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Abstract The subharmonic resonance and bifurcations of a clamped-clamped buckled
beam under base harmonic excitations are investigated. The nonlinear partial integro-
differential equation of the motion of the buckled beam with both quadratic and cubic
nonlinearities is given by using Hamilton’s principle. A set of second-order nonlinear
ordinary differential equations are obtained by spatial discretization with the Galerkin
method. A high-dimensional model of the buckled beam is derived, concerning nonlinear
coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic
solutions of the high-dimensional model of the buckled beam to observe the nonlinear
frequency response curve and the nonlinear amplitude response curve, and the Floquet
theory is used to analyze the stability of the periodic solutions. Attention is focused on
the subharmonic resonance caused by the internal resonance as the excitation frequency
near twice of the first natural frequency of the buckled beam with/without the anti-
symmetric modes being excited. Bifurcations including the saddle-node, Hopf, period-
doubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic
motion is observed by using the fourth-order Runge-Kutta method, which results from
the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes
being excited.
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1 Introduction

As basic structural elements, buckled beams, whose dynamic equations consist of both
quadratic and cubic nonlinearities, have been investigated for several decades. They can be
found in airplanes, rockets, missiles, buildings in cold regions, foundations of heavy-duty ma-
chines, and micro-electromechanical systems (MEMS)[1]. Different methods have been applied
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in the nonlinear analysis of beams. Tseng and Dugundji[2] used the harmonic balance method
to obtain the periodic responses of a clamped-clamped buckled beam. Abou-Rayan et al.[3]

used the multiple-scale method to study the response of a simply-supported buckled beam un-
der harmonic axial load, and found complicated dynamic behaviors including period-doubling
response and chaos. Ibrahim et al.[4] used the shooting method, combined with the Newmark
algorithm and the arc length continuation algorithm, to solve the periodic solutions of curved
beams under periodic excitation. Ding et al.[5] investigated the responses of a viscoelastic beam
under periodic excitation by using the harmonic balance method combined with the pseudo
arc-length method, and showed the great difference in the nonlinear dynamics of the beam be-
tween rigid support and spring support. Fraternali et al.[6] focused on the nonlinear dynamics of
curved composite beams, and presented a nonlinear layer-wise finite element model to describe
the rotations of the cross-sections and strains and different elastic responses of the material.
Huang et al.[7] used the incremental harmonic balance (IHB) method to study the nonlinear
vibrations of a curved beam subjected to harmonic base excitation, and found complicated non-
linear responses including quasi-periodic response and chaos. Wang[8] investigated the weakly
forced vibration of an axially moving viscoelastic beam, derived the nonlinear equations gov-
erning the transverse vibration, and used the Routh-Hurwitz criterion to examine the response
stability. Wang et al.[9] used a new kinematic frame of the beam and continuum mechanics
theory to analyze an axially accelerating beam, and utilized the multiple-scale method to get
the steady-state frequency responses.

Internal resonance is a phenomenon that may happen when the ratio between two natural
frequencies of a multiple-degree-of-freedom system is approximately an integer. The occurrence
of internal resonance usually indicates the exchange of energy between two vibrational modes
through the nonlinear coupling. Emam and Nayfeh[10] investigated the nonlinear response of
a clamped-clamped buckled beam under primary resonance excitation, and found that single-
mode response could raise a significant error in the dynamic analysis. In their later research[11],
1:1 internal resonance between the first and second modes and 3:1 internal resonance between
the first and third modes were investigated. It was found that the period-doubling bifurcations
led to chaos and chaotically amplitude-modulated response. Lee et al.[12] examined the anti-
symmetric mode vibration of a clamped-clamped buckled beam. Tien et al.[13–14] studied
the vibration of shallow arches with 1:1 internal resonance and 1:2 internal resonance. Öz
and Pakdemirli[15] used the multiple-scale method to investigate the 2:1 internal resonance
of a simply-supported curved beam, and discussed the steady-state solution, stability, and
bifurcation. Huang et al.[16] investigated the nonlinear vibration of a simply-supported curved
beam with 1:1 internal resonance between the first and third modes subjected to the base
harmonic excitation, and discussed various bifurcation phenomena and responses of symmetric
and anti-symmetric modes. Xiong et al.[17] studied the nonlinear dynamics of a viscoelastic
buckled beam with 2:1 internal resonance, and observed a double-jumping phenomenon. Mao
et al.[18] investigated the local and global resonances of a super-critically axially moving beam
with 3:1 internal resonance, and discussed the excitation effect on the internal resonance.

