
Appl. Math. Mech. -Engl. Ed., 42(6), 771–786 (2021)

APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)

https://doi.org/10.1007/s10483-021-2725-7

Isogeometric nonlocal strain gradient quasi-three-dimensional plate
model for thermal postbuckling of porous functionally graded

microplates with central cutout with different shapes∗

Rui SONG1, S. SAHMANI2, B. SAFAEI3,†

1. Department of Civil and Architecture Engineering, Nanchang Institute

of Technology, Nanchang 330099, China;

2. Mechanical Rotating Equipment Department, Niroo Research

Institute (NRI), Tehran 14665-517, Iran;

3. Department of Mechanical Engineering, Eastern Mediterranean University,

Famagusta 99628, North Cyprus via Mersin 10, Turkey

(Received Nov. 24, 2020 / Revised May 1, 2021)

Abstract This study presents the size-dependent nonlinear thermal postbuckling char-
acteristics of a porous functionally graded material (PFGM) microplate with a central
cutout with various shapes using isogeometric numerical technique incorporating non-
uniform rational B-splines. To construct the proposed non-classical plate model, the
nonlocal strain gradient continuum elasticity is adopted on the basis of a hybrid quasi-
three-dimensional (3D) plate theory under through-thickness deformation conditions by
only four variables. By taking a refined power-law function into account in conjunction
with the Touloukian scheme, the temperature-porosity-dependent material properties are
extracted. With the aid of the assembled isogeometric-based finite element formulations,
nonlocal strain gradient thermal postbuckling curves are acquired for various boundary
conditions as well as geometrical and material parameters. It is portrayed that for both
size dependency types, by going deeper in the thermal postbuckling domain, gaps among
equilibrium curves associated with various small scale parameter values get lower, which
indicates that the pronounce of size effects reduces by going deeper in the thermal post-
buckling regime. Moreover, we observe that the central cutout effect on the temperature
rise associated with the thermal postbuckling behavior in the presence of the effect of
strain gradient size and absence of nonlocality is stronger compared with the case includ-
ing nonlocality in absence of the strain gradient small scale effect.
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1 Introduction

Fabrication of novel composite materials having desired porosity patterns is possible today
due to the fantastic advancements in materials science and technology, which can be widely
utilized in several fields of industry[1–4]. For example, Jia et al.[5] presented a structure de-
sign for a porous nitrogen-doped carbon structure for having an efficient alkaline hydrogen
reaction. Garćıa-Salaberri[6] introduced a composite continuum-network computational fluid
dynamics model to simulate convection diffusion and in anisotropic carbon-paper gas diffusion
layers as thin porous media applied in polymer electrolyte fuel cells. Cassio et al.[7] calibrated
silicon structure porosities to generate a micro-resonator with well defined refractive indices
for biosensors. Xie et al.[8] applied Gurtin-Murdoch theory of elasticity to study nonlinear
secondary behavior of functionally graded (FG) porous silicon nanobeams. Hwang et al.[9] fab-
ricated hierarchically porous structured polydimethylsiloxane composites to apply as flexible
capacitive pressure sensor having a wide measurement range. Lin et al.[10] proposed an an-
tibacterial and light smart titanium-containing composite with porosity having surfaces with
exhibited durably anti-adhesive properties.

For the determination of various small scale effects, they were required to be applied in
classical continuum elasticity. Hence, various non-classical continuum elasticity theories were
proposed[11–13]. In the past two decades, many research works have been performed to evaluate
size-dependent mechanical behaviors of small scaled structures[14–15]. Recently, Fan et al.[16]

for the first time proposed for all boundary condition types in axially loaded FG composite
microshells frequencies with lower semi-vertex angles, and showed that it was more signifi-
cant. Yi et al.[17] employed the classical shell theory and the Gurtin-Murdoch surface theory
of elasticity to investigate nonlinear large amplitude free vibrations in nanoshell structures.
Yang et al.[18] found that, nonlocality size effect reduced critical shortening and critical hy-
drostatic pressure of FG microshells. Yuan et al.[19] and Fan et al.[20] used surface elasticity
theories and nonlocal strain gradient of FG skew nanoplates based on the size-dependent shear
buckling behavior theory. Yuan et al.[21–22] explored couple stress-based conical shell models
for the analysis of size-dependent nonlinear oscillation and buckling behaviors of FG compos-
ite conical microshells. Li et al.[23] studied nonlinear FG composite nanoshell free vibrations
based on the Gurtin-Murdoch theory with the modal vibration interaction effect. Qin et al.[24]

