ĜSDP(x̂, x̂′
0) are determined by

ĜDP(x̂, x̂′
0) = ĜDP(X) =

[
−AY Y −AXY

AXY −AY Y

]
, (44)

ĜSDP(x̂, x̂′
0) = ĜSDP(X) =

[
−Y AY Y −AX − Y AXY

−AX + Y AXY −Y AY Y

]
(45)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
AXY =

∂2A
∂X∂Y

,

AY Y =
∂2A
∂Y 2

.

The stress tensor T̂ (x̂, x̂0) in Eq. (39) can be expressed into the two following cases: (i) when
an arbitrary flow is considered, the stress tensor corresponds exactly to the stress Green’s func-
tion T̂ W (x̂, x̂0) for a semi-infinite domain bounded by a solid wall, i.e., T̂ (x̂, x̂0) = T̂ W (x̂, x̂0);
(ii) when a periodic flow is concerned, the stress tensor becomes the periodic stress Green’s
function T̂ WP(x̂, x̂0), i.e., T̂ (x̂, x̂0) = T̂ WP(x̂, x̂0). These two functions T̂ W (x̂, x̂0) and
T̂ WP(x̂, x̂0) are given as follows:

(i) When an arbitrary flow is considered,

T̂ W (x̂, x̂0) = T̂ (x̂, x̂0) − T̂ (x̂, x̂′
0) + 2ĥ2T̂ D(x̂, x̂′

0) − 2ĥT̂ SD(x̂, x̂′
0), (46)

where the components of T̂ (x̂, x̂0), called the free-space stresslet, are defined by

T̂αβγ(x̂, x̂0) = −4
r̂αr̂β r̂γ

r̂4
, (47)
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while T̂ D(x̂, x̂′
0) and T̂ SD(x̂, x̂′

0) are two tensors whose components are determined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T̂ D

αβγ(x̂, x̂0) =
∂ĜD

αβ

∂R̂γ

+
∂ĜD

γβ

∂R̂α

,

T̂ SD
αβγ(x̂, x̂0) = −δαγ p̂SD

β +
∂ĜSD

αβ

∂R̂γ

+
∂ĜSD

γβ

∂R̂α

.

(48)

In Eq. (48), p̂SD
β is the pressure field corresponding to the Stokeslet doublet, given by

p̂SD
α (x̂, x̂′

0) = 2κ
∂

∂R̂α

( R̂y

R̂2

)
= 2κ

(δαy

R̂2
− 2

R̂αR̂y

R̂4

)
, (49)

and ⎧⎨⎩ r̂ = x̂ − x̂0, r̂ = |r̂|, r̂x = x̂ − x̂0, r̂y = ŷ − ŷ0,

R̂ = x̂ − x̂′
0, R̂ = |R̂|, R̂x = r̂x, R̂y = ŷ + ŷ0 − 2ω̂.

(ii) When a periodic flow is concerned,

T̂ WP(x̂, x̂0) = T̂ P(x̂, x̂0) − T̂ P(x̂, x̂′
0) + 2ĥ2T̂ DP(x̂, x̂′

0) − 2ĥT̂ SDP(x̂, x̂′
0), (50)

where T̂ P(x̂, x̂0), T̂ DP(x̂, x̂′
0), and T̂ SDP(x̂, x̂′

0) are, respectively, the periodic Stresslet, the
potential dipole periodic of stress, and the Stresslet doublet periodic, whose components are
specified by ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T̂ P
xxx = −4AX − 2Y AXY , T̂ P

xxy = −2AY + 2Y AXX ,

T̂ P
yyy = −2AY − 2Y AXX , T̂ P

xyy = T̂ P
yxy = 2Y AXY ,

T̂ P
yyx = 2Y AXY , T̂ P

xyx = T̂ P
yxx = −2AY + 2Y AXX ,

(51)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T̂ DP

xxx = −2AXY Y , T̂ DP
xxy = AXY X −AY Y Y ,

T̂ DP
xyx = −2AXY X , T̂ DP

xyy = −2AXY Y , T̂ DP
yxx = AXY X −AY Y Y ,

T̂ DP
yxy = 2AXY Y , T̂ DP

yyx = −2AXY Y , T̂ DP
yyy = −2AY Y Y ,

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T̂ SDP
xxx = −2AXY − 2Y AXY Y ,

