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Abstract A nonlinear vibration isolation system is promising to provide a high-efficient
broadband isolation performance. In this paper, a generalized vibration isolation system
is established with nonlinear stiffness, nonlinear viscous damping, and Bouc-Wen (BW)
hysteretic damping. An approximate analytical analysis is performed based on a harmonic
balance method (HBM) and an alternating frequency/time (AFT) domain technique.
To evaluate the damping effect, a generalized equivalent damping ratio is defined with
the stiffness-varying characteristics. A comprehensive comparison of different kinds of
damping is made through numerical simulations. It is found that the damping ratio of
the linear damping is related to the stiffness-varying characteristics while the damping
ratios of two kinds of nonlinear damping are related to the responding amplitudes. The
linear damping, hysteretic damping, and nonlinear viscous damping are suitable for the
small-amplitude, medium-amplitude, and large-amplitude conditions, respectively. The
hysteretic damping has an extra advantage of broadband isolation.
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1 Introduction

Vibration reduction systems with nonlinear stiffness[1–3] allow low-frequency isolation with-
out compromising the static stiffness, and the performance can be further improved by introduc-
ing nonlinear damping[4]. Linear damping is not efficient enough for large-amplitude vibration,
and the trade-off between resonance suppression and high-frequency isolation is unavoidable.
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Nonlinear damping is promising to provide a broadband high-efficient isolation performance,
including nonlinear viscous damping and hysteretic damping.

Nonlinear viscous damping can be induced from viscous fluids[5], rubbers[6], and nonlinear
structures[7]. The damping force is a nonlinear function of the velocity or both the velocity
and the displacement. Some research[8–10] revealed that a vibration isolation system with cubic
viscous damping is more effective in suppressing the resonance. More generally, Lv and Yao[11]

studied a system with high-order viscous damping, and found that the nonlinear damping had a
beneficial response at the resonance region while a poor performance at high frequencies. Huang
et al.[12] investigated a general velocity-displacement-dependent system with nonlinear damp-
ing, and found that the displacement transmissibility in the resonance region was suppressed
without affecting the transmissibility at high frequencies. Hysteretic damping can be induced
from frictions[13–15], eddy current effects[16], and materials with intrinsic hysteresis[17–19], and
is usually described by phenomenological models such as the bilinear model[20], the Masing
model[21], and the Bouc-Wen (BW) model[22]. Barbieri et al.[23] investigated the nonlinear dy-
namic behavior of a wire rope isolator and an asymmetric Stockbridge damper, and verified that
the BW model was well suited for hysteretic damping systems. Carboni and Lacarbonara[24]

established a modified BW model to represent the pinched hysteresis derived from mixed wire
ropes made of nitinol and steel.

In most studies, nonlinear viscous damping and hysteretic damping are investigated sep-
arately, while the comparative research on different kinds of damping is limited. Solovyov
et al.[25] compared linear damping, nonlinear viscous damping, and BW hysteretic damping,
and pointed out that hysteretic damping was highly efficient both in and out of the resonance
region. However, the study is limited to the isolation system with linear stiffness. For BW
hysteresis, both the stiffness softening effect and the damping effect contribute to the isolation
performance. It is more reasonable to separate the two effects and focus only on the damping
effect. Equivalent damping ratio is mostly used to evaluate the damping effect of nonlinear
damping, and is calculated through the dissipated energy and the elastic energy. For nonlinear
stiffness systems, the elastic energy is usually calculated through the initial stiffness or the av-
erage stiffness[26]. It is inaccurate for the systems with strong nonlinearities, and the influence
of hysteretic damping on the stiffness is not considered.

The dynamic systems with strong nonlinearities are difficult to be analyzed analytically. The
promising methods include the harmonic balance method (HBM)[27], the hyperbolic perturba-
tion method[28], and the averaging method[29–30]. The inclusion of hysteretic damping makes
the analysis more challenging, because damping forces are mainly non-smooth and expressed by
piecewise or implicit functions. Xiong et al.[31] and Wu et al.[32] adopted the increment HBM
to determine the periodic solutions of bilinear hysteretic systems. Wong et al.[33] treated a BW
hysteretic system with an analytical-numerical method based on the HBM and a Levenberg-
Marquardt (LM) algorithm. The alternating frequency/time (AFT) domain technique[34–35] is
practical to deal with the nonlinear functions. However, the solution of dynamic equations with
both nonlinear explicit and implicit functions is still challenging.

