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Abstract The vibration suppression analysis of a simply-supported laminated composite
beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.
The constant gain distributed controller of the velocity feedback is utilized for the pur-
pose of vibration damping. The formulation of displacement field is proposed according
to Euler-Bernoulli’s classical beam theory (ECBT), Timoshenko’s first-order beam theory
(TFBT), Reddy’s third-order shear deformation beam theory, and the simple sinusoidal
shear deformation beam theory. Hamilton’s principle is utilized to give the equations
of motion and then to describe the vibration of the current beam. Based on Navier’s
approach, the solution of the dynamic system is obtained. The effects of the material
properties, the modes, the thickness ratios, the lamination schemes, the magnitudes of
the feedback coefficient, the position of magnetostrictive layers at the structure, and the
foundation modules are extensively studied and discussed.
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1 Introduction

In the 19th century, a special effect of ferromagnetic material was discovered by English
physicist James Joule, which is called the “Joule effect”. The term “magnetostriction” was
used to describe this effect as a change in the physical shape or size of the material in re-
sponse to the action of magnetic forces (the applied magnetic field). Magnetostrictive materials
are very common to be utilized as actuators and sensors where these materials are appropri-
ate for providing giant forces, strains, high energy densities, noise, and vibration control for
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heavy structures. First, in smart laminated structure applications, it is necessary to study
the interactions between the laminated composites and the magnetostrictive layers. To un-
derstand more about the background of the topic, some articles about magnetostrictive ma-
terials and laminated composite structures are introduced in this part. Reddy[1] presented
an analysis of laminated fiber-reinforced composite beams/plates/shells with/without layers of
smart materials extensively. Some researchers have especially introduced some designing and
theoretical studies about magnetostrictive materials and active control of beams, plates, and
shells with magnetostrictive layers[2–16]. Lee and Reddy[17] analyzed the non-linear response of
magnetostrictive laminated plate subjected to thermo-mechanical load using the finite element
method. Reddy[18] also presented and discussed a linear model of thick laminated compos-
ites with integrated sensors and actuators by using his third-order plate theory. Zenkour[19]

presented the exact solutions for torsional analysis of heterogeneous magnetostrictive circular
cylinder under the effect of a magnetic field where the cylinder rigidity was graded through
the axial direction of the cylinder using two materials from the lower base to the upper base.
Zhang et al.[20] presented a nonlinear model to study the active vibration control of a cantilever
laminated composite plate embedded giant magnetostrictive material layers. The model was
used to show the inherent and complicated nonlinearities of giant magnetostrictive materials in
response to the magnetic field under partiality conditions (pre-stress and bias magnetic field).

Terfenol-D is the most commercially obtainable magnetostrictive material as well as the
most commonly used engineering magnetostrictive material for actuator applications, typical
transducers, and magnetostrictive motors. Many studies have discussed the material properties
of dynamic and static applications for Terfenol-D[21–22]. In addition, Anjanappa and Bi[23–24]

discussed the feasibility of smart structural applications, which embeds Terfenol-D mini actua-
tors. Besides, the mechanical response of smart structures is affected via the coupling between
mechanical and magnetic impacts. Zenkour and El-Shahrany[25] presented a theoretical study
of vibration response of laminated composite beams embedded with four layers of Terfenol-D
material with simply-supported boundary conditions according to the hyperbolic shear defor-
mation beam theory. Also, Zenkour and El-Shahrany[26] developed the pervious theoretical
study to include the smart plates considering the shear and normal deformations influences.
Moreover, the composite plate and shell shapes have been controlled using actuators by Koconis
et al.[27].

Several studies have also analyzed the vibration behaviors of smart beam/plate undergoes
some situations and effects such as thermal effect, hygrothermal environment, elastic foundation,
certain types of loading, and external forces. Hong[28–29] utilized the generalized differential
quadrature (GDQ) method to study the thermal vibration behavior of magnetostrictive material
in thin and thick rectangular laminated plates with and without the shear effect under the simply-
supported boundary conditions. Shankar et al.[30] presented the study of vibration control for
composite plates embedded sensor and actuators with delamination under the hygrothermal
effect. Arani and Maraghi[31] studied the vibration behavior of the magnetostrictive smart
plate (MSP) under an external follower force. Arani et al.[32] also discussed the free vibration
of a rectangular magnetostrictive plate subjected to in-plane forces in the x- and y-directions
and supported by the elastic medium as Pasternak’s foundation utilizing a trigonometric higher-
order shear deformation theory.

The viscoelastic foundation effect has been used in the present work, and various papers are
introduced in this field[33–38]. Baferani and Saidi[39] used a third-order shear deformation plate
theory to present an exact analytical solution for the vibration and buckling of thick rectan-
gular laminated plates on the elastic foundation under various in-plane loadings. Malekzadeh
et al.[40] utilized the Lindstedt-Poincare perturbation technique to find a solution vibration
problem for laminated plates on the elastic foundation under non-ideal boundary conditions
and initial stress in-plane loads. Thai et al.[41] anticipated a simple refined shear deformation
theory to study the vibration, buckling, and bending of thick rectangular plates supported by



Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation 1271

Pasternak’s foundation with two opposite edges having arbitrary boundary conditions and the
other simply-supported edges. Razavi and Shooshtari[42] investigated the impacts of the electric
and magnetic potentials, Pasternak’s foundation parameters on the free vibration of a magneto-
electro-elastic doubly-curved thin shell supported by Pasternak’s foundation according to the
Donnell theory and the simply-supported boundary condition. Zamani et al.[43] found a solution
for the transient response of laminated viscoelastic composite plates on Pasternak viscoelastic
medium by a weighted residual method with simply-supported edge conditions according to a
third-order shear deformation theory.

