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Abstract In this paper, the mechanism of thermal energy transport in swirling flow
of the Maxwell nanofluid induced by a stretchable rotating cylinder is studied. The
rotation of the cylinder is kept constant in order to avoid the induced axially secondary
flow. Further, the novel features of heat generation/absorption, thermal radiation, and
Joule heating are studied to control the rate of heat transfer. The effects of Brownian
and thermophoretic forces exerted by the Maxwell nanofluid to the transport of thermal
energy are investigated by utilizing an effective model for the nanofluid proposed by
Buongiorno. The whole physical problem of fluid flow and thermal energy transport
is modelled in the form of partial differential equations (PDEs) and transformed into
nonlinear ordinary differential equations (ODEs) with the help of the suitable flow ansatz.
Numerically acquired results through the technique bvp4c are reported graphically with
physical explanation. Graphical analysis reveals that there is higher transport of heat
energy in the Maxwell nanoliquid for a constant wall temperature (CWT) as compared
with the prescribed surface temperature (PST). Both thermophoretic and Brownian forces
enhance the thermal energy transport in the flowing Maxwell nanofluid. Moreover, the
temperature distribution increases with increasing values of the radiation parameter and
the Eckert number. It is also noted that an increase in Reynolds number reduces the
penetration depth, and as a result the flow and transport of energy occur only near the
surface of the cylinder.

Key words Maxwell nanofluid, rotating cylinder, heat source/sink, Joule heating,
convective condition, numerical solution

Chinese Library Classification O361
2010 Mathematics Subject Classification 76R05, 76E07, 76A05

Nomenclature

α, stretching rate (T−1);
B, magnetic field;
B0, strength of magnetic field (N·m·A−1);
C, concentration in fluid;

Cw, wall concentration;
Re, Reynolds number;
Sh, Sherwood number;
T , temperature of fluid (K);
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Tw, wall temperature (K);
T∞, ambient fluid temperature (K);
C∞, ambient concentration;
cp, specific heat capacity (J·K−1·kg−1);
DB, mass diffusivity (m2·s−1);
DT, thermophoresis coefficient (m2·s−1);
E, rotational velocity (m·s−1);
Ec1, Eckert number due to surface stretching;
Ec2, Eckert number due to surface rotation;
f ′, dimensionless axial velocity;
f(η)

η1/2 , dimensionless radial velocity;

g, dimensionless azimuthal velocity;
ht, heat transfer coefficient (W·m−2·K−1);
Le, Lewis number;
M , magnetic number;
Nt, thermophoretic parameter;
Nb, Brownian diffusion parameter;
Nu, Nusselt number;
Pr, Prandtl number;
Q0, heat source/sink coefficient;
r, radial coordinate;

Rd, radiation parameter;
u, axial velocity component;
us, surface stretching velocity (m·s−1);
V , velocity field;
v, azimuthal velocity component;
vr, surface rotation velocity (m·s−1);
w, radial velocity components (m·s−1);
z, axial coordinate;
φ, azimuthal coordinate;
λ1, fluid relaxation time (T−1);
ν, kinematic velocity (m2·s−1);
σ, electric conductivity of fluid (S·m−1);
ρ, density of fluid (kg·m−3);
η, dimensionless variable;
α1, thermal diffusivity of fluid (m2·s−1);
µ, dynamic viscosity (kg·m−1·s−1);
θ, dimensionless temperature;
β1, Maxwell parameter;
γ1, Biot number;
τ , heat capacity ratio;
δ, source/sink parameter.