extended their research works on the nonlinear vibrations of fiber-reinforced composite shells
with bolt loosening boundaries. Yang et al.[25] revealed that, increase in material gradient in-
dex changed material characteristics from ceramic-rich to metal-rich. Wang et al.[26] evaluated
the nonlinear postbuckling behavior of cylindrical nanopanels based on the Gurtin-Murdoch
elasticity theory when applying the axial compression and incorporating the size effect. Liu et
al.[27] evaluated the biaxial buckling and nonlocal vibrations of double-viscoelastic-functionally
graded material (FGM) nanoplates lying on viscoelastic media. Joshi et al.[28] used the strain
gradient elasticity to explore temperature effect on the vibrations of cracked Kirchhoff FGM
microplates. Radić and Jeremić[29] studied the buckling and vibrations of orthotropic double-
layered graphene sheets under hygrothermal loadings based on the differential form of nonlocal
theory of elasticity. Al-Shujairi and Mollamahmutoǧlu[30] developed a nonlocal strain gradient
beam model for the free vibration and buckling responses of FGM sandwich microbeams under
thermal conditions. Jamalpoor et al.[31] investigated the biaxial buckling and free oscillations
of double magneto-electro-elastic nanoplates in viscoelastic media. Hajmohammad et al.[32]

investigated the buckling and bending responses of FGM composite annular microplates with
piezoelectric facesheets based on the nonlocal continuum elasticity. Lu et al.[33] used the non-
local strain gradient theory and the surface theory of elasticity based on Mindlin and Kirchhoff
plate models for the analysis of nanoplate dynamic response. Sarafraz et al.[34] developed an
analytical mathematical solution for nonlocal strain gradient free vibrational response of post-
buckled laminated FGM microbeams. Sobhy and Zenkour[35] investigated inhomogeneity and
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porosity effects on the buckling and size-dependent oscillations of FGM composite quasi-three-
dimensional (3D) nanoplates. Lu et al.[36] constructed a nonlocal strain gradient shell model
considering surface stress effect for the free vibrations of FGM cylindrical nanoshell structures.
Lu et al.[37] developed a unified size-dependent plate model by the incorporation of strain gradi-
ent, nonlocality, and surface stress size dependencies. Fang et al.[38] developed a novel nonlocal
Euler-Bernoulli beam model to study the thermal buckling and vibrations of FGM composite
nanobeam structures under thermal conditions.

In the current research, on the basis of a hybrid-type quasi-3D higher-order shear deforma-
tion theory (HSDT), the nonlocal strain gradient nonlinear postbuckling of porous functionally
graded material (PFGM) microplates with a central cutout and various shapes under thermal
loads is evaluated. According to the Touloukian scheme and a refined power-law function,
temperature- and porosity-dependent material characteristics are derived. Then, isogeomet-
ric numerical solving process incorporating non-uniform rational B-splines is applied to obtain
nonlinear nonlocal strain gradient equilibrium paths.

2 Quasi-3D nonlocal strain gradient PFGM plate model

In this investigation, typical rectangular microplates with a central cutout prepared from a
PFGM are taken into consideration. For this purpose, three different kinds of porous distribu-
tion scheme are supposed as shown schematically in Fig. 1.
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Fig. 1 Porous FGM microplate with central cutout (color online)

Consequently, a porosity-dependent rule of mixture is employed to estimate the material
fulfilling the partition of unity in the following form[39]:
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in which Γ and k are the porosity and material property gradient indices, respectively. Sub-
scripts c and m denote ceramic and metal, respectively. Consequently, the effective Poisson’s
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ratio and Young’s modulus of PFGM microplates relevant to each kind of the porosity dispersion
scheme can be extracted based on the porosity-dependent rule of mixture as

E(z) = (Ec − Em)ϕ1(z) + Em − (Ec + Em)Γϕ2(z), (2a)
ν(z) = (νc − νm)ϕ1(z) + Em − (νc + νm)Γϕ2(z), (2b)

where

ϕ1(z) =
(1

2
+

z

h

)k

, ϕ2(z) =


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

1
2

for U-PFGM,

1
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− |z|

h
for O-PFGM,

−|z|
h

for X-PFGM.