T̂ SDP
xxy = −AXX −AY Y + Y AXY X − Y AY Y Y ,

T̂ SDP
xyx = −2AXX + 2AY Y − 2Y AXY X ,

T̂ SDP
yxx = −AXX −AY Y + Y AXY X − Y AY Y Y ,

T̂ SDP
xyy = −2AXY − 2Y AXY Y , T̂ SDP

yxy = −2AXY + 2Y AXY Y ,

T̂ SDP
yyx = −2AXY − 2Y AXY Y , T̂ SDP

yyy = −2Y AY Y Y ,

(53)

where

AXX =
∂2A
∂X2

, AXY Y =
∂3A

∂X∂Y 2
, AXY X =

∂3A
∂X2∂Y

, AY Y Y =
∂3A
∂Y 3

.
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Similar to the aforementioned section, the length, the velocity, the traction, the velocity
Green’s function, and the stress Green’s function can be normalized into dimensionless forms
by Ŵ , ρŴ 2/μ, ρŴ , μ, and 1/Ŵ in the equations obtained above, respectively. Next, the BIE
(39) will be solved numerically by applying the BEM for the dimensionless boundary values
{τ (x), u(x)}. Here, the bottom wall ∂ΩB of the channel is decomposed into NB boundary
elements Γj . The velocity vector of each element can be determined from the ones of its node’s
values by adopting a constant, linear, or parabolic function. In our investigation, for simplicity,
the geometry of the boundary segment can be considered as a straight line (characterized by
end points and the node point, see Fig. 6), while the boundary value is assumed to be constant
along this straight line and is exactly equal to its node’s value. By placing x0 successively at all
nodal points x0i (i = 1, 2, · · · , NB) on the boundary ∂ΩB, the 2 × NB BIEs including 4 × NB

unknowns {τj , νj, uj , vj} are obtained as follows:

1
2
ui = − 1

4π

NB∑
j=1

τj

∫
Γj

Gxx(xj , x0i)dlj − 1
4π

NB∑
j=1

νj

∫
Γj

Gyx(xj, x0i)dlj

− 1
4π

NB∑
j=1

uj

∫
Γj

(Txxx(xj , x0i)nx(xj) + Txxy(xj , x0i)ny(xj))dlj

− 1
4π

NB∑
j=1

vj

∫
Γj

(Tyxx(xj , x0i)nx(xj) + Tyxy(xj , x0i)ny(xj))dlj , (54)

1
2
vi = − 1

4π

NB∑
j=1

τj

∫
Γj

Gxy(xj , x0i)dlj − 1
4π

NB∑
j=1

νj

∫
Γj

Gyy(xj , x0i)dlj

− 1
4π

NB∑
j=1

uj

∫
Γj

(Txyx(xj , x0i)nx(xj) + Txyy(xj , x0i)ny(xj))dlj

− 1
4π

NB∑
j=1

vj

∫
Γj

(Tyyx(xj , x0i)nx(xj) + Tyyy(xj , x0i)ny(xj))dlj , (55)

where τj , νj , uj , and vj are the nodal values of the j th element for the traction and the velocities
along the x- and y-directions, and x0i is the nodal coordinates of the ith element, while the
point xj varies over the j th element.

y

xO

Bottom wall

Node point

End points

Boundary element

Top wall

Fig. 6 Discretisation of the bottom wall by using boundary elements (color online)
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Moreover, the aforementioned boundary values must also satisfy the boundary conditions (4)
and (5). Referring to the work of Nieto et al.[25] and taking into account that tx(x) = −ny(x)
and ty(x) = nx(x), the slip and no-penetration boundary conditions applied to all nodal points
give rise to the following equations:

− uinyi + vinxi = λi(−τinyi + νinxi − χn2
xi + χn2

yi), (56)

uinxi + vinyi = 0, (57)

where nxi and nyi are the two components of the outward unit vector n normal to the boundary
at the ith node x0i and the constant χ takes the value χ = H/2 or χ = 1 according as the flow
is arbitrary or periodic.

