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Abstract A quasi-three dimensional model is proposed for the vibration analysis of
functionally graded (FG) micro-beams with general boundary conditions based on the
modified strain gradient theory. To consider the effects of transverse shear and nor-
mal deformations, a general displacement field is achieved by relaxing the assumption
of the constant transverse displacement through the thickness. The conventional beam
theories including the classical beam theory, the first-order beam theory, and the higher-
order beam theory are regarded as the special cases of this model. The material proper-
ties changing gradually along the thickness direction are calculated by the Mori-Tanaka
scheme. The energy-based formulation is derived by a variational method integrated with
the penalty function method, where the Chebyshev orthogonal polynomials are used as
the basis function of the displacement variables. The formulation is validated by some
comparative examples, and then the parametric studies are conducted to investigate the
effects of transverse shear and normal deformations on vibration behaviors.
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1 Introduction

As advanced composite materials, functionally graded (FG) materials possess distinctive
features of gradually spatial changes in the material properties, which enable FG materials to
avoid the stress concentration of conventional laminated composite materials. Besides, FG ma-
terials can satisfy the multi-functional requirements by a wide selection of material constituents.
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Consequently, FG materials are suitable for many engineering fields and considerable attention
has been paid to the mechanical behaviors of FG structures[1–3]. Recently, with the advance-
ment in micro-electro-mechanical systems (MEMSs), FG materials have been utilized to build
various micro-structures in order to achieve high performance, which encourage researchers to
investigate and predict the mechanical behaviors of FG micro-structures. In most cases, micro-
beams usually serve as the fundamental structures and the principal functional components
in MEMSs[4–6]. As a consequence, it is of significance to provide insight into the dynamic
behaviors of FG micro-beams before the design.

Since the size effect will arise and become a key factor affecting mechanical behaviors when
the feature size of structures reduces to micron or even sub-micron levels[7–9], the size-dependent
problems of micro-structures have been widely investigated by means of experiments, molecular
dynamics simulations, and higher-order continuum theories[10–11]. However, owing to high
modeling efficiency and low computational cost, higher-order continuum theories have extensive
applications, in which the couple stress theory (CST) and the strain gradient theory (SGT) are
notable. The CST is simple and convenient to involve the size effect only by introducing two
material length scale parameters to consider the rotation gradient[12]. A modified couple stress
theory (MCST) was presented in Ref. [13] via creating the symmetrical couple stress tensor
which made the number of material length scale parameters reduce from two to one. The SGT
originates from the work of Mindlin[14–15]. The essential idea is the addition of the first or
higher order strain gradients to the constitutive equations. In Ref. [16], the first-order strain
gradient was further decomposed into stretch and rotation gradients. From this point of view,
the SGT can degenerate to the CST. On this basis, Lam et al.[17] developed a modified strain
gradient theory (MSGT) via a similar procedure used in Ref. [13].

In recent years, by incorporating the CST/SGT into conventional beam theories, many
micro-beam models have been established for FG micro-beams, e.g., MCST/MSGT-based
Euler-Bernoulli beam models[18–19], MCST/SGT-based Timoshenko beam models[20–21], and
MCST/MSGT-based higher-order beam models[22–24]. It is noted that most of the existing
micro-beam models neglect the transverse normal deformation effect by assuming constant
transverse displacement across the thickness direction, which was originally developed for those
structures made of isotropic materials. However, due to the existence of the strong variation of
material properties along the thickness, the above assumption appears quite inappropriate for
FG structures[25]. In order to take the transverse normal deformation effect into consideration,
some quasi-three dimensional (3D) theories have been developed for the mechanical analysis of
FG structures, which possess high accuracy with low computational cost. Among the above
models, the representative beam models are hierarchical beam models based on the Carrera
unified formulation (CUF)[26–27] and the quasi-3D beam model developed from a refined shear
deformation theory[28–29]. Up to now, some researchers have extended those quasi-3D theories
into the mechanical analysis of FG micro-beams. Trinh et al.[30] analyzed the size-dependent
static and dynamic behaviors of simply supported FG micro-beams by the MCST-based quasi-
3D beam theory. Later, they further presented a quasi-3D vibration solution for two-directional
FG micro-beams[31]. Yu et al.[32–33] studied the bending and vibration behaviors of one/two-
dimensional FG micro-beams with the MCST-based quasi-3D theory combined with an isogo-
metric analysis. Karamanli and Aydogdu[34] presented the size-dependent quasi-3D vibration
analysis of two-dimensional rotating FG sandwich porous micro-beams by the finite element
method (FEM). Obviously, the research efforts on the size-dependent quasi-3D analysis of FG
micro-beams are limited. To the authors’ best knowledge, almost all of these existing studies
are limited to the MCST. As pointed out by Lei et al.[24], the MCST usually underestimates
the size effect since it only considers the rotation gradient.