In this work, the vibration of a laminated composite beam with two layers of Terfenol-D
particles embedded in a visco-Pasternak’s medium has been investigated. Perfect orientation
and zero pre-stress layers are assumed in the magnetostrictive layers. The simple feedback
control of velocity is utilized. The theory of unified shear deformation along with the sinusoidal
shear deformation beam theory is used[44–49]. The governing dynamic equations are solved for
a simply-supported boundary condition analytically. The deflection damping characteristics
are discussed, and the effects of some different parameters on the vibration suppression are
discussed, tabulated, and graphically illustrated to help other investigators with their future
treatments.

2 Theoretical model

Let us consider a symmetric laminated composite beam of kth layers with total thickness
h and length L. The current beam contains two magnetostrictive layers made of Terfenol-D
particles embedded in resin. The smart material is located in mth and (k−m+1)th layers, and
the residual (k− 2) layers are made of fiber-reinforced materials. The structure is embedded in
a homogeneous three-parameter viscoelastic medium (see Fig. 1). The simple sinusoidal shear
deformation beam theory, Euler-Bernoulli’s beam theory, Timoshenko’s first-order, and Reddy’s
third-order beam theories are utilized to analyze the system as special cases of the used unified
shear deformation theory. To simplify the development of all four theories in a united approach,
the displacement field components are represented as follows:⎧⎪⎪⎨⎪⎪⎩

u(x, y, z, t) = f1(z)
∂w0

∂x
− f2(z)ϕ(x, t),

v(x, y, z, t) = 0,

w(x, y, z, t) = w0(x, t).

(1)

The above displacement field contains only two unknown functions w0 and ϕ, where w0 denotes
the transverse displacement (deflection) at z = 0, and ϕ(x, t) is the rotation of a transverse
normal line. The functions f1(z) and f2(z) are given as follows:

f1(z) = −c0z − c2z
3, f2(z) = c1e(z) − c2z

3. (2)

The field of displacement in Eq. (1) can be displayed according to different beam theories as
follows.

Euler-Bernoulli’s classical beam theory (ECBT):

c0 = 1, c1 = c2 = 0.

Timoshenko’s first-order beam theory (TFBT):

c0 = 0, c1 = 1, c2 = 0, e(z) = z.

Reddy’s higher-order beam theory (RHBT):

c0 = 0, c1 = 1, c2 = 4/(3h2), e(z) = z.
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Fig. 1 Schematic diagram of the structure

Simple sinusoidal beam theory (SSBT):

c0 = c1 = 1, c2 = 0, e(z) =
h

π
sin
(πz

h

)
.

The strain-displacement components are determined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εxx = f1(z)

∂2w0

∂x2
+ f2(z)

∂ϕ

∂x
= zε(1)

xx + z3ε(3)
xx + e(z)εe

xx,

γxz =(1 − c0)
∂w0

∂x
+ c1g(z)ϕ − 3c2z

2
(
ϕ +

∂w0

∂x

)
= γ(0)

xz + g(z)γg
xz + z2γ(2)

xz ,

(3)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε(1)

xx = −c0
∂2w0

∂x2
, ε(3)

xx = −c2

(∂2w0

∂x2
+

∂ϕ

∂x

)
,

εe
xx = c1

∂ϕ

∂x
, γ(0)

xz = (1 − c0)
∂w0

∂x
,

γg
xz = c1ϕ, γ(2)

xz = −3c2

(
ϕ +

∂w0

∂x

)
, g(z) = e′(z).

(4)

The stress-strain relationships of the kth fiber-reinforced layer are given by

σ(k)
xx = Q

(k)

11 εxx, σ(k)
xz = Q

(k)

55 γxz. (5)

Also, the stress-strain relation of the magnetostrictive layer is represented by

σ(m)
xx = Q

(m)

11 εxx − q
(m)
31 Hz. (6)

The coefficients Q
(k)

11 and q
(m)
31 are given in Appendix A, where Q

(k)

11 are the transformed plane
stress-reduced stiffnesses, q

(m)
31 is the transformed magnetostrictive modulus, and Hz denotes

the component of the magnetic field intensity in the z-direction.
According to the simple feedback control of velocity, the relationship between the intensity

of the magnetic field Hz and the coil current I(x, t) can be defined as

Hz(x, t) = kcI(x, t), (7)
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in which

kc =
nc√

(b2
c + 4r2

c)
, I(x, t) = c(t)

∂w

∂t
, (8)

where kc, bc, rc, and nc are the coil constant, the coil width, the coil radius, and the number
of turns in the coil, respectively. Moreover, c(t) represents the control gain.

