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Abstract The hybrid vibration isolation, which takes advantages of both the passive
and active approaches, has been an important solution for space missions. The objective
of this paper is to design a vibration isolation platform for payloads on spacecrafts with the
robust, wide bandwidth, and multi-degree-of-freedom (MDOF). The proposed solution is
based on a parallel mechanism with six voice-coil motors (VCMs) as the actuators. The
linear active disturbance resistance control (LADRC) algorithm is used for the active
control. Numerical simulation results show that the vibration isolation platform performs
effectively over a wide bandwidth, and the resonance introduced by the passive isolation
is eliminated. The system robustness to the uncertainties of the structure is also verified
by simulation.
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1 Introduction

During the orbital missions of spacecrafts, the vibration caused by several sources, such
as reaction wheels (RWs), control moment gyroscopes (CMGs), solar array drives, and cryo-
coolers, is always a serious negative impact on the precision payloads. In order to reduce the
vibration transmission from the vibration sources to the payloads, one of the most intuitive
methods is to introduce a vibration isolation device in the transmission path to isolate the
static instrument from the vibrating structure.

∗ Citation: CHI, W. C., MA, S. J., and SUN, J. Q. A hybrid multi-degree-of-freedom vibration isolation
platform for spacecrafts by the linear active disturbance rejection control. Applied Mathematics and
Mechanics (English Edition), 41(5), 805–818 (2020) https://doi.org/10.1007/s10483-020-2606-5

† Corresponding author, E-mail: chiweichao@gmail.com
Project supported by the National Natural Science Foundation of China (No. 11572215), the Fun-
damental Research Funds for the Central Universities (No. N160503002), and the China Scholarship
Council

©Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020



806 Weichao CHI, S. J. MA, and J. Q. SUN

The design of the vibration isolation structure depends on the type and the frequency of
the disturbance. As the frequency range of vibration sources covers from low frequency to
high frequency, a wide bandwidth of the vibration isolator is demanded. The commonly used
passive vibration isolation methods that consist of mass-spring-damper systems work well on
high frequency attenuation, but the performance on low frequency is usually limited by the
stiffness of the structure, and the additional resonance at some specific frequencies is also a
serious defect. The hybrid isolation that combines passive and active methods was introduced
to overcome the defects in passive damping. The active part of the hybrid isolation system
can provide real-time force according to the sensor’s feedback under certain control law. In
the past decade, the hybrid vibration isolation has become a practical approach and has been
widely used for the improving performance of microprocessors, actuators, and sensors. Cobb
et al.[1] presented a hybrid isolation strut using least mean squares (LMS) control to suppress
the vibration in certain broadband. Zhou and Li[2] designed an intelligent vibration isolation
platform with piezoelectric actuators bonded to the beams. Zhang et al.[3] presented a novel
active-passive hybrid vibration control for truss enveloping CMGs on satellites.

The isolation structure is the basis of a hybrid vibration isolation system. It supports or con-
nects the payload to the main body, and meanwhile, plays the role of passive vibration isolation.
Many forms of structures have been studied in order to isolate vibration in multiple-degree-of-
freedom (MDOF), in which the Stewart platform is one of the best performing structures for its
6 degrees of freedom (6-DOF) attitude maneuvering ability[4]. The platform was invented for
flight simulating, soon applied to mechanical machining, precision positioning, vibration isola-
tion, and many other fields[5]. A Stewart platform consists of six extensible legs with universal
joints or spherical joints at each end, connecting the payload-platform to the base-platform,
as shown in Fig. 1. Fichter[6] and Bonev and Ryu[7] solved the kinematics problem of a gen-
eral Stewart platform. Lebert et al.[8] presented the dynamic model of Stewart platform using
the Lagrange method. Xu and Wang[9] developed a closed-form dynamic model of a Stewart
platform with proportional-derivative (PD) control. Wu et al.[10] proposed a new decoupling
condition of stiffness matrix based on the elegant algebraic approach to express the dynamic
isotropy index of natural frequencies.