In this paper, a generalized vibration isolation system is established with nonlinear stiffness
expressed by a polynomial function of the displacement, nonlinear viscous damping expressed
by a polynomial function of the velocity, and hysteretic damping expressed by an implicit func-
tion of the BW model. The approximate analytical solution of the model is acquired through an
HBM-AFT-LM method. An analytical recursive method is proposed for the polynomial func-
tions, and the implicit function is dealt with a numerical AFT method. A generalized equivalent
damping ratio is defined with the stiffness-varying characteristics. The basic characteristics of
different kinds of damping are revealed, and a comprehensive comparison of the damping effects
is carried out. The remainder of this paper is organized as follows. The generalized vibration
isolation model and the approximate analytical solution are presented in Section 2. The gener-
alized equivalent damping ratio is defined in Section 3. The numerical simulation and discussion
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are demonstrated in Section 4. Conclusions are drawn in Section 5.

2 Modeling and approximate analytical solution

Consider a generalized vibration isolation system shown in Fig. 1. The payload mass is
denoted as M . The elastic component presents a restoring force expressed by a polynomial
function with the ith-order (i = 1, 2, · · ·, nk) stiffness Ki. The viscous damping component
presents a damping force expressed by a polynomial function with the ith-order (i = 1, 2, · · ·, nc)
damping Ci. The stiffness and viscous damping can be linear or nonlinear, depending on
the high-order coefficients. The hysteretic damping force is denoted as Z. Under the initial
condition, the system is statically balanced and Z = 0 (no residual hysteretic force). A harmonic
excitation is applied on the base with the displacement expressed as Xe = Ae cos(ωeT ), where
Ae, ωe, and T denote the amplitude, the frequency, and the time, respectively. The responding
displacement of the payload is denoted as Xp. The relative displacement is denoted as X =
Xp − Xe.

' 

= 1

Fig. 1 A generalized vibration isolation system

The dynamic equation of the system is

MX ′′ +

nk
∑

i=1

KiX
i +

nc
∑

i=1

CiX
′i + Z = MAeω

2
e cos(ωeT ). (1)

The hysteretic damping force is described with a BW model as follows[22]:

Z ′ = (Kd − (γ + β sgn(X ′Z))|Z|nbw)X ′, (2)

where Kd, γ, β, and nbw are the BW model parameters. The introduction of dimensionless
parameters transforms Eqs. (1) and (2) into

η2ẍ +

nk
∑

i=1

kix
i +

nc
∑

i=1

ci(ηẋ)i +
1 − k1

ρ
z = η2ae cos t, (3)

ż = (1 − (1 − σ + σ sgn(ẋz))|z|nbw)ρẋ, (4)
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In the above equations, ωc and Xc are the characteristic frequency and displacement, respec-
tively. The dimensionless initial stiffness of the system is 1. In order to study the shape of
the BW hysteresis loop, the dimensionless hysteretic force z is normalized with the maximum
limit value of 1. When n → ∞, the BW hysteresis becomes bilinear. A necessary and sufficient
condition for the thermodynamic admissibility of the BW hysteresis is −β 6 γ 6 β[36]. Thus,
we focus on the parameter domain of ρ > 0 and σ > 0.5, where the hysteresis presents a stiffness
softening behavior. The stiffness of the system mainly depends on ki, ρ, and nbw. The change
of σ has little influence on the stiffness, which is the basis for the separation of the stiffness
softening effect and the damping effect of the BW hysteresis in this research.