By combining Eqs. (54)–(57), we obtain a system of linear equations as follows:

Bf = q, (58)

where f = {τ1, τ2, · · · , τNB , ν1, ν2, · · · , νNB , u1, u2, · · · , uNB , v1, v2, · · · , vNB}T represents the
vector of unknown boundary values, B is a matrix of size 4NB × 4NB, and q is a vector of size
1 × 2NB whose values are provided in Appendix C[29].

The system of linear equations (58) is solved to obtain the values for τi, νi, ui, and vi at all
nodal points. These values are then substituted into the following equation to determine the
dimensionless effective slip length b:

b =

NB∑
i=1

(−uinyi + vinxi)Li

NB∑
i=1

(−τinyi + νinxi − χn2
xi + χn2

yi)Li

, (59)

where Li =
∫

Γi

dli is the length of the ith element. Notice that Einstein’s summation convention

does not apply in Eqs. (54)–(57) and (59).

5 Results and discussion

The methods elaborated in the previous sections are now used to study several examples
of pressure-driven and shear-driven Stokes flows over a rough surface. In our computations,
the normalized distance ε between the fictitious and physical boundaries is set to be equal to
that between two neighboring collocation points. The fluid properties used in these numerical
examples are provided in Table 1.

Table 1 Fluid properties and dimensions of the patch

Input Value Unit

Dynamic viscosity μ 10−3 Pa · s
Mass density of fluid � 103 kg/m3

x-component of pressure gradient ρ 103 kN/m3

Intrinsic slip length Λ 320 µm
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5.1 Pressure-driven flow over a surface in the presence of a transverse groove
The first example consists of a 2D pressure-driven Stokes flow through a channel between

two parallel walls. The top wall of the channel is smooth but the bottom wall is rough in the
presence of a transverse groove. The normalized width of transverse grooves with respect to
the length Ŵ of the channel is set to be equal to 0.25. The interfacial zone occupied by the
groove is assumed to be partially slippery and characterized by a normalized slip length λ = 20,
while the rest of the bottom wall is assumed to be non-slippery with a zero slip length. Using
the MFS, XMFS, and BEM, the variation of the normalized effective slip length in terms of
the normalized channel thickness is first shown in Fig. 7 and then compared with the numerical
ones obtained by the finite element method (FEM) using Comsol Multiphysics. Good agreement
between these results can be observed, except the value at H = 10 and its neighbour obtained
with the MFS. Particularly, unlike the MFS, XMFS, and FEM, it is seen in this figure that, by
using the BEM, the effective slip length can be computed without difficulty when the channel
is very thin, for example H � 10−2.
5.2 Pressure-driven flow over a surface with periodically distributed transverse

grooves
The second example concerns a pressure driven flow through a channel between two parallel

walls, one of which is periodically rough and microtextured with transverse grooves. In this case,
the slippery area fraction φ is taken to be equal to 0.75. As in the first example, the interfacial
zone occupied by grooves is supposed to be partially slippery and characterized by a normalized
slip length λ = 20. It is seen from Fig. 8 that very good agreement is achieved between the
results obtained by applying the BEM and XMFM and the ones provided by Vinogradova
and Balyaev[15]. The same remark can be made by comparing our results obtained with the
numerical ones provided by the FEM.
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Fig. 7 Effective slip length versus the chan-
nel thickness for a pressure-driven
flow over a transverse groove (color
online)
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Fig. 8 Effective slip length versus the chan-
nel thickness for a pressure-driven
flow over a surface with periodically
distributed transverse grooves (color
online)

