
Appl. Math. Mech. -Engl. Ed., 42(2), 309–316 (2021)

APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)

https://doi.org/10.1007/s10483-021-2703-9

Moore-Gibson-Thompson theory for thermoelastic dielectrics∗
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Abstract We consider the system of equations determining the linear thermoelastic
deformations of dielectrics within the recently called Moore-Gibson-Thompson (MGT)
theory. First, we obtain the system of equations for such a case. Second, we consider
the case of a rigid solid and show the existence and the exponential decay of solutions.
Third, we consider the thermoelastic case and obtain the existence and the stability of
the solutions. Exponential decay of solutions in the one-dimensional case is also recalled.
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1 Introduction

The interaction of electromagnetic fields with thermoelastic dielectrics has been investigated
for a long time. Several works have been devoted to this theory. During the recent years, major
interest has arisen to understand the so-called Moore-Gibson-Thompson (MGT) thermoelastic-
ity, and several contributions have been proposed for this recent theory. Our work is concerned
with the linear theory of thermoelastic dielectrics based on the MGT theory. The equations for
the heat conduction and electric field are based on the MGT theory. To this end, our initial
point is the work of Ciarletta and Ieşan[1] concerning thermoviscoelastic dielectrics which is
also based on the idea of the invariance of the entropy under time reversal[2].

The invariance of the infinitesimal entropy production under time reversal was studied by
Borghesani and Morro[3–4], but we here start with the equations proposed by Ciarletta and
Ieşan[1], also including the elastic deformations. Taking them as the initial point, we obtain
the system of equations for the thermoelastic dielectrics of the MGT type. It is worth saying
that recently significant interest has been developed to understand the MGT thermoelastic
theories[5–14]. However, we focus our attention on the material with a center of symmetry.
Therefore, the tensors of odd order are not considered. It is clear that the general case could be
also obtained; however, in this note, we want to emphasize the new consequences proposed by
the MGT-structure in the case of dielectrics which is different from the usual one. In our case,
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we obtain that the electric intensity is present in the equations of heat and electric fields, but
not of the displacement. Nevertheless, the thermo-electric coupling leads to a nice problem. It is
the coupling of a hyperbolic partial differential equation with an ordinary differential equation.
The contribution of this paper is double. On one side, we extend the dielectric materials to the
problems of the MGT type[13]. On the other side, we propose, from the mathematical point of
view, an energy for the coupling in such a way that it defines a norm which is equivalent to the
classical one in the Sobolev space W 1,2.

The remainder of this paper is organized as follows. Section 2 is devoted to obtaining the
system of equations. The rigid solid case is considered in Section 3. Existence and exponential
decay of solutions are obtained. The general system of the MGT thermoelasticity of dielectric
materials is studied in Section 4. Existence of solutions and stability are also shown.

2 Basic equations

The system of equations for the thermoviscoelastic dielectrics for materials with a center of
symmetry is determined by the following evolution equations[1]:

ρüi = tij,j ,

T0η̇ = qi,i,

di,i = 0.

We recall that, in general, the tensor multiplying the history of the electric displacement in the
heat flux vector and the tensor multiplying the history of the gradient of temperature in the last
constitutive equation are equal except for a constant tensor. However, as a first approximation
to this problem, we assume that they agree. Then, the constitutive equations are

tij =
∫ t

∞

(
Gijmn(t − s)u̇m,n(s) − Bij(t − s)θ̇(s)

)
ds,

η =
∫ t

∞

(
Bij(t − s)u̇i,j(s) + A(t − s)θ̇(s)

)
ds,

qi =
∫ t

∞

(
Qji(t − s)Ėj(s) + Kij(t − s)θ,j(s)

)
ds,

di =
∫ t

∞

(
γji(t − s)Ėj(s) + Qij(t − s)θ,j(s)

)
ds,

where ρ is the mass density, ui is the displacement vector, tij is the stress tensor, T0 is the refer-
ence temperature which is assumed to be equal to one to simplify the calculations, η is the en-
tropy, qi is the heat flux vector, di is the electric displacement, Ei = −φ,i is the electric intensity,
φ is the electric potential, θ is the temperature shift, and Gijmn(x, s), Bij(x, s), A(x, s), Qij(x, s),
Kij(x, s), and γij(x, s) are the constitutive functions. It is known that

Gijmn = Gmnij , Kij = Kji, γij = γji.