3 Governing equations

By applying Hamilton’s principle, the equations of motion are deduced as

δ

∫ t

0

(U + V − K)dt = 0, (9)

where K, U , and V are, respectively, the kinetic energy, the strain energy, and the work done
by the external loads. Therefore, the virtual strain, the kinetic energies, and the virtual work
due to the surrounding visco-Pasternak’s medium of the beam are obtained as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δU =
∫ L

0

∫ h/2

−h/2

(
σxx

(
zδε(1)

xx + z3δε(3)
xx + e(z)δεe

xx

)
+ σxz

(
γ(0)

xz + g(z)γg
xz + z2γ(2)

xz

))
dzdx,

δV = −
∫ L

0

(q − Ef)δw0dx, Ef = KWw0 − KP
∂2w0

∂x2
+ cd

∂w0

∂t
,

(10)

where cd, KW, and KP are the damper parameter, the Winkler’s spring modulus, and the shear
foundation parameters, respectively.

δK =
∫ L

0

∫ h/2

−h/2

ρ
(
f1

(∂ẇ0

∂x
+ f2ϕ̇

)(
f1

∂δẇ0

∂x
+ f2δϕ̇

)
+ ẇ0δẇ0

)
dzdx. (11)

By using the integral by parts, we obtain the following equation:

0 =
∫ T

0

∫ L

0

(
Mxxδε(1)

xx + Pxxδε(3)
xx + Sxxδεe

xx + Qxδγ(0)
xz + Qgδγ

g
xz

+ Rxδγ(2)
xz − (q − Ef)δw0 −

(
K1

∂ẇ0

∂x
+ K3ϕ̇

)∂δẇ0

∂x

−
(
K3

∂ẇ0

∂x
+ K2ϕ̇

)
δϕ̇ − I0ẇ0δẇ0

)
dxdt. (12)

In the final form, the equation becomes the following expression:

0 =
∫ T

0

∫ L

0

((
− c0

∂2Mxx

∂x2
− c2

(∂2Pxx

∂x2
− 3

∂Rx

∂x

)
− (1 − c0)

∂Qx

∂x
− q

+ Ef − K1
∂2ẅ0

∂x2
− K3

∂ϕ̈

∂x

)
δw0 +

(
c2

(∂Pxx

∂x
− 3Rx

)
− c1

(∂Sxx

∂x
− Qg

)
+ K3

∂ẅ0

∂x
+ K2ϕ̈

)
δϕ
)
dxdt +

∫ T

0

((
c0

∂Mxx

∂x
+ c2

(∂Pxx

∂x
− 3Rx

)
+ (1 − c0)Qx + K1

∂ẅ0

∂x
+ K3ϕ̈

)
δw0 − (c0Mxx + c2Pxx)

∂δẇ0

∂x

+ (c1Sxx − c2Pxx)δϕ
)∣∣∣L

0
dt. (13)
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The force and moment resultants Mxx, Pxx, Sxx, Qx, Qg, and Rx can be defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ Mxx

Pxx

Sxx

⎞⎟⎠ =
∫ h/2

−h/2

σxx

⎛⎜⎝ z

z3

e(z)

⎞⎟⎠dz

=

⎛⎜⎝ D11 F11 E1
11

F11 H11 E2
11

E1
11 E2

11 E3
11

⎞⎟⎠
⎛⎜⎝ ε

(1)
xx

ε
(3)
xx

εe
xx

⎞⎟⎠−

⎛⎜⎝ Mm
11

Pm
11

Sm
11

⎞⎟⎠ ,

⎛⎜⎝ Qx

Rx

Qg

⎞⎟⎠ =
∫ h/2

−h/2

σxz

⎛⎜⎝ 1
z2

g(z)

⎞⎟⎠dz =

⎛⎜⎝ A55 D55 E1
55

D55 F55 E2
55

E1
55 E2

55 E3
55

⎞⎟⎠ ,

(14)

and the mass inertia is expressed as⎛⎜⎝ K1

K2

K3

⎞⎟⎠ =
∫ h/2

−h/2

ρ

⎛⎜⎝ f2
1

f2
2

f1f2

⎞⎟⎠dz =

⎛⎜⎝ c2
0I2 + 2c0c2I4 + c2

2I6

c2
1Iee − 2c1c2Ieee + c2

2I6

−c0c1Ie − c1c2Ieee + c0c2I4 + c2
2I6

⎞⎟⎠ , (15)

in which

(I0, I2, I4, I6, Ie, Iee, Ieee) =
∫ h/2

−h/2

ρ(1, z2, z4, z6, ze(z), (e(z))2 , z3e(z))dz, (16)

where ρ is the mass density, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ Mm
11

Pm
11

Sm
11

⎞⎟⎠ kcc(t)
∑
k=s

∫ zk+1

zk

q31

⎛⎜⎝ z

z3

e(z)

⎞⎟⎠Hzdz

=

⎛⎜⎝ β

ε

γ

⎞⎟⎠ ∂w0

∂t
, s = m, k − m + 1,

(D11, F11, H11, E1
11, E2

11, E3
11)

=
∫ h/2

−h/2

Q
(k)

11 (z2, z4, z6, ze(z), z3e(z), (e(z))2)dz,

(A55, D55, F55, E1
55, E2

55, E3
55)

=
∫ h/2

−h/2

Q
(k)

55 (1, z2, z4, g(z), z2g(z), (g(z))2)dz.

