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Abstract A model for deep bed filtration of a polydisperse suspension with small
impurities in a porous medium is considered. Different suspended particles move with
the same velocity as the carrier water and get blocked in the pore throats due to the
size-exclusion mechanism of particle retention. A solution of the model in the form of a
traveling wave is obtained. The global exact solution for a multiparticle filtration with
one high concentration and several low concentrations of suspended particles is obtained
in an explicit form. The analytic solutions for a bidisperse suspension with large and small
particles are constructed. The profiles of the retained small particles change monotony
with time. The global asymptotics for the filtration of a polydisperse suspension with
small kinetic rates is constructed in the whole filtration zone.
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1 Introduction

The filtration of colloids, suspensions, and nanoparticles in a porous medium is important
in many areas of science and technology. The movement of small particles in a porous rock can
significantly reduce the productivity of oil and artesian wells[1–2]. The disposal of industrial
wastes in aquifers can lead to environment contamination[3–4]. The filtration of liquid industrial
waste and municipal wastewater serves to purify water[5–6].

In a classical filtration model, the identical solid particles are transported by a carrier fluid
in a porous medium. The capture of particles by pores is due to electrical and gravitational
forces, diffusion, viscosity and so on[7]. The long-term filtration process, which takes place in
the entire porous medium, not just in its surface layer, is called deep bed filtration[8]. If the
particle and pore sizes are close, the main retention mechanism is size-exclusion[2,4,9]. The
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particles pass freely through large pores, and get stuck in the pore throats, which are smaller
than the diameter of the particles. It is assumed that a retained particle cannot be detached
from the pore wall by other particles or a fluid flux[10–11].

The simplest one-dimensional (1D) macroscopic model for the filtration of a monodisperse
suspension in a porous medium includes the equation for the mass balance of suspended and
retained particles and the kinetic equation of deposit growth[12–14]. At a low concentration
of particles in the suspension, the deposit growth rate is proportional to the first degree of
the suspended particle concentration. The proportionality coefficient in the kinetic equation is
called the filtration function. In the simplest case, it is assumed to be constant, and is called
the filtration coefficient. In the general case, the filtration function varies during the particle
retention, and depends on the concentration of the retained particles. In most cases, a linear
filtration function is considered, which is called Langmuir’s blocking function[15–16].

Many complex population balance models taking into account size distributions of pores
and particles are formulated in Refs. [9] and [17]. The random walk equations and modified
Boltzmann models represent other stochastic approaches to deep bed filtration[18–19]. In many
practical applications, the suspension contains solid particles of various types and sizes, which
interact differently with the porous medium. If different particles do not interact with each
other and have constant filtration coefficients, the problem can be reduced to a model of a
monodisperse suspension with a variable filtration function[20]. The competition of different
suspended particles for the deposition in small pores determines the nonlinear interaction of
the solid particles of the suspension[4,21]. Experiments show that size distribution significantly
affects the particle transport and the formation of deposits[22–23].

To describe the simultaneous action of several mechanisms of particle capture in a porous
medium, e.g., size-exclusion, attachment, and bridging, various macroscopic models are used
with one or several filtration functions and a linear or nonlinear concentration function[2,24–25].
Books[16,26] and papers[8,12,19,27–31] contain numerous exact solutions for deep bed filtration
problems. If the exact solutions are unknown, asymptotics is constructed[32–33]. In Refs. [34]
and [35], a bidisperse suspension filtration model with proportional linear filtration functions
was studied. However, the problem with various filtration functions was not considered.

In this paper, a new filtration model for the polydisperse suspension in a porous medium
is considered. The phenomenological model for the filtration of a polydisperse suspension is
proposed in Section 2. The governing equations for the filtration problem are given in Section 3.
The traveling wave solution is obtained in Section 4, while the exact solution for the filtration of
a monodisperse suspension with small impurities is obtained in Section 5. Section 6 is devoted
to the local exact solutions and the asymptotics for a model of bidisperse suspension. In
Section 7, the global asymptotics for the filtration of an aqueous solution with small impurities
and a polydisperse suspension with small kinetic rates are constructed. Examples and discussion
are presented in Section 8, and the main results are summarized in Section 9 finally.