The aim of this paper is to develop an MSGT-based quasi-3D micro-beam model for vibration
problems of FG micro-beams with general boundary conditions. The energy-based formulation
is derived by a variational method integrated with the penalty function method. Based on the
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model, the effects of the dimensionless material length scale parameter, the length-to-thickness
ratio, the gradient index, and the boundary conditions on the vibration characteristics of FG
micro-beams are studied. By comparing the results obtained from different micro-beam theories,
the effects of transverse shear and normal deformations on the vibration behavior are further
investigated.

2 Theoretical formulation

2.1 Model description

Figure 1 shows a typical two-phase FG micro-beam, in which the material properties vary
continuously and smoothly along the z-direction. According to the Mori-Tanaka scheme, the
effective material properties are given as follows[20–22,24]:

Kef − K2

K1 − K2
=

V1

1 + (1 − V1)(K1 − K2)/(K2 + 4G2/3)
, (1)

Gef − G2

G1 − G2
=

V1

1 + (1 − V1)(G1 − G2)/(G2 + G2(9K2 + 8G2)/(6(K2 + 2G2)))
, (2)

where the bulk modulus and the shear modulus are denoted by K and G, respectively, and the
subscripts 1 and 2 represent the two different constituents used in FG materials, respectively.
The volume fraction V1 is

V1 =
( z

h
+

1

2

)p

, (3)

where p represents the gradient index governing the spatial variation of material properties.
Then, one can obtain the effective Young’s modulus Eef and Poisson’s ratio µef as follows[20]:

Eef =
9KefGef

3Kef + Gef
, µef =

3Kef − 2Gef

6Kef + 2Gef
. (4)

The effective mass density can be defined as follows:

ρef = V1(ρ1 − ρ2) + ρ2. (5)

Fig. 1 Schematic diagram of an FG micro-beam

2.2 Kinematic and constitutive relations

A general displacement field, which can capture the transverse shear and normal deformation
effects and has the capability of application to various beam theories, is defined as follows:











u(x, z, t) = u0(x, t) + f(z)
∂w0

∂x
+ g(z)u1,

w = w0 + φ(z)w1,

(6)
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where u0 and w0 denote the axial and transverse displacement components on the central line,
respectively. u1 is the rotation of the cross section with the shear effect, and w1 is introduced
to consider the transverse normal deformation effect. The shape functions f(z), g(z), and
φ(z) govern the distributions of the strains and the stresses in the z-direction. By choosing
appropriate shape functions, the displacement fields corresponding to various beam theories
are easily obtained. For example, one can choose

f(z) = −z, g(z) = 0, φ(z) = 0

for the classical beam theory (CBT);

f(z) = 0, g(z) = z, φ(z) = 0

for the first-order beam theory (FBT); and

f(z) = −4z3/(3h2), g(z) = z − 4z3/(3h2), φ(z) = 0

for Reddy’s beam theory (RBT). In order to consider the transverse normal deformation effect,
a quasi-3D beam theory is developed by choosing[28]

f(z) = −4z3/(3h2), g(z) = z − 4z3/(3h2), φ(z) = 1 − 4z2/h2.

Using the above displacement field, non-zero linear strains can be obtained as follows:















ǫ11 =
∂u0

∂x
+ f

∂2w0

∂x2
+ g

∂u1

∂x
, ǫ33 = φ′w1,

ǫ13 = ǫ31 =
1

2

(

(f ′ + 1)
∂w0

∂x
+ g′u1 + φ

∂w1

∂x

)

,

(7)

in which the notation of prime is used to denote the derivative of shape functions.
In the MSGT, some additional higher-order deformation gradients, including the dilatation

gradient tensor γi, the deviatoric stretch gradient tensor η
(1)
ijk, and the symmetric rotation

gradient tensor χs
ij , are introduced to take the size effect into account, which are defined as

follows[17]:

γi = ǫmm,i, (8)

η
(1)
ijk =

1

3
(ǫjk,i + ǫki,j + ǫij,k) −

1

15
δij(ǫmm,k + 2ǫmk,m)

−
1

15
δjk(ǫmm,i + 2ǫmi,m) −

1

15
δki(ǫmm,j + 2ǫmj,m), (9)

χs
ij =

1

2
(eipqǫqj,p + ejpqǫqi,p), (10)

in which a subscript preceded by a comma represents the differentiation with respect to the
subscript. δij and eipq denote the Kronecker delta and the permutation symbol, respectively.
Then, substituting Eq. (7) into Eqs. (8)–(10) yields



















γ1 =
∂2u0

∂x2
+ f

∂3w0

∂x3
+ g

∂2u1

∂x2
+ φ′ ∂w1

∂x
,

γ3 = f ′ ∂
2w0

∂x2
+ g′

∂u1

∂x
+ φ′′w1,

(11)
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

































































































































































η
(1)
111 =

2

5

(∂2u0

∂x2
+ f

∂3w0

∂x3
+ g

∂2u1

∂x2

)