Subharmonic and superharmonic resonances are typical characteristics of nonlinear vibra-
tion systems. Subharmonic resonances happen at the response frequencies containing 1/n
(n = 2, 3, 4, · · · ) of the excitation frequency[19–21]. Yang et al.[22] investigated the subharmonic
and superharmonic resonances of a bistable system, and found that the components of the re-
sponse frequencies were complicated. Mao et al.[23] investigated the superharmonic resonance of
a super-critical axially moving beam, and found a 3:1 internal resonance. Emam and Nayfeh[24]

investigated the nonlinear response of a clamped-clamped buckled beam subjected to subhar-
monic resonance excitation, and found the chaos resulting from a series of period-doubling
bifurcations. However, for some special initial deflections which could result in various internal
resonances, their subharmonic and superharmonic resonances have not been discussed yet.

This work aims to investigate various bifurcation phenomena of subharmonic resonances
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for a buckled beam with 1:1 internal resonance under base harmonic excitation. Special initial
deflection of the center of a buckled beam is chosen so that the natural frequencies of the first and
second modes can be close to each other, and various bifurcations of the response of the buckled
beam including saddle-node, Hopf, period-doubling, and symmetry-breaking bifurcations are
achieved. The remaining part of this paper is organized as follows. The equation governing the
motion of the buckled beam and the incremental harmonic balance (IHB) method are given
in Section 2. In Section 3, the nonlinear frequency responses of the buckled beam subjected
to different level magnitudes of excitation are considered, and the amplitude responses of two
typical frequencies are discussed. Finally, the main conclusions are summarized in Section 4.

2 Problem formulation
2.1 Equation of motion

A clamped-clamped buckled beam under investigation is schematically depicted in Fig. 1,
which is similar to the model in Ref. [10]. The harmonic base support motion can be expressed

as G(
�

t ) = G0 cos(
�

Ω
�

t ), where
�

Ω is the excitation frequency, and the corresponding uniform
base harmonic excitation to the beam in a non-inertial reference system is
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where ρ is the beam density, A is the cross-sectional area of the beam,
�

Ω is the excitation
frequency, and

�

F is the excitation magnitude. The transverse vibration of a clamped-clamped
buckled beam subjected to a longitudinal static load and a transverse harmonic load can be
derived by using Hamilton’s principle[10,25]. The kinetic energy T and the potential energy V
of the beam are
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where �
w(�
x,

�

t ) is the transverse displacement, and Vb, Va, and Vs are the potential energy due
to the bending, the axial force

�

P , and the midplane stretching, respectively. Other properties of
the beam include Young’s modulus E, the length l, the width r, the thickness s, and the flexural
rigidity EI. The equations of motion and the associated boundary conditions are derived by
using the extended Hamilton’s Principle

δ
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where Wnc is the nonconservative work. The first variation of the nonconservative force is

δ

∫ T2

T1

Wncd
�

t =
∫ T2

T1

(
q − �

c
∂

�
w

∂
�

t

)
δ

�
wd

�

t , (5)

Fig. 1 Diagram of the clamped-clamped buckled beam subjected to base harmonic excitation
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in which q =
�

F cos(
�

Ω
�

t ) is the corresponding uniform base harmonic excitation to the beam,
and �

c is the damping factor. After some differential operations, the governing equation can be
derived as follows:
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For the clamped-clamped buckled beam, the boundary condition is

�
w = 0,

∂
�
w

∂
�
x

= 0 at �
x = 0, l. (7)

Using the following dimensionless variables:
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and substituting Eq. (8) into Eqs. (6) and (7) yield the nondimensional integro partial-differential
equation as follows:

ẅ + wiv + Pw′′ + cẇ − αw′′
∫ 1

0

w′2dx = F cos(Ωt) (9)

with the boundary conditions

w = 0 and w′ = 0 at x = 0 and 1, (10)

where the overdot of w indicates the derivative with respect to t, the prime indicates the
derivative with respect to x, and

P =
�

Pl2

EI
, α =

Al2

2I
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�
c l2√
ρAEI

, F =
�

Fl3

EI
. (11)

2.2 Buckling problem
Since it is not easy to get an accurate measurement of the axial force P , the relationship

between the axial force and the initial transverse deflection is figured out in this section. By
dropping the time derivatives and the dynamic load from Eqs. (9) and (10), one can obtain the
following static equation:

wiv + Pw′′ − αw′′
∫ 1

0

w′2dx = 0, (12)

w(0) = w(1) = w′(0) = w′(1) = 0. (13)

The critical buckling load Pc and its buckling shape can be derived from the linearized form of
Eq. (12). Following the derivation in Ref. [10], the lowest buckling mode shape and its corre-
sponding buckling load are

ψ =
1
2
(1 − cos(2πx)), Pc = 4π2, (14)

where ψ is normalized so that ψ(1/2) = 1.
Since the initial deflection is far smaller than the longitudinal length, the displacement of

the buckled beam can be expressed as

w(x) = bψ(x), (15)
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where b is the dimensionless initial deflection of the middle of the buckled beam. Substituting
Eq. (15) into Eq. (12) yields

b2 =
P − Pc

α

∫ 1

0

ψ′2dx. (16)