2 Model assumptions

In the model, we assume that the fluid transporting suspension particles is incompressible
and Newtonian and the main mechanism of particle capture is size-exclusion. The flow is
single-phase, and the injected suspension contains the same water that is initially in the porous
medium. In large-scale approximation, we ignore the diffusion and dispersion of the suspended
particles[1,36–37]. The mathematical model of deep bed filtration is a nonlinear hyperbolic
system of two first-order equations as follows[2,16,19,37]:

∂C

∂t
+

∂C

∂x
+

∂S

∂t
= 0, (1)
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∂S

∂t
= Λ(S)C, (2)

where Λ(S) is the filtration function, C(x, t) is the dimensionless concentration of the suspended
particles, and S(x, t) is the dimensionless concentration of the retained particles.

Initially, the porous medium does not contain any suspended or retained particles. Then, a
suspension with a constant concentration of suspended particles is injected at the inlet of the
porous medium. The boundary and initial conditions are as follows:

x = 0 : C = 1; t = 0 : C = 0, S = 0. (3)

In many practical problems, the suspension contains different types of particles. Figure 1
shows the diagram for the size exclusion (straining), where small particles pass through larger
pores without being captured while large particles are captured in the throats of smaller pores.
Consider a 1D macroscopic size-exclusion model for filtering a suspension with particles of n
different types moving in a porous medium with the same velocity. The particles can vary in
shape, size, density, etc. Each type of particles satisfies the mass balance equation and the
equation for the kinetic rate of the deposits. Suppose that all particles can clog small pores,
and the filtration functions depend on a linear combination S of partial deposits Λi(S) =
Λi(α1S1 + α2S2 + α3S3 + · · · + αnSn) (i = 1, 2, 3, · · · , n). This model determines the transfer
and retention of various types of solid particles and their competition for small pores.

Fig. 1 Diagram for the suspension-colloidal transport and retention of particles in a porous medium

3 Governing equations

In the domain Ω = {0 < x < 1, t > 0}, n different types of suspended and retained particle
concentrations Ci(x, t) and Si(x, t) satisfy the following system[26–27]:

∂Ci

∂t
+

∂Ci

∂x
+

∂Si

∂t
= 0, (4)

∂Si

∂t
= Λi(S)Ci, (5)

where the total deposit is

S = α1S1 + α2S2 + α3S3 + · · · + αnSn, (6)

and the filtration functions Λi(S) and the constants αi are positive.
The initial and boundary conditions at the inlet x = 0 of the porous medium and at the

initial time t = 0 provide a unique solution in the domain Ω = {0 � x � 1, t � 0}, i.e.,

x = 0 : Ci = pi, pi > 0; (7)

t = 0 : Ci = 0, Si = 0. (8)
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The concentration front of the suspended and retained particles moves with v = 1 and
divides the domain Ω into two subdomains, i.e., Ω = {0 < x < 1, t > x} and Ω = {0 < x <
1, 0 < t < x}. In Ω0, the system (4)–(8) has a zero solution. In ΩS , the solution is positive.
Since Eqs. (7) and (8) do not match at the origin, Ci(x, t) has a strong discontinuity on the
concentration front, which is the characteristic straight line t = x, while Si(x, t) is continuous
in the whole Ω and has a weak discontinuity on the concentration front.

On the concentration front,

Si|t=x = 0, i = 1, 2, 3, · · · , n. (9)

In ΩS , substitute Eq. (9) into Eq. (8). Then, the problem (4)–(8) is equivalent to the Goursat
problem (4)–(7), (9).

With the characteristic variables (Riemann variables)

τ = t − x, x = x (10)

in the domain Ω′
S = {0 < x < 1, τ > 0}, the system (4)–(7), (9) takes the form as follows:

∂Ci

∂x
+

∂Si

∂τ
= 0, (11)

∂Si

∂τ
= Λi(S)Ci (12)

with the conditions

x = 0 : Ci = pi; (13)

τ = 0 : Si = 0. (14)

4 Traveling wave solution

Consider the traveling wave solution for the system (4) and (5). Let Ci = Ci(w), Si = Si(w),
and w = x−ut, where u is the unknown wave velocity. The boundary conditions for the system
(4) and (5) at infinity are set as follows:

w → +∞ : Ci → 0, Si → 0, (15)

w → −∞ : Ci → pi, Si → S0, S0 > 0. (16)

Then, Eq. (4) takes the form

−uC′
i + C′

i − uS′
i = 0. (17)

The integration of Eq. (17) over w and the use of the condition (15) yield

−uCi + Ci − uSi = 0. (18)

From Eq. (18), we have

Ci =
uSi

1 − u
. (19)