−
1

5

(

f ′′ ∂w0

∂x
+ g′′u1 + 2φ′ ∂w1

∂x

)

,

η
(1)
333 =

2

5
φ′′w1 −

1

5

(

(2f ′ + 1)
∂2w0

∂x2
+ 2g′

∂u1

∂x
+ φ

∂2w1

∂x2

)

,

η
(1)
113 = η

(1)
131 = η

(1)
311

= −
1

5
φ′′w1 +

4

15

(

(2f ′ + 1)
∂2w0

∂x2
+ 2g′

∂u1

∂x
+ φ

∂2w1

∂x2

)

,

η
(1)
223 = η

(1)
232 = η

(1)
322

= −
1

5
φ′′w1 −

1

15

(

(2f ′ + 1)
∂2w0

∂x2
+ 2g′

∂u1

∂x
+ φ

∂2w1

∂x2

)

,

η
(1)
221 = η

(1)
122 = η

(1)
212

= −
1

5

(∂2u0

∂x2
+ f

∂3w0

∂x3
+ g

∂2u1

∂x2

)

−
1

15

(

f ′′ ∂w0

∂x
+ g′′u1 + 2φ′ ∂w1

∂x

)

,

η
(1)
331 = η

(1)
133 = η

(1)
313

= −
1

5

(∂2u0

∂x2
+ f

∂3w0

∂x3
+ g

∂2u1

∂x2

)

+
4

15

(

f ′′ ∂w0

∂x
+ g′′u1 + 2φ′ ∂w1

∂x

)

,

(12)















χs
12 = χs

21 =
1

4

(

(f ′ − 1)
∂2w0

∂x2
+ g′

∂u1

∂x
− φ

∂2w1

∂x2

)

,

χs
23 = χs

32 =
1

4

(

f ′′ ∂w0

∂x
+ g′′u1 − φ′ ∂w1

∂x

)

.

(13)

Although FG materials are globally heterogeneous, the locally effective properties at a given
point can be assumed to be isotropic. Then, the classical and higher-order stresses are obtained
by the following constitutive relations:







σij = λefǫmmδij + 2Gefǫij , pi = 2Gef l
2
0γi,

τ
(1)
ijk = 2Gef l

2
1η

(1)
ijk , ms

ij = 2Gef l
2
2χ

s
ij ,

(14)

where the Lamé parameter λef is given by

λef = Eefµef/((1 + µef)(1 − 2µef)).

The symbols of l0, l1, and l2 denote the material length scale parameters associated with those
additional higher-order deformation gradients. When l0 = l1 = 0 µm, the MSGT can degenerate
into the MCST.

2.3 Variational formulation

The energy functional for the FG micro-beam is defined as follows:

Π = U + Ubc − T, (15)
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where the strain energy and the kinetic energy are represented by U and T , respectively. Ubc

is the additional potential energy on the boundaries. The kinetic energy T is achieved by

T =
1

2

∫∫∫

V

ρef

((∂u

∂t

)2

+
(∂w

∂t

)2)

dV

=
b

2

∫ L

0

I1

((∂u0

∂t

)2

+
(∂w0

∂t

)2)

+ Iff

(∂2w0

∂x∂t

)2

+ Igg

(∂u1

∂t

)2

+ Iφφ

(∂w1

∂t

)2

+ 2
(

If
∂u0

∂t

∂2w0

∂x∂t
+ Ig

∂u0

∂t

∂u1

∂t
+ Ifg

∂u1

∂t

∂2w0

∂x∂t
+ Iφ

∂w0

∂t

∂w1

∂t

)

dx, (16)

where


















































I1 =

∫ h/2

−h/2

ρefdz, If =

∫ h/2

−h/2

ρeffdz,

Ig =

∫ h/2

−h/2

ρefgdz, Iφ =

∫ h/2

−h/2

ρefφdz, Ifg =

∫ h/2

−h/2

ρeffgdz,

Iff =

∫ h/2

−h/2

ρefffdz, Igg =

∫ h/2

−h/2

ρefggdz, Iφφ =

∫ h/2

−h/2

ρefφφdz.

The strain energy U is calculated by the following integral equation[17]:

U =
1

2

∫∫∫

V

(σijǫij + piγi + τ
(1)
ijkη

(1)
ijk + mijχij)dV. (17)

With the help of the force and moment resultants achieved by integrating the stresses in the
z-direction (see Appendix A), the strain energy U is further written as follows:

