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Abstract This paper deals with the nonlinear large deflection analysis of functionally
graded carbon nanotube-reinforced composite (FG-CNTRC) plates and panels using a
finite element method. Based on the first-order shear deformation theory (FSDT), the
proposed model takes into account the transverse shear deformations and incorporates
the geometrical nonlinearity type. A C0 isoparametric finite shell element is developed
for the present nonlinear model with the description of large displacements and finite
rotations. By adopting the extended rule of mixture, the effective material properties of
FG-CNTRCs are approximated with the introduction of some efficiency parameters. Four
carbon nanotube (CNT) distributions, labeled uniformly distributed (UD)-CNT, FG-V-
CNT, FG-O-CNT, and FG-X-CNT, are considered. The solution procedure is carried
out via the Newton-Raphson incremental technique. Various numerical applications in
both isotropic and CNTRC composite cases are performed to trace the potential of the
present model. The effects of the CNT distributions, their volume fractions, and the
geometrical characteristics on the nonlinear deflection responses of FG-CNTRC structures
are highlighted via a detailed parametric study.
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1 Introduction

The modeling of the nonlinear bending behaviors of plates and shells has attracted attention
of many researchers, and this concern has been twice with the discovery of advanced materials
such as functionally graded materials (FGMs) and carbon nanotube-reinforced composites
(CNTRCs). In fact, the implementation of carbon nanotubes (CNTs) into polymer matrix
composites has predicted to have large impact on many areas of science and technology due to
their superlative mechanical, thermal, electrical, and chemical characteristics which make them
the ultimate candidate for composite reinforcements forming the so-called CNTRC structures.
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Furthermore, these CNTRCs provide a multifunctional performance for various industries, such
as aerospace, aircraft, automobile, and electrical and civil engineering[1–2]. Moreover, FGMs,
which are inhomogeneous composites, are characterized by the functional gradation of their
mechanical properties along the thickness direction and can be applied to CNTs via the powder
metallurgy fabrication procedure[3] and form a new class of materials, known as FG-CNTRCs.
As a result, many researchers studied theoretically and experimentally the mechanical behavior
of such advanced materials. A good review of the latest investigation made on various aspects
of the mechanical behavior of FG-CNTRC beams, plates, and shells can be found in Ref. [4].

At the same time, the availability of high performance computing resources has pushed
computer modeling of progress in order to provide an accurate analysis towards structural
components such as beams, plates, and shells. The finite element technique has been widely
used as an efficient tool in the prediction of the mechanical behavior of various shapes of
structures. As a background for understanding the modeling process, a brief review of the
frequently used models for the approximation of the kinematics of shell structures is provided
here. The classical shell theory (CST), which is based on the Kirchhoff-Love assumptions,
constitutes a suitable choice notably for thin structures. However, this theory neglects the
transverse shear deformation which is an essential parameter in modeling plates and shells.
To remedy this drawback, another theory, known as the first-order shear deformation theory
(FSDT), was proposed by Reissner and Mindlin, wherein the effect of the transverse shear
deformation was introduced. This theory gives more accurate results when the shells become
thicker, and it is simple to implement in most finite element procedures. Nevertheless, this
theory faces some difficulties related generally to the introduction of the shear correction factor
which is numerically prohibitive or suffers the shear-locking problem in the very thin shell
limit. All the limitations of the CST and the FSDT can be overcome by the higher-order shear
deformation theory (HSDT) which takes into account higher-order terms in the displacement
fields. Though this theory provides accurate results, it still generates further computational
time which is undesirable for such applications. Hence, a bridge between the accuracy and
reasonable computational time should be assured by an efficient model. In the following, the
relevant works concerning the nonlinear deflection analysis of FG-CNTRC structures are briefly
presented.

Following the pioneer work of Shen[5] concerning the nonlinear bending analysis of FG-
CNTRC rectangular plates under a transverse uniform or sinusoidal load in thermal environ-
ments, many authors have been inspired to conduct the nonlinear large deflection analysis of
FG-CNTRCs using various finite element models and numerical solutions. In relation with
this subject, Shen and his co-authors presented various works on the large deflection analysis of
composite laminated and FGM plates using either the HSDT[6–9] or a semi-analytical-numerical
method[10–11]. With a six-parameter shell theory, Ansari et al.[12] studied the nonlinear beha-
vior of shells. Although accurate results were provided, the analysis was restricted only to the
isotropic case and did not study advanced materials such as FGMs and FG-CNTRCs. Besides,
Zhang et al.[13–14] and Zhang and Liew[15] published various papers concerning the nonlinear
analysis of FG-CNTRCs with different shape forms. A detailed parametric study was achieved
to trace the effects of the CNT distributions, their volume fractions, and several geometri-
cal parameters on the nonlinear deflection responses of FG-CNTRC structures. Furthermore,
Mehar and Panda[16–17] and Mehar et al.[18–19] presented various analyses of nonlinear bend-
ing and vibrational behaviors of FG-CNTRC shells under thermal loading in the framework
of the higher-order kinematics. Recently, Zghal et al.[20–24] conducted various investigations
on FG-CNTRC structures using a high-order model within the double director finite element
shell framework which induces a high-order distribution of the displacement field and imposes
a zero condition of the transverse shear deformation on top and bottom surfaces. Both linear
and nonlinear aspects were highlighted via several numerical examples of plates and shells. The
obtained results showed the effects of the CNT profiles, their volume fractions, and various geo-
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metrical parameters on the mechanical behavior of such structures. Moreover, Frikha et al.[25],
Trabelsi et al.[26–27], and Frikha and Dammak[28] presented nonlinear analyses of FGM and FG-
CNTRC shells using a refined high-order theory and a modified FSDT. Reinoso and Blazquez[29]