Fig. 1 A general Stewart platform

On the other hand, the controller design is the key issue for the active part of a hybrid
vibration isolation system. The control algorithm is used to determine the actuator input by
designing the transfer relationship between the system input and feedback signals. Gáspár et
al.[11] and Zhang et al.[12] analyzed the various uncertainties in vibration isolation structures
and the corresponding mathematical descriptions, and designed a robust control system for
vibration isolation based on the analysis of uncertainties. At the same time, a great number of
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recent studies aim at the controlling for systems with uncertainties and inaccurate mathematical
model, by using nonlinear control and intelligent control algorithms. The active disturbance
rejection control (ADRC)[13], fuzzy active control[14], artificial neural network control[15], and
genetic algorithm[16] were studied to resolve the difficulties of modeling complex systems and
nonlinearities. Gao[17] gave a method to determine the observer and controller parameters of
linear active disturbance rejection control (LADRC) by the concept of bandwidth. That made
the controller parameters easy to tune, and the physical meaning of the parameters is clearer
in practical vibration engineering.

In this paper, a practical approach for designing a hybrid MDOF vibration isolation platform
is proposed. The contributions of this paper are listed as follows:

(i) We extend the LADRC method to the hybrid vibration isolation problem of space parallel
structures for the first time, leading to a controller that can reject the disturbances due to
external excitations and dynamic couplings of the system.

(ii) We also report extensive results of the effect of control parameters on vibration isolation
bandwidth, present the proof of stability, and study the robustness of the control with respect
to the modeling error.

The paper is organized as follows. In the second section, the dynamical model of the
Stewart platform is established with the Newton-Euler method in the task space. In the third
section, an LADRC control strategy is presented for the control of multi-input multi-output
(MIMO) system with parameter uncertainty and external disturbance. In the fourth section,
the effectiveness of the approach is verified by numerical simulation.

2 Design and modeling of the vibration isolation structure

2.1 System configuration and reference frames definitions
The Stewart platform presented in this paper is a general form with six extensible legs

connecting the base-platform and the payload-platform. Each leg is equipped with a voice coil
motor (VCM) as the actuator. The stator and the mover of the VCM are connected by a piece
of diaphragm spring, and the movement is also constrained by a linear bearing to ensure that
the voice coil moves along the axle. The stator and the mover are respectively treated as the
lower and the upper legs together with the other components, such as struts, then the lower
and the upper legs are connected to the base-platform and the payload-platform by spherical
joints at each end, respectively.

Define the coordinate frames B and P, which are attached to the base and the payload plat-
forms, respectively, and the origins are the mass centers of the base- and payload-platforms,
respectively. The coordinate frames D and U are attached to the lower and upper legs, respec-
tively. The relationship between the inertial frame O and the local frames B, P, D, and U is
shown in Fig. 2.

Fig. 2 Relationship between inertial and local frames
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2.2 Dynamic analysis of the payload
The position vectors of upper and lower ends of the ith leg in the inertial frame O can be

derived from the position vectors of frames P and B as{
tpi = tp + pi,

tbi = tb + bi.
(1)

From the subtraction of tpi and tbi, we can get the vector of the ith leg as

li = tpi − tbi = (tp + pi) − (tb + bi). (2)

The velocities of upper and lower ends of the leg can be expressed as{
ṫpi = ṫp + ωp × pi,

ṫbi = ṫb + ωb × bi,
(3)

where ωp and ωb are the angular velocity vectors of the payload and the base, respectively.
Then, the velocity of the ith leg is

l̇i = (ṫpi − ṫbi) · τi = (ṫp + (ωp × pi) − ṫb + ωb × bi) · τi

= ( τT
i (pi × τi)T )

(
ṫp
ωp

)
− ( τT

i (bi × τi)T )
(

ṫb
ωb

)
, (4)

where τi = li/li is the unit vector along the leg. To simplify the matrix form of the length
vector, let

Hp =
( τ1 · · · τ6

p1 × τ1 · · · p6 × τ6

)
,

Hb =
(

τ1 · · · τ6

b1 × τ1 · · · b6 × τ6

)
,

xp =
( tp

θp

)
, xb =

( tb
θb

)
.

Equation (4) can be written as

l̇ = HT
p ẋp − HT

b ẋb. (5)

The force between the upper and lower legs is

F = −K(l − l0) − Cl̇ + F1, (6)

where F = (F1, · · · , F6)T, l = (l1, · · · , l6)T, F1 = (F11, · · · , F16)T is the force vector of the
VCMs, and K = diag(k1, · · · , k6) and C = diag(c1, · · · , c6) are the stiffness and damping
matrices of the legs, respectively.