5.3 Pressure-driven flow over a surface with randomly distributed transverse
grooves

In this example, by applying the XMFS and BEM presented in the previous sections, the size
of the RSE for a rough surface with randomly distributed transverse grooves can be determined.
We consider a Stokes pressure-driven flow through a channel between two parallel walls, one of
which is assumed to be rough with randomly distributed transverse grooves. More precisely,
the interfacial zone occupied by grooves is supposed to be slippery with a normalized slip length
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λ = 20, whereas the rest of the bottom interface is non-slippery. In the latter case, the slipping
area fraction φ is kept constant and equal to φ = 0.5, and the number of the grooves per
unit length is taken to be equal to 50. At the macroscopic scale, the bottom rough interface
is homogenized so as to be replaced by an equivalent smooth interface characterized by an
effective slip length.

The average of the effective slip length corresponding to the rough surface with randomly
distributed transverse grooves can be calculated by applying the Monte Carlo method, which
was used in the works of Lachihab and Sab[30–31]. With K independent realizations of the
microstructure of the rough surface, we denote by (b1, b2, · · · , bK) the corresponding effective
slip lengths. Then, the average of the effective slip length b is given by

bK =
1
K

(b1 + b2 + · · · + bK), (60)

and the variance of the effective slip length is calculated by

σ2
K =

1
K − 1

K∑
i=1

(bi − bK)2. (61)

The absolute and relative errors of the average value obtained are, respectively, defined by

ζabs = 1.96
σK√
K

, ζrel = 1.96
σK

bK

√
K

. (62)

With a sufficiently large value of K, the probability for the effective slip length b to be in the
interval [bK − ζrelbK , bK + ζrelbK ] is 95%.

Figure 9 shows the influence of the size Π on the average of the effective slip lengths. These
average values are plotted with their intervals of confidence [bK−1.96σK , bK+1.96σk]. Figure 10
indicates the number of realizations in terms of the size of the RSE. It is observed that the
number of realizations decreases when the size of the RSE increases.
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5.4 Shear-driven flow over a surface with slip length varying according to a cosine
function

In this example, we use both the XMFS and BEM to seek the solution of a 2D Couette
flow over a periodically textured surface whose local normalized slip length takes the following
dimensionless expression:

λ(x, 0) = λa + 2λb cos (2πx), (63)
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where the two coefficients λa and λb are chosen to be such that λa � 2λb � 0.

We plot in Fig. 11 the values obtained for the normalized effective slip length b/λa by ap-
plying the BEM and XMFS in terms of the ratio λb/λa. Next, to validate the obtained results,
these values are compared in Fig. 11 with those provided by Asmolov et al.[32]. Perfect agree-
ment between these values can be observed in Fig. 11.

In Fig. 12, by varying the values of λa and λb in such a way that the ratio λb/λa is equal to
0.5, the normalized effective slip length b/Ŵ is plotted versus the ratio λa/Ŵ . It can be seen
from Fig. 12 that the results given by the XMFS and BEM coincide exactly with the analytical
ones derived by Asmolov et al.[32].
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Fig. 11 Normalized effective slip length
b/λa versus the ratio λb/λa of a
flat surface whose local slip length
is a cosinusoidal function λ(x) =
λa + 2λb cos (2πx) (color online)
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Fig. 12 Normalized effective slip length
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flat surface whose local slip length
is a cosinusoidal function λ(x) =
λa +2λb cos (2πx) with λb/λa = 0.5
(color online)