The approximate analytical solution of Eqs. (3) and (4) is based on an HBM-AFT-LM
method. Assume the following Fourier expansions:

x = a0 +

m
∑

i=1

(ai cos(it) + bi sin(it)), (6)

xj = p
(j)
0 +

m
∑

i=1

(p
(j)
i cos(it) + q

(j)
i sin(it)), (7)

where m is the selected harmonic order and m > max(nk, nc). The harmonic coefficients of
high-order displacement terms can be calculated with a recursive method as follows:

p
(j)
0 =

1

2

m
∑

l=1

(p
(j−1)
l al + q

(j−1)
l bl) + p

(j−1)
0 a0, (8)

p
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i =

1

2
(
m−i
∑
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p
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l al+i +

m
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p
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+
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q
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l bi−l), (9)
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i =

1
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m−i
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l=0

p
(j−1)
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m
∑

l=i

q
(j−1)
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m−i
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l=1
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m
∑

l=i+1
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+

i−1
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(j−1)
l bi−l +

i
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l=1

q
(j−1)
l ai−l). (10)

The Fourier expansion of the velocity term is expressed as follows:

ẋ =
m

∑

i=1

(ibi cos(it) − iai sin(it)). (11)

The harmonic coefficients of high-order velocity terms can be acquired in a similar way to
Eqs. (8)–(10) by replacing al and bl with lbl and −lal, respectively. The Fourier expansion of z
is expressed as follows:

z = c0 +
m

∑

i=1

(ci cos(it) + di sin(it)), (12)

where c0, ci, and di are harmonic coefficients and can be obtained through the harmonic balance
process based on Eq. (3). According to Eq. (4), the residual r is defined as follows:

r = ż − (1 − (1 − σ + σ sgn(ẋz))|z|nbw)ρẋ, (13)
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which is a multi-valued and non-smooth function. An AFT technique is adopted to acquire
the corresponding harmonic coefficients. Define a discrete time sequence from t = 0 to t = 2π,
whose length is one period for the dimensionless time. The discrete sequences of xi(t), ẋi(t),
z(t), and ż(t) can be acquired based on their Fourier expansions. The discrete sequence of r(t)
is calculated according to Eq. (13). The harmonic coefficients of r can be numerically obtained
through a fast Fourier transform as follows:

r = u0 +
m

∑

i=1

(ui cos(it) + vi sin(it)). (14)

Define







A = (a0, a1, · · · , am, b1, · · · , bm)T,

U = (u0, u1, · · · , um, v1, · · · , vm)T.

It is obvious that U is a function of A. Through the HBM and AFT, solving the differential
equations (3) and (4) is equivalent to the least-square problem of searching A to achieve the
minimum value of UTU . An LM algorithm is adopted to seek the least-square solution with
the iteration formula of Ref. [33] as follows:

A
(w+1) = A

(w) −
(

J
T
[A(w)]J[A(w)] + φ(w)

I

)−1

J
T
[A(w)]U[A(w)], (15)

where the superscript denotes the number of iterations, and φ is an LM parameter. I is the
identity matrix. J is the Jacobi matrix of U expressed by

J =
(∂U

∂a0
,

∂U

∂a1
, · · · ,

∂U

∂am
,

∂U

∂b1
, · · · ,

∂U

∂bm

)

.

Each column of J can be calculated through the AFT technique. For example, consider the
following discrete sequence in the time domain:

∂r(t)

∂ai
=

∂r(t)

∂ẋ

∂ẋ

∂ai
+

∂r(t)

∂z

∂z

∂ai
+

∂r(t)

∂ż

∂ż

∂ai

= ρ((1 − σ + σ sgn(ẋ(t)z(t)))|z(t)|nbw − 1)
∂ẋ

∂ai

+ ρẋ(t)nbw((1 − σ)sgn(z(t)) + σ sgn(ẋ(t)))|z(t)|nbw−1 ∂z

∂ai
+

∂ż

∂ai
, (16)

where ∂ẋ
∂ai

, ∂z
∂ai

, and ∂ż
∂ai

can be calculated analytically. The harmonic coefficients of ∂r(t)
∂ai

can

be obtained through a fast Fourier transform, which are the elements of ∂U

∂ai

in J . By iterations,
the solution of A is obtained when the least-square error of U is below a determined tolerance,
and then the solution of x is acquired.