performed a nonlinear analysis of FGMs and FG-CNTRCs using a fully integrated first-order
solid shell finite element. The locking problem was treated by combining the enhanced assumed
strain (EAS) and assumed natural strain (ANS) methods. Though the proposed solid shell fi-
nite element allows the prediction of nonlinear behaviors of such structures with good accuracy,
it requires longer computational time in the solution procedure. Therefore, to analyze the non-
linear deflection analysis with low computational cost, an accurate finite element model should
be provided. Further investigations related to the nonlinear bending and vibrational buckling
analyses of FGM structures can be found in Refs. [30]–[33].

This paper focuses on the large deflection analysis of FG-CNTRC shell structures. The go-
verning equations are elaborated within the FSDT framework taking into account the transverse
shear deformations, large displacements, and finite rotations. In fact, most papers presented
in the literature used the FSDT with the von-Karman assumptions or employed the three-
dimensional (3D) finite solid shell elements. However, the von-Karman kinematic assumptions
include only membrane forces without taking into account the nonlinear contribution of the
shear part which restraints its applications to small deformations. However, the 3D finite solid
shell elements are costly in the solution procedure notably for complex geometries and boundary
conditions. Hence, to accurately model the large deflection responses of FG-CNTRC structures
with reasonable computational time, a nonlinear FSDT is proposed here. The present formu-
lation is free of the shear-locking problem due to its implementation with the ANS method of
Ref. [34]. Equally, the proposed finite shell model is implemented with a low number of nodes
(four nodes) and degrees of freedom (DOFs) which ensures its computational efficiency, and it is
elaborated in the sense of directors in the space with C0 continuity. The nonlinear contribution
of the transverse shear strains is considered herein, in contrast to the standard FSDT which
does not present this effect. For the mechanical properties of FG-CNTRC structures, they are
estimated based on the extended rule of mixture with some efficiency parameters. Four CNT
distributions called uniformly distributed (UD), FG-V, FG-O, and FG-X, which are aligned in
the axial direction and functionally graded in the thickness direction of the shell structure, are
performed. The results show that the developed model can be utilized for the accurate and
efficient analysis for large deflection of various shapes of FG-CNTRC structures. To outline
these points, the present work is organized as follows. The mathematical formulation for FG-
CNTRC shells is given in Section 2, wherein the geometry, the kinematics, and the governing
equations of the model are presented. The finite element formulation is shown in Section 3. Nu-
merical results in terms of large deflection responses of FG-CNTRC square, annular ring plates,
and cylindrical panels are provided in Section 4. Conclusions of this work are summarized in
Section 5.

2 Mathematical formulation for FG-CNTRC shells

2.1 Material properties of FG-CNTRC shells
Various profiles for the cross sections of FG-CNTRC shells are illustrated in Fig. 1, where four

types of CNT distributions are considered. The UD-CNT represents the uniform distribution,
while the FG-V-CNT, the FG-O-CNT, and the FG-X-CNT denote three other distributions.
For the FG-V-CNT, the CNTs are rich near the top surface of the shell. For the FG-X-CNT,
the CNTs are rich near both the top and bottom surfaces. The mid-plane surface is CNT-rich
for the FG-O-CNT distribution. The volume fractions of CNTs VCNT for the four types of
distributions are given as follows:
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VCNT(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ∗
CNT for UD-CNT,(
1 + 2

z

h

)
V ∗

CNT for FG-V-CNT,

2
(
1 − 2

|z|
h

)
V ∗

CNT for FG-O-CNT,

4
|z|
h

V ∗
CNT for FG-X-CNT.

(1)

- - -

- - - -

-

Fig. 1 Various profiles for the cross sections of FG-CNTRC shells

In Eq. (1), V ∗
CNT denotes the total CNT volume fraction which can be expressed as

V ∗
CNT =

wCNT

wCNT + ρCNT

ρm − ρCNT

ρm wCNT

, (2)

where ρm and ρCNT represent the mass densities of the matrix and the CNTs, respectively,
and wCNT is the mass fraction of CNTs. All CNT distributions have the same mass fraction
wCNT and a total volume fraction V ∗

CNT. By adopting the extended rule of mixture which has
improved its efficiency in the modeling of FG-CNTRC shell structures as mentioned by many
researchers[5,35–36], the effective material properties of the two constituents of FG-CNTRC shell
can be approximated as[5] ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E11 = η1VCNTECNT
11 + VmEm,

η2

E22
=

VCNT

ECNT
22

+
Vm

Em
,

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm
,

(3)

where Em and Gm are Young’s modulus and the shear modulus of the isotropic matrix phase,
respectively, and ECNT

11 , ECNT
22 , and GCNT

12 are the corresponding ones of the CNTs. Vm stands
for the volume fraction of the matrix and is evaluated by

Vm = 1 − VCNT. (4)

In Eq. (3), the coefficients ηi (i = 1, 2, 3) represent the efficiency parameters of CNTs which draw
the scale-dependent material properties of CNTs. Their evaluation is achieved by matching the
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elastic modulus of CNTRC observed from the molecular dynamic simulations[37–38] with the
numerical results obtained from the extended rule of mixture. According to the extended rule
of mixture, the density ρ and Poisson’s ratio ν12 can be calculated as follows:{

ρ = VCNTρCNT + Vmρm,

ν12 = V ∗
CNTνCNT

12 + Vmνm,
(5)

where νCNT
12 and νm refer to Poisson’s ratios of the CNTs and the matrix, respectively.