Substituting Eq. (18) into Eq. (6) yields

S =
1 − u

u

n∑
i=1

αiCi. (20)
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Substituting Eq. (16) into Eq. (20) yields

S0 =
1 − u

u
P, P =

n∑
i=1

αipi. (21)

From Eq. (21), we have

u =
P

S0 + P
. (22)

The traveling wave velocity u satisfies Eq. (4) for the jump from the traveling wave state at
the minus infinity C−

i and S−
i to the state at the plus infinity C+

i and S+
i , i.e.,

[Ci + Si]u = [Ci], (23)

where the symbol [Δ] corresponds to the jump of the value from the state ahead of the shock
Δ+ to that behind Δ−, and [Δ] = Δ+−Δ−. Substituting Eqs. (15) and (16) into Eq. (23) yields
Eq. (22) for the jump speed.

From Eqs. (16), (18), and (22), we have

w → ∞ : Si → Si,0 =
pi

P
Si. (24)

Then, Eq. (5) takes the form

−uS′
i = Λi(S)Ci. (25)

With Eqs. (19) and (22), we can transform Eq. (25) as follows:

S′
i +

S0 + P

S0
Λi(S)Si = 0. (26)

If all filtration functions Λi(S) are positive on the interval [0, S0], Eq. (26) shows that the
solutions Si monotonously decrease. Under the additional conditions Si|w=w0 = S0

i (0 < S0
i <

pi

P S0), a unique solution of the system (26) can be determined at an arbitrary set point.
If some of the filtration functions have positive roots S∗

i smaller than S0 and Λi(S) = 0 for
S > S∗

i , the corresponding solutions are constant, i.e., Si = Si,0, for w < wi,0 and decrease to
zero for w > wi,0, where S(wi,0) = S∗

i . If at least one of the equations S(w) = S∗
i does not

have a solution, the corresponding solution to Eq. (5) is constant and Eqs. (15) and (16) cannot
be satisfied.

Similar to Ref. [38], some transport and deposit characteristics of the particles can be ap-
proximately described by the traveling waves. If the capture mechanisms of all types of particles
are engaged, all partial deposits Si (i = 1, 2, 3, · · · , n) grow over time. If, at a certain level of the
total deposit S = S0, the capture of some types of particles ceases, the total deposit continues
to grow due to the growth of other partial deposits. The particles lacking a capture mechanism
are freely transported by the carrier fluid and do not precipitate.

5 Exact solution for the filtration of a monodisperse suspension with small
impurities

A suspension with the identical suspended particles prepared in the laboratory inevitably
contains various impurities. Assume that the filtration function of the main particles is linear.
Since the content of impurities in the suspension is small, their filtration functions can be
considered constant.
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Consider the linear-constant model of deep bed filtration for n-size particles with filtration
functions, i.e.,

Λ1(S) = α − bS, S = S1 + α2S2 + α3S3 + · · · + αnSn; Λi = λi, i = 2, 3, 4, · · · , n, (27)

where a, b, αi, and λi are positive constants.
In the domain Ω′

S , Eqs. (11) and (12) take the forms

∂C1

∂x
+

∂S1

∂τ
= 0, (28)

∂S1

∂τ
= (a − b(S1 + α2S2 + α3S3 + · · · + αnSn))C1, (29)

∂Ci

∂x
+

∂Si

∂τ
= 0, (30)

∂Si

∂τ
= λiCi (31)

with the conditions in Eqs. (13) and (14).
In Ω′

S , the solution of the system (28)–(31) with the conditions in Eqs. (13) and (14) is

C1 =
p1Q(x)

p1 + e−bQ(x)τ (Q(x)eax − p1)
, (32)

S1 =
Q′(x)
bQ(x)

+
bQ′(x)τ(Q(x)eax − p1) − eax(Q′(x) + aQ(x))

b(p1ebp1Q(x)τ + Q(x)eax − p1)

+
a

b
− τ

n∑
k=2

αkλkpke−λkx, (33)

Ci = pie−λix, Si = λipie−λixτ, i = 2, 3, 4, · · · , n. (34)

In the domain ΩS , the solution is

C1 =
p1Q(x)

p1 + e−bQ(x)(t−x)(Q(x)eax − p1)
, (35)

S1 =
Q′(x)
bQ(x)

+
bQ′(x)(Q(x)eax − p1)(t − x) − eax(Q′(x) + aQ(x))

b(p1ebp1Q(x)(t−x) + Q(x)eax − p1)

+
a

b
− Q′(x)(t − x), (36)

Ci = pie−λix, Si = λipie−λix(t − x), i = 2, 3, 4, · · · , n. (37)

The suspended concentration C1 of the main particles increases with time and tends to Q(x).
The retained concentrations of small particles grow indefinitely, and the retained concentration
of the main particles decreases with a long time. Therefore, Eqs. (35)–(37) are only applicable
for a limited time.