1 Introduction

In this era of fast-growing technology, the subject of non-Newtonian fluid flow has fasci-
nated the scientists due to its numerous applications in the fields of engineering, such as glass
blowing, adhesive tapes processing, and coating application, which often require the flow of
non-Newtonian fluids over a rigid surface. Although the flow behavior of Newtonian fluids is
described by the simple linear relationship between shear stress and shear rate, non-Newtonian
fluids have the complex rheological properties depending on their viscosity behavior as a function
of shear rate, stress, deformation history, etc. Each non-Newtonian fluid has its own charac-
teristics and thus there is no single mathematical relation which can explain the flow behavior
of all non-linear fluids. Therefore, scientists classified non-Newtonian fluids into three main
types: (i) differential type, (ii) integral type, and (iii) rate type by defining the mathematical
model for each specific non-Newtonian fluid. Flows of non-Newtonian fluids in various geome-
tries with various physical assumptions were reported in Refs. [1]–[4]. The Phan-Thien-Tanner
model was employed by Dhinakaran et al.[5] to investigate the steady flow of viscoelastic fluid
between parallel plates under the effect of electro-osmotic forces. Prasad et al.[6] studied the
magnetohydrodynamic (MHD) flow of viscoelastic fluid with variable viscosity and heat trans-
port over a stretching sheet. Their analysis revealed that higher values of magnetic parameter
decrease the surface temperature gradient and skin friction. Malaspinas et al.[7] utilized the
lattice Boltzmann method to simulate linear and non-linear viscoelastic fluids. Siddiqa et al.[8]

numerically examined the free convection flow of non-Newtonian fluid over a vertical surface.
In the recent studies of non-Newtonian fluids, the non-axisymmetric Homann flow problem
for the viscoelastic fluid over a fixed plate was investigated numerically by Mahapatra and
Sidui[9]. Dimensionless velocities and displacement thickness were analyzed for different values
of viscoelastic parameter in their study.

In non-linear fluids, viscoelastic fluids exhibit both the elastic and viscous effects, and the
stress-strain relationship depends on time for these fluids. Two major phenomena are observed
in viscoelastic fluids: one is stress relaxation and the other is creep. Thus, researchers have
proposed two mathematical models for these types of fluids which are the Maxwell model and
the Kelvin Voigt model. The Maxwell fluid model is the simplest model for linear viscoelastic
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type material to describe the phenomenon of stress relaxation. On the other hand, the Kelvin
Voigt model can predict the creep phenomenon but this model is poor for stress relaxation.
Most materials found in industries are viscoelastic fluids under stress relation behavior, such as
process of manufacturing of plastic, paints, polymers, and rubber sheets. On the other hand,
there are some limitations of the present Maxwell fluid model. This model can only predict
the stress relaxation phenomenon in the viscoelastic fluid, and the model is poor for the creep
phenomenon. Moreover, the shear thinning and shear thickening features cannot be described by
this model. Attention has been paid by researchers to study the rheology of Maxwell fluid flow
subject to various physical effects. Tan et al.[10] reported the investigation on an unsteady flow
of Maxwell fluid between parallel plates. The Laplace and Fourier transforms were used for the
solution of the problem. Nadeem et al.[11] numerically studied the flow of Maxwell fluid induced
by a stretching sheet under the effect of a magnetic field. They revealed that higher values of the
relaxation time parameter decline the flow velocity and enhance the temperature distribution.
Falkner-Skan flow of MHD Maxwell fluid was studied by Abbasbandy et al.[12]. In this study,
both the analytical and numerical solutions were presented. In the recent investigations, Ahmed
et al.[13] studied the swirling flow of Maxwell fluid between two coaxially rotating disks. Their
results indicated that for a higher Reynolds number, the pressure field drops near the surface
of lower disk. Rauf et al.[14] examined the multi-layer flows of an immiscible fractional Maxwell
fluid. They obtained the analytical solution of the problem with the help of Laplace transform
coupled with the Hankel and Weber transform of zero order. It was shown that the velocity
decreases for higher values of the fractional parameter.