To study the nonlinear vibrations around the buckled position, let the solution to Eq. (9) be

w(x, t) = bψ(x) + v(x, t). (17)

Then, w(x) can be the sum of static deformation and dynamic deformation. Substituting
Eqs. (16) and (17) into Eqs. (9) and (10) yields

v̈ + viv+Pcv
′′ − α(bψ + v)′′

∫ 1

0

(2bψ′v′ + v′2)dx = F cos(Ωt), (18)

v(0) = v(1) = v′(0) = v′(1) = 0. (19)

Following Nayfeh et al.[26] to determine the linear vibration natural frequencies of the beam
and their mode shapes and dropping the damping, forcing, and nonlinear terms yield

v̈ + viv + Pcv
′′ − 2αb2ψ′′

∫ 1

0

2v′ψ′dx = 0. (20)

Assume
v(x, t) = Φ(x)ei�t, (21)

where Φ and � are the mode shape function and the natural frequency for any solution of the
clamped-clamped buckled beam, respectively. Then, substituting Eq. (16) into Eq. (15) yields

Φiv + PcΦ′′ −�2Φ = αb2v′′
∫ 1

0

2Φ′v′dx. (22)

The boundary conditions of the fixed-fixed buckled beam are

Φ(0) = Φ(1) = Φ′(0) = Φ′(1).

The general solution to Eq. (17) can be expressed as a linear combination of the homogeneous
and particular solutions as follows:

Φ(x,�) = Φh(x,�) + Φp(x,�), (23)

where

Φh(x,�) = c1 sin(λx) + c2 cos(λx) + c3 sinh(μx) + c4 cosh(μx), (24)

Φp(x,�) = c5 cos(2πx), (25)

in which ci (i = 1, 2, 3, 4, 5) are constants.
Substituting Eqs. (18) and (20) into Eq. (17) yields

(b4π3α−�2)c5 = 2b4απ3

∫ 1

0

Φ′
h sin(2πx)dx. (26)

If
∫ 1

0
Φ′

h sin (2πx)dx = 0, c5 = 0 and the mode shapes are given by the homogeneous solution,
i.e., the natural frequencies and their corresponding mode shapes (the symmetrical modes) are
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independent of the initial mid-span deflection b. If
∫ 1

0
Φ′

h sin (2πx)dx �= 0, c5 �= 0 and the
eigenvalue problem yields the natural frequencies and their corresponding mode shapes (the
anti-symmetrical modes) changing with the initial mid-span deflection b.

The transverse dynamic displacement v(x, t) is assumed to be

v(x, t) =
n∑

j=1

Yj(t)φj(x), (27)

where φj(x) (j = 1, 2, 3, · · · , n) are mode functions of the clamped-clamped buckled beam
normalized, n is the number of modes under consideration, and Yj(t) (j = 1, 2, 3, · · · , n) are
the generalized coordinates of the transverse vibration.

Substituting Eq. (27) into Eq. (18), multiplying all terms with φi(x), and integrating the
resulting expression over the domain [0,1] yield

n∑
j=1

MijYi
′′ +

n∑
j=1

CijYi
′′ +

n∑
j=1

K̃ijYj+
n∑

j=1

n∑
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K̃
(2)
ijkYjYk +
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n∑
k=1

n∑
l=1

K̃
(3)
ijklYjYkYl

= fi cos(Ωt), i = 1, 2, 3, · · · , n, (28)

where the prime of Y denotes differentiation with respect to t, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(29)

2.3 IHB method
The IHB method, originally developed by Lau and Cheung[27] and Cheung and Lau[28], pro-

vides a methodology for determining the periodic solutions of dynamical systems with general
nonlinearities. The first step of the IHB method is an incremental method, which is a Newton-
Raphson procedure to linearize the incremental differential equation of Eq. (28). Introduce

τ = ωt, (30)

where ω is a fundamental frequency of a periodic response. Equation (28) can be written as

ω2
n∑

j=1

Mij Ÿi + ω

n∑
j=1

Cij Ẏi +
n∑
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(2)
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l=1
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(3)
ijklYjYkYl

= fi cos(Ωt), i = 1, 2, 3, · · · , n, (31)

where the overdot of Y denotes differentiation with respect to the new time variable τ . Let Yi0,
f , and ω0 denote a steady-state periodic solution. Then, a neighboring state can be expressed
by adding increments to Yi0, f , and ω0 as follows:

Yi = Yi0 + ΔYi, fi = fi0 + Δfi, ω = ω0 + Δω. (32)
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Substituting Eq. (32) into Eq. (31) and neglecting higher-order terms of the increments yield