In conclusion, the approximate analytical analysis is based on the HBM. The Fourier expan-
sions and related partial derivatives of the high-order terms are calculated with the recursive
method. The BW hysteretic terms are dealt with the AFT. The nonlinear algebra equations
are solved by iterations based on the LM algorithm. The frequency responses can be obtained
through a swept frequency (changing η) process. The flow chart of the approximate analytical
method is presented in Fig. 2.
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h

h

h

Fig. 2 Flow chart of the approximate analytical method

3 Generalized equivalent damping ratio

A generalized equivalent damping ratio is defined to evaluate the damping effect. The steady
state response of the system is periodic. The dimensionless restoring force of the isolation system
is expressed as follows:

f =

nk
∑

i=1

kix
i +

nc
∑

i=1

ci(ηẋ)i +
1 − k1

ρ
z. (17)

The dimensionless energy dissipation per cycle equals the area of the hysteresis loop, i.e.,

Ed =

∫ a

−a

fdx −

∫ −a

a

fdx, (18)

where a is the amplitude of x. With the increase in σ, the area of the hysteresis loop increases,
while the stiffness-varying behavior is not affected. The BW function of Eq. (4) becomes a
single-valued function when σ = 0. Thus, an anhysteretic BW force zan can be defined by

żan = (1 − |z|nbw)ρẋ. (19)

Then, the anhysteretic restoring force is expressed as

fan =

nk
∑

i=1

kix
i +

1 − k1

ρ
zan. (20)

The anhysteretic restoring force is a single-valued (undamped) function, which characterizes
the stiffness-varying behavior induced from the high-order stiffness and the BW model. It
can be regarded as a generalized frequency-independent elastic restoring force. The maximum
generalized elastic energy can be calculated as follows:

Ee =

∫ a

0

fandx. (21)
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The generalized equivalent damping ratio is defined by

ζ =
Ed

4πηEe
. (22)

Compared with the equivalent damping ratio calculated with the initial stiffness or the aver-
age stiffness, the proposed generalized equivalent damping ratio is more accurate in evaluating
the elastic energy. Obviously, for the systems with monotonically varying stiffness, the calcu-
lated damping ratio is between the results calculated with the initial stiffness and the average
stiffness. Besides, the stiffness-softening effect is separated from the damping effect of the BW
hysteresis, and it is considered in the generalized elastic energy. The comparisons among the
linear viscous damping, the nonlinear viscous damping, and the BW hysteretic damping without
the stiffness change influence become available.

4 Simulation and discussion

4.1 Basic characteristics

The basic characteristics of the linear and nonlinear viscous damping are studied by calcu-
lating their generalized equivalent damping ratios in different systems. Consider the following
isolation system model:

η2ẍ + k1x + k3x
3 + c1ẋ + c3η

3ẋ3 = η2ae cos t, (23)

where k1 = 1, c1 = 0.4, and ae = 1. The cubic stiffness coefficient is k3 = 0, 0.05 and
–0.05, corresponding to linear stiffness, stiffness hardening, and stiffness softening systems,
respectively. The cubic damping coefficient is c3 = 0 and 0.01, corresponding to linear and
nonlinear viscous damping, respectively. Only odd-order stiffness and damping are considered to
avoid the deviation of dynamic equilibrium location (a0 = 0). The dimensionless displacement
response of the payload is denoted as xp = x + xe, and its amplitude is denoted as ap.

The amplitude-frequency responses are shown in Fig. 3(a). With the same damping coeffi-
cient, the stiffness softening system shows a better isolation performance than the linear system,
while the stiffness hardening system shows a worse isolation performance than the linear sys-
tem. The additional high-order damping enhances the isolation performance regardless of the
stiffness variation. The generalized equivalent damping ratios are shown in Fig. 3(b). With
linear viscous damping, the damping ratio is a constant for the linear system. For the stiffness
hardening system, the damping ratio decreases with the increase in the stiffness, and reaches the
minimum at the resonance. The lower damping ratio illustrates the worse isolation performance
of the stiffness hardening system. The trend is opposite for the stiffness softening system. The
additional high-order damping increases the damping ratio, especially at the resonant region.

