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Abstract The Chebyshev spectral variational integrator (CSVI) is presented in this pa-
per. Spectral methods have aroused great interest in approximating numerically a smooth
problem for their attractive geometric convergence rates. The geometric numerical meth-
ods are praised for their excellent long-time geometric structure-preserving properties.
According to the generalized Galerkin framework, we combine two methods together to
construct a variational integrator, which captures the merits of both methods. Since
the interpolating points of the variational integrator are chosen as the Chebyshev points,
the integration of Lagrangian can be approximated by the Clenshaw-Curtis quadrature
rule, and the barycentric Lagrange interpolation is presented to substitute for the classic
Lagrange interpolation in the approximation of configuration variables and the corre-
sponding derivatives. The numerical float errors of the first-order spectral differentiation
matrix can be alleviated by using a trigonometric identity especially when the number
of Chebyshev points is large. Furthermore, the spectral variational integrator (SVI) con-
structed by the Gauss-Legendre quadrature rule and the multi-interval spectral method
are carried out to compare with the CSVI, and the interesting kink phenomena for the
Clenshaw-Curtis quadrature rule are discovered. The numerical results reveal that the
CSVI has an advantage on the computing time over the whole progress and a higher ac-
curacy than the SVI before the kink position. The effectiveness of the proposed method is
demonstrated and verified perfectly through the numerical simulations for several classi-
cal mechanics examples and the orbital propagation for the planet systems and the Solar
system.
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1 Introduction

During the past decade, the development of geometric numerical methods has been of par-
ticular interest in numerical integration methods. The geometric numerical methods are praised
for their excellent long-time geometric structure-preserving properties, such as the energy and
momentum conservation behaviors, and the symplectic-preserving property[1–2]. The variational
integrator is a kind of popular geometric numerical methods, which can rely on a discrete vari-
ational characterization of the underlying systems; that is to say, they are based on a discrete
version of Hamilton’s principle for the conservative mechanical systems. Generally, there exist
two approaches to constructing variational integrators[3–5]. One is the shooting-based construc-
tion scheme, which depends on the choice of a numerical quadrature formula together with
an underlying one-step method. The other one is the Galerkin construction scheme, which
relies on the approximation of the action, and depends on the choice of a numerical quadrature
formula and a finite-dimensional function space. The geometric numerical methods have been
applied successfully into a variety of fields, for example, the orbital mechanics[6–7], the optimal
control problem[8–10], the asteroid exploration[11], the high-order variational integrators on Lie
groups[12], and the Birkhoffian systems[13].

Like geometric numerical methods, spectral methods have already captured countless fans
in the field of numerical computation in the past decades. One of the most important reasons
is that they often possess the capability for achieving geometric rates of convergence, which
is faster than any polynomial order. Spectral methods are a large class of methods, which
are implemented by choosing a high-dimensional, global function space. In other words, the
convergence of the spectral methods is achieved through the dimension n of the function space,
not the time-step h. The customary technique of shortening h can often be found in the classic
Euler method and Runge-Kutta method. In the classic literature about the spectral methods,
Trefethen[14], Boyd[15], Shen et al.[16], Hale and Trefethen[17], and Driscoll et al.[18] presented
excellent introductions about the theoretical and practical applications for the spectral methods,
which have been further developed and extended to different fields, including the fluid mechanics
simulation[19–20] and the optimal control problem for the spacecraft[21–23].

Undeniably, it is really a creative idea for combining the geometric numerical methods
together with the spectral methods, and the resulting method can fully inherit the excellent
geometric structure-preserving quantities of the geometric numerical methods and the attractive
geometric convergence rates of the spectral methods. To this end, Hall and Leok[24] conducted
an excellent introduction and a comprehensive geometric convergence analysis and presented the
proofs for the spectral variational integrator (SVI). In the work of Hall and Leok, the SVI was
constructed through the generalized Galerkin framework, the function space was constructed
by a finite set of Lagrange basis functions, and the Lagrangian integrant was approximated by
the Gauss-Legendre quadrature formulae, where the number of the quadrature point was not
restricted being equal to the order of interpolation polynomial by using different methods from
the work of Marsden and West[2]. Finally, they also provided several numerical simulations to
verify the theorems of geometric convergence and the long-time geometric structure-preserving
behaviors (energy and momentum conservation) of the constructed SVI.