2.2 Nonlinear analysis of FG-CNTRCs based on the FSDT
The nonlinear analysis of FG-CNTRCs is performed here using the FSDT. The effects of the

transverse shear deformations and geometrical nonlinearity are considered. The development
steps of the proposed model are given in the next subsections.
2.2.1 Kinematics of the model

The position vectors of any material point q within the shell body in the reference C0

and current Ct configurations (see Fig. 2) are denoted by Xq and xq, respectively, where ξ =
(ξ1, ξ2, ξ3) is the parametric curvilinear coordinate, in which ξ3 = z. Their corresponding
expressions are given by

Xq(ξ1, ξ2, z) = Xp(ξ1, ξ2) + zD(ξ1, ξ2), xq = xp + zd, (6)

where z ∈ (−h
2 , h

2

)
is the thickness coordinate of the shell. The pairs (Xp, xp) and (D, d) refer

to the position vectors of an arbitrary point p of the mid-surface and the shell director vector
in both the initial and deformed configurations, respectively.

Fig. 2 Description of the shell body in the initial C0 and deformed Ct configurations (color online)

The deformation gradient is defined according to the Green-Lagrange strain tensor field E
as follows: {

Eαβ = eαβ + zχαβ , α, β = 1, 2,

γα3 = 2Eα3 = gα3 − Gα3,
(7)

where Gαβ and gαβ represent the metric coefficients in both the initial C0 and deformed Ct

configurations. eαβ, χαβ , and γα3 denote the membrane, bending, and transverse shear strains,
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respectively, which are expressed as

eαβ =
1
2

(aαβ − Aαβ) , χαβ =
1
2

(bαβ − Bαβ) , γα3 = aα · d − Aα · D, (8)

where (Aαβ , Bαβ) and (aαβ , bαβ) represent the covariant metric and curvature tensors in
both the initial C0 and deformed Ct configurations, respectively, while Aα and aα are the
corresponding covariant base vectors. Their expressions are given as indicated by Trabelsi et
al.[26] and Frikha and Dammak[28].

Regrouping them in the matrix form, the components of the strain vectors can be written
as follows:

e =

⎡
⎣ e11

e22

2e12

⎤
⎦ , χ =

⎡
⎣ χ11

χ22

2χ12

⎤
⎦ , γ =

[
γ13

γ23

]
. (9)

2.2.2 Equilibrium equations
The governing equations are obtained from the variational principle which is based on the

weak form of the equilibrium equation. Its corresponding expression is given by

G =
∫

A

(N · δe + M · δχ + T · δγ)dA − Gext = 0, (10)

where δe, δγ, and δχ represent the variations of the shell strains, while N , M , and T refer to
the membrane, bending, and shear stress resultants which can be expressed as follows:

N =

⎡
⎣ N11

N22

N12

⎤
⎦ , M =

⎡
⎣ M11

M22

M12

⎤
⎦ , T =

[
T 13

T 23

]
. (11)

Their components are defined as follows:

Nαβ =
∫ h/2

−h/2

Sαβdz, Mαβ =
∫ h/2

−h/2

zSαβdz, T α3 =
∫ h/2

−h/2

Sα3 dz, (12)

where Sαβ is the second Piola-Kirchhoff stress tensor. The generalized stress resultant R and
strain Σ vectors read

R =

⎡
⎣ N

M
T

⎤
⎦ , Σ =

⎡
⎣ e

χ
γ

⎤
⎦ . (13)

Substituting Eq. (13) into Eq. (10), the weak form of equilibrium renders

G(Φ, δΦ) =
∫

A

δΣT · RdA − Gext(Φ, δΦ) = 0, (14)

where Φ = (u, d) contains the displacement and shell vectors. The resolution of Eq. (14) is
achieved via the Newton iterative algorithm, where the consistent tangent operator can be
constructed by the directional derivative of the weak form in the direction of the increment
ΔΦ = (Δu, Δd). For the sake of convenience, the tangent operator should be divided into
geometrical and material parts as

DG · ΔΦ = DGG · ΔΦ + DMG · ΔΦ. (15)
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2.2.3 Material constitutive laws
The material behavior is formulated through the material contribution of the tangent ope-

rator, while holding the strain constant and varying the generalized resultant of stress R. This
yields

DMG · ΔΦ =
∫

A

(δΣT · ΔR)dA. (16)

As a result, the constitutive relationships between the generalized resultant of stress R and
strain Σ vectors are

ΔR = HT ΔΣ. (17)

The material tangent modulus HT can be expressed as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

HT =

⎡
⎣ Hm Hmb 0

Hmb Hb 0
0 0 Hs

⎤
⎦ ,

(Hm, Hmb, Hb)=
∫ h/2

−h/2

(
1, z, z2

)
Hdz, Hs =

∫ h/2

−h/2 Hτdz.

