
Appl. Math. Mech. -Engl. Ed., 41(2), 233–260 (2020)

Applied Mathematics and Mechanics (English Edition)

https://doi.org/10.1007/s10483-020-2564-5

Nonlinear primary resonance analysis of nanoshells including

vibrational mode interactions based on the surface

elasticity theory∗

A. SARAFRAZ1, S. SAHMANI2,†, M. M. AGHDAM1

1. Mechanical Engineering Department, Amirkabir University of Technology,

Tehran 15875-4413, Iran;

2. School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia

(Received Aug. 10, 2019 / Revised Sept. 25, 2019)

Abstract The deviation from the classical elastic characteristics induced by the free
surface energy can be considerable for nanostructures due to the high surface to volume
ratio. Consequently, this type of size dependency should be accounted for in the me-
chanical behaviors of nanoscale structures. In the current investigation, the influence
of free surface energy on the nonlinear primary resonance of silicon nanoshells under
soft harmonic external excitation is studied. In order to obtain more accurate results,
the interaction between the first, third, and fifth symmetric vibration modes with the
main oscillation mode is taken into consideration. Through the implementation of the
Gurtin-Murdoch theory of elasticity into the classical shell theory, a size-dependent shell
model is developed incorporating the effect of surface free energy. With the aid of the
variational approach, the governing differential equations of motion including both of the
cubic and quadratic nonlinearities are derived. Thereafter, the multi-time-scale method
is used to achieve an analytical solution for the nonlinear size-dependent problem. The
frequency-response and amplitude-response of the soft harmonic excited nanoshells are
presented corresponding to different values of shell thickness and surface elastic constants
as well as various vibration mode interactions. It is depicted that through consideration
of the interaction between the higher symmetric vibration modes and the main oscillation
mode, the hardening response of nanoshell changes to the softening one. This pattern is
observed corresponding to both of the positive and negative values of the surface elastic
constants and the surface residual stress.
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1 Introduction

In the last decade, in order to design structures with outstanding mechanical and electrical
characteristics including optical properties, nanostructures have been manufactured via a few
molecular manipulations. These miniaturized small-scaled structures have been considered as
basic elements for several applications, such as nanosensors, transistors, and micro-truss struc-
tures. Consequently, it is fundamentally significant to predict the size-dependent mechanical
behaviors of nanostructures. Because atomistic simulations are often very time-consuming, and
controlled nanoscaled experiments are so hard to implement, continuum mechanics has been
more attractive for researchers to analyze mechanical responses of nanostructures. For this pur-
pose, various non-classical continuum theories of elasticity have been introduced and applied
to capture different size dependencies in mechanical behaviors of small-scaled structures.

Togun and Bagdatli[1] performed a nonlinear vibration analysis of tensioned nanobeams with
different end supported on the basis of the modified couple stress theory of elasticity. Bornassi
and Haddadpour[2] investigated the nonlocal dynamical pull-in instability of an electrostatic ac-
tuated carbon nanotube-based nanodevices. Guo et al.[3] constructed a modified couple stress
plate model for three-dimensional free vibration of anisotropic layered nanoplates. Li et al.[4]

examined the nonlocal resonance of an axially moving viscoelastic piezoelectric nanoplate un-
der thermo-electro-mechanical forces. Zhang et al.[5] implemented the nonlocal elasticity theory
into the classical plate theory to model the nonlinear vibrations of graphene sheets using the
meshfree technique. Lu et al.[6] proposed a nonlocal strain gradient shear deformable beam
model for size-dependent free vibrations of nanobeams. Liu et al.[7] put the nonlocal elasticity
and the Kelvin model to capture the size effect on the vibration and buckling characteristics
of the double-viscoelastic-functionally graded nanoplate system. Zhang et al.[8] presented an-
alytical solutions for buckling and vibration behaviors of lattice-based nonlocal continualized
circular arches at the nanoscale. Yang and He[9] constructed a microstructure-dependent model
for vibration and buckling responses of orthotropic functionally graded microplates. Fang et
al.[10] developed a size-dependent three-dimensional dynamic model on the basis of the modified
couple stress elasticity theory for the rotating functionally graded Euler-Bernoulli microbeam.
Apuzzo et al.[11] employed the modified nonlocal strain gradient theory of elasticity to ana-
lyze size dependency in axial and flexural free vibrations of Euler-Bernoulli nanoscaled beams.
Kiani and Pakdaman[12] explored the free transverse thermos-elastic vibrations of monolay-
ers from double-walled carbon nanotubes under heat dissipation. Wang et al.[13] studied the
free transverse vibrations of axially moving nanobeams including nonlocality and strain gradi-
ent size dependencies. Thanh et al.[14] utilized the isogeometric technique for size-dependent
analysis of functionally graded nanocomposite nanoplates modeled via the higher-order shear
deformation theory together with the modified couple stress theory. Sahmani et al.[15–17] took
the nonlocality and strain gradient size effect into the nonlinear bending and vibrations of mul-
tilayer functionally graded micro/nanostructures reinforced with graphene platelets. Wang[18]