In this paper, the Chebyshev spectral variational integrator (CSVI) is also constructed by
the generalized Galerkin framework. Since the interpolating points of the variational integrator
are chosen as the Chebyshev points, the integration of Lagrangian can be approximated by
“a younger brother” of the Gauss quadrature, i.e., the Clenshaw-Curtis quadrature rule[25],
which has essentially the same performance for most integrands. Moreover, the corresponding
quadrature weights can be calculated efficiently and effortlessly through the fast Fourier trans-
form (FFT). To improve computational efficiency and numerical stability in the approximation
of configuration variables and their derivatives, the classic Lagrange interpolation is replaced by
the barycentric Lagrange interpolation[26]. The numerical float errors of the first-order spectral
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differentiation matrix can be alleviated by using a trigonometric identity especially when the
number of Chebyshev points is large. Furthermore, the SVI constructed by the Gauss-Legendre
quadrature rule and the spectral method are presented to compare with the CSVI, and some
interesting phenomena of the Clenshaw-Curtis quadrature rule are also discovered. To validate
the efficiency of the method presented in this paper, the planar pendulum system and the sim-
plified Kepler two-body system in the classical mechanics are studied firstly as two numerical
examples. For the more interesting applications of the methods presented, the orbital propa-
gation problems in the following systems, i.e., the Moon in the Earth-Moon two-body system,
the Earth and the Mars in the Sun-Earth-Mars three-body system, and the eight planets and
the Pluto in the Solar system, are numerically studied respectively to prove the effectiveness
and feasibleness of the present method.

The structure of this paper is organized as follows. In Section 2, the basic concepts of
the discrete mechanics and the variational integrators are reviewed briefly. Section 3 conducts
the implementing details of the CSVI. In Section 4, several numerical simulation results are
performed. The last section presents some conclusions.

2 Discrete variational mechanics

Firstly, we would like to review briefly some basic concepts and definitions for the discrete
mechanics and variational integrators[2,24], which are used in this paper. Also, a theorem of
geometric convergence for the discrete geometric spectral method is presented.
2.1 Discrete mechanics

Consider a mechanical system defined on the n-dimensional configuration manifold Q with
time-dependent curves q(t) ∈ Q, t ∈ [t0, tf ]. The associated state space of the manifold Q is
given by the tangent bundle TQ, and the associated phase space is defined by the cotangent
bundle T ∗Q. The corresponding Lagrangian L : TQ → R is described by the kinetic energy
minus potential energy. Then, the action S : C2([t0, tf ], Q) → R of the proposed mechanical
system is defined as follows:

S(q) =
∫ tf

t0

L(q(t), q̇(t))dt. (1)

However, in discrete mechanics, the total time interval t ∈ [t0, tf ] is divided into N uniform-
space subintervals, and the corresponding step-size is denoted by h. Considering the kth time
grid [t0 + kh, t0 +(k +1)h], k = 0, 1, · · · , N − 1, the discrete Lagrangian Ld : Q×Q×R → R is
defined through the discrete state space Q × Q to approximate the exact discrete Lagrangian,
i.e.,

Ld(qk, qk+1, h) ≈ LE
d (qk, qk+1, h) =

∫ tk+1

tk

L(q(t), q̇(t))dt, (2)

where LE
d is associated with Jacobi’s solution of the Hamilton-Jacobi equation for a sufficiently

small h, which generally is not computable.
Therefore, on the total time interval t ∈ [t0, tf ], the discrete action Sd : QN+1 → R can be

approximated by the sum of the discrete Lagrangian on each two neighboring discrete configu-
rations qk and qk+1, i.e.,

Sd(q0, q1, · · · , qN ) =
N−1∑
k=0

Ld(qk, qk+1). (3)

Then, according to Hamilton’s principle, the true trajectory should satisfy the stationary
point conditions of the discrete action, i.e.,

δSd(q0, q1, · · · , qN ) = 0 (4)
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for all variations δqk, which will vanish at the fixed end-points (i.e., δq0 = δqN = 0). This
would lead to the discrete Euler-Lagrange equations,

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0 (5)

for k = 0, 1, · · · , N − 1, where D1 and D2 denote partial derivatives with respect to the first
and second arguments of Ld, respectively.

Equation (5) provides an implicit one-step iteration map for a given pair qk−1 and qk, known
as the discrete Lagrangian flow map FLd: Q × Q → Q × Q, i.e., FLd(qk−1, qk) = (qk, qk+1).
This one-step update schemes derived by a discrete variational principle are referred to as
variational integrators, which are well-known to be symplectic and momentum-preserving and
exhibit excellent long-time energy behaviors.

We know that the Lagrangian can be associated with the Hamiltonian through the continu-
ous Legendre transforms. However, this relationship is also true under the discrete cases. The
discrete Legendre transform F

±Ld : Q × Q → T ∗Q can then be defined by the transformation
of discrete Lagrangian,

F
−Ld : (qk, qk+1) → (qk, p−

k ) = (qk,−D1Ld(qk, qk+1)), (6)

F
+Ld : (qk−1, qk) → (qk, p−

k ) = (qk, D2Ld(qk−1, qk)). (7)

Using the discrete Legendre transforms, we can define the discrete Hamiltonian flow map
F̃Ld : T ∗Q → T ∗Q as follows:

F̃Ld : (qk, pk) → (qk+1, pk+1) = F
+Ld ◦ (F−Ld)−1(qk, pk), (8)

which is equivalent to the discrete Lagrangian flow map. For a more detailed illustration of the
commutative relationship among the discrete Hamiltonian flow map, the discrete Lagrangian
flow map, and the discrete Legendre transforms, we recommend Refs. [2] and [24] for a thorough
introduction.
2.2 Variational integrators

According to the generalized Galerkin framework, the variational integrators can be con-
structed through two steps, which are discussed thoroughly by Marsden and West[2] and Hall
and Leok[24].