ω2
0

n∑
j=1

MijΔŸi + ω0

n∑
j=1

CijΔẎi +
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ijkYk0

+ 3
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l=1

K̃
(3)
ijklYk0Yl0

)
ΔYj

= Ri − Δω
n∑

j=1

(2ω0Mij Ÿj0 + Cij Ẏj0) + Δfi cos(pτ), (33)

where

Ri = fi0 cos(pτ) −
(
ω0

2
n∑
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Mij Ÿi0 + ω0
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Cij Ẏi0 +
n∑
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K̃ijYj0+
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ijkYj0Yk0

+
n∑
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n∑
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n∑
l=1

K̃
(3)
ijklYj0Yk0Yl0

)
(34)

is a correction term that vanishes if the result is the exact solution to the equations. Equations
(33) and (34) can be rewritten in the matrix form as follows:

ω2
0MΔŸ + ω0CΔẎ + (K + 2K2 + 3K3)ΔY = R − (2ω0MŸ0 + CẎ0) + cos(pτ)ΔF , (35)

where

R = F cos(pτ) −
(
ω2

0MŸ0 + ω0CẎ0 + (K + K2 + K3)Y0

)
(36)

is the correction vector.
The second step of the IHB method is a harmonic balance procedure. Under forced harmonic

excitations, a periodic solution can be obtained by expanding Yj0 in a truncated Fourier series
and using the Galerkin procedure. The solution can be assumed to have the following form:

Yj0 =
nc∑

k=1

aj,(k−1)/m cos
(k − 1

m
τ
)

+
ns∑

k=1

bj,k/m sin
( k
m
τ
)

= CSAj , (37)

where

CS =
(
1 cos

τ

m
cos

2τ
m

· · · cos
(nc − 1)τ

m
sin

τ

m
sin

2τ
m

· · · sin
nsτ

m

)
, (38)

Aj = (aj,0 aj,1/m aj,2/m · · · aj,(nc−1)/m bj,1/m bj,2/m · · · bj,ns/m

)T

, (39)

in which aj,k/m and bj,k/m are Fourier coefficients, and nc and ns are numbers of cosine and sine
harmonic terms retained, respectively. The positive integer m can be set as a number larger
than 1 if the system goes through period-doubling bifurcations. To ensure the accuracy, when
m = 1, nc and ns are chosen as 6 and 5 in this work, respectively. As for the period-m solution,
one can choose nc = 1 + 5m and ns = 5m. Then, Eq. (37) can be written as follows:

Yj0 = Aj,0 +
5m∑
k=1

Aj,k/m cos
( k
m
τ + ϕj,k/m

)
, (40)
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where

Aj,k/m =
√
a2

j,k/m + b2j,k/m, ϕj,k/m = arctan(−bj,k/m, aj,k/m). (41)

The increment ΔYj can also be expanded in a truncated Fourier series similar to Eq. (37)
with aj,k/m and bj,k/m replaced by Δaj,k/m and Δbj,k/m. Then, one can obtain

ΔYj0 = CSΔAj , (42)

where

ΔAj = (Δaj,0 Δaj,1/m Δaj,2/m · · · Δaj,(nc−1)/m Δbj,1/m Δbj,2/m · · · Δbj,ns/m)T. (43)

Hence, the vectors of generalized coordinates and their increments can be expressed by using
the Fourier coefficient vector A and its increment ΔA as follows:

Y0 = SA, ΔY = SΔA, (44)

where

S = diag(CS , CS , · · · , CS), (45)

A = (AT
1 AT

2 · · · AT
n )T, (46)

ΔA = (ΔAT
1 ΔAT

2 · · · ΔAT
n )T. (47)

Differentiating Eq. (44) yields

Ẏ0 = ṠA, ΔẎ = ṠΔA, Ÿ0 = S̈A, ΔŸ = S̈ΔA. (48)

Using the Galerkin procedure for one cycle in the harmonic balance process, Eq. (35) becomes∫ 2mπ

0

δ(ΔY )T(ω2
0MΔŸ + ω0CΔẎ + (K + 2K2 + 3K3)ΔY )dτ

=
∫ 2mπ

0

δ(ΔY )T(R − (2ω0MŸ0 + CẎ0) + cos(pτ)ΔF )dτ. (49)

Substituting Eqs. (44)–(48) into Eq. (49) yields a set of linear equations in terms of ΔA and
Δω as follows:

KmcΔA = R − RωΔω + RfΔF , (50)

where {
Kmc = ω2

0M + ω0C + K + 2K2 + 3K3,

R = F − (ω2
0M + ω0C + K + 2K2 + 3K3)A, Rω = (2ω0M + C)A,

(51)

in which⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M =
∫ 2mπ

0

STMS′′dτ , C =
∫ 2mπ

0

STCS′dτ , K =
∫ 2mπ

0

STKSdτ ,

K2 =
∫ 2mπ

0

STK2Sdτ , K3 =
∫ 2mπ

0

STK3Sdτ ,

F =
∫ 2mπ

0

STF cos(pτ)dτ , Rf =
∫ 2mπ

0

ST cos(pτ)dτ .