proposed a novel differential quadrature element method for free vibration analysis of hybrid
Euler-Bernoulli beams based on the nonlocal theory of elasticity. Shen et al.[19] analyzed the
transverse dynamics of microtubules under axial load and variable transverse load on the basis
of the nonlocal strain gradient theory of elasticity. Tang et al.[20] studied the nonlocal strain
gradient vibration response of small-scaled beams including Poisson’s ratio and thickness ef-
fects. Jalaei et al.[21] predicted the dynamic instability of functionally graded Timoshenko
nanobeams subject to thermal and magnetic fields based upon the nonlocal strain gradient
elasticity theory. Sahmani and Safaei[22–23] employed the nonlocal strain gradient theory of
elasticity for nonlinear free and forced vibration characteristics of bi-directional functionally
graded micro/nanobeams. Jalaei and Civalek[24] anticipated the size-dependent dynamic in-
stability of embedded graphene sheet incorporating thermal effects. Zhang et al.[25] developed
multi-scale modeling for Euler-Bernoulli nanobeams with a large deflection on the basis of the
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nonlocal strain gradient elasticity. Sahmani et al.[26] explored nonlinear mechanical character-
istics of micro/nanostructures in the presence of various types of size dependency. Wang et
al.[27] investigated the nonlinear free vibration response of piezoelectric cylindrical nanoshells
resting on a viscoelastic foundation.

Reduction in the dimension of a structure results in a higher surface to volume ratio. Con-
sequently, there is a difference between material properties associated with free surfaces of an
elastic medium and those of the bulk. This issue is attributed to the fact that the necessary con-
ditions for equilibration of free surface atoms are different from those required for bulk atoms.
In other words, there is excessive energy within the free surface layers namely as the surface
free energy which causes to make a change in mechanical behaviors of micro/nanostructures. In
order to capture this type of size dependency, Gurtin and Murdoch[28–29] introduced a generic
theoretical model within the framework of the continuum elasticity. Several investigations have
been carried out in recent years using the Gurtin-Murdoch elasticity theory to analyze me-
chanical behaviors of micro/nanostructures. Wang and Feng[30] developed a theoretical model
directed towards a study on the effects of surface elasticity and surface residual stress on the
natural frequency of microbeams. Luo and Xiao[31] explored the interaction between a screw
dislocation and nano inhomogeneity including interface stress effects using the Gurtin-Murdoch
continuum model. Zhao and Rajapakse[32] incorporated the surface free energy effects on the
elastic field within an isotropic elastic layer under surface loading. Wang et al.[33] employed
the Gurtin-Murdoch theory of elasticity to analyze the influences of the residual surface stress
and surface tension on the elastic properties of nanostructures. Chiu and Chen[34] presented
a closed-form analytical solution for bending and resonance characteristics of nanowires with
various end supports. Shaat et al.[35] combined the Gurtin-Murdoch elasticity with the mod-
ified couple stress continuum theory to investigate the size-dependent bending behavior of
nanoplates. Sahmani et al.[36] examined the nonlinear forced vibrations of third-order shear
deformable nanobeams in the presence of surface stress effects. Also, Sahmani and Aghdam[37]

captured the surface free energy effects on the nonlinear instability of cylindrical nanoshells
under axial compression. Lu et al.[38] investigated the coupling effects of nonlocal stress and
surface stress on the size-dependent mechanical responses of Kirchhoff and Mindlin nanoplates.
Sun et al.[39] studied the buckling behavior of piezoelectric nanoshells in the presence of non-
locality and surface stress effects. Lu et al.[40] presented a unified size-dependent plate model
for buckling analysis of nanoplates including nonlocal strain gradient size dependency and sur-
face stress effects. Sarafraz et al.[41] analyzed the nonlinear secondary resonance of nanobeams
under subharmonic and superharmonic excitations based on the surface elasticity theory.