U =
b

2

∫ L

0

(

N11
∂u0

∂x
+

(

P1 +
2

5
T111 −

3

5
T221 −

3

5
T331

)∂2u0

∂x2

−
(1

5
T g′′

111 +
1

5
T g′′

221 −
4

5
T g′′

331 −
1

2
Y g′′

23 − Ng′

13

)

u1

+
(

Ng
11 + P g′

3 −
2

5
T g′

333 −
2

5
T g′

223 +
8

5
T g′

113 +
1

2
Y g′

12

)∂u1

∂x

+
(2

5
T g

111 −
3

5
T g

221 −
3

5
T g

331 + P g
1

)∂2u1

∂x2

+
(

Nf ′+1
13 +

1

2
Y f ′′

23 −
1

5
T f ′′

111 −
1

5
T f ′′

221 +
4

5
T f ′′

331

)∂w0

∂x

+
(

Nf
11 + P f ′

3 +
1

2
Y f ′−1

12 −
1

5
T 2f ′+1

333 −
1

5
T 2f ′+1

223 +
4

5
T 2f ′+1

113

)∂2w0

∂x2

+
(

P f
1 +

2

5
T f

111 −
3

5
T f

221 −
3

5
T f

331

)∂3w0

∂x3

+
(

Nφ′

33 + Pφ′′

3 +
2

5
T φ′′

333 −
3

5
T φ′′

223 −
3

5
T φ′′

113

)

w1

+
(

Nφ
13 + Pφ′

1 −
2

5
Y φ′

23 −
2

5
T φ′

111 −
2

5
T φ′

221 +
8

5
T φ′

331

)∂w1

∂x

+
(

−
1

2
Y φ

12 −
1

5
T φ

333 −
1

5
T φ

223 +
4

5
T φ

113

)∂2w1

∂x2

)

dx. (18)
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The essential boundary conditions are enforced via the penalty function method. Introducing
the penalty factors k yields the geometrical boundary conditions in the form of additional strain
energy as follows[35–36]:

Ubc =
b

2

(

k1u
2
0 + k2u

2
1 + k3w

2
0 + k4w

2
1 + k5

(∂u0

∂x

)2

+ k6

(∂u1

∂x

)2

+ k7

(∂w0

∂x

)2

+ k8

(∂w1

∂x

)2

+ k9

(∂2w0

∂x2

)2)

. (19)

It is noted that the penalty factors ki (i = 1, 2, 3, 4, and 7) are associated with the classical
boundary conditions obtained from the conventional continuum mechanics theory, and the
other penalty factors are used to handle the higher-order boundary conditions resulting from
the introduction of some additional higher-order deformation gradients and the corresponding
high-order stress terms. The explicit relation between the penalty factors and the boundary
conditions is achieved via the Hamilton principle as follows:

N11 −
∂P1

∂x
−

1

5

∂(2T111 − 3T221 − 3T331)

∂x
= k1u0|x=0,L, (20)

Ng
11 −

∂P g
1

∂x
+ P g′

3 +
1

5

∂(2T g
111 − 3T g

221 − 3T g
331)

∂x

−
2

5
(T g′

333 + T g′

223 − 4T g′

113) +
1

2
Y g′

12 = k2u1|x=0,L, (21)

Nf ′+1
13 −

∂Nf
1

∂x
−

∂P f ′

3

∂x
+

∂2P f
1

∂x2
+

1

5
(T f ′′

111 + T f ′′

221 − 4T f ′′

331)

+
1

2
Y f ′′

23 −
1

2

∂Y f ′−1
12

∂xA
+

1

5

∂(T 2f ′+1
333 + T 2f ′+1

223 − 4T 2f ′+1
113 )

∂x

+
1

5

∂2(2T f
111 − 3T f

221 − 3T f
331)

∂x2
= k3w0|x=0,L, (22)

Nφ
13 −

2

5
(T φ′

111 + T φ′

221 − 4T φ′

331) +
1

5

∂(T φ
333 + T φ

223 − 4T φ
113)

∂x

+ Pφ′

1 +
1

2

∂Y φ
12

∂x
−

1

2
Y φ′

23 = k4w1|x=0,L, (23)

P1 +
1

5
(2T111 − 3T221 − 3T331) = k5

∂u0

∂x

∣

∣

∣

x=0,L
, (24)

P g
1 +

1

5
(2T g

111 − 3T g
221 − 3T g

331) = k6
∂u1

∂x

∣

∣

∣

x=0,L
, (25)

Nf
1 + P f ′

3 −
∂P f

1

∂x
+

1

2
Y f ′−1

12 −
1

5
(T 2f ′+1

333 + T 2f ′+1
223 − 4T 2f ′+1

113 )

−
1

5

∂(2T f
111 − 3T f

221 − 3T f
331)

∂x
= k7

∂w0

∂x

∣

∣

∣

x=0,L
, (26)

1

5
(T φ

333 − T φ
223 − 4T φ

113) + Y φ
12 = k8

∂w1

∂x

∣

∣

∣

x=0,L
, (27)
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P f
1 +

1

5
(2T f

111 − 3T f
221 − 3T f

331) = k9
∂2w0

∂x2

∣

∣

∣

x=0,L
. (28)

It can be found that general boundary conditions are easily simulated by choosing appropriate
values of penalty factors. In addition, the governing equations of motion are also achieved in
this way, which are listed in Eqs. (A10)–(A13) of Appendix A.
2.4 Solution procedure