(52)
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The solving process begins with a guessed solution. If F is fixed as a parameter vector,
the frequency response curve can be found point-by-point by increasing the frequency ω or a
component of the coefficient vector A. If the frequency ω can be treated as a constant value,
the amplitude response curve can be found by increasing the excitation magnitude fi or a
component of the coefficient vector A. Each result can be found only when the norm of R is
smaller than 1.0 × 10−10 in this work.
2.4 Stability theory

After the steady-state periodic solution to the nonlinear equation has been calculated, its
stability and bifurcation will then be considered. Adding a small perturbation ΔYj to Yj0, i.e.,

Yj = Yj0 + ΔYj . (53)

Substituting Eq. (53) into Eq. (31) and noting that Yj0 satisfies Eq. (31) yield

ω2
n∑

j=1

MijΔŸi + ω

n∑
j=1

CijΔẎi +
n∑

j=1

(
K̃ij + 2

n∑
j=1

n∑
k=1

K̃
(2)
ijkYk0

+ 3
n∑

j=1

n∑
k=1

n∑
l=1

K̃
(3)
ijklYk0Yl0

)
ΔYj = 0. (54)

Equation (54) can be written in the matrix form

ω2MΔŸ + ωCΔẎ + (K + 2K2(Y0)+3K3(Y0))ΔY = 0. (55)

It is the perturbed equation from the known solution q0. The stability of the periodic solution
corresponds to the stability of the solution to Eq. (31).

Equation (55) can be rewritten in the state space form

X ′ = Q(τ)X, (56)

where

Ẋ = (ΔY ΔẎ )T, (57)

Q =

(
0 I

Q21(τ) Q22

)
, (58)

in which I is the nth-order identity matrix, and

Q21(τ) = − 1
ω2

M−1(K + 2K2(Y0)+3K3(Y0)), Q22 = − 1
ω

M−1C. (59)

Since each component of Y0 is a periodic function of τ with the period T = 2mπ, each entry of
Q21 is also a periodic function with the same period T .

The Floquet theory states that the stability criteria for the system are related to the eigen-
values of the transition matrix. The solution to Eq. (55) approaches zero as τ → ∞ if all the
moduli of the eigenvalues of the transition matrix are less than 1.0; otherwise, the motion is
unbounded and the solution to Eq. (31) is unstable. The way that the Floquet multipliers leave
the unit circle indicates the types of bifurcations happening to the system[29].

3 Numerical results and discussion

In this work, the subharmonic resonance due to the internal resonance of the clamped-
clamped buckled beam is investigated. Consider the clamped-clamped buckled beam under
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the base harmonic excitation with l = 0.22m, r = 15.88mm, s = 0.87mm, ρ = 7 800kg/m3,
E = 206.8 × 109 N/m2, and �

c = 0.03. When the initial central deflection of the clamped-
clamped beam is 1.56mm with the dimensionless deflection b = 0.007 09, the first linear natural
frequency becomes very close to the second linear natural frequency. The first natural frequency
and the ratios of the variation frequencies to the first natural frequency are shown in Table 1.
Internal resonance may happen, and the energy can be transferred between the two modes.
Numerical results such as nonlinear frequency and amplitude responses are provided by finding
the steady-state periodic solutions obtained from the IHB method, and dynamic solutions are
provided from numerical integration by using the fourth-order Runge-Kutta method. Table 2
shows the amplitudes of cosine harmonic terms with the base excitation frequency Ω = 75.8
and magnitude F = 0.199 8 for the numbers of retained modes n = 2, 3, 4, and 6, respectively.
The amplitudes of cosine harmonic terms for n = 4 and n = 6 are compared. It is shown
that convergence is reached when n = 4. Therefore, four-mode discretization is adopted in the
following sections.