The first step is to approximate the discrete action Sd ({qk}n
k=0), which consists of the

approximation of the space of trajectories through a finite-dimensional function space and the
approximation of the integral of the Lagrangian on a certain subinterval through appropriate
quadrature rules. That is to say, we need to employ a highly-accurate computable discrete
Lagrangian Ld(qk, qk+1) to approximate the general numerically non-computable exact discrete
Lagrangian LE

d (qk, qk+1). Specifically, for a given subinterval [t0 + kh, t0 + (k + 1)h], k =
0, 1, · · · , N − 1, and Lagrangian L : TQ → R, the approximate procedure is constructed as
follows.

(i) Choose an (n+1)-dimensional function space to approximate the space of trajectories:
M

n ([t0 + kh, t0 + (k + 1)h], Q) ⊂ C2 ([t0 + kh, t0 + (k + 1)h], Q) with a finite set of basis func-
tions {lv,n(t)}n

v=0, these basis functions are generated by Lagrange basis polynomials and shall
be extended in Subsection 3.1.

(ii) Choose a quadrature rule (ωi, τi) to approximate the integral of the Lagrangian in Eq. (2),
i.e.,

Ld(qk = q0
k, q1

k, · · · , qn
k = qk+1, h) ≈ ext

q∈M
n((t0+kh,t0+(k+1)h), Q)

qk=q0
k,qn

k =qk+1

h

2

n∑
μ=1

ωμL(q(τμ), q̇(τμ)), (9)
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which would be expanded and discussed carefully in Subsection 3.2.
Then, the next step is to conduct a variation operating (finding an extremizer) for the

discrete action Sd through the discrete Hamilton’s principle, which requires that the curve
qv

k, v = 1, 2, · · · , n−1 should be a stationary point of the discretized action. This leads to n−1
internal stage conditions,

DvLd(qk = q0
k, q1

k, · · · , qn
k = qk+1, h) = 0, v = 1, 2, · · · , n − 1, (10)

where Dv denotes the partial derivative with respect to qv
k. Combining these internal stage

conditions with the implicit one-step iteration map (i.e., Euler-Lagrange equations) yields a set
of n+1 nonlinear equations,

n∑
μ=1

ωμ

(h

2
l0,n(τμ)

∂L

∂q
(τμ) + l̇0,n(τμ)

∂L

∂q̇
(τμ)

)
= D1Ld(qk, qk+1) = −pk, (11a)

DvLd(qk = q0
k, q1

k, · · · , qn
k = qk+1, h) = 0, v = 1, 2, · · · , n − 1, (11b)

n∑
μ=1

ωμ

(h

2
ln,n(τμ)

∂L

∂q
(τμ) + l̇n,n(τμ)

∂L

∂q̇
(τμ)

)
= D2Ld(qk, qk+1) = pk+1. (11c)

For a given pair (qk = q0
k, pk) on the subinterval (t0+kh, t0+(k+1)h), k = 0, 1, · · · , N−1, we

can obtain the solution sequences ({qv
k}n

v=1) by solving Eqs. (11a) and (11b). Then, (qk+1, pk+1)
can be updated by using the relation qk+1 = qn

k and evaluating Eq. (11c), respectively. And
this yields the discrete Hamiltonian flow map F̃Ld : (qk, pk) �→ (qk+1, pk+1). Then, similar
pair evaluating can be updated on the whole time interval. However, in the practical problems,
the initial conditions of a mechanics system are generally given directly in terms of position
and velocity (q0, v0) ∈ TQ. Then, one is supposed to convert them into the form of position
and momentum on the cotangent bundle (i.e., (q0, p0) ∈ T ∗Q) by employing the continuous
Legendre transform FL : TQ → T ∗Q, (q0, v0) → (q0, p0) = (q0,

∂L
∂q̇ (q0, v0)).

2.3 Geometric convergence property
Here, a description of the geometric convergence of discrete geometric spectral method is

presented. We refer the interested reader to the literature of Hall and Leok[24] for a celebrated
description and a rigorous proof process.

Theorem 1 Given a Lagrangian L : TQ → R and a time interval [tk, tk+1], assume that
all partial derivatives of L are continuous on a closed and bounded neighborhood U ∈ TQ (i.e., L
is Lipschitz continuous on U); the spectral variational discrete solutions of the trajectories on the
tangent space TQ have an error bounded by CAKn

A for some constants CA and KA (KA < 1),
which are independent of n; the chosen discrete quadrature rule for approximating the discrete
Lagrangian Ld has an error bounded by CgK

n
g for some constants Cg and Kg (Kg < 1), which

are independent of n as well. Then, a geometric convergence boundary can be drawn as[24]

|LE
d (qk, qk+1) − Ld(qk, qk+1)| � CsK

n
s

for some constants Cs and Ks (Ks = max (KA, Kg), Ks < 1), which are independent of n. That
is to say, the discrete Hamiltonian flow map F̃Ld : (qk, pk) �→ (qk+1, pk+1) has an error O(Kn

s ).