Using Chebyshev orthogonal polynomials as the basis function and implementing a linear
coordinate transformation with ξ = 2x/L − 1, the displacement variables given in Eq. (6) are
expressed as follows:













u0(t, ξ)

u1(t, ξ)

w0(t, ξ)

w1(t, ξ)













=
∞
∑

m=0













Am(t)

Bm(t)

Cm(t)

Dm(t)













Tm(ξ) =













ATT

BTT

CTT

DTT













, (29)

where A, B, C, and D denote the generalized coordinate variable vectors made up of Am,
Bm, Cm, and Dm, respectively. Tm(ξ) is the one-dimensional mth-order Chebyshev orthogonal
polynomial, which is achieved by

{

T0(ξ) = 1, T1(ξ) = ξ,

Tm(ξ) = 2ξTm−1(ξ) − Tm−2(ξ), m > 2.
(30)

By inserting Eqs. (16)–(19) and (29) into Eq. (15) and applying the variational operation,
one can obtain the following equation in the form of matrices:













Mu0u0
Mu0u1

Mu0w0
0

Mu0u1
Mu1u1

Mu1w0
0

Mu0w0
Mu1w0

Mw0w0
Mw0w1

0 0 Mw0w1
Mw1w1

























Ä

B̈

C̈

D̈













+













Ku0u0
Ku0u1

Ku0w0
Ku0w1

Ku0u1
Ku1u1

Ku1w0
Ku1w1

Ku0w0
Ku1w0

Kw0w0
Kw0w1

Ku0w1
Ku1w1

Kw0w1
Kw1w1

























A

B

C

D













= 0. (31)

The sub-matrices Mu0u0
and Ku0u0

are taken as examples to further clarify the calculation
of the total mass and stiffness matrices. They are calculated by

Mu0u0
=

LI1

2

∫ 1

−1

T
T
Td(ξ), (32)

Ku0u0
=

2A11

L

∫ 1

−1

dT T

dξ

dT

dξ
dξ +

16A66

L3

(

l20 +
2

5
l21

)

∫ 1

−1

d2T T

dξ2

d2T

dξ2
dξ, (33)

where

A11 =

∫ h/2

−h/2

(λef + 2Gef)dz, A66 =

∫ h/2

−h/2

2Gefdz.

With the aid of assumption of a harmonic motion, one can obtain the standard characteristic
equations from Eq. (31). It is noted that the characteristic equations corresponding to the CBT,
the FBT, and the RBT can be achieved by moving the lines and columns of the total mass and
stiffness matrices corresponding to the absent displacement variables.
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3 Numerical examples

A wide range of numerical examples are given to verify the convergence, the accuracy, and
the stability of this formulation. Unless otherwise specified, the FG materials are made of SiC
with[32]

E1 = 427 GPa, µ1 = 0.17, ρ1 = 3 100 kg/m3

and Al with
E2 = 70 GPa, µ2 = 0.3, ρ2 = 2 702 kg/m3.

The material length scale parameters are taken as l0 = l1 = l2 = l = 15 µm for the MSGT
and l0 = l1 = 0 µm, l2 = l = 15 µm for the MCST. The boundary conditions, including the
clamped, simply supported, and free boundary conditions and their arbitrary combinations, are
considered[24,31].

The clamped boundary conditions are defined as follows:














u0 = 0, u1 = 0, w0 = 0, w1 = 0,
∂u0

∂x
= 0,

∂u1

∂x
= 0,

∂w0

∂x
= 0,

∂w1

∂x
= 0,

∂2w0

∂x2
= 0.

The simply supported boundary conditions are defined as follows:










w0 = 0, w1 = 0,

∂u0

∂x
= 0,

∂u1

∂x
= 0,

∂2w0

∂x2
= 0.

(34)

Note that the free boundary conditions represent no constraints at edges. For the sake of
convenience, the dimensionless frequency parameter is defined as Ω = ωL

√

I10/A110, where
A110 and I10 represent the values of A11 and I1 of a homogeneous metal (Al) beam.
3.1 Convergence studies

The accuracy and efficiency of this formulation depend on both the numbers of terms of
the Chebyshev orthogonal polynomials taken for the displacement variables and the values of
the penalty factors for modeling the boundary conditions. Therefore, those two key parameters
need to be studied before going into the analysis. In fact, the larger the number of the or-
thogonal polynomial terms used in Eq. (29), the more accurate the obtained results. However,
for computational efficiency, the appropriate truncated number M needs to be determined to
achieve the results with acceptable accuracy.

Table 1 presents the first eight dimensionless frequencies of completely free FG micro-beams
having h/l = 2, 8, L/h = 5, and p = 1. An excellent convergence behavior can be found from
those results. It can be seen that adopting M = 12 can obtain quite stable and acceptable
results.