We consider the following constitutive functions:

Gijmn(x, s) = G∗
ijmn(x), Bij(x, s) = B∗

ij(x), A(x, s) = A∗(x),

Kij(x, s) = K∗
ij(x) + (τ−1Kij(x) − K∗

ij(x)) exp(−τ−1s),

γij(x, s) = γ∗
ij(x) + (τ−1γij(x) − γ∗

ij(x)) exp(−τ−1s),

Qij(x, s) = Q∗
ij(x) + (τ−1Qij(x) − Q∗

ij(x)) exp(−τ−1s),
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where τ is a positive and constant parameter.
We remark that G∗

ijmn is usually called the elasticity tensor, B∗
ij is related to the thermo-

mechanical expansion, A∗ is the thermal capacity, Kij is the thermal conductivity, K∗
ij is usually

called the rate conductivity, γij and γ∗
ij are related to the electric permittivity, Q∗

ij and Qij

determine the thermo-electric coupling, and τ is a relaxation parameter.
From the previous assumptions, we obtain

η̇ + τ η̈ = B∗
ij(u̇i,j + τüi,j) + A∗(θ̇ + τ θ̈),

qi + τ q̇i = Q∗
jiEj + QjiĖj + K∗

ijα,j + Kijθ,j ,

where

α(x, t) = α0(x) +
∫ t

0

θ(x, s)ds

is the thermal displacement.
In a similar way, we find

di + τ ḋi = γ∗
jiEj + γjiĖj + Q∗

ijα,j + Qijθ,i.

Substituting these expressions into the evolution equations yields the following system of
field equations:

ρüi =
(
G∗

ijmnum,n − B∗
ijθ

)
,j
,

A∗(θ̇ + τ θ̈) = −B∗
ij(u̇i,j + τüi,j) +

(
Q∗

jiEj + QjiĖj + K∗
ijα,j + Kijθ,j

)
,i
,(

γ∗
jiEj + γjiĖj + Q∗

ijα,j + Qijθ,j

)
,i

= 0.

In the case that the electric potential vanishes on the boundary, the system is written as
follows:

ρüi =
(
G∗

ijmnum,n − B∗
ij(θ + τ θ̇)

)
,j
,

A∗(θ̇ + τ θ̈) = −B∗
ij u̇i,j +

(
K∗

ijα,j + Kijθ,j − Q∗
jiφ,j − Qjiφ̇,j

)
,i
,

φ̇ = Φ−1
((

Q∗
ijα,j + Qijθ,j

)
,i
− γ∗

jiφj

)
,i

)
,

where Φ is the isomorphism between W 1,2
0 ∩ W 2,2 and L2 determined by Φ(f) = (γijf,j),i.

The existence of this isomorphism is guaranteed whenever γij is positive definite and suitable
boundary conditions are assumed.

Working on this general case is a little bit cumbersome. Therefore, in order to make the
analysis clear and transparent, we focus on the isotropic and homogeneous case, but we want
to emphasize that the analysis could be done in a similar way. In this situation, our system of
equations can be written as

ρüi = μ∗ui,jj + (λ∗ + μ∗)uj,ji − β∗(θ,i + τ θ̇,i), (1)

A∗(θ̇ + τ θ̈) = −β∗u̇i,i + k∗Δα + kΔθ − Q∗Δφ − QΔF (α, θ, φ), (2)

φ̇ = F (α, θ, φ), (3)

where
F (α, θ, φ) = γ−1(Q∗α + Qθ − γ∗φ).