(3)

In Fig. 2, dimensionless effective Young’s modulus (E(z)/Ec) variations through the thick-
ness of the plate and porosity index of PFGM microplates are plotted for various material
property gradient indices.
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Fig. 2 Variations of Young’s modulus for U-PFGM microplate with porosity index and through
thickness for various values of material property gradient index (color online)

By establishing a plate theory incorporating higher-order shear deformation expressions, the
displacement field is given as

Ux(x, y, z) = u(x, y)− zw,x(x, y) + f(z)(Ψx(x, y) + w,x(x, y)), (4a)
Uy(x, y, z) = v(x, y)− zw,y(x, y) + f(z)(Ψy(x, y) + w,y(x, y)), (4b)
Uz(x, y, z) = w(x, y), (4c)
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in which u, v, and w are mid-plane displacements along x-, y-, and z-axes, and Ψx, Ψy are
rotations about x- and y-axes, respectively. f(z) represents the transverse shear shape function
to consider the shear deformation.

By separating the transverse displacement variable into shear and bending components, and
implementing transverse normal shape function g(z) to take the normal strains through the
thickness into consideration, one has

Ux(x, y, z) = u(x, y)− zwb,x(x, y) + (f(z)− z)ws,x(x, y), (5a)
Uy(x, y, z) = v(x, y)− zwb,y + (f(z)− z)ws,y(x, y), (5b)
Uz(x, y, z) = wb(x, y) + (1 + g(z))ws(x, y), (5c)

where wb(x, y) and ws(x, y) denote, respectively, the bending and shear displacement variables.
By assuming a sinusoidal shear function for f(z), and a trigonometric shape function for g(z),
the hybrid-type quasi-3D higher-order shear deformation theory can be achieved. Thus, it is
supposed that

F (z) = f(z)− z = sin(πz/h)− z, (6a)
G(z) = 1 + g(z) = 1 + 5/(12π) cos(πz/h). (6b)

Now, strain-displacement equations including the von-Karman geometric nonlinearity can
be expressed based on the developed hybrid-type quasi-3D HSDT as follows:





εxx = u,x + (wb,x + ws,x)2/2− zwb,xx + F (z)ws,xx,

εyy = v,y + (wb,y + ws,y)2/2− zwb,yy + F (z)ws,yy,

εzz = G,z(z)ws,

γxy = u,y + v,x + (wb,x + ws,x)(wb,y + ws,y)− 2zwb,xy + 2F (z)ws,xy,

γxz = (F,z(z) + G(z))ws,x,

γyz = (F,z(z) + G(z))ws,y.

(7)

Accordingly, the stress-strain constitutive equations are stated as




σxx

σyy

σzz

τxy

τyz

τxz




=




Q11(z) Q12(z) Q13(z) 0 0 0
Q12(z) Q22(z) Q23(z) 0 0 0
Q13(z) Q23(z) Q33(z) 0 0 0

0 0 0 Q44(z) 0 0
0 0 0 0 Q55(z) 0
0 0 0 0 0 Q66(z)










εxx

εyy

εzz

γxy

γyz

γxz



−




εTH
xx

εTH
yy

εTH
zz

0
0
0







, (8)

where




Q11(z) = Q22(z) = Q33(z) =
(1− ν(z))E(z)

(1− 2ν(z))(1 + ν(z))
,

Q12(z) = Q13(z) = Q23(z) =
ν(z)E(z)

(1− 2ν(z))(1 + ν(z))
,

Q44(z) = Q55(z) = Q66(z) =
E(z)

2(1 + ν(z))
,

εTH
xx = εTH

yy = εTH
zz = α(z)∆T.