Table 1 First natural frequency and ratios of the first four frequencies

Dimensionless deflection b ω1 ω2/ω1 ω3/ω1 ω4/ω1

0.007 09 44.360 1.000 2.614 4.105

Table 2 Amplitudes of the cosine harmonic terms with the base excitation frequency Ω = 75.8 and
magnitude F = 0.199 8 for different numbers of retained modes

Amplitude
Number of retained modes

2 3 4 6

A1,1/2 1.672 2×10−3 1.190 8×10−3 1.170 5×10−3 1.170 5×10−3

A1,1 1.831 4×10−4 1.287 4×10−4 1.306 1×10−4 1.306 1×10−4

A2,1/2 8.098 2×10−4 7.896 4×10−4 7.801 1×10−4 7.801 1×10−4

A2,1 1.343 0×10−4 1.717 8×10−4 1.704 6×10−4 1.704 6×10−4

A3,1 – 9.114 3×10−5 9.052 3×10−5 9.052 3×10−5

A4,1 – – 1.071 1×10−5 1.071 1×10−5

A5,1 – – – 4.893 4×10−6

A6,1 – – – 1.387 6×10−6

3.1 Nonlinear frequency response under different magnitudes of excitation
3.1.1 Case of low magnitude of excitation with F = 0.199 8

Focus on the subharmonic resonance, the nonlinear frequency response of the system is
discussed in the neighborhood of twice of the natural frequencies of the first two modes ω1 and
ω2. Figures 2(a) and 2(b) show the nonlinear frequency response curves ofA1,1 and A2,1/2 versus
Ω, respectively. When the excitation frequency Ω nears 2ω1 from a small value, the periodic
solution is stable. Then, as the frequency sweeps to 88.15, a period-doubling bifurcation happens
at Point D1. The fundamental periodic solution is unstable with Ω is between 88.16 and 89.26.
Anti-symmetric modes such as the second and fourth modes are not excited in this solution.
For Period 2 solutions, there are three forms (see S1, S2, and S3 in Fig. 2).

Solution S2 comes out from the period-doubling bifurcation points D1 and D2. The period
solutions of Y1, Y2, Y3, and Y4 can be written as follows:

Yj = aj,0 +
nc∑

k=1

Aj,k/2 cos
(k

2
(τ + φj,k/2)

)
, j = 1, 2, 3, 4, (60)

where nc is chosen as 10 to ensure the precision. For Y1 and Y3, calculation shows that A1,k/2

and A3,k/2 are zero. Only the anti-symmetric modes contain the components of the frequency
Ω/2. It is found that, a2,0, a4,0, and Aj,k/2 (j = 2, 4 and k = 2, 4, 6, · · · ) are zero, and Y2 and
Y4 contain only odd number harmonic components of Ω/2.
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Fig. 2 Response curves of subharmonic resonance of the buckled beam with F = 0.199 8 (color online)

For the second and fourth modes, the solution possesses a symmetry property. Take the
second mode as an example. Its solution has the characteristic

Y2(t) = −Y2

(
t+

1
2
T2

)
, (61)

where T2= 4π/Ω is the period of the second and fourth modes, which is twice of the first
mode. This symmetry property is known as inversion symmetry. The response of the system
is invariant under the transformation

(Y1, Y2, Y3, Y4) ⇔ (Y1,−Y2, Y3,−Y4), (62)

which means if (Y1, Y2, Y3, Y4) is a solution of the system, (Y1,−Y2, Y3,−Y4) can also be one.
Sweeping the excitation frequency, a part of the curves of Solution S2 turns to be unstable

at SB1 and a new branch of response is obtained. The Floquet multiplier moves outside the
unit circle along the +1 direction (see Table 3), showing that a symmetry-breaking bifurcation
happens in this unstable curve. Stable and unstable responses are represented by the solid and
dashed lines, respectively. Unless otherwise specified, figures below will be shown in the same
way. “�” denotes the period-doubling bifurcation point, and “•” and “�” denote symmetry-
breaking and saddle-node bifurcation points, respectively. For its harmonic components, the
results obtained from the IHB method show that odd harmonics of the frequency Ω/2 in Y1

and Y3 are not zero in this branch, indicating that a period-doubling phenomenon happens in the

Table 3 Floquet multipliers for bifurcation points on frequency response curves in Fig. 2

Near point Ω Floquet multiplier Modulus of Floquet multiplier

D1
89.15 −0.999 81 0.999 81

89.16 −1.000 24 1.000 24

D2
89.26 −1.000 23 1.000 23

89.27 −0.999 81 0.999 81

SB1
88.24 0.997 00 0.997 00

88.26 1.001 62 1.001 62

SN1
94.98 0.996 27 0.996 27

94.97 1.013 12 1.013 12
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first and third modes. For Y2 and Y4, a2,0, a4,0, and Aj,k/2 (j = 2, 4 and k = 2, 4, 6, · · · ) become
nonzero, the solution components of these modes contain both odd and even harmonics of Ω/2,
i.e., the inversion symmetry is broken, (Y1, Y2, Y3, Y4) in this system is not invariant under the
transformation in Eq. (62). The frequency response of the system exhibits the softening-spring
nonlinear characteristic in Solution S3 and the harden-spring nonlinear characteristic in Solution
S2. The amplitude of the response in Solution S3 grows as the excitation frequency decreases.
Increasing the excitation frequency can cause a change from Solution S3 to Solution S2. It
seems that the subharmonic resonance is trapped here. Increasing or decreasing the excitation
frequency does not help to stop the subharmonic resonance until it comes to the saddle-node
bifurcation points SN1 and SN2. Solution S3, which contains the subharmonic resonance in
both the first and second modes, appears due to the transfer of energy from the second mode to
the first mode with 1:1 internal resonance. This is similar to the investigation in Refs. [30] and
[31]. Besides Solutions S2 and S3, there exists Solution S1, in which subharmonic resonance is
found in the first mode and the anti-symmetric modes are not excited.
3.1.2 Case of large magnitude of excitation with F = 0.249 7