(18)

The in-plane H and out-of-plane Hτ sub-matrices are given by

H = T T
1 HLT 1, Hτ = T T

2 HτLT 2, (19)

where HL and HτL denote the constitutive material matrices of an orthotropic single layer
shell, and T 1 and T 2 represent the transformation matrices from the orthotropic system to the
Cartesian system, as shown in Fig. 3. Their expressions are given as[23–24]

HL =

⎡
⎣ H11 H12 0

H12 H22 0
0 0 G12

⎤
⎦ , HτL =

[
G13 0
0 G23

]
, (20)

T 1 =

⎡
⎣ C2 S2 CS

S2 C2 −CS
−2CS 2CS C2 − S2

⎤
⎦ , T 2 =

[
C S
−S C

]
, C = cos θ, S = sin θ, (21)

θ

Fig. 3 Schematic of the orthotropic single layer shell (color online)
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where H11, H12, and H22 are given in terms of engineering constants as follows:

⎧⎪⎨
⎪⎩

H11 =
E11

Δ
, H22 =

E22

Δ
, H12 =

ν21E11

Δ
=

ν12E22

Δ
,

Δ = 1 − ν21ν12 = 1 − ν2
12

E22

E11
,

(22)

where E11, E22, ν12, ν21, G12, G13, and G23 denote Young’s moduli, Poisson’s ratios, and the
shear moduli of the single layer shell, respectively, and G12 = G13 = G23.
2.2.4 Geometrical laws

To account for the geometrical contribution of the tangent operator, the virtual strains are
varied while maintaining the stress resultant constant, which yields

DGG · ΔΦ =
∫

A

(ΔδΣT · R)dA. (23)

Now, the partition of the geometrical contribution into membrane, bending, and transverse
shear parts leads to

DGG · ΔΦ = DGGm · ΔΦ + DGGb · ΔΦ + DGGs · ΔΦ. (24)

3 Finite element formulation

In this section, the finite element formulation corresponding to the proposed nonlinear FSDT
is derived. In particular, the interpolation scheme for the kinematic field is carried out by
complying with the isoparametric concept and four-node shell element definition.
3.1 Interpolation of the geometry and kinematics

The discretization of the displacement vector (u = x − X) and the shell director d can be
performed through the standard isoparametric shape functions N I as follows:

δu =
4∑

I=1

N IδuI , δd =
4∑

I=1

N IδdI , Δu =
4∑

I=1

N IΔuI , Δd =
4∑

I=1

N IΔdI , (25)

where I refers to the node of the element. The relation between the shape function derivatives
in the local Cartesian and local elementary systems can be written as

{
N

I

,1 = [J ]−1
N I

,ξ,

N
I

,2 = [J ]−1
N I

,η,
(26)

where J represents the Jacobian matrix which allows the transformation from
{
n0

1, n
0
2

}
to

{A1, A2} base vectors. Its expression is given by

J =

[
n0

1 · A1 n0
2 · A1

n0
1 · A2 n0

2 · A2

]
, (27)

where A1 and A2 denote the covariant base vectors of the mid-surface, while the normal field
n0 related to the initial configuration C0 is defined by

n0 = A1 ∧ A2/ ‖A1 ∧ A2‖ . (28)
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3.2 Transformation at the nodal level
The discretization of the displacement field in the global level is carried out via a transfor-

mation matrix Πn and takes the following form:

δΦn = Πn · δUn, Πn =

⎡
⎢⎢⎣

Π1 0 0 0
0 Π2 0 0
0 0 Π3 0
0 0 0 Π4

⎤
⎥⎥⎦ . (29)

Each sub-matrix ΠI at the nodal level I is given by

ΠI =
[

I 0
0 Λ

]
, I = 1, 2, · · · , 4, (30)

where I is the identity matrix, and the matrix Λ represents the nodal transformation which
allows the passage from the director vector δd to the rotational DOFs δΘ as follows:

δd = ΛkδΘ, Λk =
[ −t2k t1k

]
3×2

. (31)

The transformation matrix Λ leads to a material description with 5 DOFs/nodes which relies

the generalized displacement vector δΦI =
[

δu
δd

]
I

to the nodal displacement vector δU I =[
δu
δΘ

]
I

at the nodal level I by the following expression:

δΦI = ΠI · δU I , I = 1, 2, · · · , 4. (32)

All numerical examples given in Section 4 are obtained with the material description and 5
DOFs/nodes.
3.3 Interpolation of the deformations

The state of deformations, which is divided into membrane, bending, and shear parts, can
be interpolated as

δe = Bm · δUn, δχ = Bb · δUn, δγ = Bs · δUn, (33)

where Bm, Bb, and Bs are the discrete strain-displacement matrices. Their expressions are as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BI
m =

[
BI

mm 0
]
, BI

mm =

⎡
⎢⎢⎣

nT
1 N

I

,1

nT
2 N

I

,2

nT
1 N

I

,2 + nT
2 N

I

,1

⎤
⎥⎥⎦ ,

BI
b =

[
BI

bm BI
bbΛ

I
]
, BI

bm =

⎡
⎢⎢⎣

dT
,1N

I

,1

dT
,2N

I

,2

dT
,1N

I

,2 + dT
,2N

I

,1

⎤
⎥⎥⎦ ,

BI
bb = BI

mm, Bs = J−1Bsξ,

Bsξ=

[
N1

,1d
T
1B N2

,1a
T
1B N2

,1d
T
1B N2

,1a
T
1B N3

,1d
T
1D N3

,1a
T
1D N4

,1d
T
1D N3

,1a
T
1D

N1
,2d

T
1A N4

,2a
T
2A N2

,2d
T
1C N3

,2a
T
2C N3

,2d
T
1C N3

,2a
T
2C N4

,2d
T
1A N4

,2a
T
2A

]
.