Heat transport in both types of fluids, linear and non-linear, plays a significant role in many
engineering processes for both internal and external flow systems, e.g., cooling of electronic
equipment, cooling of nuclear reactors, extrusion process, and energy conversion in nuclear
reactors. Heat transport in the viscoelastic type fluid flow induced by rotating and stretch-
ing surfaces has a critical importance in plastic manufacturing because the quality of the final
product greatly depends on it. Many studies were carried out by researchers in order to pre-
dict the heat transport in the flow due to stretching and rotating surfaces[15–19]. Analysis of
thermal energy transport in mixed convection flow of viscous fluid over a nonlinear deforming
surface under the effect of magnetic field was discussed by Turkyilmazoglu[20]. Heat transport
in the stagnation point flow of Maxwell nanofluid over a rotating disk subject to heat genera-
tion/absorption was studied by Ahmed et al.[21]. The outcomes of their study revealed that the
thermophoretic force enhances the thermal energy transport in the flow. Mehmood et al.[22]

examined the convective heat transport mechanism in the viscous flow induced by the wavy
rotating disk. Heat transport in the flow due to the rotating cylinder, confined with the non-
Newtonian power-law fluid, was predicted by Thakur et al.[23]. They presented their results in
the form of Nusselt number by using appropriate correlation.

Flow over rotating cylinders is significant in an extensive number of applications from shafts
and axles to spinning projectiles. Recently, numerous researchers have studied the incompress-
ible flow around a rotating circular cylinder using numerical, theoretical, and experimental
methods. Many applications of this field can be found in aerodynamic problems as well as
engineering structures. The boundary layer flows can be controlled through using rotational
cylinders or other control methods such as Lorentz forces, blowing, suction, and surface rough-
ness. In view of the above-studied rotating flows, it is noted that investigations deal with the
investigation of thermal energy transport in the flow Maxwell nanofluid induced by stretching
surfaces. Thus, the present work is proposed to analyze the rheology of three-dimensional (3D)
boundary layer flow of Maxwell nanofluid with thermal energy transport induced by the rotat-
ing cylinder. The analysis of heat transport is carried out with the effect of Joule heating and
heat generation/absorption in the flow of nanofluid. The surface temperature of the cylinder is
considered as a constant and axially varying. Moreover, the convective heat transport at the
surface of the cylinder is also considered. The physical problem is modelled in the form of par-
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tial differential equations (PDEs) and transformed into a set of non-linear ordinary differential
equations (ODEs) by using the appropriate flow similarities. The MATLAB scheme bvp4c is
used for the numerical computations of the resulting ODEs. The acquired results are presented
graphically with physical explanation.

2 Mathematical formulation

Consider an electrically conducting swirling flow of Maxwell nanofluid induced by a stretch-
able rotating cylinder with radius R1 in the presence of a transverse magnetic field. The velocity
field for flow is assumed as V = (u, v, w), where u, v, and w are velocity components along
the z-, φ-, and r-axes, respectively, and B = (0, 0, B0) is the uniform magnetic field which is
applied in the r-axis direction. We assume that the stretching velocity of the cylinder is direct-
ly proportional to axial distance, and the rotation of the cylinder is constant around its axis.
Thermal analysis is investigated by considering the temperatures at the surface of the cylinder
as T (z,R1) = Tw (constant wall temperature (CWT)) and T (z,R1) = T∞ + bz (prescribed
surface temperature (PST)). The flow mechanism is presented in Fig. 1.

Fig. 1 Schematic diagram for flow configuration (color online)

The extra stress tensor S for the Maxwell fluid[24] is defined as(
1 + λ1

D

Dt

)
S = µA1, (1)

where λ1 is the relaxation time, D
Dt signifies the upper convective derivative, S is the extra

stress tensor, A1 = ∇V +(∇V )T signifies the first Rivlin-Ericksen tensor, and µ is the dynamic
viscosity of the fluid. If λ1 = 0 in the above equation, the case of Newtonian fluid can be
recovered.