Theoretically, the penalty factors are taken as zero for free constraints whereas infinity
for clamped constraints. However, the actual calculation cannot deal with infinite values and
taking a very large value for the penalty factor may lead to round-off errors or ill-conditioning.
Consequently, the determination of the penalty factors is further carried out. For the interest
of convenience, the penalty factors are normalized by



































Γi = lg
ki

A110
, i = 1, 2, 3, 4,

Γi = lg
ki

A660(l20 + l21)
, i = 5, 6, 9,

Γi = lg
ki

A660(l21 + l22)
, i = 7, 8.
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Table 1 Convergence of dimensionless frequencies of completely free FG micro-beams with different
M , where L/h = 5, and p = 1

h/l M Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

2

4 3.188 6 4.730 4 9.275 3 11.033 19.558 22.804 24.625 29.800

6 3.157 9 4.697 7 7.801 8 10.233 14.184 17.387 23.792 26.578

8 3.157 8 4.697 0 7.675 7 10.205 13.488 17.095 20.798 24.995

10 3.157 7 4.697 0 7.674 5 10.204 13.471 17.084 20.040 24.850

12 3.157 7 4.697 0 7.674 1 10.204 13.470 17.084 20.008 24.835

14 3.157 7 4.697 0 7.674 0 10.204 13.470 17.084 20.00 6 24.834

8

4 1.676 1 4.523 4 4.869 7 9.162 0 9.793 8 14.183 16.273 18.391

6 1.664 0 3.979 9 4.511 4 6.979 8 8.971 5 12.709 13.588 15.166

8 1.664 0 3.931 6 4.510 4 6.685 3 8.871 5 10.154 12.981 13.562

10 1.664 0 3.931 5 4.510 3 6.679 3 8.831 5 9.752 8 12.409 13.410

12 1.663 9 3.931 4 4.510 3 6.678 8 8.829 8 9.736 2 12.359 13.400

14 1.663 9 3.931 4 4.510 3 6.678 7 8.829 8 9.735 5 12.357 13.400

Figure 2 plots the effects of normalized penalty factors on dimensionless frequencies of FG
micro-beams. It should be pointed out that appropriate values for the normalized penalty
factors of Γi (i = 1, 2, 3, 5, 6, 7) are in accord with those in Ref. [35], where the MSGT-based
FBT was used. For brevity, the corresponding figures related to the above penalty factors are

Fig. 2 Effects of the normalized penalty factors on the dimensionless frequencies of FG micro-beams,
where h/l = 2, L/h = 5, and p = 1 (color online)
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not shown in Fig. 2. In this analysis, the aforementioned six kinds of penalty factors are set to

Γ1 = Γ3 = Γ5 = Γ7 = 10, Γ2 = Γ6 = 0

for clamped boundary conditions. For penalty factors of Γi (i = 4, 8, 9), the 1st and 5th
dimensionless frequencies are obtained by changing only one kind of penalty factors from small
to large and assigning the others with zeros. It can be observed from Fig. 2 that, as the
normalized penalty factor continually increases, all obtained results slightly increase, and finally
keep a constant level. Accordingly, the appropriate values of the normalized penalty factors are
defined as

Γ4 = Γ8 = 10, Γ9 = 0

for clamped boundary conditions.
3.2 Verification studies

To validate this formulation, some comparative examples are given. Due to lack of available
quasi-3D results for FG micro-beams based on the MSGT, the numerical comparison for FG
micro-beams within the frame of the MCST is firstly conducted. The dimensionless fundamental
frequencies of simply supported FG micro-beams having L/h = 10 are listed in Table 2. This
problem has been analyzed by Trinh et al.[30] via the Navier solution based on various beam
theories including the CBT, the FBT, the RBT, and the quasi-3D method. Those calculated
results have excellent consistency with the referred date, which not only verifies the accuracy
of the present formulation, but also shows that it has the ability to accommodate various beam
theories.

Table 2 Comparison of dimensionless fundamental frequencies of simply supported FG micro-beams,
where L/h = 10