Consider the time applicability of the model with one linear filtration function and several
constant filtration coefficients. The assumption of non-separation of retained particles from the
porous medium frame means an increase in the concentration of the deposit with the increase
in t. According to Eq. (29), Λ1(S) > 0. The linear function Λ1(S) = a − bS decreases as the
total deposit S(x, t) increases. At a certain time t = t0, the linear filtration function Λ1(S)
becomes zero. Therefore, the model is not applicable for t > t0.

Since the filtration is the most intense at the entrance of the porous medium, the time
boundary t0 is determined at x = 0 by

Λ1(S)|x=0 = ae−bp2
1t − A

p1
(1 − e−bp2

1t) = 0, A =
n∑

k=2

αkpkλk. (38)
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From Eq. (38), we have

t0 =
1

bp2
1

ln
(
1 +

ap1

A

)
. (39)

The linear-constant model is applicable for the period 0 < t < t0.
For a monodisperse suspension, the case of a linear-constant filtration function with two

independent mechanisms of particle capture is studied in Ref. [25].

6 Exact and asymptotic solutions for bidisperse suspension with large and
small particles

6.1 Mathematical model
Consider the filtration of a suspension with particles of two sizes, i.e., large and small.

Suppose that the only particle capture mechanism is size-exclusion with the following Langmuir
filtration functions:

Λi(S) =

{
λi(Smax,i − S), 0 � S � Smax,i,

0, S > Smax,i.
(40)

In the domain Ω̃S = {0 < x < 1, τ > 0}, a macroscopic model is set by

∂Ci

∂x
+

∂Si

∂τ
= 0, (41)

∂Si

∂τ
= Λi(S)Ci (42)

with the following boundary and initial conditions:

x = 0 : C1 = p1, C2 = p2, (43)
τ = 0 : S1 = 0, S2 = 0. (44)

In the above equations, S = S1 + S2, index 1 means large particles, while index 2 means small
particles. The ratio of large and small particles is determined by their concentrations at the
porous medium inlet. For example, if p1 > p2, large particles prevail in the suspension. Smax,j

corresponds to the maximum amount of retained particles when all pores with sizes smaller
than the particle diameter dj are clogged.

Since larger particles can block more pores, Smax,1 > Smax,2.

At t = 0, S = 0, and the capture probability of large particles is greater than that of small
particles. Thus, λ1Smax,1 > λ2Smax,2.

For a fixed x, the total deposit S(x, t) increases and tends to Smax,1 as t tends to infinity.
Therefore, the Langmuir filtration function of large particles is smooth, and can be given by
Λ1(S) = λ1(Smax,1 − S).

At τ = τm(x), the total deposit S reaches the value Smax,2, and the filtration function Λ2(S)
changes from linear dependence to zero in Eq. (40).

Since the particle capture starts from the inlet, the deposit grows faster for smaller x and
the function τ = τm(x) is increasing. Following Ref. [25], the domain Ω̃S can be divided into
three domains, i.e., Ω1 = {0 < x < 1, 0 � τ � τ0}, Ω2 = {0 < x < 1, τ0 � τ � τm(x)}, and
Ω3 = {0 < x < 1, τ � τm(x)}, where τ0 = τm(0).

In the domains Ω1 and Ω2, the filtration function of small particles is linear. In the domain
Ω3, it is zero. Domains Ω1 and Ω3 are adjacent to the inlet x = 0, while domain Ω2 is separated
from the inlet.
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6.2 Exact solution at the inlet x= 0
At the porous medium inlet x = 0, the filtration function Λ2(S) changes from linear to zero

in Eq. (40) at the moment

τ0 =
1

λ1p1 + λ2p2
ln

λ1Smax,1p1 + λ2Smax,2p2

λ1p1(Smax,1 − Smax,2)
. (45)

The total and partial deposit concentrations for τ � τ0 are determined by

S(0, τ) =
λ1Smax,1p1 + λ2Smax,2p2

λ1p1 + λ2p2
(1 − e−(λ1p1+λ2p2)τ ), (46)