5.5 Shear-driven flow over a periodically corrugated surface
In the previous examples, the bottom surface was assumed to be rough at the micro- or

nano-scale, since this is an origin of the liquid slippage phenomenon. At the mesoscopic and
macroscopic levels, the interface between the wall and the fluid is taken to be flat and its
roughness is accounted for by a slip boundary condition characterized by an intrinsic slip length.
However, in many situations of practical importance, the solid surface may exhibit roughness at
meso-scale and the influence of this roughness on the the flow properties cannot be neglected.
This problem has been studied[33–39]. In the present example, the approach based on the BEM
is now applied to study the problem mentioned above to test the efficiency and robustness of our
approach. To this end, we consider a shear-driven flow over a periodically corrugated surface.
At the meso-scale, the periodically corrugated surface is modeled as a sinusoidal wave but, at
the macro-scale, this surface is considered to be flat. Our results will be compared with those
presented by Niavarani and Priezjev[36].

In this study, the bottom wall has a sinusoidal corrugation described by

y(x) = a sin (kx), (64)

where k = 2π denotes the wavenumber, and a is the corrugation amplitude. In Fig. 13, we show
the variation of the effective slip length in terms of wavenumber ka obtained by using the BEM
for the case where the local no-slip boundary condition is applied. These results are in good
agreement with those of Ref. [36]. Particularly, the normalized velocity profiles shown in Fig. 14
for different values of ka such as ka = 0, 0.7, and 1.12 coincide perfectly with those derived by
Niavarani and Priezjev[36].
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Fig. 13 Normalized effective slip length b
versus the wavenumber ka of a
non-slippery and sinusoidal surface
y(x) = a sin(kx) (color online)
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shear-driven flow over a non-
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0.7, and ka = 1.12 (color online)

The velocity profiles inside the valley obtained by the BEM and Niavarani and Priezjev[36]

are displayed in Fig. 15. It can be seen from this figure that the velocity profiles inside the
valley obtained by the BEM almost coincide with those provided in Ref. [36]. By setting the
wavenumber to 1.12 and the local slip length at the corrugated wall to 0.03, Fig. 16 shows the
velocity field and streamline of the shear-driven Stokes flow. We can observe in Fig. 16 that the
vortex appears at the bottom of the valley. Next, in order to study the effect of the corrugated
wall’s surface on the velocity field and streamline of the Stokes flow, by varying the values of
the local slip length such as λ0 = 0, λ0 = 0.03, λ0 = 0.06, and λ0 = 0.08, the corresponding
streamlines in the valley are plotted in Fig. 17. It can be seen from Fig. 17 that the size of vortex
inside the valley is reduced when the local slip length λ0 is augmented. This phenomenon is
completely in agreement with the observation about vortex provided in Ref. [36].
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Fig. 15 Local velocity profiles inside the valley at
x = 0.75 of a shear-driven flow over a si-
nusoidal surface y(x) = a sin(kx) for four
different cases with λ0 = 0, λ0 = 0.03,
λ0 = 0.06, and λ0 = 0.08 (color online)
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Fig. 16 Velocity field and stream-
line of a shear-driven fluid
flow over a sinusoidal surface
y(x) = a sin(kx) with the given
wavenumber ka = 1.12 and the
local slip length at the lower
wall λ0 = 0.03 (color online)
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Fig. 17 Streamlines in the valley of a shear-driven fluid flow over a sinusoidal surface y(x) = a sin(kx)
for four different values of the surfacial slip length λ0 = 0, λ0 = 0.03, λ0 = 0.06, and λ0 = 0.08
(color online)

We also plot in Figs. 18 and 19 the effective slip length b versus the local slip length λ0 for
two cases with

ka = 0.28, and ka = 1.12,

respectively. Our results are compared with those provided by Panzer et al.[34] and Niavarani
and Priezjev[36]. More precisely, for the case where the wavenumber ka is equal to 1.12, good
agreement between the values obtained by applying the BEM and Niavarani and Priezjev[36] is
observed. For the case where the wavenumber ka equals 0.28, the results provided by the BEM
is in perfect accord with those of Panzer et al.[34] and Niavarani and Priezjev[36] when λ0 � 1.
However, there is a small difference between them when the local slip length λ0 increases.
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Fig. 18 Normalized effective slip length b ver-
sus the surfacial slip length lg λ0 of
a sinusoidal surface y(x) = a sin(kx)
with a given wavenumber ka = 0.28
(color online)
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Fig. 19 Normalized effective slip length b ver-
sus the surfacial slip length lg λ0 of
a sinusoidal surface y(x) = a sin(kx)
with a given wavenumber ka = 1.12
(color online)
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6 Conclusions