3 Spectral approximation

In this section, we will discuss how to employ a chosen spectral method to construct an
approximation for the discrete action Sd introduced in Eq. (3) and Subsection 2.2.
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3.1 Barycentric Lagrange interpolation
Without loss of generality, we firstly consider a given time subinterval [t0 + kh, t0 + (k +

1)h], k = 0, 1, · · · , N − 1 on the total time interval t ∈ [t0, tf ], which is divided into N uniform-
space subintervals, and the corresponding step-size is h.

As stated in Subsection 2.2, the (n+1)-dimensional function space is generated by a finite
set of Lagrange interpolation polynomials {lv,n(t)}n

v=0, where the control points are chosen as
the Chebyshev points τ ∈ [−1, 1] in this paper as follows:

τi = cos
( (n − i)π

n

)
, i = 0, 1, · · · , n. (12)

This type of point sets is clustered at the boundary of the interval [−1, 1] with an asymptotic
density proportional to (1 − τ2)−1/2 as n → ∞[14], and it can avoid effectively the Runge
phenomenon that often occurs in the case of uniform-density distribution points, as shown in
Fig. 1. Therefore, the subinterval t ∈ [tk, tk+1], k = 0, 1, · · · , N − 1 can be projected to this
kind of distribution on the interval [−1, 1] by the transformation t = (tk+tk+1)

2 − (tk−tk+1)
2τ .

From the procedure (i) in Subsection 2.2, we know that a basis function of (n + 1)-order
Lagrange interpolation polynomials is chosen to approximate the state variables of the space of
trajectories,

q(τ) ≈
n∑

v=0

lv,n(τ)qv
k, (13)

where the classic Lagrange interpolation polynomials are defined traditionally as[4,22,27–28]

lc,v,n(τ) =
n∏

μ=0,μ�=v

(τ − τμ)
(τv − τμ)

, v = 0, 1, · · · , n. (14)

However in this paper, in order to improve the computational efficiency and numerical
stability, the barycentric Lagrange interpolation is used to substitute for the classic Lagrange
interpolation, which may not be familiar to many people but “deserves a place at the heart of
introductory courses and textbooks in the numerical analysis”[26],

lv,n(τ) =
ξv

τ−τv

n∑
μ=0

ξµ

τ−τµ

, v = 0, 1, · · · , n, (15)

where the barycentric weights ξv are defined as ξv = 1
/( n∏

μ=0,μ�=v

(τv − τμ)
)
, v = 0, 1, · · · , n. It

can be found in the denominator that the calculation of (τv − τμ) would lead to floating-point
cancellation errors for a large n. Here, an effective method is presented[22,26],

ξv =

⎧⎨⎩
(−1)v

2
, v = 0 or v = n,

(−1)v
, otherwise.

(16)

However, here we must make a remark: this formula can only be used under a condition that
ξv can occur in the numerator and denominator at the same time; for example, it is true in
Eq. (15) but not in the original equation of ξv. It results from employing the Chebyshev points.

According to Eq. (13), the velocity variables of the space of trajectories can be approximated
as

q̇(τ) ≈
n∑

v=0

l̇v,n(τ)qv
k, (17)
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where the element of the differential matrix can be written as[26]

Dk,v = l̇v,n(τk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξv

ξk

τk − τv
, k 	= v,

−
n∑

j=0,j �=k

Dk,j , k = v,

(18)

which has a better numerical stability than Eq. (28) of Ref. [22] and Eq. (5) of Ref. [29], and ξv

and ξk can be calculated efficiently by Eq. (16).
3.2 Clenshaw-Curtis quadrature rule

As stated in Eq. (9), a quadrature rule (ωi, τi) is chosen to approximate the integral of
the Lagrangian in Eq. (2). In this paper, “a younger brother” of the Gauss quadrature, the
Clenshaw-Curtis quadrature rule[25], is used to conduct such tasks, which has essentially the
same performance as the Gauss quadrature for most integrands. Moreover, the corresponding
quadrature weights can be calculated efficiently and effortlessly through the FFT. A comparison
simulation with the Gauss-Legendre quadrature rule is conducted in Fig. 2.