The basic characteristics of the BW hysteretic damping are studied through the hysteresis
loop and the damping ratio. Assume that x is harmonic with the dimensionless frequency of
η = π/4. The normalized hysteretic force z is calculated through Eq. (4), where ρ = 1, σ = 0,
0.5, and 1, and nbw = 1 and 5. When the amplitude is a = 5, the normalized hysteresis loops
are shown in Fig. 4(a). When σ = 0, the single-valued curves correspond to the anhysteretic
BW forces expressed in Eq. (19). With the increase in σ, the area of the hysteresis loop in-
creases. With the increase in nbw, the loop becomes sharper and tends to bilinear hysteresis.
The generalized equivalent damping ratio is calculated when k1 = 0.2 and there is no viscous
damping. Obviously, ζ = 0 when σ = 0. The calculation results with σ > 0 are shown in
Fig. 4(b), which are related to the amplitude. The damping ratio first increases, and then de-
creases. The amplitude with the maximum damping ratio is the ‘best amplitude for the BW
hysteretic damping’, which is denoted as abw. When σ increases, the damping ratio increases.
When nbw increases, the damping ratio changes more dramatically.
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Fig. 3 Basic characteristics of linear and nonlinear viscous damping (color online)
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Fig. 4 Basic characteristics of the BW hysteretic damping (color online)

Consider the following system:

η2ẍ +

nk
∑

i=1

kix
i +

nc
∑

i=1

ci(ηẋ)i +
1 − k1

ρ
zan = η2ae cos t, (24)

where zan is expressed in Eq. (19). The stiffness-varying characteristics of the system are the
same as those of Eq. (3). Thus, the comparison between the viscous damping and the hysteretic
damping is available. The determined parameters include k1 = 0.5, k3 = 5×10−3, k5 = 5×10−4,
and ρ = 1. The excitation amplitudes are selected as ae = 0.4, 0.7, 1, 1.3, 1.6. Four groups of
damping are studied (see Table 1). Although the change of nbw affects the stiffness-varying
behavior, it is still studied because it is a key parameter for the shape of the hysteresis loop.

Table 1 Coefficients of four groups of damping

Group c1 c3 σ nbw

A 0.4 0 0 1

B 0.32 0.01 0 1

C 0.2 0 1 1

D 0.2 0 1 5
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The amplitude-frequency responses and generalized equivalent damping ratios of four groups
of damping are shown in Figs. 5 and 6. The system presents a stiffness softening-hardening be-
havior with a boundary amplitude ash. The response of the payload becomes larger when the
excitation amplitude increases. For Group A, the damping is linear. The boundary amplitudes
for the stiffness-softening and stiffness-hardening regions are ash = 3.03. In the stiffness soften-
ing region (a < ash), the damping ratio increases when the amplitude increases. While in the
stiffness hardening region (a > ash), the damping ratio decreases when the amplitude increases,
which leads to the ‘valley phenomenon’ at the resonant region when ae = 1.6 (see Fig. 5(b)). For
Group B, part of the linear damping is replaced by cubic damping. The damping ratio decreases
when the amplitude is low. When ae = 0.4, the damping ratio in Fig. 5(d) is smaller than that
in Fig. 5(b) at all frequencies. The damping ratio increases when the amplitude is high, and
the ‘valley phenomenon’ does not occur. For Group C, a combination of linear damping and
hysteretic damping is studied. The amplitude corresponding to the maximum damping ratio is
abw = 1.76. The damping ratio increases dramatically with the amplitude when a < abw, and
decreases when a > abw. The ‘valley phenomenon’ can be spotted when ae = 1.3 and 1.6 (see
Fig. 6(b)). However, the cause is totally different from that under the linear damping condi-
tion. For the hysteretic damping, the decrease in the damping ratio is related to the responding
amplitude rather than the stiffness-varying characteristics. An obvious proof can be found in
Fig. 6(b). The damping ratio decreases when abw < a < ash, which is in the stiffness softening
region. For Group D, with the increase in nbw, the damping ratio increases and decreases more
dramatically. The amplitude corresponding to the maximum damping ratio is abw = 2.16. The
amplitude band in which the hysteretic damping is effective becomes narrower.

-

-

h

z

h

h

z

h

Fig. 5 Amplitude-frequency responses and damping ratios of Groups A and B (color online)
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Fig. 6 Amplitude-frequency responses and damping ratios of Groups C and D (color online)

4.2 Comparison of the damping effects

The dissipated energy (the area of the hysteresis loop) of each kind of damping can be
adjusted by their control parameters. It is hard to compare the damping effect of different
damping forms without a uniform standard. In this research, the stiffness-varying characteristics
and the dissipated energy are the same for the systems with different damping forms. Therefore,
the damping effect difference only lies in the intrinsic property of damping (the shape of the
hysteresis loop). Some cases are studied according to this rule.