S1(0, τ) =
λ1p1

λ1p1 + λ2p2

(
λ2p2(Smax,1 − Smax,2)τ

+
λ1Smax,1p1 + λ2Smax,2p2

λ1p1 + λ2p2
(1 − e−(λ1p1+λ2p2)τ )

)
, (47)

S2(0, τ) =
λ2p2

λ1p1 + λ2p2

(
− λ1p1(Smax,1 − Smax,2)τ

+
λ1Smax,1p1 + λ2Smax,2p2

λ1p1 + λ2p2
(1 − e−(λ1p1+λ2p2)τ )

)
. (48)

For τ > τ0, the total and partial deposit concentrations are given by

S(0, τ) = Smax,1 − (Smax,1 − Smax,2)e−λ1p1τ , (49)

S1(0, τ) = Smax,1 − S2(0, τ0) − (Smax,1 − Smax,2)e−λ1p1τ , (50)
S2(0, τ) = S2(0, τ0). (51)

When τ � τ0, both partial deposits grow with time. When τ > τ0, the retained concentration
S2 does not change, and thus small particles do not clog the pores at the inlet. The retained
concentration S1 of large particles always grows and tends to Smax,1 − S2(0, τ0) at τ → ∞.
6.3 Exact solution on the concentration front τ= 0

According to the condition (44), the filtration functions are constant on the concentration
front, i.e., Λi(S) = λiSmax,i. Substitute Eq. (42) into Eq. (41) yields

∂Ci

∂x
+ λiSmax,iCi = 0. (52)

The solution to Eq. (52) with the conditions in Eq. (43) is

Ci = pie−λiSmax,ix, i = 1, 2, (53)

which determines the suspended concentrations of large and small particles on the concentration
front τ = 0. The concentrations Ci (i = 1, 2) decrease with increasing x, since behind the front,
some of the small and large particles are retained in the pores.
6.4 Asymptotics of the filtration problem for a bidisperse suspension

Consider a bidisperse suspension, where Smax,1 � Smax,2. In Ω̃S , the asymptotics of
Eqs. (41)–(44) is constructed with respect to a small parameter Smax,2. From Eq. (42), it fol-
lows that the partial deposit concentration S2 is much smaller than S1 and the total deposit
concentration S ≈ S1. Therefore, the main asymptotic terms can be obtained from

∂C1

∂x
+

∂S1

∂τ
= 0,

∂S1

∂τ
= λ1(Smax,1 − S1)C1. (54)

The solution to Eq. (54) with the conditions in Eqs. (43) and (44) is

C1(x, τ) =
p1eλ1p1τ

eλ1p1τ + eλ1Smax,1x − 1
, S1(x, τ) =

Smax,1(eλ1p1τ − 1)
eλ1p1τ + eλ1Smax,1x − 1

. (55)
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The main asymptotic term of the boundary τ = τm(x) between Ω2 and Ω3 is determined by
S1(x, τ) = Smax,2. From the second formula in Eq. (55), we have

τm(x) =
1

λ1p1
ln

Smax,1 + Smax,2(eλ1Smax,1x − 1)
Smax,1 − Smax,2

. (56)

From the system (41) and (42) and the conditions (43) and (44), we have

C2(x, τ) = p2 + O(Smax,2), (57)

S2(x, τ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ2p2

λ1p1

Smax,1eλ1Smax,1x

eλ1Smax,1x − 1
ln

eλ1p1τeλ1Smax,1x

eλ1p1τ + eλ1Smax,1x − 1
− λ2p2(Smax,1 − Smax,2)τ

+ O(Smax,2)3, τ � τm(x),

S2(x, τm(x)) =
λ2p2

λ1p1

(Smax,2)2

Smax,1
eλ1Smax,1x + O(Smax,2)3, τ > τm(x).

(58)

According to Eq. (58), the retained concentration of small particles stabilizes and does not
depend on time at τ > τm(x). Near the porous medium inlet, large particles intensively block
the pores and prevent small particles from precipitating. With the increase in the distance x
to the inlet, the suspended concentration C1 of large particles decreases rapidly, and the small
particle deposit S2 increases.