The basic transport equations for fluid flow, thermal, and solutal energy transport are found
by conservation laws as

∇ · V = 0, (2)

ρ
dV

dt
= −∇p+∇ · S + J1 ×B, (3)

dT

dt
− τ

(
DB∇C · ∇T +

DT

T∞
(∇T )2

)
= − 1

ρcp
∇ · q + J2

1

σ
+

Q0(T − T∞)

ρcp
, (4)

dC

dt
− DT

T∞
∇2T = −∇ · J. (5)

In the above equations, d
dt is the material derivative, µ is the dynamic viscosity, J1 is the

current density, ρ is the density of the fluid, cp is the heat capacity at constant pressure, τ
is the effective heat capacity of nanoparticles to the base fluid, DB is the Brownian diffusion
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coefficient, DT is the thermophoresis, and Q0 is the heat generation source. Also, T and C are
the temperature and concentration of the fluid, respectively, T∞ and C∞ are the free stream
temperature and concentration, respectively, and q and J are heat and mass fluxes which are
defined from classical Fourier’s and Fick’s laws, respectively.

Based on the assumptions of axisymmetric, steady, and incompressible, the governing bound-
ary layer equations of the present flow and energy transport problem are obtained as

∂u

∂z
+

w

r
+

∂w

∂r
= 0, (6)

u
∂u

∂z
+ w

∂u

∂r
+ λ1

(
u2 ∂

2u

∂z2
+ 2uw

∂2u

∂r∂z
+ w2 ∂

2u

∂r2

)
=ν

(∂2u

∂r2
+

1

r

∂u

∂r

)
− σB2

0

ρ

(
u+ λ1w

∂u

∂r

)
, (7)

u
∂v

∂z
+ w

∂v

∂r
+

wv

r
+ λ1

(
u2 ∂

2v

∂z2
+ 2uw

∂2v

∂r∂z
+ w2 ∂

2v

∂r2
+

2wv

r

∂w

∂r
+

2uv

r

∂w

∂z
− 2w2v

r2

)
=ν

(∂2v

∂r2
− v

r2
+

1

r

∂v

∂r

)
− σB2

0

ρ

(
v + λ1w

∂v

∂r
− λ1

wv

r

)
, (8)

u
∂T

∂z
+ w

∂T

∂r
= α1

(∂2T

∂r2
+

1

r

∂T

∂r

)
+ τ

(
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∂C

∂r

∂T

∂r
+
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T∞

(∂T
∂r

)2)
− 1

ρcp

1

r

∂

∂r
(rqr) +

σB2
0

ρcp
(u2 + v2) +

Q0

ρcp
(T − T∞), (9)

u
∂C

∂z
+ w

∂C

∂r
= DB

(∂2C

∂r2
+

1

r

∂C

∂r

)
+

DT

T∞

(∂2T

∂r2
+

1

r

∂T

∂r

)
(10)

with the corresponding boundary conditions (BCs)

us(z, r)=2az, vs(z, r)=E, w(z, r)=0, −k
∂T

∂z
=ht (Tw−T ) , C=Cw at r=R1, (11)

u → 0, v → 0, T → T∞, C → C∞ as r → ∞. (12)

Here, ν is the kinematic viscosity, σ is the electric conductivity of fluid, α1 is the thermal
diffusivity, B0 is the magnetic field strength, a (> 0) signifies the stretching strength of cylinder
having dimension T−1, E is the torsional motion of cylinder with dimension as the same as
the velocity, and ht is the heat transfer coefficient. Moreover, qr =

−16σ∗

3k∗ T 3
∞

∂T
∂r is the radiative

heat flux, where σ∗ and k∗ are the Stefan-Boltzmann constant and mean absorption coefficient,
respectively.

We introduce the following transformation group[25]:

u = 2azf ′(η), v = Eg(η), w = −aR1
f(η)

η1/2
,

θ(η) =
T − T∞

Tw − T∞
at CWT, θ(η) =

T − T∞

bz
at PST,

ϕ(η) =
C − C∞

Cw − C∞
, η =

r2

R2
1

.

