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Abstract The identification of multiple interacting inclusions with uniform internal
stresses in an infinite elastic matrix subjected to a uniform remote loading is of funda-
mental importance in the mechanics and design of particulate composite materials. In
anti-plane shear and plane deformations, certain sufficient conditions have been estab-
lished in the literature which guarantee uniform internal stresses inside multiple inter-
acting inclusions displaying various symmetries when the matrix is subjected to specific
uniform remote loading. Correspondingly, sufficient conditions which allow for the design
of multiple interacting inclusions independent of any specific form of (uniform) remote
loading have also been established. In this paper, we demonstrate rigorously that, in all
cases, these sufficient conditions are also necessary conditions and indeed allow for the
identification of all possible collections of such inclusions.
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1 Introduction

Significant efforts[1–5] have been devoted to the design of multiple (interacting) inclusions,
each of which achieves a uniform stress field in the presence of certain uniform remote loadings
imposed on the surrounding elastic matrix (or equivalently uniform eigenstrains imposed on the
inclusions themselves). Among these inclusions, those with geometric symmetry ( for example,
see Figs. 1–3 in Ref. [1], Fig. 2 in Ref. [2], Figs. 2, 3, and 7 in Ref. [3], Figs. 5–8 in Ref. [4], and
Figs. 8–13 in Ref. [5]) and those whose shapes can be designed independently of any specific
(uniform) external loadings (for example, see Figs. 2–4 in Ref. [3], Figs. 2(a), 2(c), 4(a), 7, and 8
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in Ref. [4], and Figs. 3, 6, 9, and 12 in Ref. [5]) are particularly attractive in terms of practicality
in the design of advanced composite materials.

Simple conditions were established[4–5] for the design of collections of two symmetric inclu-
sions (about a line), multiple rotationally symmetric inclusions (about a point), and multiple
loading-independent inclusions with uniform stresses in an infinite elastic plane under anti-plane
shear and plane deformations (see Subsections 4.2 and 4.3 of Ref. [4] and Subsections 4(b), 4(c),
and 4(d) of Ref. [5] for more details). However, the question as to whether these conditions allow
for the identification of all possible collections of such inclusions (those displaying certain types
of symmetry as well as those designed independent of loading (uniform)) with uniform internal
stress distributions in an infinite elastic plane subjected to the corresponding (anti-plane or
plane) deformations remains unanswered. In this paper, we address this question by examining
the necessity of the aforementioned (sufficient) conditions.

2 Analysis
Refer to the x1x2-coordinate system and consider n elastic inclusions, each of which is

bounded by a smooth closed curve Li (i=1, 2, · · ·, n), in an elastic infinite matrix subjected to
uniform remote anti-plane shear or in-plane loadings. We denote by S and Si (i=1, 2, · · ·, n)
the (open) domains occupied by the matrix and the inclusions, respectively. In Refs. [4] and
[5], it is shown that the geometry of the curves Li must satisfy the following system of integral
equations in the complex z-plane (here, z = x1+ix 2, in which we have chosen to represent the
imaginary unit by the letter i to avoid confusion with the subscript i):

Aiz +
1

2πi

n∑
j=1

Bj

∮
Lj

t̄

t − z
dt = −Ci, ∀z ∈ Si (i = 1, 2, · · ·, n), (1)

in order for each of the inclusions to achieve a certain prescribed uniform stress field under a
given uniform remote loading. In Eq. (1), the known constants Ai and Bj (i, j=1, 2, · · ·, n) are
associated with the uniform remote loading, the uniform stress field inside each inclusion and
the material constants of the matrix and each inclusion (we mention that, specifically, Bj �= 0),
while the unknown constants Ci (i=1, 2, · · ·, n) can be determined from Eq. (1) as part of the
solution, although they play no role in the determination of the geometry of the curves Li.