7 Asymptotic solutions

7.1 Asymptotics for the filtration of an aqueous solution with small impurities
Consider the filtration of water with a small portion of different suspended impurities in a

porous medium.
Suppose that the functions Λi(S) are smooth and can be expanded in powers of S, i.e.,

Λi(S) = λ0
i + λ1

i S + λ2
i S

2 + O(S3), (59)

where

λ0
i = Λi(0), λ1

i =
∂Λi(0)

∂S
, λ2

i =
1
2

∂2Λi(0)
∂S2

, i = 1, 2, 3, · · · , n. (60)

Consider the condition (13) with small injected concentrations at the inlet x = 0,

pi = εqi, qi > 0, (61)

where ε is a small positive parameter.
The asymptotics of the system (11)–(14) is constructed as follows:

Si = εs1
i + ε2s2

i + ε3s3
i + O(ε4), Ci = εc1

i + ε2c2
i + ε3c3

i + O(ε4), i = 1, 2, 3, · · · , n. (62)

Denote

S1 =
n∑

m=1

αms1
m, S2 =

n∑
m=1

αms2
m.

The appropriate expansions of the total deposit and the filtration functions in powers of ε are

S = εS1 + ε2S2 + O(ε3), (63)

Λi(S) = λ0
i + ελ1

i S
1 + ε2(λ1

i S
2 + λ2

i (S
1)2) + O(ε3). (64)
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Substituting Eqs. (62)–(64) into Eqs. (11) and (12) and the equation of the terms with identical
powers of the small parameter ε yields the recurrent system of linear ordinary differential
equations as follows:

∂c1
i

∂x
+ λ0

i c
1
i = 0,

∂s1
i

∂τ
= λ0

i c
1
i , (65)

∂c2
i

∂x
+ λ0

i c
2
i + λ1

i S
1c1

i = 0,
∂s2

i

∂τ
= λ0

i c
2
i + λ1

i S
1c1

i , (66)⎧⎪⎪⎨⎪⎪⎩
∂c3

i

∂x
+ λ0

i c
3
i + λ1

i S
1c2

i + c1
i (λ

1
i S

2 + λ2
i (S

1)2) = 0,

∂s3
i

∂τ
= λ0

i c
3
i + λ1

i S
1c2

i + c1
i (λ

1
i S

2 + λ2
i (S

1)2).
(67)

The boundary and initial conditions for this system with Eqs. (13) and (14) are

c1
i |x=0 = qi, c2

i |x=0 = c3
i |x=0 = 0, sj

i |τ=0 = 0, j = 1, 2, 3, i = 1, 2, 3, · · · , n. (68)

The terms of the asymptotic expansions obtained by the successive solution to Eqs. (65)–(67)
with the conditions in Eq. (68) are

c1
i = qie−λ0

i x, s1
i = qiλ

0
i e

−λ0
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The substitution of Eqs. (69)–(71) into Eq. (62) and the inverse change of variables in Eq. (10)
give the asymptotics of the problem (4)–(8) in ΩS . The asymptotic solution is applicable when
ετ � 1. For small positive ε, the asymptotics is close to the exact solution on a large time
interval.
7.2 Asymptotic solution for suspension in a porous medium with small kinetic

rates
If the pore sizes are generally larger than the particle size, the retention of the suspended

particles is rare and the filtration functions are small.
Consider the system (4)–(8) with small filtration functions as follows:

Λi(S) = εΛ′
i(S), i = 1, 2, 3, · · · , n. (72)

Assume that the functions Λ′
i(S) have the form (59).

In the domain ΩS , the asymptotics is constructed as follows:

Si = εs1
i + ε2s2

i + ε3s3
i +O(ε4), Ci = pi + εc1

i + ε2c2
i + ε3c3

i + O(ε4), i = 1, 2, 3, · · · , n. (73)
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An asymptotic solution in powers of ε to the system (4)–(8) with the filtration functions of
Eq. (72) in ΩS is

Ci(x, t) = pi + pixε
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Si(x, t) = pi(t − x)ε
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where i = 1, 2, 3, · · · , n, and

A0 =
n∑

m=1

αmλ0
mpm, A1 =

n∑
m=1

αmλ1
mpm, A2 =

n∑
m=1

αm(λ0
m)2pm.

With a small epsilon, the suspended and retained particle concentrations are first linear and
then nonlinear when time goes on.

8 Examples and discussion

8.1 Monodisperse suspension with small impurities (Section 5)
Consider the model with linear and constant filtration functions Λ1 = 1 − 0.1S and Λ2 =

0.5. The show that the deposit of the main particles increases nonlinearly with time, while
the impurity deposit grows linearly and slowly (see Fig. 2). The total deposit tends to Smax.
According to Eq. (39), the linear-constant model is applicable up to approximately t0 = 30 and
0 � x � 1, and the result of the numerical calculation is t0 = 30.45.