(13)

After insertion of the above ansatz, Eq. (6) is satisfied automatically, and Eqs. (7)–(12) yield

ηf ′′′ + f ′′ +Reff ′′ −Ref ′2

− β1Re
(f2f ′′

η
+ 2f2f ′′′ − 4ff ′f ′′

)
−MRe

(f ′

2
− β1ff

′′
)
= 0, (14)
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2η2g′′ + 2ηg′ − g

2
+ 2Reηfg′ +Refg

− β1Re
(
2f2g′ + 4ηf2g′′ + 4ff ′g − 4f2g

η

)
−MRe

(
ηg − 2β1ηfg

′ − β1fg) = 0, (15)

(1 +Rd)(ηθ
′′ + θ′) +RePrfθ′ + PrNbηθ

′ϕ′ + PrNtηθ
′2

+ PrδReθ + PrReM(Ec1f
′2 + Ec2g

2) = 0 at CWT, (16)

(1 +Rd)(ηθ
′′ + θ′) +RePrfθ′ − PrReθf ′ + PrNbηθ

′ϕ′

+ PrNtηθ
′2 + PrδReθ + PrReM(Ec1f

′2 + Ec2g
2) = 0 at PST, (17)

ηϕ′′ + ϕ′ +RePrLefϕ′ + LePr
Nt

Nb
θ′ + LePr

Nt

Nb
ηθ′′ = 0 (18)

with the BCs

f(1) = 0, f ′(1) = 1, g(1) = 1, θ′ (1) = −γ1(1− θ(1)), ϕ(1) = 1, (19)

f ′(∞) = 0, g(∞) = 0, θ(∞) = 0, ϕ(∞) = 0. (20)

In the above equations, β1 (= λ1a) is the Maxwell number, Re
(
=

aR2
1

2ν

)
is the Reynolds number,

M
(
=

σB2
0

ρa

)
is the magnetic number, Nb

(
= τDB∆C

ν

)
is the Brownian motion parameter,

Nt

(
= τDT∆T

νT∞

)
is the thermophoresis parameter, Rd

(
=

16σ∗T 3
∞

3kk∗

)
is the radiation parameter,

δ
(
= Q0

ρcpa

)
is the heat generation/absorption parameter, Ec1

(
=

u2
w

cp∆T

)
and Ec2

(
=

v2
w

cp∆T

)
are the Eckert numbers due to stretching and rotation of cylinder, respectively, γ1

(
= ht

k

√
ν
a

)
is the Biot number, Pr

(
= ν

α1

)
is the Prandtl number, and Le

(
= α1

DB

)
is the Lewis number.

In the study of viscous flow due to a stretching and rotating cylinder as reported by Fang and
Yao[25], the solution convergence of the flow equations is too slow particularly for lower values
of Re. Thus following Fang and Yao to make convergence fast, the variable η is transformed as
η = ex. Hence, Eqs. (14)–(20) become

fxxx − 2fxx + fx −Re
(
f2
x − ffxx + ffx

)
− β1Ree−x

(
2f2fxxx − 5f2fxx + 3f2fx − 4ffxfxx + 4ff2

x

)
−MRe

(
ex

fx
2

− β1ffxx + β1ffx

)
= 0, (21)

2gxx − g

2
+Re(2fgx + fg)

− β1Ree−x(2f2gx + 4f2gxx + 4f2gx + 4ffxg − 4f2g)

−MRe(exg − 2β1fgx − β1fg) = 0, (22)

(1 +Rd)θxx +RePrfθx +Nbθxϕx +Ntθ
2
x + PrδReexθ

+ PrReM(Ec1e
−xf2

x + Ec2e
xg2) = 0 at CWT, (23)

(1 +Rd)θxx +RePrfθx − PrReθfx +Nbθxϕx +Ntθ
2
x

+ PrδReexθ + PrReM(Ec1e
−xf2

x + Ec2e
xg2) = 0 at PST, (24)

ϕxx +RePrLefϕx + LePr
Nt

Nb
θxx = 0 (25)
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with the transformed BCs

f(0) = 0, fx(0) = 1, g(0) = 1, θx (0) = −γ1(1− θ(0)), ϕ(0) = 1, (26)

lim
x→∞

e−xfx = 0, g(∞) = 0, θ(∞) = 0, ϕ(∞) = 0. (27)

In the above equations, the subscript x denotes the derivative with respect to x.
The Nusselt and Sherwood numbers (Nu, Sh) are defined as

Nu =
R1qs

k(Tw − T∞)
, Sh =

R1js
DB(Cw − C∞)