The prime aim of this work is to capture the surface free energy effects on the nonlinear
primary resonance of soft harmonic excited nanoshell incorporating the vibration mode interac-
tion. For this purpose, the non-classical governing differential equations of motion are derived
based upon the Gurtin-Murdoch theory of elasticity. Thereafter, with the aid of the multi-time-
scale solution methodology, the size-dependent frequency-response and amplitude-response are
achieved corresponding to various values of surface elastic constants, surface residual stress, and
different interactions between the main vibration mode and the first, third, and fifth symmetric
modes.

2 Derivation of the equations of motion

As illustrated in Fig. 1, a cylindrical nanoshell with free surface layers is considered. In
accordance with the attached coordinate system and the classical shell theory, the components
of the displacement vector can be expressed as
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



u1(x, θ, z, t) = u(x, θ, t) − z
∂w(x, θ, t)

∂x
,

u2(x, θ, z, t) = v(x, θ, t) −
z

R

∂w(x, θ, t)

∂θ
, u3(x, θ, z, t) = w(x, θ, t),

(1)

where u, v, and w are the displacements of the midplane along x-axis, θ-axis, and z-axis,
respectively. Also, R and t represent the radius of the nanoshell and time, respectively.

λ µ τ

λ µ υ

θ υ
θ

Fig. 1 Schematic representation of a silicon nanoshell with free surface layers and the attached co-
ordinate system

On the basis of the Dannell’s shell theory and von Karman geometric nonlinearity, the
strain-displacement relationships can be given as





εxx = ε0xx + zκx,

εθθ = ε0θθ + zκθθ,

γxθ = γ0
xθ + zκxθ,

(2)

where




ε0xx =
∂u

∂x
+

1

2

(∂w
∂x

)2

, ε0θθ =
1

R

∂v

∂θ
−
w

R
+

1

2

( 1

R

∂w

∂θ

)2

,

γ0
xθ =

1

R

∂u

∂θ
+
∂v

∂x
+

1

R

∂w

∂x

∂w

∂θ
,

κxx = −
∂2w

∂x2
, κθθ = −

1

R2

∂2w

∂θ2
, κxθ = −

2

R

∂2w

∂x∂θ
.

(3)

Within the framework of the linear theory of elasticity, the constitutive stress-strain rela-
tionship takes the following form:



σxx

σθθ

σxθ


 =



λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ






εxx

εθθ

γxθ


 , (4)

where the Lame’s constants can be introduced in terms of Young’s modulus and Poisson’s ratio
as below,

λ =
νE

1 − ν2
, µ =

E

2(1 + ν)
. (5)
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In addition, based upon the Gurtin-Murdoch theory of elasticity, the surface stress compo-
nents can be defined as functions of strain components, surface Lame’s constants (λs, µs), and
surface residual stress (τs) as follows[28–29]:

{
σs

αβ = τsδαβ + (τs + λs)εγγδαβ + 2(µs − τs)εαβ + τsu
s
α,β,

σs
αz = τsu

s
z,α.

(6)

As a consequence, one will have





σs
xx = (λs + 2µs)εxx + (τs + λs)εθθ + τs −

τs
2

(∂w
∂x

)2

,

σs
θθ = (λs + 2µs)εθθ + (τs + λs)εxx + τs +

τs
R

−
τs
2

( 1

R

∂w

∂θ

)2

,

σs
xθ = µsγxθ − τs

(∂v
∂x

+
1

R

∂w

∂x

∂w

∂θ
+
z

R

∂2w

∂x∂θ

)
,

σs
θx = µsγxθ − τs

( 1

R

∂u

∂θ
+

1

R

∂w

∂x

∂w

∂θ
+
z

R

∂2w

∂x∂θ

)
,

σs
xz = τs

∂w

∂x
,

σs
xz =

τs
R

∂w

∂θ
.