In Subsection 4.2 of Ref. [4] and Subsections 4(c) and 4(d) of Ref. [5], certain conditions
were given which allowed for the construction of two symmetric inclusions (about a line) and
multiple rotationally symmetric inclusions (about a point) with internal uniform stresses, while
in Subsection 4.3 of Ref. [4] and Subsection 4(b) of Ref. [5], particular conditions were proposed
for identifying multiple inclusions whose internal stress distributions are always uniform irre-
spective of the specific uniform loading applied remotely. In fact, from the mathematical point
of view, all of these conditions are based on a simple proposition that the following two systems
of equations (resulting from Eq. (1)):

A
(1)
i z +

1
2πi

n∑
j=1

B
(1)
j

∮
Lj

t̄

t − z
dt = −C

(1)
i , ∀z ∈ Si (i = 1, 2, · · ·, n), (2)

A
(2)
i z +

1
2πi

n∑
j=1

B
(2)
j

∮
Lj

t̄

t − z
dt = −C

(2)
i , ∀z ∈ Si (i = 1, 2, · · ·, n) (3)

have the same solution for each of the curves Li when

A
(1)
i

B
(1)
i

=
A

(2)
i

B
(2)
i

,
B

(1)
j

B
(1)
i

=
B

(2)
j

B
(2)
i

, i, j = 1, 2, · · ·, n. (4)

Apparently, Eq. (4) is sufficient for Eqs. (2) and (3) to admit the same solution, but whether
it is also necessary remains unclear. Only when the necessity of Eq. (4) is established, can the
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conditions proposed in Refs. [4] and [5] lead to all possible collections of symmetric, rotationally
symmetric, and loading-independent inclusions with uniform stresses. We show the necessity
of Eq. (4) in what follows.

We rewrite Eqs. (2) and (3) for a certain p (1 � p � n) as

1
2πi
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dt +

1
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, ∀z ∈ Sp, (5)
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Subtracting Eq. (6) from Eq. (5) yields

1
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j �=p

(B
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j

B
(1)
p

− B
(2)
j

B
(2)
p

)∮
Lj

t̄

t − z
dt

︸ ︷︷ ︸
f(z)

=
(A

(2)
p

B
(2)
p

− A
(1)
p

B
(1)
p

)
z +

C
(2)
p

B
(2)
p

− C
(1)
p

B
(1)
p︸ ︷︷ ︸

g(z)

, ∀z ∈ Sp, (7)

in which f(z) and g(z) denote the functions on the left- and right-hand sides, respectively.
Here, it is worth noting that f(z) and g(z) are analytic not only in Sp but also in the entire
Sp ∪ Lp ∪ S (since f(z) does not include the contour integral over the curve Lp). In complex
analysis, the identity theorem states that if two functions analytic in a connected domain D
coincide in a certain (connected) subdomain of D, then they must coincide in the entire domain
D. Consequently, it follows from Eq. (7) that

f(z) = g(z), ∀z ∈ Sp ∪ Lp ∪ S. (8)

Further noting that lim
|z|→∞

f(z) = 0, it is required in g(z) that
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which means that Eq. (8) becomes

f(z) = g(z) = 0, ∀z ∈ Sp ∪ Lp ∪ S. (10)

To this point, we have shown (from Eq. (9)) that the first part of Eq. (4) is necessary for Eqs. (2)
and (3) to achieve the same solution.

We proceed to consider the necessity of the second part of Eq. (4). For a certain q (q �= p),
we have from Eqs. (2) and (3) that
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Subtracting Eq. (12) from Eq. (11) results in
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where f(z) denotes the same expression as that in Eq. (7). Using the Plemelj formulae, we
describe the jump of f(z) across the curve Lq as

f(t+) − f(t−) =
(B
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q
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q
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p

)
t̄, ∀t ∈ Lq, (14)

where ‘+’ and ‘−’ identify the limits of f(z) as z tends towards a certain value t on Lq from the
interior and exterior of Sq, respectively. In particular, it follows from Eqs. (10) and (13) that
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Combining Eqs. (14) and (15) results in
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Since Lq is a closed curve and cannot be a straight line, one must require that in order to satisfy
Eq. (16),
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which completes the proof for the necessity of the second part of Eq. (4).

3 Concluding remarks

We have shown from Eqs. (9) and (17) that Eq. (4) is necessary for Eqs. (2) and (3) to
yield the same solution for the geometry of each of the curves Li. Consequently, we confirm
that by using the conditions presented in Subsections 4.2 and 4.3 of Ref. [4] and Subsections
4(b), 4(c), and 4(d) of Ref. [5], one can indeed identify (completely) all possible groups of
symmetric, rotationally symmetric, and loading-independent inclusions which achieve uniform
internal stress distributions in an infinite elastic plane subjected to plane or anti-plane shear
deformations.
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