, (28)

where qs and js are the heat and mass fluxes, respectively, defined as

qs = −k
(∂T
∂r

)
r=R1

, js = −DB

(∂C
∂r

)
r=R1

. (29)

The dimensionless form of Eq. (28) is given by

Nu = −2θ′(1), Sh = −2ϕ′ (1) . (30)

3 Numerical solution

This section is proposed for the numerical solutions of established ODEs representing the
flow and energy transport equations (21)–(25) along with BCs in Eqs. (26) and (27). The built-
in MATLAB technique namely bvp4c is used to acquire the numerical results. The bvp4c is a
finite difference technique that uses the three-stage Lobatto III formula. This is a collocation
formula and the collocation polynomial provides a C1-continuous solution with the fourth or
accuracy on the given interval. The mesh and error control are strongly based on the residual
of the solution. In order to use the bvp4c scheme, the governing ODEs are transformed into the
system of the first-order ODEs by using the transformed variables as f = y1, fx = y2, fxx = y3,
fxxx = yy1, g = y4, gx = y5, gxx = yy2, θ = y6, θx = y7, θxx = yy3, ϕ = y8, ϕx = y9, and
ϕxx = yy4 for Eqs. (21)–(25). The resulting first-order ODEs are listed as follows:

yy1 =
(
2y3 − y2 +Re(y22 − y1y3 + y1y2)

+ β1Ree−x(3y21y2 − 5y21y3 − 4y1y2y3 + 4y1y
2
2)

+MRe
(
ex

y2
2

− β1y1y3 + β1y1y2

))
/a1, (31)

yy2 =
(y4
2

− 2Rey1y5 −Rey1y4 + β1Ree−x(6y21y5 + 4y21y2y4 − 4y21y4)

+MRe(exy4 − 2β1y1y5 − β1y1y4)
)
/a2, (32)

yy3 = (−RePry1y7 − PrNby7y9 − PrNty
2
7 − PrδReexy6

− PrReM(Ec1e
−xy22 + Ec2e

xy24))/b1 at CWT, (33)

yy3 = (−RePry1y7 − PrNby7y9 − PrNty
2
7 − PrδReexy6

+ PrRey2y6 − PrReM(Ec1e
−xy22 + Ec2e

xy24))/b1 at PST, (34)

yy4 = −ReLePry1y9 − LePr
Nt

Nb
yy3, (35)

where

a1 = 1− 2β1Ree−xy21 , a2 = 2− 4β1Ree−xy21 , b1 = 1 +Rd,
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and the corresponding BCs are

y1(0) = 0, y2(0) = 1, y4(0) = 1, y7(0) = −γ1(1− y6(0)), y8(0) = 1, (36)

lim
x→∞

e−xy2 = 0, y4(∞) = 0, y6(∞) = 0, y8(∞) = 1. (37)

4 Discussion of results

The analysis of thermal energy transport in the swirling flow of Maxwell nanofluid with the
effects of heat generation/absorption, thermal radiation, and resistive heating is the basic theme
of our study. In this section of the study, we demonstrate the numerical results with physical
description for flow and heat transport under the effect of the involved physical parameters,
such as Reynolds number Re, Maxwell parameter β1, magnetic parameter M, thermophoret-
ic parameter Nt, Brownian motion parameter Nb, radiation parameter Rd, Eckert numbers
(Ec1, Ec2), heat source/sink δ, Biot number γ1, Prandtl number Pr, and Lewis number Le.
Throughout the numerical computation, we fix the values of pertinent parameters for thermal
analysis as Re = 3, M = 1, β1 = Nt = Nb = γ1 = Rd = 0.5, Ec1 = Ec2 = δ = 0.01, and
Pr = Le = 6.5. In case of flow analysis, we just change the values of Pr = Le = 2.5 for appro-
priate results. Figures 2(a)–2(c) show that for higher values of Re, the flow field declines and
flow occurs only near the surface. Physically, the inertial force in the fluid flow increases due
to higher values of Re. The inertial force is an opposing force for the fluid flow agent, which
causes to decrease the flow field in all directions.