Fig. 2 Exact solution for a monodisperse suspension with small impurities at the outlet x = 1 (color
online)

8.2 Bidisperse suspension with large and small particles (Section 6)
In this subsection, the retention of large and small particles is determined by the filtration

functions Λ1 = 1 − S and Λ2 = 0.25 − S, respectively. Two cases are considered, i.e., a flow
of large particle suspension with impurities of small particles (p1 = 1 and p2 = 0.1) and a
flow of small particles with impurities of large particles (p1 = 0.1 and p2 = 1). The obtained
breakthrough concentrations Ci(1, t) at the outlet and the deposit profiles Si(x, t0) and S(x, t0)
are shown in Figs. 3–7.

It is seen in Fig. 3 that the filtration for the case of large particle suspension with impu-
rities of small particles stops quickly after the breakthrough concentrations become equal to the
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Fig. 3 Results of the breakthrough concentrations C1(1, t) and C2(1, t) (color online)

injection concentration p2 = 0.1, and the suspended concentration of the main large particles
slowly approaches the limiting value p1 = 1. Meanwhile, the breakthrough concentration of the
main small particles quickly reaches the limiting value p2 = 1 for the case of small particles
with impurities of large particles, and the suspended concentration of large particle impurities
increases almost linearly. Figure 4 shows that for a short time t = 0.1, the retention profiles of
large and small particles decrease behind the concentration front, and the concentrations are
zero ahead of the front when x > 0.1.

Fig. 4 Retention profiles of S1(x, 0.1), S2(x, 0.1), and S(x, 0.1) (color online)

Figure 5 shows the retention profiles of S1(x, t0), S2(x, t0), and S(x, t0) at t0 = 5. It can
be seen that, for the case of large particle suspension with impurities of small particles, the
retention profile of the main large particles is practically constant near the limiting value p1 = 1,
while for the case of small particles with impurities of large particles, the retention profile of
large particle impurities decreases rapidly.

Figure 6 shows the maximum point xmax(t) of the retention profile S2(x, t). It can be seen
that S1(x, t0) monotonously decreases at all t0. Similar to Ref. [35], S2(x, t0) monotonically
decreases at small t0 and monotonically increases at large time. At intermediate time, the
profiles have a maximum point xmax(t), which moves from the inlet x = 0 to the outlet x = 1
with an “almost constant” velocity (see Fig. 6). Moreover, the velocity of the profile maximum
point depends on the injected concentrations. The velocity v1 = 0.83 in Fig. 6(a) while v2 = 0.45
in Fig. 6(b). If small particles are the main part of the suspension, the velocity of the maximum
point is less than that when they form an impurity.

Figure 7 shows the boundary between Ω2 and Ω3 and its asymptotics. The filtration of
small particles of the suspension stops at τ = τm(x). For a longer time, small particles are
transported through the porous medium without retention, while large particles are retained
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Fig. 5 Retention profiles of S1(x, 5), S2(x, 5), and S(x, 5) (color online)

Fig. 6 Maximum point xmax(t) of the retention profile S2(x, t)

- -

Fig. 7 Boundary τ = τm(x) between Ω2 and Ω3 (color online)

at any time. In both Figs. 7(a) and 7(b), the asymptotic formulae for the boundary are close
to the numerical solution.
8.3 Aqueous solution with small impurities (Subsection 7.1)

In this example, the filtration functions are Λ1 = 2 − 0.5S and Λ2 = 1 − S, and the param-
eters are identical, i.e., α1 = α2 = 1 and q1 = q2 = 1. The results are shown in Figs. 8 and 9.
Figure 8 shows the retention profiles S1, S2, and S for the filtration of water with small impuri-
ties at t = 2 and t = 5. It can be seen that in the area adjacent to the porous medium inlet, large
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Fig. 8 Retention profiles S, S1, and S2 for the filtration of water with small impurities (color online)

Fig. 9 Dynamics of the retained and suspended particle concentrations at the outlet of the porous
medium (color online)

particles prevail in the deposit, while in the area near the outlet, the retained concentration
of small particles becomes higher. Moreover, at the outlet of the porous medium x = 1, the
filtration of small particles is more intensive, and the suspended and retained concentrations of
small particles grow faster than the large ones.
8.4 Suspension in a porous medium with small kinetic rates (Subsection 7.2)

The solution is calculated for the filtration functions Λ̃1 = 2 − 0.5S, Λ̃2 = 1 − S and the
parameters α1 = α2 = 1, p1 = p2 = 1. The profiles and dynamics of large and small particle
concentrations are given in Figs. 10 and 11.