 

 

Fig. 1 The Runge phenomenon of barycen-
tric Lagrange interpolation for y(τ ) =
1/(1 + 16τ2) is presented. The curve
oscillates at the values about 2n times
larger near τ = ±1 than those near
τ = 0 for equally spaced points, while
the curve oscillates between the val-
ues on the order of 2−n over [−1, 1] for
the Chebyshev points[14]. Besides, a
failure of τ − τi in Eq. (15) should be
treated carefully (color online)

-
-

Fig. 2 The kink phenomenon of the
Clenshaw-Curtis quadrature rule
for f(τ ) =

R 1

−1
1/(1 + 16τ 2)dτ is

presented. It can be found that the
Clenshaw-Curtis quadrature has the
close convergence rate with its “older
brother” Gauss-Legendre quadrature
formula for smaller n. A complete
description and the error formulae are
provided in Ref. [30] to explain the
kink phenomenon for larger n (color
online)

For the fast construction of weights of Clenshaw-Curtis quadrature rule, a new method (the
discrete cosine transform and discrete sine transform)[31] is presented to compute the weights.
However, in our paper, an elegant algorithm for stably and quickly generating the weights is
constructed through the FFT[32], and the weights ωcc

k of Clenshaw-Curtis quadrature formulae
can be written as follows:

ωcc
k =

⎧⎪⎪⎨⎪⎪⎩
ωF2

k +
ck(−1)k

n2 − 1
, n is even,

ωF2
k +

ck(−1)k

n2
cos

(kπ

n

)
, n is odd,

(19)
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where ωF2
k represents the Fej�r-2 quadrature weight ωF2

k = F−1
n vk

[22], F−1
n represents the inverse

FFT (IFFT), and vk is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vk =
2

1 − 4k2
, k = 0, 1, · · · ,

[n

2

]
− 1,

v[n/2] =
n − 3

2[n/2] − 1
− 1,

vn−k = vk, k = 1, 2, · · · ,

[
n − 1

2

]
,

(20)

which holds for all positive integers n > 1[32]. ωF2
n = ωF2

0 = 0. ck in Eq. (19) is defined by
ck = 1 for k = 0 or n, while ck = 2 for other k.

A simplification of Eq. (19) would lead to a practical formula ωcc
k = F−1

n (vk + gk), where in
analogy to vk, gk is written as follows[32]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gk = −ωcc
0 , k = 0, 1, · · · ,

[n

2

]
− 1,

g[n/2] = ωcc
0 [(2 − mod(n, 2))n − 1] ,

gn−k = vk, k = 1, 2, · · · ,

[
n − 1

2

]
,

(21)

where ωcc
0 is presented by ωcc

0 = 1/(n2 − 1 + mod(n, 2)). Finally, we should set ωcc
n = ωcc

0 .

4 Numerical analysis

This section presents the numerical simulations for several different questions to verify the
effectiveness and convergence of the constructed algorithm. As a well-known and classical
mechanics problem for periodic motion, which can illustrate perfectly the favorable long-time
structure-preserving behaviors (e.g., energy and momentum conservation) of geometric meth-
ods, the planar pendulum system and the Kepler two-body problem are performed as the first
and second simulations, respectively. Moreover, the orbital propagations of the Earth-Moon
and the Sun-Earth-Mars systems are also studied in the third numerical experiment as an appli-
cation. At last, the Solar system’s orbital propagation is also simulated as another application
in this paper.

In order to compare the CSVI constructed by the barycentric Lagrange interpolation and
the Clenshaw-Curtis quadrature rule in this paper, the method introduced in Refs. [24] and
[27] is also presented, which employs the classical Lagrange interpolation and Gauss-Legendre
quadrature rule to do such work. The difference is the number of the interpolating points
(i.e., Chebyshev points), the interpolating points are twice as many as the quadrature points
in Refs. [24] and [27]. However, it is chosen as the same number of quadrature point in this
paper. On the other hand, the CSVI combines the geometric numerical methods together with
the spectral methods, and the resulting combination can fully inherit the excellent geometric
structure-preserving quantities and the attractive geometric convergence of the spectral meth-
ods. Therefore, the spectral method is also carried out. However, it is not the focus of this
paper, and we refer the interested readers to Refs. [14]–[16] and [27]. A modification of the
spectral method should be pointed out, i.e., the interpolation is performed by the barycentric
Lagrange interpolation, the differential matrix is evaluated by Eq. (18), and the multi-interval
spectral method is employed.

All the algorithms are conducted by MATLAB 2018b genuine software and performed on
a computer of Inter i7-8700k@3.70GHz, RAM 16.0GB. The nonlinear equations are solved
by the Newton-Raphson method, where the maximum iteration number is set as 1 000, and
the iteration error threshold is set as ε = 10−12. The algorithms typically converge among 5
iterations for each subinterval in this paper.
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4.1 Planar pendulum
Firstly, we consider a simple example for the constructed algorithm to illustrate its effective-

ness. Consider a pendulum moving on a vertical plane in the gravity field, and the Lagrangian
L : TQ → R can be defined by the kinetic energy minus potential energy of the system,

L(q, q̇) =
1
2
m(lq̇)2 + mgl cos q, (22)

where q ∈ S1 represents the angle of the non-mass rigid-rod with the length l relative to the
direction of gravity, m is the mass, and g denotes the gravity acceleration.