Fig. 2 Axial, swirl, and radial velocity profiles via Re (color online)

The impact of Maxwell parameter β1 on the velocity field is deliberated in Figs. 3(a)–3(c).
The higher values of β1 boost up the stress relaxation phenomenon in viscoelastic fluid, and
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consequently the decline in velocity field is observed. Moreover, it is noted that the impact of
β1 on axial component of velocity is prominent as compared with swirl component of velocity
because of β1, which is dimensionless with stretching rate of cylinder. The impacts of Reynolds
number Re and Maxwell number β1 on temperature distribution are envisioned in Figs. 4(a) and
4(b). The results reveal that higher estimation in Re decreases the temperature field, but the
converse trend is found for β1. Physically, due to the solid like response of viscoelastic material
in case of higher stress relaxation phenomenon, the conduction of thermal energy enhances
between the particles of the material, and as a result, the temperature distribution increases.
We know that the higher value of Re reduces the forced convection mechanism in the flow,
which causes to decline the temperature field.

Fig. 3 Axial, swirl, and radial velocity profiles via β1 (color online)

The thermo-migration and haphazard motions of nano-size particles in flow of Maxwell fluid
are described by the dimensionless parameters Nt and Nb. The heat transport in the flow is
significantly enhanced with higher values of thermophoretic and Brownian motion paramters
Nt and Nb. Physically, higher values of thermophoretic parameter Nt enhance the thermal
gradient in fluid particles, which results in the enhancement of heat transport. Furthermore,
due to the increasing trend of Brownian diffusion parameter Nb, the particle collisions and
nanoconvection are enhanced. Therefore, the thermal energy transport increases. These results
are explored in Figs. 5(a) and 5(b).

The heat source δ (> 0) in the system produces extra heat which increases the heat transport
in the fluid flow and the converse is true for the heat sink δ < 0. The results for δ > 0 and δ < 0
are presented in Figs. 6(a) and 6(b). Figures 7(a) and 7(b) depict the effect of Eckert numbers
Ec1 and Ec2 on temperature distribution in the Maxwell fluid flow. It is observed that there
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is higher transport in the thermal energy due to augmentation in Ec1 and Ec2. Physically,
the Eckert number describes the Joule heating effect in the system which is the ratio of kinetic
energy of the flow to the thermal energy transport driving force. Higher values of Ec1 and Ec2
increase the temperature field because the advection mechanism for heat transport in the flow
enhances and heat dissipation reduces. Moreover, it is noted that the effect of Ec2 is more
prominent on the temperature field as compared with Ec1.

Fig. 4 Temperature profiles via Re and β1 (color online)

Fig. 5 Temperature profiles via Nt and Nb (color online)

Fig. 6 Temperature profiles via δ (color online)



Thermal analysis in swirl motion of Maxwell nanofluid over a rotating circular cylinder 1427

Fig. 7 Temperature profiles via Ec1 and Ec2 (color online)

Figures 8(a) and 8(b) show that both the radiative parameter Rd and Biot number γ1
boost up the temperature field. Physically, the Biot number increases thermal gradient at the
surface of cylinder due to decrease in the resistance for energy transport inside to outside of the
body. In view of this physical justification, the temperature field enhances. The thermal energy
transport in the fluid flow is a decreasing function of Prandtl number Pr for higher values as
given in Fig. 9.

γ

Fig. 8 Temperature profiles via Rd and γ1 (color online)

Fig. 9 Temperature profile via Pr (color online)
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In the whole thermal analysis, we conclude that there is higher transport of thermal energy
in fluid flow for CWT as compared with PST. Physically in case of PST, the axial varying
temperature of surface of cylinder declines the heat transport in the Maxwell fluid flow.

The outcomes acquired through numerical computation are validated through Table 1. The
numerical values of thermal gradient against various pertinent parameters at the surface of
cylinder for both surface heating agents CWT and PST are shown in Table 2. It is observed
that there is a higher value of thermal gradient in case PST than CWT. Moreover, Ec2 has
more effects on the thermal gradient at the surface as compared with Ec1.