(7)

Generally, in the classical continuum models, the stress component of σzz is ignored, since
its value is very small in comparison with other stress components. However, in a continuum
model based on the surface theory of elasticity, in order to satisfy the equilibrium necessities,
it is required to be taken into account. For this purpose, it is assumed that

σzz =

∂σS+

xz

∂x
+

1

R

∂σS+

θz

∂θ
−
∂σS−

xz

∂x
−

1

R

∂σS−

θz

∂θ
2

+

∂σS+

xz

∂x
+

1

R

∂σS+

θz

∂θ
−
∂σS−

xz

∂x
−

1

R

∂σS−

θz

∂θ
h

z, (8)

where S+ and S− denote the outer and inner surface layers of the nanoshell, respectively.
By inserting Eq. (7) into Eq. (8), it yields

σzz =
2τsz

h

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)
. (9)

As a result, substituting Eq. (9) into Eq. (4) gives

(
σxx

σθθ

)
=

(
λ+ 2µ λ
λ λ+ 2µ

) (
εxx

εθθ

)
+

ν

1 − ν

(
σxx

σzz

)
. (10)

Thereby, the total strain energy of a nanoshell within the framework of the surface theory
of elasticity can be written as follows:

ΠS =
1

2

∫

S

∫ h

2

−h

2

σijεijdzdS +
1

2

(∫

S+

σS
ijεijdS

+ +

∫

S−

σS
ijεijdS

−
)

=
1

2

∫

S

(
Nxxε

0
xx+Nθθε

0
θθ+Nxθγ

0
xθ+Mxxκxx

+Mθθκθθ+Mxθκθ+QS
x

∂w

∂x
+
QS

θ

R

∂w

∂θ

)
dS, (11)
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where the stress resultants can be achieved in the following forms:





Nxx = Nxx + σS+

xx + σS−

xx = A∗
11ε

0
xx +A∗

12ε
0
θθ + 2τs − τs

(∂w
∂x

)2

,

Nθθ = Nθθ + σS+

θθ + σS−

θθ = A∗
11ε

0
θθ +A∗

12ε
0
xx +

2τs
R
w + 2τs − τs

( 1

R

∂w

∂θ

)2

,

Nxθ = Nxθ +
1

2
(σS+

xθ + σS−

xθ + σS+

θx + σS−

θx ) = A∗
55γ

0
xθ −

τs
R

∂w

∂x

∂w

∂θ
,

Mxx = Mxx +
h

2
(σS+

xx + σS−

xx ) = D∗
11κxx +D∗

12κθθ + E∗
11

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)
,

Mθθ = Mθθ +
h

2
(σS+

θθ + σS−

θθ ) = D∗
11κθθ +D∗

12κxx + E∗
11

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)
,

Mxθ = Mxθ +
h

4
(σS+

xθ + σS−

xθ + σS+

θx + σS−

θx ) = D∗
55κxθ,

QS
x = σS+

xz + σS−

xz = 2τs
∂w

∂x
,

QS
θ = σS+

θz + σS−

θz =
2τs
R

∂w

∂θ
,

(12)

where




Nxx

Nθθ

Nxθ



 =

∫ h

2

−h

2




σxx

σθθ

σxθ



 dz,




Mxx

Mθθ

Mxθ



 =

∫ h

2

−h

2




σxx

σθθ

σxθ



 zdz, (13)





A∗
11 = (λ+ 2µ)h+ 2(λs + µs), A∗

12 = λh+ 2τx + 2λs,

A∗
55 = µh+ 2µs − τs, D∗

11 =
(λ+ 2µ)h3

12
+

(λs + 2µs)h
2

2
,

D∗
12 =

λh3

12
+

(λs + τs)h
2

2
, D∗

55 =
µh3

12
+

(2µs − τs)h
2

4
, E∗

11 =
νh2τs

6(1 − ν)
.