Fig. 10 Profiles for the particles with small kinetic rates at t = 2 (color online)
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Fig. 11 Dynamics of the retained and suspended particles at x = 1 (color online)

From Fig. 10, it can be seen that at t = 2, the retained concentration of large particles exceeds
the retained concentration of small particles, while the excess decreases with the increase in
the distance from the porous medium inlet. Figure 11 shows that when t > 17, the retained
concentration of small particles becomes higher than the retained concentration of large particles
near the outlet x = 1. Moreover, the asymptotics approximates well the solution for small
t. With increasing time, the discrepancy between the numerical and asymptotic solutions
increases, and the asymptotics becomes inappropriate. To increase the availability interval for
an asymptotic solution, it is necessary to construct a higher order asymptotics.

The coupling of the flow field with the particle deposit is achieved by the introduction of the
accessible porosity fraction, where the particles can penetrate the corresponding fractional flow
through the accessible area[39–40] and the particle-free water flows through the inaccessible area.
The coupling significantly complicates the model of particle capture. The upscaled equations
contain additional accessibility and flux-reduction factors depending on the concentration of the
total deposit. For a monodisperse suspension, the analytic solutions were obtained in Ref. [31].
A similar problem for a polydisperse suspension requires a separate study.

The introduction of velocity-dependent maximum retention concentration reflects instant
particle detachment by the increased flow rate[11,41]. The velocity-dependent maximum re-
tention function is determined by the torque balance of electrostatic, drag, and lift forces
exerting the attached fine particle. This model exhibits an excellent match with the laboratory
data[42–44].

The present paper deals with the filtration of a suspension with small impurities. For a
monodisperse suspension, the effect of impurities is insignificant, and their filtration functions
can be considered constant. The exact solution makes it possible to study the effect of additives
in the preparation of a mixture and how random impurities affect the filtration of the suspension
in the porous medium.

The numerical calculations show that during deep bed filtration of a bidisperse suspension
in a porous medium, the retained profile of large particles monotonously decreases at all time.
The profile of small retained particles decreases at the beginning of the filtration process and
increases at large time. At intermediate time, the profile has a maximum point moving with
an “almost constant” speed. Currently, there are no analytical formulae of retained profiles.

The asymptotics constructed here corresponds to the filtration of an aqueous solution with
small impurities and a polydisperse suspension with small kinetic rates. The asymptotic so-
lutions enable us to study the dependence of small filtration functions on the total deposit
concentration.

This paper considers the so-called deep bed filtration in clean bed, corresponding to the
zero initial conditions in Eq. (3). The same system (1) and (2) with non-zero initial conditions
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and the zero boundary condition at x = 0 describes fine migration in porous media and natural
reservoirs, where the injected clean water lifts naturally-attached particles from the rock[42–44].
Those problems occur in plant irrigation and Vadoze zone dynamics. The asymptotic method
developed in this work can be applied for the prediction of suspended and retained concentra-
tions during migration of the natural reservoir fines.

Both asymptotic solutions of injection into clean bed and fine migration allow direct ex-
tension to the case of two-phase colloidal flows, where the splitting mapping degenerates the
two-phase system to auxiliary single-phase flow equations[45–46].

9 Conclusions

A new model for the filtration of a polydisperse suspension in a porous medium is proposed,
which generalizes the macroscopic model of the long-term deep bed filtration of a suspension
with the identical suspended solid particles and size-exclusion particle capture mechanism. The
assumption of the dependence of all filtration functions on the total retained concentration
merges the separate equations for each type of particles into a unified hyperbolic system of
equations.

The exact solution for the suspension flow of one high and several low concentrations of
suspended particles and the global asymptotics for the filtration of an aqueous solution with
small impurities and a polydisperse suspension with small kinetic rates lead us to the following
conclusions:

(i) There are no suspended and retained particles in the zone ahead of the front.
(ii) There is a break in the concentrations of suspended particles of all types on the front.
(iii) The exact and asymptotic solutions determine the dependence of the suspended and

retained particle concentrations on the model parameters, which is important for solving the
inverse problem.

(iv) The retained profile of small particles of a bidisperse suspension changes its monotonic
behavior with time.

(v) During long-time filtration, the large particles deposit near the inlet of the porous
medium, and the small particles deposit near the outlet.
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