From Eqs. (5) and (6), the force vector F can be expressed as

F = −K
(
HT

p ẋp − HT
b ẋb

) − CHT
p ẋp + CHT

b ẋb + F1. (7)

The free body diagram of the payload platform is shown in Fig. 3. Mp is the total mass, Fw

and Mw are the external force and torque, respectively, and r and r0 are the position vectors
of the mass center of the payload platform in inertial frame and local frame, respectively. The
position vector of the mass center is

r = Rpr0. (8)
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Fig. 3 The force analysis of the top platform

According to Newton’s dynamical law, the dynamic equation of the payload platform is

Mpg + Fw +
6∑

i=1

Fui = Mpap, (9)

where g is the gravitational acceleration, and ap is the mass center acceleration defined as

ap = ẗp + αp × r + ωp × (ωp × r), (10)

where αp and ωp are the angular acceleration and the angular velocity, respectively. The
balance equation of the control force and inertia force on the payload platform according to the
Euler equation is

−
6∑

i=1

pi × Fui +
6∑

i=1

fi + Mw + Mpr × g = I∗
pαp + ωp × I∗

pωp, (11)

where fi is the force of the legs, Mw is the sum of external moments, and I∗
p is the moment of

translating Ip to centroid which can be expressed as

I∗
p = Ip + Mp(rTrE3 − rrT), (12)

in which E3 is a unit matrix. Equations (6), (9), and (11) can be combined into the dynamical
equation of system in the task-space as

Jpẍp = Jbxb + HpF − G + D, (13)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jp =
( MpE3 −Mpr̃

0 I∗
p

)
+

6∑
i=1

( Qpi −Qpip̃i

−p̃iQpi p̃iQpip̃

)
,

Jb =
6∑

i=1

( Qpi −Qpip̃i

−p̃iQpi p̃iQpip̃

)
,

G =
( −η

ωp × I∗
pωp −

6∑
i=1

fi +
6∑

i=1

p̃iη6i

)
,

D =
(

Fext

Mext

)
=

(
Fw + Mpg

−Mw − Mpr × g

)
,

Qpi = muiτiτ
T
i +

(E3 − τiτ
T
i )

λili
(muiκi(li − lui) + mdil

2
di) −

1
λili

τ̃i(Idi + Iui)τ̃i,

Qbi =
(E3 − τiτ

T
i )

λili
(mdildi + muiκilui) − 1

λili
τ̃i(Idi + Iui)τ̃i,

λi = 2lui + 2ldi − li,

in which mui and mdi, and Iui and Idi are the masses and inertias of the upper and lower legs,
respectively. Fext and Mext are the external force and moment matrices, respectively, and the
calculating sign “˜” denotes the transformation of the column vector x = (x1, x2, x3)T into

x̃ =

⎛⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞⎠ . (14)

We can obtain the dynamical equation in the task-space by substituting Eq. (7) into Eq. (13)
as

Jpẍp + HpCHT
p ẋp + HpKHT

p δxp

= Jbẍb + HpKHT
b δxb + HpCHT

b ẋb + HpF1 − G + D. (15)

As shown in Eq. (15), the payload platform is a second-order plant which is mainly deter-
mined by the force from the legs, while it is disturbed by the motion of the base-platform and
the external disturbing force.

3 LADRC design for MIMO system

3.1 The LADRC algorithm

LADRC is the linear form of the ADRC. LADRC augments the states with generalized
disturbance, and uses the generalized disturbance estimation and the linear feedback to reject
the disturbance. It employs the linear extended state observer (LESO) to estimate the dynamic
characteristics and the generalized disturbance of the system, and then uses the linear combi-
nation of the state errors and the generalized disturbance to determine the final control signal.
The diagram of LADRC is shown in Fig. 4.
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Fig. 4 The diagram of LADRC

To design a control system for the second-order system (15), we consider a general second-
order single-input single-output (SISO) system given by

ÿ + a1ẏ + a2y = b1ẅ + b2ẇ + b3w + bu, (16)

where y, u, and w are the output, input, and external disturbances of the plant, respectively.
The system parameters a1, a2, b1, b2, b3, and b are all unknown.