(14)

On the other hand, the kinetic energy of a nanoshell modeled based upon the surface elas-
ticity theory can be given as

ΠT =
1

2

∫

S

(
(ρh+ 2ρs)

((∂u1

∂t

)2

+
(∂u2

∂t

)2

+
(∂u3

∂t

)2))
dS

=
1

2

∫

S

(
(ρh+ 2ρs)(u̇

2 + v̇2 + ẇ2) +
(ρh3

12
+
ρsh

2

6

)((∂ẇ
∂x

)2

+
( 1

R

∂ẇ

∂θ

)2))
dS, (15)

where ρs is the surface density, and the dot symbol indicates the time derivative.

Moreover, the work done by the external harmonic excitation can be calculated as

ΠP=

∫

S

(Fuu+ Fvv + Fww) dS. (16)

On the basis of Hamilton’s principle, one will have

δ

∫ t2

t1

(ΠT−ΠS+ΠP)dt = 0. (17)
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As a result, it yields






∂Nxx

∂x
+

1

R

∂Nxθ

∂θ
− Fu = I0ü,

1

R

∂Nθθ

∂θ
+
∂Nxθ

∂x
− Fv = I0v̈,

∂

∂x

(
Nxx

∂w

∂x

)
+
Nθθ

R
+

1

R2

∂

∂θ

(
Nθθ

∂w

∂θ

)
+

1

R

∂

∂x

(
Nxθ

∂w

∂θ

)
+

1

R

∂

∂θ

(
Nxθ

∂w

∂x

)

+
∂2Mxx

∂x2
+

1

R2

∂2Mθθ

∂θ2
+

2

R2

∂2Mxθ

∂x∂θ
+
∂QS

x

∂x
+

1

R

∂QS
θ

∂θ
−Fw =I0ẅ − I2

∂2ẅ

∂x2
−
I2
R2

∂2ẅ

∂θ2
,

(18)

where

I0 = ρh+ 2ρs, I2 =
ρh3

12
+
ρsh

2

6
.

Also, the relevant size-dependent boundary conditions are extracted as





δu = 0 or δ(Nxx) = 0,

δv = 0 or δ
( 1

R
Nθθ

)
= 0,

δw=0 or δ
(
Nxx

∂w

∂x
−
Nθθ

R

∂w

∂θ
−2

∂2Mxx

∂x2
−

2

R2

∂2Mθθ

∂θ2
−

4

R

∂2Mxθ

∂x∂θ
+QS

x +QS
θ

)
=0.

(19)

By neglecting the in-plane inertia and assuming this point that the external harmonic exci-
tation is applied only along the z-axis, the Airy stress function can be introduced as follows:

Nxx =
1

R2

∂2ϕ

∂θ2
, Nθθ =

∂2ϕ

∂x2
, Nxθ = −

1

R

∂2ϕ

∂x∂θ
. (20)

Consequently, the mid-plane strain components can be expressed as





ε0xx = −Γ2
∂2ϕ

∂x2
+

Γ1

R2

∂2ϕ

∂θ2
+ 2τsΓ2

w

R
−

2τs
A∗

11 +A∗
12

+ Γ1τs

(∂w
∂x

)2

− Γ2τs

( 1

R

∂w

∂θ

)2

,

ε0θθ = −
Γ2

R2

∂2ϕ

∂θ2
+ Γ1

∂2ϕ

∂x2
− 2τsΓ1

w

R
−

2τs
A∗

11 +A∗
12

+ Γ1τs

( 1

R

∂w

∂θ

)2

− Γ2τs

(∂w
∂x

)2

,

γ0
xθ = −

Γ3

R

∂2ϕ

∂x∂θ
+ Γ3

τs
R

∂w

∂x

∂w

∂θ
,

(21)

where

Γ1 =
A∗

11(
A∗

11

)2

−

(
A∗

12

)2 , Γ2 =
A∗

12(
A∗

11

)2

−

(
A∗

12

)2 , Γ3 =
1

A∗
55

. (22)

According to geometrical compatibility, for a shell-type structure, one will have

1

R2

∂2ε0xx

∂θ2
+
∂2ε0θθ

∂x2
−

1

R

∂2γ0
xθ

∂x∂θ
=

( 1

R

∂2γ0
xθ

∂x∂θ

)2

−
1

R2

∂2w

∂x2

∂2w

∂θ2
−

1

R

∂2w

∂x2
. (23)