(17)

The governing equations of motion can be written as

− c0
∂2Mxx

∂x2
− c2

(
∂2Pxx

∂x2
− 3

∂Rx

∂x

)
− (1 − c0)

∂Qx

∂x
− q + Ef

− K1
∂2ẅ0

∂x2
− K3

∂ϕ̈

∂x
+ I0ẅ0 = 0, (18)

c2

(
∂Pxx

∂x
− 3Rx

)
− c1

(
∂Sxx

∂x
− Qgx

)
+ K3

∂ẅ0

∂x
+ K2ϕ̈ = 0. (19)
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4 Solution of the problem

By substituting Eqs. (14)–(17) into Eqs. (18) and (19), the dynamic system becomes

c0(c0D11 + c2F11)
∂4w0

∂x4
+ c2(c0F11 + c2H11)

(∂4w0

∂x4
+

∂3ϕ

∂x3

)
− c1(c0E

1
11 − c2E

2
11)

∂3ϕ

∂x3
+ ((1 − c0)(6c2D55 − (1 − c0)A55)

− 9c2
2F55)

∂2w0

∂x2
+ ((1 − c0)(3c2D55 − c1E

1
55) − 3c2(3c2F55 − c1E

2
55))

∂ϕ

∂x

− q + Ef + (c0β + c2ε)
∂2ẇ0

∂x2
− K1

∂2ẅ0

∂x2
− K3

∂ϕ̈

∂x
+ I0ẅ0 = 0, (20)

c0(c2F11 − c1E
1
11)

∂3w0

∂x3
+ c2(c2H11 − c1E

2
11)
(∂3w0

∂x3
+

∂2φ

∂x2

)
− c1(c2E

2
11 − c1E

3
11)

∂2ϕ

∂x2
+ (1 − c0)(3c2D55 − c1E

1
55)

∂w0

∂x

− 3c2(c1E
2
55 − 3c2F55)

(
ϕ +

∂w0

∂x

)
− c1(3c2E

2
55 − c1E

3
55)ϕ

+ (c2ε − c1γ)
∂ẇ0

∂x
+ K3

∂ẅ0

∂x
+ K2ϕ̈ = 0. (21)

These equations can be expanded to any of used four theories. To solve the system, the
analytical Navier’s method is used with the following simply-supported boundary conditions:

w = ϕ = Mxx = Pxx = Sxx = 0 at x = 0, L. (22)

The solution takes the following form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w0(x, t) = W (t) sin
nπx

L
,

ϕ(x, t) = X(t) cos
nπx

L
,

q(x, t) = Qn(t) sin
nπx

L
.

(23)

By using the above equation and Eqs. (20) and (21), the system can be written as(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)(
W

X

)
+

(
M̂11 M̂12

M̂21 M̂22

)(
Ẇ

Ẋ

)

+

(
Ĉ11 Ĉ12

Ĉ21 Ĉ22

)(
Ẅ

Ẍ

)
=

(
Qn

0

)
. (24)

We put q = 0 in Eq. (20) for vibration control. The solution of Eq. (24) takes the following
form:

(W (t), X(t)) = (W0, X0)eλnt. (25)

The non-trivial solution of Eq. (24) is obtained for all used four theories as∣∣∣∣S11 S12

S21 S22

∣∣∣∣ = 0, (26)
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where

Sij = Ŝij + λnM̂ij + λ2
nĈij , i, j = 1, 2, (27)

in which the coefficients Ŝij , M̂ij , and Ĉij are given in Appendix B. It is noted that Eq. (26)
represents two sets of eigenvalues. The eigenvalues can be expressed by λn = −αn ± iωn. The
damping ratio ζn of mode n is defined as[50]

ζn =
−αn√
α2

n + ω2
n

. (28)

Using the following initial conditions (Reddy and Barbosa[5]):{
w0(x, 0) = 0, ẇ0(x, 0) = 1,

ϕ(x, 0) = 0, ϕ̇(x, 0) = 0,
(29)

the system solution can be given as

w(x, t) =
1

ωn
e−αnt sin(ωnt) sin

nπx

L
. (30)

In addition, the actuation stress is

σd = −q31kcc(t)
ωn

(ωn cos(ωnt) − αn sin(ωnt))e−αnt sin
nπx

L
. (31)

5 Numerical results and discussion

Here, some numerical results are tabulated to study the dynamic behavior of laminated
composite beams with magnetostrictive layers resting on the viscoelastic foundation. Four
fiber-reinforced materials which are carbon fiber reinforced polymeric (CFRP), graphite-epoxy
(AS/3501) (Gr.-Ep (AS)), glass-epoxy (Gl.-Ep), and born-epoxy (Br.-Ep), are used. Terfenol-D
particles embedded in a suitable resin are utilized as magnetostrictive material. The material
properties applied are listed in Table 1 as those reported by Reddy and Barbosa[5]. The prop-
erties of magnetostrictive material applied are given as Em = 26.5GPa, ρm = 9 250kg·m−3,
q31 = 442.55N·m−1, and νm = 0. The length of the beam is equal to 1m, and its thickness
ratio is denoted by hα = h/L. The thickness of fiber-reinforced material layers is denoted by
the symbol hk, and the magnetostrictive layer thickness is labeled by the symbol hm. The
Euler-Bernoulli’s classical, Timoshenko’s first-order, Reddy’s third-order, and simple shear de-
formation beam theories are used to predict the deflection damping characteristics. In addition,
some numerical results are displayed to observe the behavior of damping coefficients, damped
natural frequencies, maximum deflection, vibration damping time, and damping ratio. The
effects of different parameters on damping tendencies such as modes, lamination schemes, ma-
terial properties, positions of magnetostrictive layers from the mid-plane axis, thickness ratio,
magnitude of the feedback coefficient, and viscoelastic foundation parameters are investigated.
Cross-ply and balanced laminated composite beams are investigated as special cases.