(9)
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Based on the nonlocal strain gradient continuum elasticity, the total stress tensor is expressed
as[40]

Φij = σij −∇σ∗ijm, (10)

where the classical and higher-order stresses are given, respectively, as

σij =
∫

V

χ1(x′, x, e1)CijklεkldV, (11a)

σ∗ijm = l2
∫

V

χ2(x′, x, e1)CijklεkldV, (11b)

in which e1 and e2 are nonlocal parameters taking into account the nonlocal stress type of
size dependency. Also l indicates strain gradient microstructural size effect. Moreover, the
components of strain, strain gradient, and elastic stiffness are represented as εkl, εkl,m, and
Cijkl, respectively. Based upon the nonlocal strain gradient continuum elasticity, the two kernel
functions of χ1(x′, x, e1) and χ2(x′, x, e2) are supposed to satisfy the corresponding conditions
defined by Eringen[41] as

σij − e2
1(σij,xx + σij,yy) = Cijklεkl, (12a)

σ∗ijm − e2
2(σ

∗
ijm,xx + σ∗ijm,yy) = l2Cijklεkl,m. (12b)

Consequently, the nonlocal strain gradient elasticity-based generalized constitutive equation
can be expressed as

(
1− e2

1

( ∂2

∂x2
+

∂2

∂y2

))(
1− e2

1

( ∂2

∂x2
+

∂2

∂y2

))
Φij

=
(
1− e2

1

( ∂2

∂x2
+

∂2

∂y2

))
Cijklεkl − l2

(
1− e2

2

( ∂2

∂x2
+

∂2

∂y2

))
Cijkl

∂2εkl

∂x2
. (13)

With the assumption of e1 = e2 = e, one has

Φij − e2(Φij,xx + Φij,yy) = Cijklεkl − l2Cijkl(εkl,xx + εkl,yy). (14)

Accordingly, strain energy variations for a PFGM microplate modeled via the nonlocal strain
gradient hybrid-type quasi-3D higher-order shear deformation theory can be expressed as

δΠS =
∫

S

∫ h
2

−h
2

ΦijδεijdzdS. (15)

Based on the principle of virtual work, and through substituting equations (7) and (8) into
equation (15), one has

∫

S

(δ(PT
b )ξbPb − l2δ(∇2PT

b )ξbPb + δ(PT
s )ξsPs − l2δ(∇2PT

s )ξsPs − δ(PT
b )ZTH

+ l2δ(∇2PT
b )ZTH)dS = 0, (16)
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in which




Pb =




u,x + (wb,x + ws,x)2/2 −wb,xx ws,xx 0
v,y + (wb,y + ws,y)2/2 −wb,xx ws,yy 0

u,y + v,x + (wb,x + ws,x)(wb,y + ws,y) −2wb,xy 2ws,xy 0
0 0 0 ws




T

,

ξb =




Ab Bb Cb Eb

Bb Db Fb Gb

Cb Fb Hb Kb

Eb Gb Kb Jb


 , Ps =

(
ws,x

ws,y

)
,

ZTH =




NTH

MTH
b

MTH
s

RTH


 , ξs =

∫ h
2

−h
2

(F,z(z) + G(z))2
(

Q44(z) 0
0 Q55(z)

)
dz,

(17)

where




(Ab, Bb, Cb) =
∫ h

2

−h
2

(1, z, F (z))




Q11(z) Q12(z) 0 Q13(z)
Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0
Q31(z) Q32(z) 0 Q33(z)


 dz,

(Db, Eb, Fb, Gb) =
∫ h

2

−h
2

(
z2,

dG(z)
dz

, zF (z), z
dG(z)

dz

)

·




Q11(z) Q12(z) 0 Q13(z)
Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0
Q31(z) Q32(z) 0 Q33(z)


 dz,

(Hb,Kb, Jb) =
∫ h

2

−h
2

(
F 2(z), F (z)

dG(z)
dz

,
(dG(z)

dz

)2)

·




Q11(z) Q12(z) 0 Q13(z)
Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0
Q31(z) Q32(z) 0 Q33(z)


 dz,

(NTH,MTH
b ,MTH

s , RTH) = ∆T

∫ h
2

−h
2

(
1, z, F (z),

dG(z)
dz

)

·




Q11(z) Q12(z) 0 Q13(z)
Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0
Q31(z) Q32(z) 0 Q33(z)


 α(z)dz.