h/l Theory
p = 0.3 p = 1 p = 3 p = 10

Ref. [30] Present Ref. [30] Present Ref. [30] Present Ref. [30] Present

1

CBT 12.900 1 12.899 7 10.648 3 10.647 5 8.942 0 8.941 5 7.801 5 7.801 3

FBT 12.605 5 12.605 5 10.398 3 10.398 3 8.711 1 8.711 1 7.584 0 7.584 0

RBT 12.833 3 12.833 3 10.601 0 10.601 0 8.904 9 8.904 9 7.764 4 7.764 4

Quasi-3D 12.742 2 12.742 2 10.509 3 10.509 3 8.793 6 8.793 6 7.623 6 7.623 6

2

CBT 7.930 3 7.930 1 6.616 0 6.615 5 5.736 2 5.735 9 5.123 4 5.123 3

FBT 7.822 9 7.822 9 6.521 1 6.521 1 5.638 3 5.638 3 5.024 0 5.024 0

RBT 7.871 8 7.871 8 6.567 1 6.567 1 5.687 7 5.687 7 5.073 4 5.073 4

Quasi-3D 7.750 4 7.750 4 6.442 9 6.442 9 5.536 3 5.536 3 4.881 6 4.881 6

4

CBT 6.083 5 6.083 3 5.134 8 5.134 4 4.597 8 4.597 5 4.194 7 4.194 7

FBT 6.011 0 6.011 0 5.069 2 5.069 2 4.525 7 4.525 7 4.118 6 4.118 6

RBT 6.023 1 6.023 1 5.078 4 5.078 4 4.532 7 4.532 7 4.127 8 4.127 8

Quasi-3D 5.872 6 5.872 6 4.926 2 4.926 2 4.353 3 4.353 3 3.902 9 3.902 9

8

CBT 5.526 2 5.526 0 4.692 0 4.691 7 4.266 0 4.265 7 3.928 4 3.928 3

FBT 5.461 2 5.461 2 4.632 8 4.632 8 4.199 6 4.199 6 3.857 5 3.857 5

RBT 5.464 0 5.464 0 4.631 4 4.631 4 4.192 2 4.192 2 3.853 1 3.853 1

Quasi-3D 5.300 1 5.300 1 4.467 1 4.467 1 4.002 2 4.002 2 3.616 3 3.616 3

Table 3 presents the first ten dimensionless quasi-3D frequencies of simply supported FG
micro-beams made of Al2O3 and Al. The used parameters in this analysis are

p = 1, L/h = 10, h/l = 1, 4, 20, 100.
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Table 3 Comparison of first ten dimensionless quasi-3D frequencies of simply supported FG micro-
beams (p=1, L/h=10)

Mode
h/l = 1 h/l = 4 h/l = 20 h/l = 100

Ref.[32] Present Ref.[32] Present Ref.[32] Present Ref.[32] Present

1 10.627 8 10.627 8 4.846 2 4.846 2 4.213 7 4.213 7 4.186 5 4.186 5

2 26.230 4 26.230 7 18.568 1 18.568 1 16.115 0 16.115 0 16.008 6 16.008 6

3 41.326 1 41.326 1 26.223 2 26.223 2 26.038 3 26.037 5 26.026 8 26.026 0

4 78.595 2 78.596 0 39.999 8 39.999 8 34.617 9 34.617 8 34.387 0 34.386 9

5 88.945 5 88.945 4 66.437 5 66.437 8 57.027 2 57.027 4 56.615 0 56.615 2

6 131.057 131.058 78.739 9 78.740 3 77.908 6 77.906 9 77.802 8 77.801 2

7 149.550 149.551 97.670 3 97.678 3 83.599 6 83.605 6 83.048 5 83.054 2

8 183.405 183.406 129.142 129.394 110.653 111.113 109.743 110.186

9 219.865 219.882 133.485 134.001 130.513 130.593 130.415 130.511

10 235.827 235.832 168.146 170.928 140.540 142.681 139.350 141.440

The quasi-3D solutions provided by Yu et al.[32] by using the isogeometric analysis (IGA) are
also listed in this table. Excellent agreement even for higher-order frequencies is observed from
the results.

To further validate this formulation, Table 4 presents the dimensionless fundamental fre-
quencies of FG micro-beams subjected to different boundary conditions based on the MSGT.
The obtained results are compared with those given by Ansari et al.[21] by using the MSGT-
based Timoshenko beam model and the generalized differential quadrature (GDQ) method.
It is noted that in Ref. [21], the immovable simply supported boundary conditions were used.
In order to better verify the present method, the same boundary conditions are considered.
As expected, good agreement is found when adopting the same beam theory for all boundary
conditions considered.

Table 4 Comparison of dimensionless fundamental frequencies of FG micro-beams with different
boundary conditions, where h/l = 2, L/h = 10, S1S1 means immovable simply supported-
immovable simply supported, CC means clamped-clamped, and CS1 means clamped-
immovable simply supported