The most natural extension to Winkler’s model is Pasternak’s model, which connects the
spring ends to the shear layer. The present beam rests on a homogeneous three-parameter
visco-elastic foundation. The foundation model is characterized by the viscoelastic medium
damping coefficient, Pasternak’s foundation parameter and linear Winkler’s parameter. For
the analysis of a structure resting on the pure elastic foundation, the viscosity part is omitted
by setting cd = 0. Visco-Winkler’s medium is modeled by putting KP equal to zero. For the
purpose of completeness and comparisons, firstly, the damping and frequency parameters are
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displayed in absence of three-parameter foundation for the laminated composite beam with
lamination scheme [±45/m/0/90]s. The damping and frequency parameters are listed in Table
2 for transverse modes n = 1, 2, · · · , 5 according to the simple sinusoidal shear deformation
beam theory. The new outcomes are compared with the results obtained by Krishna et al.[4]

and Reddy and Barbosa[5]. It is observed that the results given by the three theories ECBT,
TFBT, RHBT are relatively different from those of the fourth one, SSBT, in the higher modes
only. Moreover, the faster vibration suppression occurs in the higher modes. In the presence
of three-parameter viscoelastic medium, the damping and frequency parameters of laminated
composite beam with lamination scheme [±45/m/0/90]s are displayed in Table 3 for transverse
modes n = 1, 2, · · · , 5 based on the four theories: ECBT, TFBT, RHBT, and SSBT. It can
be observed that the presence of three-parameter foundation gives the largest eigenfrequency
parameters, and thus the three-parameter foundation helps to stabilize the system and improve
the deflection damping characteristics of the structure. Further, the damping and frequency
parameters are directly proportional to the viscoelastic foundation effect.

As a special example, two lamination schemes are analyzed, which are the magnetostrictive
sandwich beam with fiber-reinforced core layer and the fiber-reinforced laminated composite
beam with magnetostrictive core to illustrate the effects of the thickness ratio and magne-
tostrictive layer location on the behavior of the eigenfrequency parameters, maximum deflec-
tion, vibration suppression time, and damping ratio. The numerical values of all the previous
parameters are listed in Table 4. According to the results with the presence of the velocity feed-
back gain and the foundation effect, the best vibration suppression process occurs whenever the
magnetostrictive layers are moved far away from the structure center (see Table 7). Moreover, it
is noticeable that the time taken to damp deflection is long whenever the thickness ratio value is
low. The effect of the thickness ratio on the vibration damping behavior is also shown in Fig. 2.
In addition, the effects of foundation parameters are investigated with and without the velocity
feedback gain effect in detail. The damping and frequency parameters, maximum deflection,
vibration suppression time, and damping ratio are displayed in Tables 5 and 6. It is observed
that the parameters of the foundation (KW, KP, cd) may have an almost unnoticeable effect
on the controlled motion as the value of the feedback gain coefficient increases. However, the
maximum frequency appears when the structure is supported by Pasternak’s elastic medium in
the uncontrolled motion and without the viscosity term. Winkler’s foundation has few effects
than Pasternak’s medium on frequencies of the smart structures. The damping parameter cd

plays an important role in reducing vibration of the structure in absence of the velocity feedback
gain coefficient, and this effect also increases as the viscosity coefficient increases (see Figs. 3
and 4).

α

α

α

Fig. 2 Center displacement versus time for lay-up [45/m/−45/0/90]s , n = 1, c(t)kc = 104, KW = 50,
KP = 10, and cd = e1.5 using SSBT for various thickness ratios (color online)
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Fig. 3 Effect of foundation parameters on
controlled motion of the lay-up [m/ ±
45/0/90]s at the midpoint using TFBT
(n = 1, hα = 0.01, and c(t)kc = 104)
(color online)

Fig. 4 Effect of viscosity parameters on
uncontrolled motion of the lay-up
[45/m/−45/0/90]s at the midpoint us-
ing SSBT (n = 1, hα = 0.01, KW =
50, and KP = 10 (color online))

Table 1 The properties of fiber-reinforced materials

Material
E11/ E22/ G12/ G13/ G23/

ν12
ρ/

GPa GPa GPa GPa GPa (kg·m−3)

CFRP 138.6 8.27 4.12 0.6E22 0.6E22 0.26 1 824
Gr.-Ep (AS) 137.9 8.96 7.10 7.10 6.21 0.3 1 450

Br.-Ep 206.9 20.69 6.9 6.9 4.14 0.3 1 950
Gl.-Ep 53.78 17.93 8.96 8.96 3.45 0.25 1 900

Table 2 Damping and frequency parameters −αn ± ωn (rad·s−1) for lay-up [±45/m/0/90]s (hα =
0.01, KP = KW = cd = 0, and c(t)kc = 104)