(34)

The membrane and bending matrices are given at the nodal level I, while the shear strain is
provided for all nodes using the assumed natural transverse shear strain method of Bathe1985.
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A, B, C, and D are the mid-points of the element boundary set, as shown in Fig. 4, and
aα (α = 1, 2) are the covariant base vectors in the deformed configuration Ct. As a result, the
variation of the generalized strain δΣ in a discrete form can be written as

δΣ = B · δUn, B =

⎡
⎣ Bm

Bb

Bs

⎤
⎦ . (35)

ξ

η

Fig. 4 The isoparametric shell element with the assumed strain construction

3.4 Solution procedure
The equilibrium equations associated to Eqs. (14) and (15) lead to the construction of the

material and geometrical parts, in a discrete form, as follows:

KM =
∫

A

BTHT BdA, (36)

DGG · ΔΦ = δΦT
n (KG)ΔΦn = δUT

n · ΠT
n · KG · Πn · ΔUn. (37)

The expression of the geometrical matrix KG, for a couple of nodes (I, J), is given by

KGIJ =

[
UUMIJI (UBFIJ + UBCIJ) I

(BUFIJ + BUCIJ) I (BBFIJ + BBCIJ ) I

]
, (38)

where UUM , (UBF, BBF ), and (UBC, BBC) correspond to the membrane, bending, and
shear terms, respectively, and their expressions are given as follows.

The membrane term is

UUMIJ =
∫

A

(
N

I

,1

(
N11N

J

,1 + N12N
J

,2

)
+ N

I

,2

(
N12N

J

,1 + N22N
J

,2

))
dA. (39)

The displacement-rotation coupling term is

{
UBFIJ =

∫
A

(
N

I

,1

(
M11N

J

,1+M12N
J

,2

)
+N

I

,2

(
M12N

J

,1+M22N
J

,2

))
dA,

BUFIJ =UBFJI .
(40)

The rotation term is{
BBFII =− ∫

A

(
N

I

,1

(
a1M

11+a2M
12

)
+N

I

,2

(
a1M

12+a2M
22

))
dIdA,

BBFIJ =0 if I �= J.
(41)



Large deflection response-based geometrical nonlinearity of FG-CNTRC structures 1237

The shear term is

UBC =
1
8

⎡
⎢⎢⎣

−α − β −β 0 −α
β β − γ −γ 0
0 γ γ + δ δ
α 0 −δ α − δ

⎤
⎥⎥⎦ , (42)

BUCIJ = UBCJI , (43)

BBCII = −1
4

⎡
⎢⎢⎢⎢⎢⎢⎣

(
αaA

2 + βaB
1

) · d1(
βaB

1 + γaC
2

) · d2(
γaC

2 + δaD
1

) · d3(
δaD

1 + αaA
2

) · d4

⎤
⎥⎥⎥⎥⎥⎥⎦

, BBCIJ = 0 if I �= J, (44)

where {
α =

∫
A
(1 − ξ)T2dA, β =

∫
A
(1 − η)T1dA,

γ =
∫

A
(1 + ξ)T2dA, δ =

∫
A
(1 + η)T1dA.

The tangent matrix and the element residual can be written as

KT = ΠT
n (KM + KG)Πn, r =

∫
A

BTRdA. (45)

In this paper, the solution procedure is obtained by means of the Newton-Raphson incremental
technique leading to the computation of nonlinear deflection responses of the studied structures.

4 Numerical applications and discussion

This section is devoted to presenting the applicability of the present formulation via the
assessment of the nonlinear bending behavior of FG-CNTRC plates and curved panels. A
comparison study is first carried out on the isotropic case in order to verify the capacity and
the ability of the present formulation in the prediction of nonlinear deflection responses of
such structures. Then, numerical applications are performed for composite structures with FG-
CNT reinforcements leading to draw the usefulness and the versatility of the proposed finite
element method. For FG-CNTRC simulations, Poly(m-phenylenevinylene)-co-[(2,5-dioctoxy-
p-phenylene) vinylene] (PmPV) is considered for the matrix and the (10,10) armchair single
walled carbon nanotubes (SWCNTs) for the reinforcements. Their corresponding material
properties, at room temperature (T = 300 K), are ECNT

11 = 5.646 6 TPa, ECNT
22 = 7.080 0 TPa,

GCNT
12 = 1.944 5 TPa, ρCNT = 1 400 kg/m3, and νCNT

12 = 0.175 for the (10,10) SWCNTs, and
the values are Em = 2.1 GPa, ρm = 1 150 kg/m3, and νm = 0.34 for the PmPV matrix[5].
Moreover, the values of the CNT efficiency parameters ηi (i = 1, 2, 3) are listed in Table 1.