The magnitude of the excitation is larger in this section. Figure 3 shows the nonlinear

 

Fig. 3 Response curves of subharmonic resonance of the buckled beam with F = 0.249 7 (color online)
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frequency responses of A1,1 and A2,1/2 versus Ω. For Solution S3, a piece of curve is found
unstable between Points H3 and H4. The Floquet multipliers of this curve expose a Hopf
bifurcation here (see “�”), leading to a quasi-periodic response. The numerical calculation
obtained by the fourth-order Runge-Kutta method also shows the quasi-periodic motion (see
Fig. 4). Figures 4(a) and 4(b) are time histories of the vibration. Figures 4(c) and 4(d) are
the phase diagram of the first two modes. The Poincaré sections shown in Figs. 4(e) and 4(f)
are closed curves, indicating the quasi-periodic response. The beating phenomenon is clearly
shown in Figs. 4(a) and 4(b), continuously exchanging energy between the first and second
modes with 1:1 internal resonance. Another Hopf bifurcation is found when Ω = 73.5 (H1) and
a period-doubling bifurcation leading the solution to period-four solution occurs at Point D4.

Fig. 4 Quasi-periodic response calculated by the fourth-order Runge-Kutta method with the fre-
quency Ω = 88.50 and excitation magnitude F = 0.249 7. (a) and (b) are time histories of the
first and second modes, (c) and (d) are phase plane diagrams, and (e) and (f) are Poincaré
sections (color online)

Solution S1 in Fig. 3 also has some change. Under higher excitation, Solution S1 no longer
exists in an isolated domain, but becomes connected with the fundamental harmonic response
curve. Sweeping the excitation frequency can lead the odd components of the frequency Ω/2
in Solution S1 to zero and the solution becomes the fundamental harmonic response. It is
noted that Solution S1 cannot keep stable during this process. When it comes to Point SB5, a
Floquet multiplier moves outside the unit circle through +1, indicating that Solution S1 jumps
to Solution S3 through this symmetry-breaking bifurcation point.
3.2 Amplitude response with the excitation frequency near twice of the first nat-

ural frequency
To investigate the subharmonic resonance, the frequency of the base excitation is set to be

88.50, which is nearly twice of the frequency of the first vibration mode. With the increase in
the sweeping magnitude of the base excitation, the amplitude response of the vibration can be
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obtained.
Figures 5(a) and 5(b) show nonlinear amplitude response curves of A1,1 and A2,1/2, respec-

tively, where blue lines denote the Period 1 solutions. When the excitation magnitude comes
to 0.141 7, Period 1 response becomes unstable due to a period-doubling bifurcation happening
at Point D8 (Table 4). The Period 2 solution in the form of Solution S2 comes out of this bi-
furcation point, and the solution is plotted in red with little circles. Then, Solution S2 becomes
unstable through the symmetry-breaking bifurcation point SB6, and another branch of solution
(S3, plotted in green) occurs. A period-doubling phenomenon can be found in all modes, and
both the even number harmonic components of frequency Ω/2 in anti-symmetric modes and
the odd number harmonic components of Ω/2 in symmetric modes are nonzero. Solution S3

remains stable until the base excitation magnitude comes to 0.238 5, since a Hopf bifurcation
happens to Solution S3, resulting in a quasi-periodic response via Point H5. Solution S3 regains
its stability after Point H6, with the excitation magnitude reaching 0.307 2. It is interesting
that, with the increase in the excitation magnitude, Solution S3 seems to be closer to Solution
S2.