Equation (16) can be written as

ÿ = −a1ẏ − a2y + b1ẅ + b2ẇ + b3w + (b − b0)u + b0u = f + b0u, (17)

where f = −a1ẏ − a2y + b1ẅ + b2ẇ + b3w + (b− b0)u denoted as the generalized disturbance is
the key point of the LADRC solution. The internal disturbance f1 = −a1ẏ − a2y + (b − b0)u
and the external disturbance f2 = b1ẅ+b2ẇ+b3w are together presented in f , which is treated
as a new augmented state x3 = f . We then rewrite Eq. (17) as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3 + b0u,

ẋ3 = h,

y = x1,

(18)

where x1 = y, x2 = ẋ1, h = ḟ , x3 is the extended state to be estimated by the observer, and b0

is an approximate estimate of b in Eq. (16). The state space description of the system is{
ẋ = Ax + Bu + Eh,

y = Cx,
(19)

where

A =

⎛⎝ 0 1 0
0 0 1
0 0 0

⎞⎠ , B =

⎛⎝ 0
b0

0

⎞⎠ , C =
(
1, 0, 0

)
, E =

⎛⎝ 0
0
1

⎞⎠ . (20)

To estimate the states and the generalized disturbance, we use an observer as⎧⎪⎨⎪⎩
ż1 = z2 + β1e,

ż2 = z3 + β2e,

ż3 = β3e,

(21)

where z1, z2, and z3 are estimated values of y, ẏ, and f , respectively. The observer gains
β1, β2, and β3 must be chosen to properly place the eigenvalues of (A − LC) to make the
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estimating speed fast and not sensitive to the high frequency noise from the sensors. Gao[17]

proposed a method of assigning all the observer eigenvalues at −ωo to get the optimal estimating
performance by simply tuning a single parameter. Equivalently, the gain vector is

L = (β1, β2, β3) = (3ωo, 3ω2
o, ω

3
o), (22)

where ωo is denoted as the bandwidth of the observer. The observer (21) is known as a linear
extended state observer (LESO).

With the LESO, a controller that compensates the generalized disturbance can be designed
by the feedback linearization method as

u =
−z3 + u0

b0
, (23)

where u0 is the error feedback variable which is a new input to be determined. Substituting
the controller (23) into the system (18), we can get

ÿ = (f − z3) + u0 = e3 + u0, (24)

where e3 is the estimation error in z3. For an ideal observer, we can ignore the estimation error,
and then we obtain a simple linear double-integrator relationship between the output and the
new input u0 as

ÿ ≈ u0. (25)

Hence, the generalized disturbance is estimated and offset, which is to say that the distur-
bance and the uncertainties involved in generalized disturbance do not need to be mathemati-
cally detailed. To design a tracking controller for this double-integrator relation, we select the
new input u0 as

u0 = kp(r − z1) − kdz2, (26)

where r is the reference input. This form of PD controller makes the closed-loop transfer
function pure second-order without a zero, and to place all closed-loop poles at −ωo which is
denoted as the control bandwidth. Choose the PD parameters as

kd = 2ξωc, kp = ω2
c , (27)

where ξ is the damping ratio for reducing oscillation. Then the objective can make the system
output y behave as the reference signal by the manipulative variable u as

u = −kp

b0
z1 − kd

b0
z2 − 1

b0
z3 +

kp

b0
r. (28)

3.2 Discussion of the stability
As discussed above, LADRC is a combination of the linear estimator and the linear feedback

controller. Thus, the stability can be proved in accordance with the separation principle under
some assumptions.
3.2.1 Convergence of the LESO

Let ei = xi − zi, i = 1, 2, 3. From Eqs. (18) and (21), the observer error can be expressed as⎧⎪⎨⎪⎩
ė1 = e2 − β1e1,

ė2 = e3 − β2e1,

ė3 = −β3e1 + h.

(29)
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Rewrite Eq. (29) as

ė = Aee + Eh, (30)

where

Ae =

⎛⎝ −β1 1 0
−β2 0 1
−β3 0 0

⎞⎠ , E =

⎛⎝ 0
0
1

⎞⎠ . (31)

For the chosen observer gain L = (β1, β2, β3) = (3ωo, 3ω2
o, ω

3
o), the matrix A is stable. For

any h which is bounded, Eq. (30) is bounded, and then the LESO is bounded-input bounded-
output (BIBO) stable.
3.2.2 Convergence of the LADRC

Theorem 1 If h = ḟ is bounded, the observer (21) and the control strategy for the double
integrator (23) are stable, and then the combined observer and feedback are stable.