According to the continuous Legendre transform and Hamilton’s principle, the corresponding
Euler-Lagrange equation and Hamilton’s canonical equation are respectively given by

⎧⎨⎩ q̈ +
g

l
sin q = 0,

q̇ =
p

ml2
, ṗ = −mgl sin q.

(23)

Conducting an energy transformation for Eq. (23) would yield a set of trajectory on the
phase space, as shown in Fig. 3, where we assume that m = g = l = 1 for simplicity, and CE

represents the integral constant.

π π π π

Fig. 3 The phase diagrams of the planar pendulum (color online)

Therefore, the period is 2π, and the energy is E = p2

2 −cos q. Then, the numerical simulation
is conducted on 100 periods (i.e., t0 = 0, tf = 200π), the time-step is set as h = 0.5, and the
initial point is chosen as (q0, p0) = (π/3, 0). For the CSVI, the interpolation points are chosen
as 4 Chebyshev points (i.e., n = 3 in Eq. (12)). For the SVI presented in Refs. [24] and [27], the
interpolation points are set as 4 Chebyshev points, and 4 points of Gauss-Legendre quadrature
(including two end-points) for comparison. For the multi-interval spectral method (actually, it
is an improved method of the pseudospectral method (PM)), the interpolation points are also
4 Chebyshev points. The simulating results are presented in Fig. 4.
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Fig. 4 The phase diagrams and the energy errors of the planar pendulum for step-size h = 0.5 and
tf = 200π (color online)

According to the results of the simulation in Fig. 4, we can see that the CSVI constructed
in this paper is reasonable and excellent, and it possesses the long-time structure-preserving
behaviors and has a higher convergence precision than the spectral variational method approxi-
mated by the Gauss-Legendre quadrature rule. While the spectral method gives a worse result,
the phase diagram is divergent, and so is the energy error.

4.2 Kepler two-body problem

As a classical and interesting mechanics problem, the Kepler N -body problem always occurs
in the researches of aerospace engineering, mechanics, mathematics, nonlinear analysis fields,
etc. Of course, it is still a problem that has not yet solved even for the three-body problem.
The Lagrangian for the Kepler N -body problem can be defined by the kinetic energy minus
potential energy[24],

L(q, q̇) =
1
2

N∑
i=1

q̇TMq̇ + G

N∑
i=1

i−1∑
j=0

mimj

‖qi − qj‖ , (24)

where qi denotes the mass center of body i, M is the mass matrix consisting of body mi, and
G is the universal gravitational constant.

For simplicity, we firstly consider the Kepler two-body problem and set m1 = m2 = G = 1,
and choose the perifocal coordinate system (i.e., the original point is located at the focal point,
the xy-plane coincides with the orbital plane, the x-axis points to the perigee direction, and
the y-axis can be obtained by rotating the x-axis 90◦ along the moving direction). Then, the
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energy and angular momentum equations for the Kepler two-body system are written as

E(q, v) =
1
2
(v2

1 + v2
2) − 1√

q2
1 + q2

2

, (25)

M(q, v) = q1v2 − q2v1, (26)

respectively. Here, the coordinates (q1, q2) and (v1, v2) denote the position and velocity of the
moving-body, respectively. In this numerical experience, the orbital semi-major axis is set as
a = 1, and the orbital eccentricity is chosen as e = 0.6. We choose the perigee point conditions
as the initial conditions (i.e., perigee radius and perigee velocity, or in other words, the true
anomaly and the eccentric anomaly are equal to zeros at this position),⎧⎪⎪⎪⎨⎪⎪⎪⎩

q1(0) =
a(1 − e2)

1 + e cos(0)
, q2(0) = 0,

v1(0) = 0, v2(0) =

√
μ

a

a(1 + e)
a(1 − e)

,

(27)

where μ = Gm1 represents the central gravitational constant. According to the energy conser-
vation law and Kepler’s third law, the period of the orbit is T = 2π

√
a3/μ.

Then, the numerical simulations are conducted on 100 periods (i.e., t0 = 0, tf = 200π), and
the time-step is set as h = T/120. For the CSVI, the interpolation points are chosen as 5
Chebyshev points (i.e., n = 4 in Eq. (12)). For the SVI presented in Refs. [24] and [27], the
interpolation points are set as 5 Chebyshev points, and 5 points of Gauss-Legendre quadrature
(including the end-points) for comparison. For the PM, the interpolation points are also 5
Chebyshev points. For intuition, the solutions to the Kepler equation on one period of the
orbit are also iterated and carried out in this paper. The step-size is set as 2h = T/60. The
Newton-Raphson method is used to solve this transcendental equation, and the corresponding
maximum iteration number and the iteration error threshold are set as 1 000 and ε = 10−12,
respectively. The simulating results are presented in Fig. 5.