 

 

Fig. 5 Amplitude response curves of the curved beam with the base excitation frequency Ω = 88.50
(color online)

Table 4 Floquet multipliers for bifurcation points on amplitude response curves in Fig. 5

Near point F Value of Floquet multiplier Modulus of Floquet multiplier

D8
0.141 1 −0.999 98 0.999 98

0.141 7 −1.000 07 1.000 07

SB6
0.177 9 0.999 39 0.999 39

0.178 6 1.000 47 1.000 47

H5
0.237 9 0.998 17±0.052 10i 0.999 53

0.238 5 0.998 64±0.053 05i 1.000 05

H6
0.306 5 0.997 07±0.079 57i 1.000 24

0.307 2 0.996 61±0.080 11i 0.999 83

4 Conclusions

The nonlinear response and bifurcation phenomena of a clamped-clamped buckled beam
system subjected to subharmonic base excitation are investigated theoretically and numerically.
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The buckled beam has the property that the natural frequencies of the first and second modes
are close, which results in the internal resonance under some conditions. This vibration system
with quadratic and cubic nonlinearities is formulated as a four-dimensional model, and the IHB
method is used to calculate the periodic solution under different base excitation frequencies and
magnitudes. The Floquet theory is used to analyze the stability of the periodic solution. The
time histories, phase plane diagrams, and Poincaré sections of the quasi-periodic response are
treated numerically.

The results of the clamped-clamped buckled beam of 1:1 internal resonance subjected to
subharmonic base excitation show that the subharmonic resonance solutions have three forms,
i.e., solutions with subharmonic resonance existing in both the first and second modes, only
in the first mode, and only in the second mode. The solution with subharmonic resonance
only in the second mode exhibit the harden-spring nonlinearity, while the other two subhar-
monic resonance solutions have softening-spring nonlinearity. Sweeping the frequency of the
base excitation, the form of subharmonic resonance can change, which means that once the
subharmonic resonance happens via the period-doubling bifurcation, vibration at half of the
excitation frequency will exist in a wide range. Moreover, bifurcations including saddle-node,
Hopf, and symmetry-breaking bifurcations also occur with sweeping the excitation frequencies
or magnitudes, and the quasi-periodic response is found in the investigation as well.

References

[1] HAJJAJ, A. Z., ALFOSAIL, F. K., and YOUNIS, M. I. Two-to-one internal resonance of MEMS
arch resonators. International Journal of Non-Linear Mechanics, 107, 64–72 (2018)

[2] TSENG, W. Y. and DUGUNDJI, J. Nonlinear vibrations of a buckled beam under harmonic
excitation. Journal of Applied Mechanics, 38, 467–476 (1971)

[3] ABOU-RAYAN, A. M., NAYFEH, A. H., MOOK, D. T., and NAYFEH, M. A. Nonlinear response
of a parametrically excited buckled beam. Nonlinear Dynamics, 4, 499–525 (1993)

[4] IBRAHIM, S. M., PATEL, B. P., and NATH, Y. Modified shooting approach to the non-linear pe-
riodic forced response of isotropic/composite curved beams. International Journal of Non-Linear
Mechanics, 44, 1073–1084 (2009)

[5] DING, H., ZHU, M. H., and CHEN, L. Q. Nonlinear vibration isolation of a viscoelastic beam.
Nonlinear Dynamics, 92, 325–349 (2018)

[6] FRATERNALI, F., SPADEA, S., and ASCIONE, L. Buckling behavior of curved composite beams
with different elastic response in tension and compression. Composite Structures, 100, 280–289
(2013)

[7] HUANG, J. L., SU, R. K. L., LEE, Y. Y., and CHEN, S. H. Nonlinear vibration of a curved
beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. Journal of
Sound and Vibration, 330, 5151–5164 (2011)

[8] WANG, B. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam
constituted by standard linear solid model. Applied Mathematics and Mechanics (English Edition),
33(6), 817–828 (2012) https://doi.org/10.1007/s10483-012-1588-8

[9] WANG, Y. B., DING, H., and CHEN, L. Q. Modeling and analysis of an axially acceleration
beam based on a higher order beam theory. Meccanica, 53, 2525–2542 (2018)

[10] EMAM, S. A. and NAYFEH, A. H. On the nonlinear dynamics of a buckled beam subjected to a
primary-resonance excitation. Nonlinear Dynamics, 35, 1–17 (2004)

[11] EMAM, S. A. and NAYFEH, A. H. Non-linear response of buckled beams to 1:1 and 3:1 internal
resonances. International Journal of Non-Linear Mechanics, 52, 12–25 (2013)

[12] LEE, Y. Y., POON, W. Y., and NG, C. F. Anti-symmetric mode vibration of a curved beam
subject to autoparametric excitation. Journal of Sound and Vibration, 290, 48–64 (2006)

[13] TIEN, W. M., NAMACHCHIVAYA, N. S., and BAJAJ, A. K. Non-linear dynamics of a shal-
low arch under periodic excitation-I: 1:2 internal resonance. International Journal of Non-Linear
Mechanics, 29, 349–366 (1994)



1896 Junda LI and Jianliang HUANG

[14] TIEN, W. M., NAMACHCHIVAYA, N. S., and MALHOTRA, N. Non-linear dynamics of a shallow
arch under periodic excitation-II: 1:1 internal resonance. International Journal of Non-Linear
Mechanics, 29, 367–386 (1994)
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