In this work, two numerical approaches based on the MFS or XMFS and BEM are elaborated
to solve the problem of Stokes flow through a channel between two parallel walls of which one is
rough and the other is smooth and non-slippery. In particular, the interface between the rough
wall and fluid is homogenized so as to be replaced by an equivalent smooth slippery interface
characterized by an effective slip length. The elaborated approaches hold in the general case
where the distance between the two parallel walls can be arbitrary and the surface of one wall
can be arbitrarily rough. This is in contrast with most of the available analytical and semi-
analytical methods for the Stokes flow, which require that the channel thickness should be thin
or/and the microstructure of the rough surface should be periodic.

The methods proposed in this paper can be extended to the case where the Stokes flow is
produced through a 3D channel bounded by two parallel rough walls or a circular cylindrical
rough wall. This work will be done in near future.
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Appendix A Details for the matrix A and vector c

The matrix A can be written as a combination of sub-matrices as follows:

A =

2
66666664

A(1) A(2)

A(3) A(4)

A(5) A(6)

A(7) A(8)

3
77777775

2N×2N

, (A1)

where the components of the sub-matrices are given by8>>><
>>>:

A
(1)
ij =

(xi − ξj)
2

r2
ij

− ln rij + λi
(yi − ηj)

r2
ij

+ λi
2(xi − ξj)

2(yi − ηj)

r4
ij

,

A
(3)
ij =

(xi − ξj)(yi − ηj)

r2
ij

,

(A2)

8>>><
>>>:

A
(2)
il =

(xi − ξj)(yi − ηj)

r2
ij

− λi
(xi − ξj)

r2
ij

+ λi
2(xi − ξj)(yi − ηj)

2

r4
ij

,

A
(4)
ij =

(yi − ηj)
2

r2
ij

− ln rij

(A3)

with xi (xi, yi) ∈ ∂ΩB, i = 1, 2, · · · , NB, and j = 1, 2, · · · , N , and8>>>>>>>>><
>>>>>>>>>:

A
(5)
ij =

(xi − ξj)
2

r2
ij

− ln rij ,

A
(6)
ij = A

(7)
ij =

(xi − ξj)(yi − ηj)

r2
ij

,

A
(8)
ij =

(yi − ηj)
2

r2
ij

− ln rij

(A4)

with

xi(xi, yi) ∈ ∂ΩT, i = 1, 2, · · · , NT, j = 1, 2, · · · , N.

The expression of the vector c is given by

c = 4πχ
ˆ
λ1, λ2, · · · , λNB| {z }

1×NB

, 0, · · · , 0| {z }
1×NB

, 0, · · · , 0| {z }
1×2NT

˜T
, (A5)

where rij = ‖xi − ξj‖ denotes the distance between the collocation point xi and the source point ξj .

Appendix B Details of the matrix A′ and vector c′

We can rewrite the matrix A′ as follows:

A′ =

2
64A′(1) A′(2)

A′(3) A′(4)

3
75

2NB×2NB

, (B1)
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where the components of the sub-matrices are computed by

A
′(1)
ij = − ln rij +

(xi − ξj)
2

r2
ij

+ lnRij − (xi − ξj)
2

R2
ij

+
2h2

j

R2
ij

− 4h2
j (xi − ξj)

2

R4
ij

−2hj(yi + ηj − 2ω)

R2
ij

+
4hj(xi − ξj)

2(yi + ηj − 2ω)