It can be found from the results of Fig. 5 that the three methods presented in this paper
have a higher precision solution for a smaller interpolation point. Moreover, the CSVI does
better than the other two methods on the energy and the angular momentum behaviors. Of
course, the PM does not possess the favorable long-time structure-preserving qualities, which
can be verified from the third column in Fig. 5. The geometry convergence properties with
n-refinement and h-refinement of the Kepler two-body problem are presented in Figs. 6 and 7,
respectively.

It can be clearly observed from Fig. 6 that the kink phenomenon occurs in the CSVI, where
the Clenshaw-Curtis quadrature rule is employed. For a celebrated description of the kink
phenomenon, we refer the interested readers to Ref. [30]. In the front part of the kink, the CSVI
has a faster convergence rate than the SVI and the PM. Moreover, the geometry convergence
behaviors of the three methods presented in Fig. 6 are consistent with the boundary descriptions
in Theorem 1. However, the kink phenomenon disappears in the h-refinement of the CSVI in
Fig. 7. The CPU time for h-refinement and n-refinement is presented in Fig. 8, respectively.
Finally, it can be summarized that the PM has the lowest accuracy among the three methods,
but it has the shortest computing time; the SVI has a more faster convergence speed than the
CSVI behind the kink position, while the CSVI also has a faster computing speed over the
whole time and the higher accuracy than the SVI before the kink position.
4.3 Planets and Solar system applications

In this numerical example, the geocentric equatorial frame and the heliocentric ecliptic
frame are used to describe the moving states for the Earth-Moon two-body system, the Sun-
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Fig. 5 The Kepler two-body problem (color online)

Fig. 6 The geometry convergences with n-refinement of the Kepler two-body problem with h = T/12
over 1 200 steps (color online)

Earth-Mars three-body system, and the Solar system, respectively. The initial configuration
parameters (positions and velocities) for the three systems are determined by J2000[24]. The
CSVI is applied to three different scenarios. And the corresponding interpolating points and
quadrature points are set as n = 35 Chebyshev points for the Earth-Moon two-body and the
Sun-Earth-Mars three-body systems. As for the Earth-Moon two-body system, the step-size
is chosen as h = 12h, and a 36 500d orbit propagation simulation is taken. The integra-
tion orbit is presented in Fig. 9. However, a longer time-step h = 7 d and a 365000 d orbit
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propagation integration are set for the simulation of the Sun-Earth-Mars three-body system,
and the orbital curves described in the heliocentric ecliptic coordinate system are shown in
Fig. 10. As for the Solar system, the interpolating points and quadrature points are set as
n = 10 Chebyshev points, the step-size is chosen as h = 5d, and the orbit propagation is

- - -

Fig. 7 The geometry convergences with h-refinement of the Kepler two-body problem with n = 6
(color online)

-

-
- -

Fig. 8 The CPU time for n-refinement and h-refinement (color online)

Fig. 9 The orbital propagation and energy diagrams of the Earth-Moon two-body system with step-
size h = 12 h over 36 500 d, which is presented in the geocentric equatorial coordinate system
(color online)
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taken as 365 000 d. The programs ran about 38.39h on the above-mentioned computer for the
simulation of the Solar system and the integration orbits are presented in Fig. 11.

It can be seen in Figs. 9 and 10, or in Fig. 11 that the orbits are closed, stable for the
long-time orbit propagation integration. Moreover, the simulation results do not exhibit the
“precession” effect, which often occurs in the symplectic integrator and is a characteristic of
this type of integrators. In Fig. 10(b), one can find that this diagram explains perfectly the
long-time energy-preserving behavior of the CSVI. In Fig. 11, even though the Pluto only moves
about 4 periods in this simulation, the Mercury moves stably about 4 000 periods along its orbit,
which means that about 4 000 circles overlap on the green curves in the second picture of Fig. 11.
Thus, the simulation results demonstrate the excellent long-time geometric structure-preserving
behaviors of the CSVI constructed in this paper.

Fig. 10 The orbital propagation and energy diagrams of the Sun-Earth-Mars system with step-size
h = 7d over 365 000 d, which is described in the heliocentric ecliptic coordinate system,
where 1 au ≈ 1.496 × 1011 m (color online)

Fig. 11 The orbital diagrams of the Solar system with step-size h = 5 d over 365 000 d are presented.
The position for each planet in the above two pictures is the positions in UT: 2000-01-01-
12:00:00 (i.e., Julian day: 2 451 545), described in the heliocentric ecliptic coordinate system
(color online)
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5 Conclusions