Table 1 Comparison values of axial f ′′(1) and swirl g′(1) velocity gradients for various Re in the
limiting case when β1 = M = 0

Re
f ′′(1) g′(1) f ′′(1) g′(1)

Ref. [25] Ref. [25] Present result Present result

0.1 −0.481 80 −0.510 19 −0.488 907 −0.501 542

0.2 −0.617 48 −0.526 05 −0.610 423 −0.528 809

0.3 −0.711 562 −0.563 363

0.4 −0.797 618 −0.585 919

0.5 −0.882 20 −0.584 88 −0.809 541 −0.608 461

1 −1.177 75 −0.687 72 −1.177 669 −0.697 671

2 −1.593 89 −0.872 63 −1.596 640 −0.869 605

3 −1.911 086 −1.038 214

4 −2.178 536 −1.178 690

5 −2.417 43 −1.297 88 −2.417 865 −1.297 590

10 −3.344 46 −1.810 06 −3.340 094 −1.800 194

Table 2 Numerical values of the thermal gradient θ′(1) at the surface of the cylinder for different
values of Re, Rd, γ1, Ec1, Ec2, Nt, and Nb with fixed β1 = 0.5, M = 1, and Pr = Le = 6.5

Re Rd γ1 Ec1 Ec2 Nt Nb −θ′(1)(CWT) −θ′(1)(PST)

1 0.5 0.5 0.01 0.01 0.5 0.5 0.333 702 1 0.373 227 6

2 0.360 540 6 0.398 206 5

3 0.374 073 2 0.410 892 3

3 0.5 0.5 0.01 0.01 0.5 0.5 0.374 406 3 0.410 892 3

1.0 0.364 650 4 0.405 150 5

1.5 0.355 844 9 0.399 725 9

3 0.5 0.5 0.01 0.01 0.5 0.5 0.374 106 1 0.410 892 3

1.0 0.580 786 0 0.673 408 5

1.5 0.700 781 7 0.842 118 8

3 0.5 0.5 0.01 0.01 0.5 0.5 0.374 106 1 0.410 892 3

0.05 0.371 370 0 0.409 061 7

0.09 0.368 648 7 0.407 239 2

3 0.5 0.5 0.1 0.01 0.1 0.5 0.374 106 1 0.410 892 3

0.03 0.353 913 6 0.398 837 6

0.05 0.333 869 7 0.386 841 1

3 0.5 0.5 0.1 0.1 0.5 0.5 0.374 106 1 0.387 962 5

1.0 0.356 610 6 0.376 908 7

1.5 0.340 123 8 0.366 697 1

3 0.5 0.5 0.1 0.1 0.1 0.5 0.374 106 1 0.387 962 5

1.0 0.371 347 3 0.384 962 3

1 0.5 0.5 0.01 0.01 0.5 1.5 0.368 562 2 0.381 910 3



Thermal analysis in swirl motion of Maxwell nanofluid over a rotating circular cylinder 1429

5 Key points

The heat transport mechanism in the MHD swirling flow of Maxwell nanofluid induced
by the stretching and rotating cylinder under the impact of Joule heating, thermal radiation,
and heat source/sink is studied. The temperature of the surface of the cylinder is assumed
as a constant and axially varying. The whole theoretical analysis is summarized through the
following conclusions.

(I) The augmented temperature profile is observed in case of CWT as compared with PST.

(II) Higher values of the Reynolds number decrease both flow field and thermal energy
distribution as well as reduce the penetration depth.

(III) Thermal and concentration distributions boost up while the flow field declines for higher
values of the Maxwell parameter.

(IV) The impact of the Maxwell parameter is prominent on the axial velocity as compared
with the swirl velocity.

(V) Increase in the temperature field is noted for a higher rate of thermo-migration and
haphazard motion of nanoparticles in fluid flow.

(VI) The advective transport of thermal energy is enhanced for higher values of the Eckert
number.
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