Mode Krishna et al.[4] ECBT[5] TFBT[5] RHBT[5] SSBT

1 3.29±104.88 3.30±104.85 3.30±104.82 3.30±104.82 3.30±104.87

2 13.19±419.50 13.20±419.37 13.17±418.90 13.16±418.80 13.20±19.05

3 29.70±943.88 29.68±943.40 29.53±941.05 29.48±940.52 29.68±941.20

4 52.89±1 678.83 52.73±1 676.72 52.27±1 669.32 52.10±1 667.68 52.74±1 669.12

5 82.59±2 621.87 82.34±2 619.02 81.22±2 601.04 80.80±2 597.09 82.35±2 599.81

Table 3 Damping and frequency parameters of the transverse modes −αn ± ωn (rad·s−1) for lay-up
[±45/m/0/90]s (KW = e2, KP = 6.5, cd = 2e1.5, c(t)kc = 104, and hα = 0.01)

Mode ECBT TFBT RHBT SSBT

1 3.43±104.91 3.43±104.86 3.43±104.88 3.43±104.88

2 13.33±419.59 13.30±419.13 13.29±419.02 13.33±419.06

3 29.81±943.90 29.67±943.55 29.61±943.02 29.81±941.21

4 52.87±1 677.62 52.40±1 670.20 52.23±1 668.55 52.87±1 669.13

5 82.48±2 620.41 81.35±2 602.40 80.93±2 598.42 82.48±2 599.81
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Table 4 Damping and frequency parameters, maximum deflection Wmax(mm), vibration suppression
time and damping ratio of two kind lamination schemes (n = 1, c(t)kc = 104, KW = e2, KP =
6.5, and cd = 2e1.5)

Lamination hα Theory −α1 ± ω1 Wmax t/s ζ1/10−2

[±45/0/90/m]s 0.01 ECBT 0.795±116.306 8.598 2.895 0.684
TFBT 0.795±116.267 8.601 2.897 0.684
RHBT 0.795±116.264 8.601 2.897 0.684
SSBT 0.795±116.276 8.600 2.895 0.684

0.02 ECBT 1.387±232.581 4.300 1.660 0.596
TFBT 1.384±232.263 4.305 1.664 0.596
RHBT 1.383±232.245 4.306 1.665 0.595
SSBT 1.387±232.338 4.304 1.660 0.597

0.05 ECBT 3.323±581.163 1.721 0.693 0.572
TFBT 3.268±576.261 1.735 0.705 0.567
RHBT 3.253±575.983 1.736 0.708 0.565
SSBT 3.323±581.163 1.721 0.693 0.572

[m/ ± 45/0/90]s 0.01 ECBT 6.074±98.481 10.154 0.379 6.156
TFBT 6.071±98.457 10.157 0.379 6.155
RHBT 6.070±98.440 10.159 0.379 6.154
SSBT 6.074±98.454 10.157 0.379 6.158

0.02 ECBT 11.940±196.915 5.078 3 0.193 6.053
TFBT 11.917±196.722 5.083 3 0.193 6.047
RHBT 11.906±196.586 5.086 8 0.193 6.045
SSBT 11.940±196.702 5.083 8 0.193 6.059

0.05 ECBT 29.624±491.595 2.034 2 0.078 6.015
TFBT 29.268±488.623 2.046 6 0.079 5.979
RHBT 29.100±486.555 2.055 3 0.079 5.970
SSBT 29.627±488.313 2.047 9 0.078 6.056

Table 5 Damping and frequency parameters, maximum deflection Wmax (mm), vibration suppression
time and damping ratio for lay-up [m/± 45/0/90]s for various viscoelastic parameters (n =
1, c(t)kc = 104, and hα = 0.01)

KW KP cd Theory −α1 ± ω1 Wmax t/s ζ1/10−2

102 0 0 ECBT 5.939±98.494 10.153 0.388 6.019
RHBT 5.934±98.452 10.157 0.388 6.017
SSBT 5.939±98.467 10.156 0.388 6.020

104 0 0 ECBT 5.939±100.001 10.000 0.388 5.928
RHBT 5.934±99.960 10.004 0.388 5.926
SSBT 5.939±99.974 10.003 0.388 5.930

5 × 104 0 0 ECBT 5.939±105.871 9.445 0.388 5.601
RHBT 5.934±105.833 9.449 0.388 5.599
SSBT 5.939±105.846 9.445 0.388 5.601

102 102 0 ECBT 5.939±98.645 10.137 0.388 6.009
RHBT 5.934±98.604 10.142 0.388 6.008
SSBT 5.939±98.618 10.140 0.388 6.011

102 103 0 ECBT 5.939±99.996 10.000 0.388 5.929
RHBT 5.934±99.955 10.004 0.388 5.927
SSBT 5.939±99.970 10.003 0.388 5.930

102 104 0 ECBT 5.939±112.619 8.879 0.388 5.266
RHBT 5.934±112.583 8.882 0.388 5.264
SSBT 5.939±112.596 8.881 0.388 5.267

102 102 10 ECBT 6.090±98.636 10.138 0.378 6.162
RHBT 6.085±98.594 10.143 0.378 6.161
SSBT 6.090±98.609 10.141 0.378 6.164

102 102 102 ECBT 7.449±98.542 10.148 0.309 7.538
RHBT 7.445±98.501 10.152 0.309 7.537
SSBT 7.449±98.516 10.151 0.309 7.540

102 102 2 × 102 ECBT 8.960±98.416 10.161 0.257 9.067
RHBT 8.956±98.375 10.165 0.257 9.066
SSBT 8.960±98.390 10.164 0.257 9.069
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Table 6 Damping and frequency parameters, maximum deflection Wmax (mm), vibration suppression
time and damping ratio for lay-up [m/± 45/0/90]s for various viscoelastic parameters (n =
1, c(t)kc = 0, and hα = 0.01)