The closed-loop system presented in Eqs. (19)–(28) can be expressed in the state-space form
as (

Ẋ

Ż

)
=

( A − 1
b0

BK

LC A − LC + 1
b0

K

)(
X
Z

)
+ H

(
r
h

)
, (32)

where the matrices A, B, and C are presented in Eq. (20), K = (kp, kd, 1), and the matrix H
is

H =
( 0 kp 0 0 0 0

0 0 1 0 kp 0

)T

. (33)

The eigenvalue of system (32) is

eig
(

A − 1
b0

BK

LC A − LC + 1
b0

BK

)
= eig

(
A − 1

b0
BK − 1

b0
BK

0 A − LC

)
. (34)

It is easy to verify that all the eigenvalues of A − 1
b0

BK and A − LC have negative real
parts. For any r and h which are bounded, Eq. (34) is bounded. Therefore, the LADRC is
BIBO stable.
3.3 MIMO decoupling control

Consider the MIMO system (15) in the following form:{
ẍ = f(x, ẋ, w, ẇ, t) + Bmu,

y = x,
(35)

where x = (x1, x2, · · · , x6)T, f = (f1, f2, · · · , f6)T, and u = (u1, u2, · · · , u6)T. If the control
matrix

Bm =

⎛⎜⎝ b11 · · · b16

...
...

b61 · · · b66

⎞⎟⎠ = J−1
p Hp (36)

is reversible, introducing the virtual control matrix U = Bmu, the input/output relationship
of the ith channel is

{
ẍi = fi(x, ẋ, · · · , x6, ẋ6, t) + Ui,

yi = xi.
(37)
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Then, the virtual control variable Ui of each channel and the system output yi are in an
SISO relationship, that is, Ui and yi are completely decoupled. The external disturbance and
the coupling between different actuators are canceled together as the generalized disturbance
by LADRC. Decoupling control can be realized by embedding six LADRCs in parallel between
control the vector U and the output y. The actual control vector u can be determined by the
virtual control vector U as shown in Fig. 5,

u = B−1
m U . (38)

Fig. 5 The diagram of LADRC for an MIMO system

Here, the perturbation of matrix Bm can be rejected in LADRC of each channel, and thus the
accurate model of Bm is not necessary to be known. This will be verified in the simulation.

4 Numerical simulation studies

In this section, the model of the 6-DOF vibration isolation system has been developed by
using the MATLAB and SIMULINK software to demonstrate the efficiency of the LADRC
approach. The parameters for the platform are listed in Table 1. The results of the vibration
isolation simulation are presented later.

Table 1 Main parameters of the platform

Parameter Value

Mass of upper platform 8.14 kg
Moment of inertia of top platform diag(4.1, 4.4, 8) × 10−2 kg·m2

Moment of inertia of upper leg diag(1.895, 103, 103) × 10−5 kg· m2

Moment of inertia of lower leg diag(9.63, 154, 154) × 10−4 kg·m2

Mass of each upper leg 0.079 3 kg
Mass of each lower leg 1.16 kg

Stiffness of diaphragm spring 4.8 × 104 N/m

4.1 Frequency response of the system
To investigate the bandwidth of the vibration isolation system, we linearize the open-loop

and closed-loop models with the disturbance vector w and output vector y as the system input
and output. The open-loop model represents the passive vibration isolation structure, while
in contrast, the closed-loop model represents the hybrid vibration isolation system with an
active control force. To simplify the diagram, the frequency response of displacement from the
base platform to the payload platform along the x-axis is presented. The other input-output
combinations respond similarly, with slight differences in resonance frequency and response
magnitude.

From the open-loop frequency response shown by the blue curve in Fig. 6, the response of
the passive part of the vibration isolation platform has two resonance peaks at 60.6 rad/s and
116.0 rad/s. The open-loop transmission ratio reaches to 24.6 dB. That is to say the passive
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structure is a lowpass system which can attenuate the vibration in high frequency band, while
the vibration of low frequency passes through the isolation platform completely. The resonance
frequencies vary between the different inputs and outputs.