(18)

3 Isogeometric solution methodology

Recently, isogeometric numerical solution process has become very popular[42–43]. Within a
one-dimensional domain, the non-decreasing form of associated knot vector is expressed as

K(ξ) = (ξ1, ξ2, ξ3, · · · , ξm+n+1), (19)

where m and n in order stand for basis function number and B-spline basis function order. In
addition, for each ith knot, 0 6 ξi 6 1 condition has to be satisfied. As a consequence, the
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B-spline basis function is written based on the recursive Cox-de Boor equation as follows:

Xi,0(ξ) =
{

1, ξi 6 ξ < ξi+1,
0, else, (20a)

Xi,n(ξ) =
ξ − ξi

ξi+n − ξi
Xi,n−1(ξ) +

ξi+n+1 − ξ

ξi+n+1 − ξi+1
Xi+1,n−1(ξ). (20b)

In a two-dimensional domain, the tensor product of two basis functions can be utilized to
achieve the associated B-spline basis function as follows:

Fp,q
i,j (ξ, η) =

m∑

i=1

Ji(x, y)Pi, (21)

where Pi denote the control points within the bi-directional control net, and

Ji(ξ, η) =
Xi,p(ξ)Xj,q(η)Wi,j

m∑
i=1

m∑
j=1

Xi,p(ξ)Xj,q(η)Wi,j

, (22)

in which Xi,p(ξ) and Xj,q(η) represent the shape functions of orders p and q along ξ- and η-
directions, respectively. In addition, Wi,j is relevant weight coefficient. Thereafter, K(η) knot
vector is employed to extract shape function Xj,q(η) derivation. In Fig. 3, the cubic elements
considered for square microplates in the presence and absence of a central cutout are shown.

L L L da

a

L L L

(a) Microplate without central cutout (b) Microplate with square cutout (c) Microplate with circular cutout

Fig. 3 Cubic elements for square microplate structures with geometrical parameters: (a) microplate
without central cutout, (b) microplate with square cutout, (c) microplate with circular cutout
(color online)

4 Numerical results and discussion

Herein, dimensionless nonlocal strain gradient porosity-dependent thermal postbuckling be-
haviors of the thermally loaded PFGM microplates with and without a central cutout with
different shapes are analyzed. The bottom and top surfaces of PFGM microplates are assumed
to be metal-rich and ceramic-rich, respectively. In accordance with the Touloukian scheme,
the temperature-dependent of Young’s modulus (Pa) and thermal expansion coefficient (K−1)
corresponding to each phase can be obtained[44].

Also, one has νc = 0.24 for the ceramic phase, νm = 0.35 for metal phase[45]. Also, the
following geometric parameters are considered h = 20 µm, L1 = 50h, and L1/L2 = 1.

Firstly, the validity of the developed solution method is evaluated. To do so, by neglecting
the terms associated with the modified couple stress continuum elasticity, critical temperature
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parameter of ΨTH = α∆T × 103 is calculated for simply supported isotropic square plates with
different length to thickness ratios, and a comparison is made with the findings of Zhao et
al.[46] and Zhang et al.[47]. As shown in Table 1, great agreement is achieved confirming solving
process accuracy.

Table 1 Comparison of the critical temperature parameter (ΨTH = α∆T×103) for simply supported
isotropic square plates with different length to thickness ratios

L/h Zhang et al.[47] Zhao et al.[46] Current study

10 11.99 11.83 11.97
20 3.12 3.09 3.12
100 0.13 0.13 0.13

Figures 4 and 5 illustrate the classical and nonlocal strain gradient porosity-dependent equi-
librium paths for the thermal postbuckling behavior of temperature-dependent U-PFGM mi-
croplates without any central cutout for various nonlocal and strain gradient values, respectively.
“CCCC” and “SSSS” denote the fully clamped and the fully simply supported, respectively.
By comparing nonlocal strain gradient equilibrium paths with their classical counterparts, we
deduced that the strain gradient type of size dependency enhances critical buckling tempera-
ture rise, and these patterns become greater for higher strain gradient values. However, the
nonlocality acts in an opposite manner reducing thermal buckling stiffness.
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Fig. 4 Dimensionless classical and nonlocal strain gradient nonlinear thermal postbuckling response
of U-PFGM microplates for different nonlocal parameter values when l = 0 µm, Γ = 0.4,
k = 0.5, and a/L = d/L = 0 (color online)
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Fig. 5 Dimensionless classical and nonlocal strain gradient nonlinear thermal postbuckling response
of U-PFGM microplates for different strain gradient parameter values when e = 0 µm, Γ = 0.4,
k = 0.5, and a/L = d/L = 0 (color online)