This paper studies the CSVI, which possesses excellent long-time structure-preserving be-
haviors and attractive exponential convergence properties. The multi-interval spectral method
and the SVI are presented to compare with the proposed method for the planar pendulum and
the Kepler two-body problem. The numerical results reveal that the CSVI has an advantage on
the computing time over the whole progress and the higher accuracy than the SVI before the
interesting kink position, which is discovered in the n-refinement, but not in the h-refinement.
While the multi-interval spectral method is the worst performer in three methods for the accu-
racy and convergence. Finally, the elegant long-time structure-preserving behavior of the CSVI
is verified perfectly by simulating the orbital propagation for the Earth-Moon two-body system,
the Sun-Earth-Mars three-body system, and the Solar system.
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[10] MOORE, A., OBER-BLÖBAUM, S., and MARSDEN, J. E. Trajectory design combining invari-
ant manifolds with discrete mechanics and optimal control. Journal of Guidance, Control, and
Dynamics, 35(5), 1507–1525 (2012)

[11] BOLATTI, D. A. and DE RUITER, A. H. Galerkin variational integrators for orbit propagation
with applications to small bodies. Journal of Guidance, Control, and Dynamics, 42(2), 347–363
(2018)

[12] HALL, J. and LEOK, M. Lie group spectral variational integrators. Foundations of Computational
Mathematics, 17(1), 199–257 (2017)

[13] HE, L., WU, H. B., and MEI, F. X. Variational integrators for fractional Birkhoffian systems.
Nonlinear Dynamics, 87(4), 2325–2334 (2017)

[14] TREFETHEN, L. N. Spectral Methods in MATLAB, Society of Industrial and Applied Mathe-
matics, Philadelphia (2000)

[15] BOYD, J. P. Chebyshev and Fourier Spectral Methods, 2nd ed., Dover Publications, Inc., New
York (2001)

[16] SHEN, J., TANG, T., and WANG, L. L. Spectral Methods: Algorithms, Analysis and Applications,
Springer-Verlag, Berlin (2011)



768 Zhonggui YI, Baozeng YUE, and Mingle DENG

[17] HALE, N. and TREFETHEN, L. N. Chebfun and numerical quadrature. Science China Mathe-
matics, 55(9), 1749–1760 (2012)

[18] DRISCOLL, T. A., HALE, N., and TREFETHEN, L. N. Chebfun Guide, Pafnuty Publications,
Oxford (2014)

[19] JIAO, Y. J. and GUO, B. Y. Mixed spectral method for exterior problems of Navier-Stokes
equations by using generalized Laguerre functions. Applied Mathematics and Mechanics (English
Edition), 30(5), 561–574 (2009) https://doi.org/10.1007/s10483-009-0503-z

[20] LI, B. and CHEN, S. Direct spectral domain decomposition method for 2D incompressible Navier-
Stokes equations. Applied Mathematics and Mechanics (English Edition), 36(8), 1073–1090 (2015)
https://doi.org/10.1007/s10483-015-1964-7

[21] GONG, Q., ROSS, I. M., and FAHROO, F. Costate computation by a Chebyshev pseudospectral
method. Journal of Guidance, Control, and Dynamics, 33(2), 623–628 (2010)

[22] GE, X. S., YI, Z. G., and CHEN, L. Q. Optimal control of attitude for coupled-rigid-body space-
craft via Chebyshev-Gauss pseudospectral method. Applied Mathematics and Mechanics (English
Edition), 38(9), 1257–1272 (2017) https://doi.org/10.1007/s10483-017-2236-8

[23] YI, Z. G. and GE, X. S. Attitude maneuver of dual rigid bodies spacecraft using hp-adaptive
pseudo-spectral method. International Journal of Aeronautical and Space Sciences, 20(1), 214–
227 (2019)

[24] HALL, J. and LEOK, M. Spectral variational integrators. Numerische Mathematik, 130(4), 681–
740 (2015)

[25] TREFETHEN, L. N. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 50(1),
67–87 (2008)

[26] BERRUT, J. P. and TREFETHEN, L. N. Barycentric Lagrange interpolation. SIAM Review,
46(3), 501–517 (2004)

[27] LI, Y. Q., WU, B. Y., and LEOK, M. Construction and comparison of multidimensional spectral
variational integrators and spectral collocation methods. Applied Numerical Mathematics, 132,
35–50 (2018)

[28] LI, Y. Q., WU, B. Y., and LEOK, M. Spectral-collocation variational integrators. Journal of
Computational Physics, 332, 83–98 (2017)

[29] LIU, W. J., WU, B. Y., and SUN, J. Some numerical algorithms for solving the highly oscillatory
second-order initial value problems. Journal of Computational Physics, 276, 235–251 (2014)

[30] WEIDEMAN, J. A. C. and TREFETHEN, L. N. The kink phenomenon in Fej�r and Clenshaw-
Curtis quadrature. Numerische Mathematik, 107(4), 707–727 (2007)

[31] SOMMARIVA, A. Fast construction of Fej�r and Clenshaw-Curtis rules for general weight func-
tions. Computers & Mathematics with Applications, 65(4), 682–693 (2013)

[32] WALDVOGEL, J. Fast construction of the Fej�r and Clenshaw-Curtis quadrature rules. BIT
Numerical Mathematics, 46(1), 195–202 (2006)