It is worth noting that the energy equation in this case is

E(t) +
∫ t

0

D(s)ds = E(0),
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where

E(t) =
1
2

∫
B

(
ρu̇iu̇i + μ∗ui,jui,j + (λ∗ + μ∗)ui,iuj,j

)
dv

+
1
2

∫
B

(
A∗(θ + τ θ̇)2 + k∗|∇(α + τθ)|2 + τ k̄|∇θ|2 + γ∗|∇(φ + τF )|2 + τ γ̄|∇F |2)dv

−
∫

B

(
Q∗∇(α + τθ)∇(φ + τF ) + τQ∇θ∇F

)
dv,

and

D(t) =
∫

B

(
k̄|∇θ|2 + γ|∇F |2 − 2Q∇θ∇F

)
dv.

Here, we have used the notations

k = k − τk∗ > 0, γ = γ − τγ∗ > 0, Q = Q − τQ∗.

From now on, we assume

ρ > 0, μ∗ > 0, λ∗ + μ∗ > 0, k∗ > 0, γ∗ > 0, k > 0, γ > 0,

k∗γ∗ > (Q∗)2, kγ > (Q)2.

3 Rigid solid

In this section, we study the problem determined on a rigid solid. Our system of equations
is

A∗(θ̇ + τ θ̈) = (k∗ − γ−1QQ∗)Δα + (k − γ−1Q2)Δθ − (Q∗ − γ−1Qγ)Δφ,

φ̇ = γ−1(Q∗α + Qθ − γ∗φ).

Assume

α(x, t) = φ(x, t) = 0, x ∈ ∂B, t > 0, (4)
α(x, 0) = α0(x), θ(x, 0) = θ0(x), x ∈ B, (5)

θ̇(x, 0) = ξ0(x), φ(x, 0) = φ0(x), x ∈ B. (6)

We consider our problem on a suitable Hilbert space

H = W 1,2
0 (B) × W 1,2

0 (B) × L2(B) × W 1,2
0 (B),

and for every (α, θ, ξ, φ), (α∗, θ∗, ξ∗, φ∗) ∈ H, we define the inner product

〈(α, θ, ξ, φ), (α∗, θ∗, ξ∗, φ∗)〉 =
1
2

∫
B

(
A∗(θ + τξ)(θ∗ + τξ∗) + k∗∇(α + τθ)∇(α∗ + τθ∗)

+ τk∇θ∇θ∗ + γ∗∇(φ + τG)∇(φ∗ + τG∗) + τγ∇G∇G∗

− Q∗(∇(α + τθ)∇(φ∗ + τG∗) + ∇(α∗ + τθ∗)∇(φ∗ + τG∗))

− τQ(∇θ∇G∗ + ∇θ∗∇G)
)
dv,

where the overline over the elements of the Hilbert space means the conjugated complex, and

G(α, θ, φ) = γ−1(Q∗α + Qθ − γ∗φ).
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Under the assumptions proposed at the end of the previous section, the norm induced by the
above inner product is equivalent to the classical one defined on the Hilbert space H. We can
write our problem as

dU

dt
= AU, U(0) = U0, (7)

where U = (α, θ, ξ, φ), U0 = (α0, θ0, ξ0, φ0), and the matrix operator is

A=

⎛
⎜⎜⎝

0 I 0 0
0 0 I 0

(τA∗)−1(k∗−γ−1QQ∗)Δ (τA∗)−1(k−γ−1Q2)Δ −τ−1 (τA∗)−1(γ−1Qγ∗−Q∗)Δ
γ−1Q∗ γ−1Q 0 −γ−1γ∗

⎞
⎟⎟⎠ .

We note that the domain of the operator is

{(α, θ, ξ, φ) ∈ H, ξ ∈ W 1,2
0 , (k∗ − γ−1QQ∗)Δα + (k − γ−1Q2)Δθ − (Q∗ − γ−1Qγ∗)Δφ ∈ L2}.