KW KP cd Theory −α1 ± ω1 Wmax t/s ζ1/10−2

102 0 0 ECBT 0±98.672 10.135 − 0

TFBT 0±98.648 10.137 − 0

RHBT 0±98.631 10.139 − 0

SSBT 0±98.646 10.137 − 0

102 103 0 ECBT 0±100.172 9.983 − 0

TFBT 0±100.148 9.985 − 0

RHBT 0±100.131 9.987 − 0

SSBT 0±100.146 9.985 − 0

102 0 e1.5 ECBT 0.068±98.672 10.135 34.008 0.068 6

TFBT 0.068±98.648 10.137 34.008 0.068 6

RHBT 0.068±98.631 10.139 34.008 0.068 6

SSBT 0.068±98.646 10.137 34.008 0.068 6

102 0 89e1.5 ECBT 6.026±98.488 10.153 0.382 6.107 0

TFBT 6.026±98.464 10.156 0.382 6.108 0

RHBT 6.026±98.447 10.158 0.382 6.109 0

SSBT 6.026±98.462 10.156 0.382 6.109 0

102 103 e1.5 ECBT 0.068±100.172 9.983 34.008 0.067 6

TFBT 0.068±100.148 9.985 34.008 0.067 6

RHBT 0.068±100.131 9.987 34.008 0.067 6

SSBT 0.068±100.146 9.985 34.008 0.067 6

102 103 89e1.5 ECBT 6.026±99.991 10.000 0.382 6.016 0

TFBT 6.026±99.967 10.003 0.382 6.017 0

RHBT 6.026±99.950 10.005 0.382 6.018 0

SSBT 6.026±99.964 10.004 0.382 6.017 0

Table 7 Damping and frequency parameters −α1±ω1 (rad·s−1) for different laminates (n = 1, KW =
e2, KP = 6.5, cd = 2e1.5, c(t)kc = 104, and hα = 0.01)

Lamination ECBT TFBT RHBT SSBT

[±45/0/90/m]s 0.795±116.306 0.795±116.269 0.795±116.264 0.795±116.276

[±45/0/m/90]s 2.115±116.908 2.114±116.867 2.113±116.862 2.115±116.875

[±45/m/0/90]s 3.435±104.914 3.433±104.885 3.432±104.879 3.435±104.881

[45/m/ − 45/0/90]s 4.755±102.206 4.752±102.179 4.751±102.168 4.755±102.168

[m/ ± 45/0/90]s 6.074±98.481 6.071±98.457 6.070±98.440 6.074±98.454

[m/904]s 6.074±70.190 6.073±70.181 6.072±70.177 6.074±70.172

[m/90/0/90/0]s 6.074±99.138 6.071±99.114 6.070±99.095 6.074±99.111

[m/04]s 6.074±143.570 6.068±143.495 6.065±143.439 6.074±143.530

The effect of magnetostrictive layer position on vibration suppression process is investigated
with/without velocity feedback gain effect using the four used theories. It is noticeable that in
absence of the control gain coefficient, the damping characteristics of beam resting on viscoelas-
tic foundation are better whenever the magnetostrictive layers are placed near the center of the
structure (in the z-direction), while the opposite occurs in the presence of velocity feedback
gain effect (for more details see Table 7 and Fig. 5). In addition, the controlled motion of two
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beam special cases which are cross-ply and balanced laminated composite beams, is carried
out. It is found that the beam with lamination scheme [m/04]s represents the strongest beam
where it has the largest damping value of deflection. Also, the beam with lamination scheme
[m/θ◦/− θ◦/θ◦/− θ◦]s, θ = 30 considers the weakest beam among all cases. Comparison of the
fibers-oriented influence on controlled motion for the stacking sequence [m/θ◦/− θ◦/θ◦/− θ◦]s
is shown in Fig. 6 as well as in Fig. 7 to illustrate the deflection damping characteristics for
various smart sandwich laminate cases. Generally, the vibration suppression characteristics of
general angle-ply, cross-ply and balanced composite laminates are found to be similar.

Fig. 5 Effects of smart layer locations on center displacement using SSBT (a) without and (b) with
velocity feedback gain effect (n = 1, hα = 0.01, KW = 50, KP = 10, and cd = 50) (color
online)

θ
θ
θ
θ
θ

Fig. 6 The center displacement versus time
for lay-up [m/θ◦/− θ◦/θ◦/− θ◦]s, n =
1, hα = 0.01, c(t)kc = 104, KW =
100, KP = 20, cd = e1.5 using TFBT
for various orientations (color online)

Fig. 7 The deflection damping for various
laminates, n = 1, hα = 0.01, c(t)kc =
104, KW = e2, KP = 6.5, cd = 2e1.5

at the midpoint by using RHBT (color
online)

After studying the effects of the feedback coefficient and material properties of layers on the
vibration suppression process, it is noticeable that the materials which have the similar E1/E2

value take the same behavior of vibration damping. The deflection suppression characteristics
are shown in Fig. 8 for various laminate materials. The symmetric Br.-Ep. laminated beams
consider the strongest ones while the Gl.-Ep. laminated beams represent the weakest ones
in the present study. Finally, the effects of the feedback coefficient magnitude on vibration
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suppression characteristics is shown in Fig. 9. The damping ratio is directly proportional to the
magnitude of the feedback coefficient significantly.