R4
ij

+ λi
2(xi − ξj)

2(yi − ηj)

r4
ij

+λi
(yi − ηj)

r2
ij

− λi
(yi + ηj − 2ω)

R2
ij

− λi
2(xi − ξj)

2(yi + ηj − 2ω)

R4
ij

+λi
4h2
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R4
ij

− λi
16h2
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R6
ij
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R4
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R6
ij

, (B2)

A
′(2)
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r2
ij

− (xi − ξj)(yi + ηj − 2ω)
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ij

+4h2
j
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ij
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A
′(3)
ij =

(xi − ξj)(yi − ηj)

r2
ij

− (xi − ξj)(yi + ηj − 2ω)

R2
ij

− 4h2
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R4
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, (B4)

A
′(4)
ij = − ln rij +

(yi − ηj)
2

r2
ij

+ lnRij − (yi + ηj − 2ω)2

R2
ij

+
4h2

j (yi + ηj − 2ω)2

R4
ij

+
2hj(z + νl − 2ω)

R2
ij

− 4hj(z + νl − 2ω)3

R4
ij

− 2h2
j

R2
ij

, (B5)

where

rij = ‖xi − ξj‖ , Rij =
‚‚xi − ξ′

j

‚‚ , i, j = 1, 2, · · · , NB.

The vector c′ has the following expression:

c′ = 4πχ
ˆ
λ1, λ2, · · · , λNB| {z }

1×NB

, 0, · · · , 0| {z }
1×NB

˜T
. (B6)
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Appendix C Details of the matrix B and vector q

The matrix B can in general be written in the following form:

B =

2
666666664

B(1) B(2) B(3) B(4)

B(5) B(6) B(7) B(8)

B(9) B(10) B(11) B(12)

0 0 B(13) B(14)

3
777777775

4NB×4NB

, (C1)

where the sub-matrices of B are defined as follows:

B
(1)
ij =

1

4π

Z
Γj

Gxx(xj , x0i)dlj , B
(2)
ij =

1

4π

Z
Γj

Gyx(xj , x0i)dlj , (C2)

B
(3)
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4π

Z
Γj

(Txxx(xj , x0i)nx(xj) + Txxy(xj , x0i)ny(xj))dlj +
δij

2
, (C3)

B
(4)
ij =

1

4π

Z
Γj

(Tyxx(xj , x0i)nx(xj) + Tyxy(xj , x0i)ny(xj))dlj , (C4)

B
(5)
ij =

1

4π

Z
Γj

Gxy(xj , x0i)dlj , B
(6)
ij =

1

4π

Z
Γj

Gyy(xj , x0i)dlj , (C5)

B
(7)
ij =

1

4π

Z
Γj

(Txyx(xj , x0i)nx(xj) + Txyy(xj , x0i)ny(xj))dlj , (C6)

B
(8)
ij =

1

4π

Z
Γj

(Tyyx(xj , x0i)nx(xj) + Tyyy(xj , x0i)ny(xj))dlj +
δij

2
, (C7)

B
(9)
ij = λinyiδij , B

(10)
ij = −λinxiδij , B

(11)
ij = −nyiδij , (C8)

B
(12)
ij = nxiδij , B

(13)
ij = nxiδij , B

(14)
ij = nyiδij . (C9)

The expressions of the matrix provided in Eqs. (C2)–(C7) require the evaluation of the line integral
along the jth element. In this work, we distinguish the integral by considering the following two
different cases:

(i) Off-diagonal elements, i.e., i �= j

In this case, the evaluation points x0i or x′
0i lie outside the jth element. This means that the

distances rij and Rij do not vanish, so that the above mentioned integrals are regular. For this reason,
the standard Gaussian integration can be applied for their evaluation. This technique was described
in detail in Ref. [29].