Tables 2 and 3 present classical and nonlocal strain gradient temperature rises within the
postbuckling regime of temperature-dependent PFGM microplates without any central cutout
for various maximum deflections, for various values of material gradient index and nonlocal and
strain gradient parameters, respectively. The values given as percentage in parentheses indicate
the differences between nonlocal strain gradient temperature rise and its classical counterpart.
It is concluded that for a certain maximum plate deflection, temperature rise for O-PFGM
porosity dispersion pattern is smaller than that for U-PFGM pattern, and the latter one is
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smaller than that obtained for X-PFGM pattern. Also, we witness that for higher material
gradient index values, the contributions of both strain gradient size dependency and nonlocality
in PFGM microplate thermal postbuckling are intensified. Furthermore, we deduce that for a
certain maximum deflection value within thermal postbuckling regime, increase in temperature
rise due to strain gradient size effect is more significant than the reduction in corresponding
temperature rise due to nonlocality.

The classical and nonlocal strain gradient equilibrium paths for the thermal postbuckling
of temperature-dependent PFGM microplates without a central cutout are demonstrated in

Table 2 Classical and nonlocal strain gradient postbuckling temperature rises of PFGM microplates
with different porosity dispersion patterns in various material property gradient indices and
nonlocal parameters (Γ = 0.4, l = 0 µm)

k w/h e/µm U-PFGM O-PFGM X-PFGM

SSSS boundary conditions

0.5

0 180.57 168.10 191.28

0.6 60 179.03 (−0.85%) 166.67 (−0.85%) 189.62 (−0.86%)

150 171.53 (−5.01%) 159.69 (−5.00%) 181.54 (−5.09%)

0 220.87 205.65 228.51

1.2 60 219.67 (−0.54%) 204.53 (−0.53%) 227.14 (−0.60%)

150 215.88 (−2.26%) 201.02 (−2.23%) 222.06 (−2.82%)

2

0 141.23 131.48 149.74

0.6 60 140.02 (−0.86%) 130.35 (−0.86%) 148.44 (−0.87%)

150 134.01 (−5.11%) 124.76 (−5.10%) 141.99 (−5.18%)

0 169.48 157.80 175.88

1.2 60 168.42 (−0.62%) 156.81 (−0.61%) 174.71 (−0.67%)

150 163.91 (−3.28%) 152.64 (−3.23%) 169.48 (−3.64%)

CCCC boundary conditions

0.5

0 424.13 394.83 451.46

0.6 60 420.34 (−0.89%) 391.31 (−0.89%) 447.40 (−0.90%)

150 401.70 (−5.29%) 373.95 (−5.28%) 427.39 (−5.33%)

0 469.35 436.97 493.23

1.2 60 465.94 (−0.73%) 433.79 (−0.72%) 489.49 (−0.76%)

150 451.46 (−3.81%) 420.33 (−3.78%) 472.86 (−4.13%)

2

0 332.97 309.96 354.58

0.6 60 329.98 (−0.90%) 307.19 (−0.90%) 351.38 (−0.91%)

150 315.19 (−5.34%) 293.42 (−5.33%) 335.54 (−5.37%)

0 364.66 339.50 383.91

1.2 60 361.85 (−0.77%) 336.88 (−0.76%) 380.86 (−0.80%)

150 348.74 (−4.37%) 324.70 (−4.32%) 366.38 (−4.56%)
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Fig. 6 Dimensionless nonlocal strain gradient nonlinear thermal postbuckling response of PFGM
microplates for different porosity indices when e = l = 60 µm, k = 0.5, and a/L = d/L = 0
(color online)
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Table 3 Classical and nonlocal strain gradient postbuckling temperature rises of PFGM microplates
with different porosity dispersion patterns in various material property gradient indices and
strain gradient parameters (Γ = 0.4, l = 0 µm)

k w/h e/µm U-PFGM O-PFGM X-PFGM

SSSS boundary conditions

0.5

0 180.57 168.10 191.28

0.6 60 182.13 (+0.86%) 169.55 (+0.86%) 192.95 (+0.87%)