Table 1 Values of the CNT efficiency parameters for three sets of CNT volume fractions 11%, 14%,

and 17%[5]

V ∗
CNT η1 η2 η3

0.11 0.149 0.934 0.934

0.14 0.150 0.941 0.941

0.17 0.149 1.381 1.381
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4.1 Verification and comparison study
To verify the capacity and the aptitude of the present formulation in the prediction of the

nonlinear bending behavior of shell structures, several comparisons are carried out. The first
numerical test consists of a simply supported square plate subject to a uniform transverse load
with a length side a and a total thickness h = 2 mm as illustrated in Fig. 5. Its material
properties are taken as indicated in Refs. [39]–[41] with ν = 0.316. For comparison purpose, the
results are performed in terms of non-dimensional parameters W = W0/h and q = q0a4

Eh4 , where
E is the isotropic Young’s modulus and q0 is the uniform transverse applied load. The whole
plate is meshed using 16 × 16 of S4 finite elements, where the abbreviation S4 refers to the
developed nonlinear FSDT element. The non-dimensional load-deflection curves are depicted
in Fig. 6. The comparison of the present curve to the one derived by Lei et al.[39] reveals a good
agreement between the results, which leads to verify the aptitude of the present formulation in
the prediction of nonlinear bending behavior of isotropic square plates.

Fig. 5 The geometry of the plate

Fig. 6 Non-dimensional load-deflection curves of a simply supported square isotropic plate subject
to a uniform transverse load

The second numerical test consists of an annular ring plate with a slit cut along its radial
direction corresponding to the line AB as depicted in Fig. 7(a). The geometrical parameters of
the ring are defined as follows: the internal radius r = 6 m, the external radius R = 10 m, and
the shell thickness h = 0.03 m. Its material properties corresponding to the isotropic material
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law are Young’s modulus E = 2.1 × 108 kN/m2 and Poisson’s ratio ν = 0. The ring plate
is loaded at its free edge, while the other edge is fully clamped. The maximum applied load
at the free edge is fixed to p = 0.1f kN/m with an applied load factor f = 60 to obtain the
deformed geometry, as shown in Fig. 7(b). The used mesh involves 8× 48 of S4 finite elements.
It is worth mentioning that this numerical test is considered as a good example for testing finite
element shell formulations[29,42–43]. The nonlinear load-deflection responses at points A, B, and
C versus the load factor f are depicted in Fig. 8. It can be seen that an excellent agreement
between the present results and those reported in Ref. [42] is illustrated, which proves the ability
of the present formulation in the restitution of nonlinear behavior of annular ring plates.

Fig. 7 The annular ring plate with (a) the geometry definition and (b) the deformed shape

-
-
-
-
-
-

Fig. 8 Load-deflection curves of the ring plate at the load points A, B, and C

The third example considers an isotropic cylindrical panel with a concentrated transverse
load at the center point of the panel, as depicted in Fig. 9. This example illustrates a shell
problem and serves to test the ability of the proposed finite element to accurately reproduce
the nonlinear bending behavior of curved panels. The geometrical and mechanical properties
of the cylindrical panel are taken as indicated in Ref. [44], where L = 6 in is the axial length,
R = 2.5 in is the radius, θ0 = 45◦ is the span angle, and h = 0.01 in is the thickness of the shell.
Young’s modulus and Poisson’s ratio are E = 107 psi and ν = 0.3, respectively, in which 1 in
=0.025 4 mm. The applied boundary condition is defined as follows. The edges AB and DC are
simply supported, and the edges AD and BC are free. Due to the symmetry of the problem,
only one quarter of the cylindrical panel is modeled with 10 × 12 meshes. Figure 10 shows
a satisfactory agreement in comparison with the reference solution provided by Brendel and
Ramm[44]. Thereby, the present model draws again its aptitude to perform the large deflection
analysis of shell-type geometry.
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θ
θ

Fig. 9 The cylindrical panel under a concentrated load

Fig. 10 Load-deflection curves of the isotropic cylindrical panel under a concentrated load

4.2 Nonlinear deflection responses of FG-CNTRC structures
To investigate the nonlinear deflection analysis of FG-CNTRC structures, parametric studies

are performed in this section. Indeed, the effects of CNT profiles, their volume fractions,
and some geometrical parameters including the aspect ratio, the thickness parameter, and
the boundary conditions on the nonlinear bending behavior of FG-CNTRC plates and curved
panels are discussed in detail through the presented numerical results. For this purpose, uniform
(UD) and three graded CNT distributions, known as FG-V, FG-O, and FG-X, are considered
as depicted in Fig. 1. Each configuration reflects how the CNTs are distributed through the
thickness of the shell structure. In fact, for the two symmetric distributions with regard to the
mid-plane surface, one can observe that the top z = +h/2 and the bottom z = −h/2 surfaces
are CNT-rich for the FG-X form, and they are free of CNTs for the FG-O form. However, for
the FG-V form, a maximum distribution of CNTs is displayed on the top surface z = +h/2,
while its bottom surface z = −h/2 is free of CNTs. Note that for all FG-CNTRC presented
structures, the geometric properties replicate those previously introduced in Subsection 5.1,
whereas the material properties of the CNTs and the isotropic matrix are indicated at the
beginning of Section 4.
4.2.1 Nonlinear responses of FG-CNTRC plates