-
-
-

Fig. 8 Effect of material properties on
deflection damping for the lay-
up [±45/m/0/90]s , n = 1, hα =
0.01, c(t)kc = 104, KW = e2, KP =
6.5, and cd = e1.5 using ECBT (color
online)

Fig. 9 Effect of feedback coefficient magni-
tude on center displacement of the
lay-up [±45/0/m/90]s , n = 1, hα =
0.01, KW = 50, KP = 10, and cd = 50
using RHBT (color online)

6 Conclusions

The present article discusses the vibration of laminated composite beams containing mag-
netostrictive layers embedded in the three-parameter viscoelastic foundation by using Euler-
Bernoulli’s classical, Timoshenko’s first-order, Reddy’s third-order, and simple shear deforma-
tion beam theories. The analytical solution of dynamic equations associated with vibration
of the current simply-supported laminated composite beam is obtained based on Navier’s ap-
proach. Terfenol-D magnetostrictive material and velocity feedback control are used in this
study to control the vibration of structures. Without the viscosity term, it is observed that
the two-parameter Pasternak’s foundations have more effects than the one-parameter Winkler’s
medium on the frequency of the smart structure, in absence of the feedback coefficient c(t)kc.
The beam frequency may be vanished when the viscous damping coefficient cd takes high values.
In the presence of velocity feedback gain effect, the parameters (KW, KP, cd) almost become
ineffective at damping time. The damping time and the maximum deflection value are inversely
proportional to the magnitude of the feedback coefficient. The vibration damping process is
very sensitive to the location of magnetostrictive layers in absence/presence of the feedback
coefficient. The balanced, angle-ply, and cross-ply composite laminated beams have the same
behavior of the vibration suppression, and the best vibration damping process appears when-
ever the beams are thicker. According to this study, the present structure can be utilized to
improve the smart applications and the control responses of system vibration.
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Appendix A

The coefficients Q
(k)

ij and qij appearing in Eqs. (5) and (6) are given by

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Q
(k)

11 = Q
(k)
11 cos4 θ(k) + 2

“
Q

(k)
12 + 2Q

(k)
66

”
cos2 θ(k) sin2 θ(k) + Q

(k)
22 sin4 θ(k),

Q
(k)

13 = Q
(k)
13 cos2 θ(k) + Q

(k)
23 sin2 θ(k), Q

(k)

33 = Q
(k)
33 ,

Q
(k)

55 = Q
(k)
55 cos2 θ(k) + Q

(k)
44 sin2 θ(k),

Q
(k)
11 =

1 − ν
(k)
23 ν

(k)
32

E
(k)
22 E

(k)
33 Δ

, Q
(k)
12 =

ν
(k)
21 + ν

(k)
31 ν

(k)
23

E
(k)
22 E

(k)
33 Δ

=
ν

(k)
12 + ν

(k)
13 ν

(k)
32

E
(k)
11 E

(k)
33 Δ

,

Q
(k)
22 =

1 − ν
(k)
13 ν

(k)
31

E
(k)
11 E

(k)
33 Δ

, Q
(k)
13 =

ν
(k)
31 + ν

(k)
21 ν

(k)
32

E
(k)
22 E

(k)
33 Δ

=
ν

(k)
13 + ν

(k)
12 ν

(k)
23

E
(k)
11 E

(k)
22 Δ

,

Q
(k)
23 =

ν
(k)
32 + ν

(k)
12 ν

(k)
31

E
(k)
11 E

(k)
33 Δ

=
ν

(k)
32 + ν

(k)
21 ν

(k)
13

E
(k)
11 E

(k)
33 Δ

, Q
(k)
33 =

1 − ν
(k)
12 ν

(k)
21

E
(k)
11 E

(k)
22 Δ

,

Q
(k)
44 = G

(k)
23 , Q

(k)
55 = G

(k)
31 , Q

(k)
66 = G

(k)
12 ,

Δ =
1 − ν

(k)
12 ν

(k)
21 − ν

(k)
23 ν

(k)
32 − ν

(k)
13 ν

(k)
31 − 2ν

(k)
21 ν

(k)
13 ν

(k)
32

E
(k)
11 E

(k)
22 E

(k)
33

,

ν
(k)
21 =

ν
(k)
12 E

(k)
22

E
(k)
11

, ν
(k)
31 =

ν
(k)
13 E

(k)
33

E
(k)
11

, ν
(k)
32 =

ν
(k)
23 E

(k)
33

E
(k)
22

,

q31 = q31 cos2 θ + q32 sin2 θ, q32 = q32 cos2 θ + q31 sin2 θ,

q36 = (q31 − q32) sin θ cos θ, q14 = (q15 − q24) sin θ cos θ,

q24 = q24 cos2 θ + q15 sin2 θ, q15 = q15 cos2 θq24 sin2 θ,

q25 = (q15 − q24) sin θ cos θ,
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where Eii are Young’s moduli in the material principal directions, νij are Poisson’s ratios, Gij are the
shear moduli, and qij represent the magnetostrictive moduli.

Appendix B

The components of the coefficients bSij , cMij , and bCij (i = 1, 2) appearing in Eq. (25) can be ex-
pressed as 8>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:
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