Case 1 The determined parameters are

{

k1 = 0.5, k3 = 5 × 10−3, k5 = 5 × 10−4,

ρ = 1, nbw = 1, ae = 1.6, η = 0.9.

The damping coefficients and calculated damping effects are shown in Table 2. Under this
condition, Group B with cubic damping presents the largest damping ratio and the smallest
payload amplitude. The linear damping and the hysteretic damping are unable to provide
such effects because of the ‘valley phenomena’. For the stiffness softening system, the ‘valley
phenomenon’ does not occur for linear damping. However, high-order damping is still more
effective for larger amplitude. The damping ratio only reflects the overall damping effect. It is
noted that the amplitude of the 3rd harmonics (denoted as (a2

3 + b2
3)

1/2) in Group A is much
smaller than those in Groups B and C. The hysteresis loops are shown in Fig. 7. The areas of
the loops are the same. The widest loop of Group B represents the best damping performance.
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Table 2 Damping coefficients and calculated damping effects of Case 1

Group c1 c3 σ Ed ζ ap (a2
1 + b21)1/2 (a2

3 + b23)
1/2 (a2

5 + b25)
1/2

A 0.4 0 0 14.35 0.26 3.70 3.56 2.86×10−3 3.65×10−3

B 0.246 0.03 0 14.35 0.32 3.35 3.24 2.85×10−2 2.20×10−3

C 0.252 0 0.5 14.34 0.24 3.59 3.64 4.13×10−2 2.00×10−3

Case 2 The determined parameters are

{

k1 = 0.5, k3 = 0.01, k5 = 5 × 10−4,

ρ = 1, nbw = 1, ae = 1, η = 0.78.

The damping coefficients and calculated damping effects are shown in Table 3, and the hysteresis
loops are shown in Fig. 8. Under this condition, the amplitude of the relative displacement is
close to abw. Thus, Group C with BW hysteretic damping presents the best overall damping
effect. However, the amplitude of the 3rd harmonics is about twice of those of Groups A and B.

Table 3 Damping coefficients and calculated damping effects of Case 2

Group c1 c3 σ Ed ζ ap (a2
1 + b21)1/2 (a2

3 + b23)1/2 (a2
5 + b25)

1/2

A 0.4 0 0 2.75 0.25 2.34 1.67 8.86×10−3 1.11×10−3

B 0.399 0.01 0 2.75 0.26 2.30 1.63 8.77×10−3 1.05×10−3

C 0.252 0 2 2.75 0.27 2.17 1.57 1.61×10−2 1.66×10−3

Fig. 7 Hysteresis loops of Case 1 (color on-
line)

Fig. 8 Hysteresis loops of Case 2 (color on-
line)

Case 3 The determined parameters are

{

k1 = 0.5, k3 = 5 × 10−3, k5 = 5 × 10−4,

ρ = 1, nbw = 1, ae = 0.4, η = 0.96.

The damping coefficients and the calculated damping effects are shown in Table 4, and the
hysteresis loops are shown in Fig. 9. Under this small-amplitude condition, the high-order
damping has few effects. The hysteresis loop shapes of Groups A and B are almost the same.
Group C with the hysteretic damping presents a different hysteresis loop shape. However, the
damping ratio is approximately the same as that of Group A, and ap is larger. For simplicity,
linear damping is more preferred for small amplitude conditions.
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Table 4 Damping coefficients and calculated damping effects of Case 3

Group c1 c3 σ Ed ζ ap (a2
1 + b21)1/2 (a2

3 + b23)1/2 (a2
5 + b25)

1/2

A 0.4 0 0 1.07 0.23 0.952 0.942 3.06×10−3 2.43×10−4

B 0.383 0.03 0 1.07 0.23 0.949 0.938 3.13×10−3 2.38×10−4

C 0.186 0 2 1.07 0.23 0.966 0.933 5.35×10−3 6.22×10−4

Fig. 9 Hysteresis loops of Case 3 (color online)

It can be concluded from the harmonic excitation simulations that the relationship of lin-
ear damping, high-order damping, and hysteretic damping is complicated. It depends on the
stiffness-varying characteristics, the excitation amplitude, and the frequency. A qualitative
conclusion can be made that high-order damping, hysteretic damping, and linear damping are
more effective for large, medium, and small response amplitudes, respectively.