Now, the applicability of the current formulation and its corresponding finite element imple-
mentation for nonlinear analysis of plates with FG-CNT reinforcements is examined. A simply
supported FG-CNTRC plate under a uniform distributed load is performed. At first, for the
verification purpose for FG-CNTRC plates, the non-dimensional central deflection responses of
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a simply supported square FG-CNTRC plate (b/h = 50, V ∗
CNT = 0.11) subject to a uniform

transverse load and for different forms of CNTs are compared to those of Lei et al.[39] in Fig. 11.
It can be seen that the present curves agree with those of Lei et al.[39] in the range [0, 100] of
the non-dimensional applied load, where small deflections W ≈ 0.5 are performed. Besides this,
a difference between the results is observed due to different strategies used in the two studies.
In fact, in Ref. [39], the authors used the FSDT with von-Karman kinematic assumptions in-
cluding only small deformations and moderate rotations, whereas in our paper, the formulation
is implemented with the introduction of large displacements and finite rotations. Hence, for a
fixed load point, the present finite element model has the aptitude of the prediction of large
deflections which can reach high values W ≈ 7, while in Ref. [39], the deflections are small and
do not exceed W ≈ 1.5. Otherwise, the present results follow the shape of the curves derived
by Lei et al.[39]. Therefore, the present model constitutes a more general and convenient finite
element model in predicting large deflections of FG-CNTRC plates.

-
-
-

-
-
-

Fig. 11 Non-dimensional central deflection for various forms of simply supported square plate subject
to a uniform transverse load with b/h = 50 and V ∗

CNT = 0.11

Figure 12 displays the effects of various profiles of CNTs on large deflection responses of
a simply supported square FG-CNTRC plate (b/h = 10 and V ∗

CNT = 0.11) subject to a uni-
form transverse load. In this graph, it can be observed that the FG-O-CNT configuration is
predicted to experience the largest deflection, while the FG-X-CNT case exhibits the stiffest
response among different FG-CNT distributions. Moreover, the other two configurations (UD-
CNT and FG-V-CNT), which are located between these extreme cases, induce a smaller central
deflection for the UD form compared with the FG-V form. Hence, the CNT distributions close
to the top and bottom surfaces provide a more effective reinforcement, in terms of increasing
the structural stiffness of the FG-CNTRC plates. Therefore, designers can adjust the desired
stiffness by choosing an appropriate form of the CNTs. In addition, Fig. 13 draws the effects
of the plate aspect ratios a/b on the nonlinear central deflections of various distributions of
simply supported plates with b/h = 20 and V ∗

CNT = 0.17 subject to a uniform transverse load.
With regard to a square FG-CNTRC plate aspect ratio a/b = 1, two sets of aspect ratio values,
less than 1, i.e., a/b = 0.5, 0.75, and greater than 1, i.e., a/b = 1.5, 2, are considered. For
the former, the value of deflection is not significantly influenced by the aspect ratio, while for
the latter, this effect is pronounced. In fact, for a high aspect ratio a/b > 1, the FG-CNTRC
plate is more likely to experience the nonlinear bending than that for a lower value of the as-
pect ratio a/b < 1. Thus, the decrease in the flexural rigidity of the FG-CNTRC plate can be
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-
-
-

Fig. 12 Effects of various profiles of CNTs on the central large deflection responses of a simply
supported square plate subject to a uniform transverse load with b/h = 10 and V ∗

CNT = 0.11

-
-
-

-
-
-

-
-
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-
-

Fig. 13 Central large deflection responses of simply supported (a) UD-, (b) FG-V-, (c) FG-O-, and
(d) FG-X-CNTRC plates subject to a uniform transverse load and under different aspect
ratios with b/h = 20 and V ∗

CNT = 0.17

explained by the increase in the aspect ratio. Further conclusions can be deduced from
Figs. 14(a), 14(b), 14(c), and 14(d) which illustrate the effects of boundary conditions on
the nonlinear behavior of various forms of square FG-CNTRC plates. A sequence of boundary
conditions is utilized where C, S, and F refer to clamped, simply supported, and free edge,
respectively. As a result, the following combinations are examined. Four edges AB, BC, CD,
and DA are fully clamped (CCCC) or fully simply supported (SSSS), a pair of opposite sides
AB and DC are simply supported, and the left ones BC and AD are fully clamped or free,
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i.e., SCSC and SFSF, respectively. The results show that the nonlinear central deflection for
a fully clamped FG-CNTRC plate is the smallest one among the four cases, while the one re-
lated to the simply supported case is the largest one. The reason is that the constraint of the
clamped boundary condition is stronger than the simply supported or free boundary condition.
Hence, the type of applied boundary condition has a significant effect on the nonlinear bending
behavior of FG-CNTRC plates.

-
-
-
-

-
-
-
-

-
-
-
-

Fig. 14 Central large deflection responses of (a) UD-, (b) FG-V-, (c) FG-O-, and (d) FG-X-CNTRC
square plates subject to a uniform transverse load and under various boundary conditions
with b/h = 20 and V ∗

CNT = 0.17

4.2.2 Nonlinear responses of FG-CNTRC annular ring plates
With the same strategy, the nonlinear deflection analysis is also performed for FG-CNTRC

annular ring plates. According to the existing bibliography, the large deflection analysis of FG-
CNTRC annular ring plates is rather scarce. Therefore, we provide here the new first results
concerning this geometry-type. First, the effects of different CNT profiles on the nonlinear
bending behavior of FG-CNTRC annular ring plates are examined. Indeed, Fig. 15 depicts
the load versus the vertical displacement curves at the points A, B, and C for various CNT
distributions. It can be seen that the values of nonlinear deflections of FG distributions are
less than those of the uniformly distribution, and this is for all load points. Consequently, FG
distributions can be chosen to optimize the stiffness of the structure via the considered form of
CNTs.