150 190.35 (+5.42%) 177.21 (+5.41%) 201.76 (+5.48%)

0 220.87 205.65 228.51

1.2 60 222.15 (+0.58%) 206.81 (+0.56%) 229.96 (+0.63%)

150 229.58 (+3.94%) 213.70 (+3.90%) 238.12 (+4.20%)

2

0 141.23 131.48 149.74

0.6 60 142.47 (+0.87%) 132.63 (+0.87%) 151.06 (+0.88%)

150 148.96 (+5.47%) 138.67 (+5.46%) 158.01 (+5.52%)

0 169.48 157.80 175.88

1.2 60 170.57 (+0.65%) 158.81 (+0.64%) 177.09 (+0.69%)

150 176.64 (+4.23%) 164.48 (+4.20%) 183.70 (+4.44%)

CCCC boundary conditions

0.5

0 424.13 394.83 451.46

0.6 60 427.96 (+0.91%) 398.40 (+0.90%) 455.56 (+0.92%)

150 448.12 (+5.65%) 417.17 (+5.63%) 477.12 (+5.69%)

0 469.35 436.97 493.23

1.2 60 472.87 (+0.75%) 440.24 (+0.74%) 497.08 (+0.78%)

150 483.77 (+4.86%) 458.17 (+4.84%) 517.92 (+5.00%)

2

0 332.97 309.96 354.58

0.6 60 336.01 (+0.92%) 312.79 (+0.92%) 357.82 (+0.93%)

150 351.90 (+5.69%) 327.60 (+5.68%) 374.85 (+5.73%)

0 364.66 339.50 383.91

1.2 60 367.53 (+0.79%) 342.15 (+0.77%) 387.02 (+0.81%)

150 382.95 (+5.01%) 356.51 (+4.97%) 403.64 (+5.14%)
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Fig. 7 Dimensionless classical and nonlocal strain gradient nonlinear thermal postbuckling response
of PFGM microplates in absence of nonlocal size effect for different porosity dispersion patterns
when e = 0 µm, Γ = 0.4, k = 0.5, and a/L = d/L = 0 (color online)

Figs. 6 and 7 for various values of porosity dispersion pattern and nonlocal and strain gradient
parameters, respectively. We concluded that the gap between thermal postbuckling equilibrium
paths for different porosity dispersion patterns becomes a bit higher under strain gradient size
effect and in the absence of nonlocality. However, by considering nonlocality and ignoring strain
gradient size dependency, the gap gets lower.

In order to represent the effect of an existing central cutout on nonlocal strain gradient ther-
mal postbuckling characteristics of microplates, the temperature rise associated with different
maximum deflections within the postbuckling regime and various small scale parameters are
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Table 4 Influence of the central cutout on the nonlocal strain gradient postbuckling temperature
rises of U-PFGM microplates with SSSS boundary conditions (k = 0.5, Γ = 0.4)

e, l/µm w/h a/L ∆T d/L ∆T

0.5

0 165.64 0 165.64

0.1 147.15 (−11.16%) 0.1 154.08 (−6.97%)

0.2 140.92 (−14.92%) 0.2 147.86 (−10.73%)

0.3 131.92 (−20.36%) 0.3 138.86 (−16.17%)

e = 150 µm,

1

0 195.88 0 195.88

l = 0 µm 0.1 183.74 (−6.20%) 0.1 187.66 (−4.19%)

0.2 182.96 (−6.59%) 0.2 186.87 (−4.60%)

0.3 180.61 (−7.79%) 0.3 184.53 (−5.78%)

1.5

0 257.68 0 257.68

0.1 258.51 (+0.32%) 0.1 256.25 (−0.55%)

0.2 268.85 (+4.34%) 0.2 266.69 (+3.46%)

0.3 280.10 (+8.70%) 0.3 277.84 (+7.82%)

0.5

0 188.46 0 188.46

0.1 166.92 (−11.43%) 0.1 175.03 (−7.12%)

0.2 159.50 (−15.37%) 0.2 167.61 (−11.06%)