Boundary condition
p

0.1 0.2 0.6 1.2 2 5 10

S1S1

Ref. [21] 0.956 0 0.893 2 0.768 3 0.686 7 0.631 9 0.553 5 0.513 1

FBT 0.958 3 0.895 6 0.770 6 0.688 9 0.634 0 0.555 5 0.514 8

Quasi-3D 0.884 9 0.826 6 0.712 6 0.638 4 0.588 4 0.514 8 0.474 8

CC

Ref. [21] 2.028 2 1.888 4 1.609 7 1.431 4 1.316 1 1.158 1 1.078 0

FBT 2.034 5 1.895 2 1.615 5 1.435 8 1.319 7 1.161 2 1.080 9

Quasi-3D 2.099 2 1.955 5 1.675 2 1.498 4 1.384 1 1.223 1 1.134 5

CS1

Ref. [21] 1.449 6 1.350 7 1.153 6 1.027 1 0.944 9 0.831 5 0.773 7

FBT 1.453 6 1.355 1 1.157 4 1.030 0 0.947 3 0.833 7 0.775 8

Quasi-3D 1.417 1 1.320 6 1.131 5 1.011 3 0.93 29 0.822 2 0.762 1

3.3 Parametric studies

After the success of numerical comparison, the present formulation is used to study the
effects of the key parameters on the vibration behaviors of FG micro-beams. In Figs. 3–5,
SS presents simply supported-simply supported, CC presents clamped-clamped, CS presents
clamped-simply supported, and CF presents clamped-free.
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Figure 3 depicts the effects of the dimensionless material length scale parameter h/l on
the vibration frequencies of FG micro-beams having L/h = 10 and p = 1. For all cases, the
dimensionless frequency parameters of FG micro-beams decrease as h/l increases. This lies on
the fact that the size effects become weak as h/l increases, leading to the reduction in the flexural
rigidity. By comparing the frequencies obtained from the FBT and the RBT, it can be clearly
seen that their differences are notable when h/l is small and are diminishing as h/l increases.
It may be deduced that the strong size effects lead to failure of the FBT for moderately thick
micro-beams with L/h = 10, particularly for clamped-clamped and clamped-simply supported
boundary conditions. By making a comparison of the RBT and quasi-3D results, it also can be
observed that the quasi-3D results are always smaller than the RBT ones. This is attributable
to the normal deformation effect. Another interesting point is that there exists an intersection
of two curve lines related to the FBT and quasi-3D results and the value of h/l corresponding
to the intersection point is strongly affected by the boundary conditions.

- -

- -

Fig. 3 Effects of the dimensionless material length scale parameter h/l on the dimensionless funda-
mental frequencies of FG micro-beams, where L/h = 10, and p = 1 (color online)

Figure 4 plots the effects of the gradient index p on the dimensionless fundamental frequency
parameters for FG micro-beams having h/l = 2 and L/h = 10. As expected, the frequency
parameters of FG micro-beams decrease for all cases as p increases. This reason is that the
increase in the gradient index p results in the lessening of the volume fraction of SiC, leading
to the reduction in the flexural rigidity. It also can be observed that the change of the gradient
index p does not affect the order relation of the results from different beam theories when other
parameters are fixed. The effects of the length-to-thickness ratio L/h on the vibration frequency
parameters of FG micro-beams having h/l = 2 and p = 1 are shown in Fig. 5.

For all cases, the dimensionless frequency parameters of FG micro-beams decrease as the
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- -

- -

Fig. 4 Effects of the gradient index p on the dimensionless fundamental frequencies of FG micro-
beams, where L/h = 10, and h/l = 2

length-to-thickness ratio increases. This is because the increase in L/h leads to the reduction
in the flexural rigidity. The differences of the FBT and RBT results decrease as L/h increases,
indicating that the FBT is not valid for slightly thick micro-beams, especially for clamped-
clamped and clamped-simply supported boundary conditions.

4 Conclusions

This paper develops an MSGT-based quasi-3D micro-beam model for the vibration analysis
of FG micro-beams. The effects of transverse shear and normal deformations are considered.
The formulation is derived by a Chebyshev-based variational method combined with the penalty
function method, in which the displacement field is given in a general form, which can be de-
duced to the CBT, the FBT, and the RBT. A wide range of examples on the vibration problems
of FG micro-beams are presented. The results validate the present formulation. From para-
metric studies, it is observed that the dimensionless frequencies decrease with the increase in
the dimensionless material length scale parameter h/l, the gradient index p, or the length-
to-thickness ratio L/h, and the transverse shear effects play a significant role on vibration
behaviors with lower values of h/l and L/h, particularly for clamped-clamped and clamped-
simply supported boundary conditions. In addition, comparisons of the quasi-3D and RBT
results indicate the transverse normal effects.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link
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- -

- -

Fig. 5 Effects of the length-to-thickness ratio L/h on the dimensionless fundamental frequencies of
FG micro-beams, where h/l = 2, and p = 1

to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.
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Appendix A

The force and moment resultants used are defined as follows:

(N11, N
f
11, N

g
11) =

Z h/2

−h/2

σ11(1, f, g)dz, (A1)

Nφ′

33 =

Z h/2

−h/2

σ33φ
′dz, (A2)

(Nf ′+1
13 , Ng′

13 , Nφ
13) =

Z h/2

−h/2

σ13(f
′ + 1, g′, φ)dz, (A3)
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f
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Z h/2
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p1(1, f, g, φ′)dz, (A4)
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3 , P φ′′
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Z h/2
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i1 , T φ′

i1 )
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Z h/2

−h/2

τi1
(1)(1, f, g, f ′′, g′′, φ′)dz, i = 11, 22, 33, (A6)

(T φ
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=
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−h/2
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(Y φ
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(Y φ′

23 , Y f ′′

23 , Y g′′

23 ) =

Z h/2

−h/2

ms
23(φ

′, f ′′, g′′)dz. (A9)

The governing equations of the FG micro-beam are obtained via the Hamilton principle as follows:
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