Furthermore, Fig. 16 shows the effects of variation of CNT volume fractions V ∗
CNT = 0.11,

0.14, 0.17 on nonlinear responses of UD-, FG-V-, FG-O-, and FG-X-CNTRC annular ring plates,
respectively, at the studied load points. It can be observed that for a fixed load factor value f ,
the value of the nonlinear displacement decreases as the CNT volume fraction increases and
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-
-
-

Fig. 15 Nonlinear load-displacement responses of FG-CNTRC annular ring plates at the load points
A, B, and C for various CNT forms (V ∗

CNT = 0.11)
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Fig. 16 Effects of different CNT volume fractions on large deflection responses of (a) UD-, (b) FG-V-,
(c) FG-O-, and (d) FG-X-CNTRC annular ring plates at the load points A, B, and C

reaches its maximum with V ∗
CNT = 0.17 which implies that the more the ring plate is rein-

forced by CNTs, the stiffer the structure becomes. A combination between the large CNT
volume fraction and the appropriate distribution of CNTs can optimize properly their bending
resistance. Moreover, Fig. 17 illustrates the effects of the plate thickness parameter h on the
nonlinear behavior of various forms of the FG-CNTRC ring plate at the load points A, B,
and C under a CNT volume fraction V ∗

CNT = 0.11. The variation of the plate thickness geo-
metrical parameter from h = 0.01 to h = 0.03 induces a decrease in the nonlinear response of the
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Fig. 17 Effects of the geometrical thickness parameter on large deflection responses of (a) UD-, (b)
FG-V-, (c) FG-O-, and (d) FG-X-CNTRC annular ring plates at the load points A, B, and
C with V ∗

CNT = 0.11

FG-CNTRC annular ring plate, and this is for all CNT distributions. Thus, as the thickness
parameter increases, the ring plate becomes sensitive to the variation of this parameter.
4.2.3 Nonlinear responses of FG-CNTRC cylindrical panels

Finally, the nonlinear bending behavior of the FG-CNTRC cylindrical panels is investigated
with a uniaxially alignment of CNTs in the axial direction and functional gradation in the
thickness direction. It should be mentioned that the present results constitute the first new
results for FG-CNTRC panels with a concentrated point load. In fact, most papers in the
literature treated the case of FG-CNTRC panels with a uniform distributed load[13,23]. A
parametric study is also carried out here to outline the effects of CNT volume fractions as
well as the thickness parameter on nonlinear deflection analysis of FG-CNTRC cylindrical
panels. Figures 18(a), 18(b), 18(c), and 18(d) display the effects of the CNT volume fraction,
from V ∗

CNT = 0.11 to V ∗
CNT = 0.17, on the nonlinear responses of FG-CNTRC panels. The

increase in the CNT volume fraction induces an increase in the stiffness of the FG-CNTRC
structure which is manifested by the raise of the amplitude of the nonlinear deflection responses.
Thus, the mechanical behavior of composites can be considerably improved by the addition of
an appropriate percentage of CNTs. Figures 19(a), 19(b), 19(c), and 19(d) depict the load-
deflection curves of UD, FG-V, FG-O, and FG-X forms, respectively. It can be remarked that
as the thickness decreases, the deflection of the FG-CNTRC cylindrical panel increases. In fact,
for a low value of the thickness, the FG-CNTRC cylindrical panel behaves as a thin structure
and bends easily. Consequently, the variation of the thickness parameter has a significant effect
on the nonlinear behavior of FG-CNTRC shell structures.
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Fig. 18 Effects of different CNT volume fractions on large deflection responses of (a) UD-, (b) FG-V-,
(c) FG-O-, and (d) FG-X-CNTRC cylindrical panels

5 Conclusions

A nonlinear formulation based on the FSDT is proposed to model large deflection responses
of FG-CNTRC structures. The proposed model incorporates the transverse shear deformations,
and it is free of the shear-locking problem via the utilization of the ANS method. The geo-
metrical nonlinearity type is also introduced into the formulation to accurately describe large
displacements and finite rotations. SWCNTs are selected as reinforcements, and four types of
distributions of CNTs are considered, i.e., a uniform distribution and three kinds of FG distri-
butions. The material properties of FG-CNTRC structures are assumed to be graded in the
thickness direction and are approximated using the extended rule of mixture with some effi-
ciency parameters. The nonlinear equilibrium equations are solved using the Newton-Raphson
numerical method. The obtained results reveal the following points.

(i) The FG-X-CNT form induces less large deflection compared with other forms, which
reflects that CNT distributions close to top and bottom surfaces have the ability to optimize
the nonlinear behavior of FG-CNTRC structures.

(ii) The increase in the CNT volume fraction enhances the strength of the FG-CNTRC
structure, which outlines the efficiency of CNT reinforcements. In fact, when the structure is
enriched by CNTs, it becomes much stiffer.

(iii) The type of applied boundary condition has a significant effect on the large deflection
analysis of such structures due to the flexural rigidity of the structures which becomes stiffer
with fully clamped edges.
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Fig. 19 Effects of the thickness parameter on large deflection responses of (a) UD-, (b) FG-V-, (c)
FG-O-, and (d) FG-X-CNTRC cylindrical panels with V ∗

CNT = 0.11

(iv) The variation of the thickness parameter induces a pronounced effect on the nonlinear
behavior of FG-CNTRC structures.

(v) The proposed model allows the assessment of nonlinear behavior of FG-CNTRC plates
and shells with a good presentation of large displacements and finite rotations.
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