In order to study the damping effects at high frequencies, a swept-frequency simulation is
performed. The determined parameters are

{

k1 = 0.5, k3 = 5 × 10−3, k5 = 5 × 10−4,

ρ = 1, nbw = 1, ae = 1.6.

Three groups of damping are studied with the coefficients as follows:

Group A: c1 = 0.4, c3 = σ = 0;

Group B: c1 = 0.266, c3 = 0.03, σ = 0;

Group C: c1 = 0.207, c3 = 0, σ = 2.

The amplitude-frequency responses of the payload amplitude (ap) and the coefficients of the
1st-order harmonics (a1 and b1) are shown in Fig. 10. It can be seen from Fig. 10(a) that
the maximum amplitudes of Groups A, B, and C are 3.87. Thus, the damping effect can
be compared with a uniform standard. At high frequencies where the vibration is effectively
isolated, Group C with the BW hysteretic damping presents the best isolation performance,
while Group B with high-order damping presents the worst. It is further demonstrated in
Fig. 10(b) that the main difference lies in the 1st-order sine coefficient (b1). The high-frequency
isolation performance mainly depends on the phase rather than the equivalent damping ratio.
Besides, with smaller excitation amplitude, the BW hysteretic damping still presents the best
high-frequency isolation performance.

For the same system, in which ae = 1, the effects of different damping coefficients on the
broadband isolation performance are studied, and the results are shown in Fig. 11.
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Fig. 10 Amplitude-frequency responses of the payload amplitude and coefficients of the 1st-order
harmonics (color online)
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Fig. 11 Amplitude-frequency responses with different linear damping and hysteretic damping coeffi-
cients (color online)

In Fig. 11(a), only linear damping is considered. when the linear damping coefficient in-
creases, the resonance is more effectively suppressed while the high-frequency isolation becomes
worse. In Fig. 11(b), the linear damping coefficient of c1 = 0.12 is fixed. When the hysteretic
damping coefficient increases, the resonance is more effectively suppressed without affecting the
high-frequency isolation performance. From this point of view, the BW hysteretic damping is
also more preferred for broadband isolation.

5 Conclusions

This research makes a comprehensive study on linear damping, nonlinear viscous damping,
and BW hysteretic damping. A generalized nonlinear vibration isolation model is established
and analytically solved with an HBM-AFT-LM method. A generalized equivalent damping ratio
is defined with the stiffness-varying characteristics counted in the elastic energy. The separation
of the stiffness softening effect and the damping effect of the BW hysteresis is the basis for the
comparison of different damping forms. Conclusions are drawn for the characteristics and
suitable ranges of three kinds of damping.

Linear damping is the most basic damping form. The damping ratio increases with stiffness
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softening while decreases with stiffness hardening. For the stiffness softening-hardening system
with the boundary amplitude of ash, a ‘valley phenomenon’ occurs when the amplitude exceeds
ash. Linear damping applies to small-amplitude conditions.

High-order damping is a typical kind of nonlinear viscous damping. The damping ratio in-
creases with the amplitude regardless of the stiffness-varying characteristics. High-order damp-
ing is the most effective under large-amplitude conditions. However, it may deteriorate a
high-frequency isolation performance.

BW hysteretic damping is a typical non-viscous damping. With the increase in the ampli-
tude, the damping ratio first increases dramatically, and then decreases. With the increase in
nbw, the damping ratio tends to be like bilinear hysteresis, and its increase and decrease are
more dramatic. The damping ratio reaches the maximum at a = abw, and a ‘valley phenomenon’
occurs when the amplitude exceeds this value. BW hysteretic damping is most effective when
the amplitude is around abw. A unique advantage for BW hysteretic damping is that it has
little influence on the high-frequency isolation performance.

Different damping forms lead to different shapes of hysteresis loops. Even with the same
loop area, i.e., the same dissipated energy, the damping effects are different. The best choice
of damping forms depends on the stiffness-varying characteristics of the isolation system, the
required frequency band, and the excitation amplitude.
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