Obviously, this is a dense subspace. On the other hand, for every U = (α, θ, ξ, φ) in the domain
of the operator, we have

Re〈AU, U〉 = −1
2

∫
B

(
k|∇θ|2 + γ|∇G|2 − Q(∇θ∇G + ∇θ∇G)

)
dv. (8)

In view of the assumptions, we see that this is equal to or less than zero.
Our next step is to prove that zero belongs to the resolvent of the operator. To this end,

let us consider L = (l1, l2, l3, l4) ∈ H. We will prove that there exists U = (α, θ, ξ, φ) in the
domain of the operator such that AU = L. Writing this equation in coordinates, we obtain

θ = l1, ξ = l2, Q∗α + Qθ − γ∗φ = γl4,

and
(k∗ − γ−1QQ∗)Δα + (k − γ−1Q2)Δθ − A∗ξ − (Q∗ − γ−1Qγ∗)Δφ = τA∗l3.

We obtain the expressions for θ and ξ. We also have

φ = (γ∗)−1(Q∗α + Ql1 − γl4).

It then follows that we obtain an equation for the variable α which can be easily solved because
k∗γ∗ > (Q∗)2. Moreover, we can obtain the regularity conditions, and the following result is
found.

Theorem 1 The operator A produces a contractive semigroup.
We note that, using the above result, we conclude the existence, uniqueness, and continuous

dependence of the solutions to our problem.
In the rest of the section, we will prove the exponential decay of the energy under some

additional conditions. In order to show it, we recall the following characterization[15].
Theorem 2 Let S(t) = {eAt}t�0 be a C0-semigroup of contractions defined in a Hilbert

space. Therefore, S(t) is exponentially stable if and only if the imaginary axis is contained in
the resolvent of A and

lim
|λ|→∞

‖(iλI − A)−1‖L(H) < ∞. (9)

Now, we follow the arguments already used in the book of Liu and Zheng[15]. First, we
assume that the imaginary axis and the spectrum have a non-empty intersection. We conclude
that there exist a sequence of real numbers (of course converging to a real number) λn with
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λn → 
 and |λn| < |
| and a sequence of corresponding vectors Un = (αn, θn, ξn, φn) in the
domain of A and with unit norm, such that

‖(iλnI − A)Un‖ → 0.

It then follows

iλnαn − θn → 0 in W 1,2, (10)

iλnθn − ξn → 0 in W 1,2, (11)

iτA∗λnξn − (k∗ − γ−1QQ∗)Δαn − (k − γ−1Q2)Δ + A∗ξn

− (τA∗)−1(γ−1Qγ∗ − Q∗)Δφn → 0 in L2, (12)

iγλnφn − Q∗αn − Qθn + γ∗φn → 0 in W 1,2. (13)

In view of the dissipation, we see θn, φn → 0 in W 1,2. Therefore, we also have αn → 0 in W 1,2.
If we now consider the convergence (12) multiplied by λ−1

n ξn, after the use of the integration
by parts, we obtain that ξn → 0 in L2. This contradicts the condition that the elements of the
sequence have unit norm. Therefore, we can conclude that iR ⊂ ρ(A).

Now, we want to prove that the asymptotic condition (9) also holds. In the case that this
condition does not hold, there exist a sequence of real numbers λn with |λn| → ∞ and another
sequence of unit norm vectors Un = (αn, θn, ξn, φn) in D(A) in such a way that (10)–(13) hold.
Therefore, we can proceed in an analogous way as we show that the imaginary axis is contained
in the resolvent of the operator, because the key point is to note that the sequence λn does not
tend to zero. Thus, it leads to a contradiction, and the condition (9) is also true.

We have proved the following.
Theorem 3 Let us assume that the previous conditions hold. Then, the operator A pro-

duces an exponentially stable semigroup; that is, we can find two positive constants M and ω
such that

||U(t)|| � M exp(−ωt)||U(0)||
for every U(0) ∈ D(A).