0.3 148.83 (−21.03%) 0.3 156.94 (−16.72%)

e = 0 µm,

1

0 215.10 0 215.10

l = 150 µm 0.1 199.15 (−7.41%) 0.1 204.61 (−4.88%)

0.2 196.53 (−8.63%) 0.2 201.98 (−6.10%)

0.3 191.72 (−10.87%) 0.3 197.17 (−8.33%)

1.5

0 261.27 0 261.27

0.1 255.02 (−2.39%) 0.1 255.85 (−2.07%)

0.2 260.70 (−0.22%) 0.2 261.54 (+0.10%)

0.3 266.05 (+1.83%) 0.3 266.89 (+2.15%)

Table 5 Influence of the central cutout on the nonlocal strain gradient postbuckling temperature
rises of U-PFGM microplates with CCCC boundary conditions (k = 0.5, Γ = 0.4)

e, l/µm w/h a/L ∆T d/L ∆T

0.5

0 392.68 0 392.68

0.1 345.04 (−12.13%) 0.1 363.17 (−7.51%)

0.2 327.72 (−16.54%) 0.2 345.85 (−11.93%)

0.3 303.14 (−22.80%) 0.3 321.27 (−18.18%)

e = 150 µm,

1

0 426.62 0 426.62

l = 0 µm 0.1 386.11 (−9.49%) 0.1 400.84 (−6.04%)

0.2 374.89 (−12.12%) 0.2 389.61 (−8.67%)

0.3 357.78 (−16.14%) 0.3 372.51 (−12.68%)

1.5

0 495.95 0 495.95

0.1 470.00 (−5.23%) 0.1 477.80 (−3.66%)

0.2 471.26 (−4.98%) 0.2 479.06 (−3.40%)

0.3 469.40 (−5.35%) 0.3 477.20 (−3.78%)

0.5

0 448.72 0 448.72

0.1 393.71 (−12.26%) 0.1 414.68 (−7.58%)

0.2 373.52 (−16.76%) 0.2 394.49 (−12.09%)

0.3 344.94 (−23.13%) 0.3 365.91 (−18.45%)

e = 0 µm,

1

0 478.62 0 478.62

l = 150 µm 0.1 429.88 (−10.18%) 0.1 447.86 (−6.42%)

0.2 415.07 (−13.28%) 0.2 433.04 (−9.52%)

0.3 393.06 (−17.87%) 0.3 411.05 (−14.12%)

1.5

0 530.42 0 530.42

0.1 492.56 (−7.14%) 0.1 505.36 (−4.72%)

0.2 487.07 (−8.17%) 0.2 499.88 (−5.76%)

0.3 476.47 (−10.17%) 0.3 489.27 (−7.78%)
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tabulated in Tables 4 and 5, corresponding to SSSS and CCCC edge supports, respectively.
The value given as percentage in the parentheses indicates differences between temperature
rises with and without a central cutout. As can be seen, by assuming higher maximum deflec-
tion values (deeper regions of postbuckling domain), the trend is changed specially for a bigger
central cutout. Also, it is found that the reduction of PFGM microplate thermal postbuckling
strength caused by a square central cutout is more than that of a circular one. Moreover, the
central cutout effect on temperature rise associated with the thermal postbuckling behavior in
the presence of strain gradient size effect and in the absence of nonlocality is stronger than the
case including nonlocality in absence of strain gradient size dependency.

5 Conclusions

The aim of the current investigation is to evaluate the porosity-dependent nonlinear thermal
postbuckling behavior of porous FGM microplates under microstructural strain gradient size
dependency and stress-driven nonlocal size effect. To this end, non-uniform rational B-splines
based isogeometric solution methodology is used together with the Touloukian scheme and the
refined power-law function. It was witnessed that the thermal postbuckling strength of the
microplate reduces with the increase in material property gradient index value which results
in a lower critical temperature rise as well as a higher associated deflection. Also, it is seen
that load-deflection variation slope gets lower by moving from the ceramic-rich to metal-rich
microplate. In addition, it was shown that at a certain maximum deflection value within the
thermal postbuckling regime, the increase of associated temperature rise due to strain gradient
size effect is more significant than the reduction in that due to nonlocality.
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