-
-
-
-

Fig. 6 The frequency response from the base to the payload (color online)

The tuning of control parameters is based on the frequency response of the structure. The
two parameters, observer bandwidth ωo and controller bandwidth ωc, are gradually increased
from the second natural frequency. The closed-loop frequency response is shown in Fig. 6, where
the red curve represents the vibration transmission ratio with the parameters ωo = 100 and
ωc = 100, while the orange and purple curves represent that with the parameters ωo = 500 and
ωc = 100 and ωo = 500 and ωc = 500, respectively. The control signal u for each actuator is
limited to [−50, 50] in order to make the system realistic. It is shown that under LADRC, the
vibration amplification at frequency lower than 300 rad/s is significantly attenuated, while the
vibration amplification at high frequency performs as well as that under passive isolation. At
the same time, the resonant peaks of open-loop response disappear in response.

The relation between the parameters and the vibration transmissibility is also clear from
Fig. 7. The parameters ωo and ωc, which decide the position of closed-loop poles, affect the
maneuvering speed and reflect in the bandwidth of the active vibration isolation. The observer
bandwidth and the controller bandwidth should cover the bandwidth where the vibration is
amplified by the structure.
4.2 Time-domain response

Vibration simulations for the system with the passive vibration isolation structure and active
control are respectively tested at fixed frequencies. It is assumed that the displacement and
attitude measurements in the inertial frame are obtained by micro-electro-mechanical system
(MEMS) sensors and certain multi-sensors fusion algorithm. The initial value of all the states
is set to be 0, and the sample rate is set to be 2 000Hz.

The first case presents the fixed-frequency sinusoidal vibration tests. The displacement
amplitude of excitation is given as 10−4 m at the resonance frequency of 60.6 rad/s. It can
be seen from Fig. 7 that under the parameters ωo = 500 and ωc = 500, the system response
is attenuated to 1/1 000 of the open-loop response by the active control. The other outputs
respond similarly with different attenuating range.

The second case presents the shock test. At time t = 0.1 s, we impose a pulse signal with
the amplitude of 10−3 m and the width of 0.001 s as the shock disturbance. From Fig. 8, the
active control can lead to a fast convergence, the time to reach steady state is reduced from 3 s
to 0.05 s, and the system response is attenuated to 1/10 of the open-loop response. The other
outputs respond in the same trend with different attenuating ranges.

The simulation results of the time response show that the higher controller and observer
bandwidth make the output respond faster, which results in better attenuation of the distur-
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-
-

Fig. 7 The response of sinusoidal disturbance
(color online)

-
-

Fig. 8 The response of shock disturbance
(color online)

bance and shorter adjustment time when applied in the vibration isolation system. On the
other hand, the higher observer bandwidth will make the system more sensitive to the high
frequency noise in practical applications. As a conclusion, the optimal control parameters are
not obtained by the biggest bandwidth, but should be tuned in a compromise between the
vibration attenuation and the noise sensitivity according to the actual working conditions in
practical engineering.
4.3 Robustness to the modeling error

Considering the parameters in the control loop, the matrix B−1
m in Eq. (38) is the only

variable that contains the information of the controlled plant. To investigate the robustness
of the system, we change the structure parameters contained in Bm drastically while keeping
the control parameters constant. The frequency response is analyzed with setting the mass
and moment of inertia of the payload platform to 0.2 and 5 times of their original values,
respectively.

As shown in Fig. 9, the modeling errors in matrix Bm slightly affect the frequency response
of the upper platform of the vibration isolation system. The response amplitude of the output
becomes only slightly larger as the mass and moment of inertia are estimated 5 times of their
actual values. The proposed vibration isolation system performs very robustly to the modeling
errors, which can be considered as detailed mathematical model independent.

-
-

Fig. 9 The frequency response from the base to the payload with modeling error (color online)
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5 Conclusions

A practical approach to the 6-DOF vibration isolation system for payloads on spacecrafts by
using the LADRC is proposed in this paper. By analyzing the dynamic model of the employed
Stewart platform, the order of the control plant is determined. A control solution is then
presented based on the LADRC strategy which is independent of the mathematical model,
and the system parameters are tuned according to the operating bandwidth. The simulation
results show that with the properly tuned LADRC parameters, the vibration isolation system
can attenuate the transmission of vibration for about 30 dB in low frequency and eliminate the
resonance at the natural frequency effectively, while it performs as well as a passive isolation in
high frequency. Furthermore, the robustness of the control system with respect to the modeling
error is also verified by drastically changing the parameters of the model.
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