4 Thermoelastic case

In this section, we prove the existence of solutions to the problem determined by the general
system (1)–(3). Apart from the initial and boundary conditions (4)–(5), we also impose in this
section that

ui(x, 0) = ui0(x), u̇i(x, 0) = vi0(x), x ∈ B, (14)

and
ui(x, t) = 0, x ∈ ∂B, t > 0. (15)

In what follows, we will show an existence theorem for the solutions to the problem de-
termined by the system (1)–(3) with conditions (4)–(5) and (14)–(15). The existence will be
shown in a suitable Hilbert space. In this section, we will work with the space

H = W 1,2
0 (B) × L2(B) × W 1,2

0 (B) × W 1,2
0 (B) × L2(B) × W 1,2

0 (B),

and, for every (u, v, α, θ, ξ, φ), (u∗, v∗, α∗, θ∗, ξ∗, φ∗) ∈ H, we define the inner product

〈(u, v, α, θ, ξ, φ), (u∗, v∗, α∗, θ∗, ξ∗, φ∗)〉 =
1
2

∫
B

(
ρviv

∗
i + μ∗ui,ju

∗
i,j + (λ∗ + μ∗)ui,iu

∗
j,j

+ A∗(θ + τξ)(θ∗ + τξ∗) + k∗∇(α + τθ)∇(α∗ + τθ∗)
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+τk∇θ∇θ∗+γ∗∇(φ+τG)∇(φ∗ + τG∗)+τγ∇G∇G∗

−Q∗(∇(α+τθ)∇(φ∗+τG∗)+∇(α∗+τθ∗)∇(φ∗+τG∗))

− τQ(∇θ∇G∗ + ∇θ∗∇G)
)
dv.

Again, our problem can be written in the form of system (7), where U = (u, v, α, θ, ξ, φ) and
U0 = (u0, v0, α0, θ0, ξ0, φ0), whenever we define the operator

A

⎛
⎜⎜⎜⎜⎜⎜⎝

ui

vi

α
θ
ξ
φ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

vi

ρ−1(μ∗ui,jj + (λ∗ + μ∗)uj,ji − β∗(θ,i + τξ,i))
θ
ξ

(A∗)−1(−β∗vi,i + τ−1(M1Δα + M2Δθ + M3Δφ)) − τ−1ξ
γ−1(Q∗α + Qβ − γ∗φ)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where
M1 = k∗ − γ−1QQ∗, M2 = k − γ−1Q2, M3 = −(Q∗ − γ−1Qγ∗).

The domain of the operator is given by the elements in the Hilbert space H such that

u ∈ W 2,2, v ∈ W 1,2
0 , ξ ∈ W 1,2

0 , M1Δα + M2Δθ + M3Δφ ∈ L2.

Therefore, it is a dense subspace. We have that the relation (8) also holds in this case. That
is, we find

Re〈AU, U〉 = −1
2

∫
B

(
k|∇θ|2 + γ|∇G|2 − Q(∇θ∇G + ∇θ∇G)

)
dv.

Thus, to prove the existence of a semigroup of linear operators, it is sufficient to show that
zero belongs to the resolvent of the operator. We consider L = (n1, n2, l1, l2, l3, l4) in the
Hilbert space, and we need to show the existence of an element in the domain of the operator
such that AU = L. It leads to the following system:

v = n1, θ = l1, ξ = l2, Q∗α + Qθ − γφ = γl4,

− β∗vi,i + M1Δα + M2Δθ + M3Δφ − A∗ξ = τA∗l3,
μ∗ui,jj + (λ∗ + μ∗)uj,ji − β∗(θ,i + τξ,i) = ρn2i.

As in the case of the rigid solid, we can also obtain φ.
We can find the expressions of v, θ, and ξ, and our system reduces to

(
k∗ − (Q∗)2

γ∗

)
Δα = F1, μ∗ui,jj + (λ∗ + μ∗)uj,ji = F2i.

This system admits a solution in the domain of the operator and we obtain the following.
Theorem 4 The operator A generates a contractive semigroup.
We may conclude the stability of solutions as well as the well-posedness in the three-

dimensional case.
The exponential decay of solutions in the general case cannot be expected. We should find

that the behavior is similar to the usual one for the MGT thermoelasticity; however, it is
obvious that the combination of the arguments proposed in this section, with those used in the
previous one, would allow us to prove, in the one-dimensional setting, the exponential decay of
solutions. Anyway, we do not give the details in order to shorten the length of the paper.
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