(ii) Diagonal elements, i.e., i = j

In this case, the evaluation points x′
0i still lie outside the jth element. Consequently, the standard

Gaussian integration shall remain valid. However, the kernel functions of Rij may be nearly singular
when the channel height is very small. In addition, rij takes the value zero when the evaluation
points x0i and the integration point xj coincide. Thus, the integrals involving rij can be singular.
In the present work, the singular and near singular integrals have both been calculated analytically
to overcome these drawbacks. In the analytical integration technique, for simplicity, all the special
quantities should be taken into account, for example,

ry = 0, Ry = −2H, h = −H, nx = 0, ny = −1. (C10)
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For arbitrary flow,
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For periodic flow,
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Hk − ikLi

4

”
+ csch

“
Hk +

ikLi

4

””
sin

“kLi

4

”
, (C16)

B
(2)
ii = B

(4)
ii = B

(5)
ii = B

(7)
ii = 0, (C17)

B
(3)
ii = 4H arctan

“
coth(Hk) tan

“kLi

4

””
+

4H2k2 sin
“kLi

2

”
sinh (2Hk)“

cos
“kLi

2

”
− cosh (2Hk)

”2

−2Hk csch(Hk)
“
csch

“
Hk − ikLi

4

”
+ csch

“
Hk +

ikLi

4

””
sin

“kLi

4

”
, (C18)
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B
(6)
ii =

iπ2

3k
− ikL2

i

8
− Li

2
ln 4 + Li ln (1 − e

ikLi
2 ) − 2iLi2(e

ikLi
2 )

k
− Li

4
ln (e2Hk − e−

ikLi
2 )

−Li

2
ln

“
sin2

“kLi

4

””
− 1

2
iLiπ + iH ln (e2Hk − e−

ikLi
2 ) − iH ln (e2Hk − e

ikLi
2 )

−π

k
ln (1 + e−

ikLi
2 ) − Li

4
ln (e2Hk − e

ikLi
2 ) +

π

k
ln (1 + e

ikLi
2 ) − iH ln (1 − e2Hk− ikLi

2 )

+iH ln (1 − e2Hk+
ikLi

2 ) − Li

4
ln (1 − e2Hk+

ikLi
2 ) − Li

4
ln (1 − e2Hk− ikLi

2 )

+
Li

2
ln

“
1 + e4Hk − 2e2Hk cos

“kLi

2

””
− 4H arctan

“
coth (Hk) tan

“kLi

4

””

+iH ln
“
− i sinh

“
Hk − ikLi

4

””
+ iH ln

“
i sinh

“
Hk − ikLi

4

””

−iH ln
“
− i sinh

“
Hk +

ikLi

4

””
− iH ln

“
i sinh

“
Hk +

ikLi

4

””

− iLi2(e
−2Hk− ikLi

2 )

2k
− iLi2(e

2Hk− ikLi
2 )

2k
+

iLi2(e
−2Hk+

ikLi
2 )

2k
+

iLi2(e
2Hk+

ikLi
2 )

2k

−H2k csch(Hk)
“
csch

“
Hk − ikLi

4

”
+ csch

“
Hk +

ikLi

4

””
sin

“kLi

4

”
, (C19)

B
(8)
ii = 4H arctan

“
coth (Hk) tan

“kLi

4

””
+

4H2k2 sin
“kLi

2

”
sinh (2Hk)“

cos
“kLi

2

”
− cosh (2Hk)

”2

+2Hk csch(Hk)
“
csch

“
Hk − ikLi

4

”
+ csch

“
Hk +

ikLi

4

””
sin

“kLi

4

”
, (C20)

where Li denotes the length of ith element, i =
√−1, and Li2(z) stands for the poly-logarithm function

of order 2 and argument z.
The vector q is defined by

q = (0, · · · , 0| {z }
1×2NB

, λ1χ(n2
y1 − n2

x1), · · · , λNBχ(n2
yNB − n2

xNB )| {z }
1×NB

, 0, · · · , 0| {z }
1×NB

)T. (C21)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