Through inserting Eqs. (12) and (21) into Eqs. (18) and (23), the governing differential equa-
tions of motion for a nanoshell modeled via the surface theory of elasticity under a soft harmonic
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excitation are obtained as






Γ4
∂4w

∂x4
+

2Γ5

R2

∂4w

∂x2∂θ2
+

Γ4

R4

∂4w

∂θ4
− 2τs

∂2w

∂x2
−

2τs
R2

∂2w

∂θ2
+ I0ẅ − I2

∂2ẅ

∂x2
−
I2
R2

∂2ẅ

∂θ2

= Fw +
∂2ϕ

∂x2
+

1

R2

(∂2w

∂θ2
∂2ϕ

∂x2
− 2

∂2w

∂x∂θ

∂2ϕ

∂x∂θ
+
∂2w

∂x2

∂2ϕ

∂θ2

)
,

Γ1
∂4ϕ

∂x4
+

(Γ3 − 2Γ2)

R2

∂4ϕ

∂x2∂θ2
+

Γ1

R4

∂4ϕ

∂θ4

=
1

R2

( ∂2w

∂x∂θ

)2

−
1

R2

∂2w

∂x2

∂2w

∂θ2
−

1

R

∂2w

∂x2
+

2τs
R

(
Γ1
∂2w

∂x2
−

Γ2

R2

∂2w

∂θ2

)

−
2τsΓ1

R2

( ∂3w

∂x∂θ2
∂w

∂x
+ 2

( ∂2w

∂x∂θ

)2

+
∂3w

∂x2∂θ

∂w

∂θ

)

+ 2τsΓ2

(∂3w

∂x3

∂w

∂x
+

1

R4

∂3w

∂θ3
∂w

∂θ
+

(∂2w

∂x2

)2

+
( 1

R2

∂2w

∂θ2

)2)

+
τsΓ3

R2

( ∂3w

∂x2∂θ

∂w

∂θ
+
∂2w

∂x2

∂2w

∂θ2
+

( ∂2w

∂x∂θ

)2

+
∂w

∂x

∂3w

∂x∂θ2

)
,

(24)

where

Γ4 = D∗
11 − E∗

11, Γ5 = D∗
12 + 2D∗

55 − E∗
11. (25)

3 Multi-time-scale solving process

To capture the solution of the problem in a more general form, the following dimensionless
parameters are taken into account:





X =
x

L
, W =

w

h
, U =

u

L
, V =

v

R
, (a∗11, a

∗
12, a

∗
55) =

( A∗
11

A110
,
A∗

12

A110
,
A∗

55

A110

)
,

τ s =
τs
A110

, φ=
ϕ

A110h2
, (d∗11, d

∗
12, d

∗
55, e

∗
11)=

( D∗
11

A110h2
,
D∗

12

A110h2
,
D∗

55

A110h2
,
E∗

11

A110h2

)
,

I∗0 =
I0
I10

, I∗2 =
I2

I10h2
, ξ =

R

L
, η =

h

R
, T =

t

L

√
A110

I10
, fw =

FwL
2

A110h
,

(26)

where A110 = (λ+ 2µ)h, and I10 = ρh.

As a result, the dimensionless form of Eq. (24) can be expressed as

Γ4ξ
2η2 ∂

4W

∂X4
+ 2Γ5η

2 ∂4W

∂X2∂θ2
+

Γ4η
2

ξ2
∂4W

∂θ4
− 2τ s

∂2W

∂X2
−

2τ s

ξ2
∂2W

∂θ2

+ I∗0
∂2W

∂T 2
− I∗2 ξ

2η2 ∂4W

∂X2∂T 2
− I∗2η

2 ∂4W

∂θ2∂T 2

= fw + η
∂2φ

∂X2
+ η2

(∂2W

∂θ2
∂2φ

∂X2
− 2

∂2W

∂X∂θ

∂2φ

∂X∂θ
+
∂2W

∂X2

∂2φ

∂θ2

)
, (27a)
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Γ1ξ
2η2 ∂

4φ

∂X4
+

(
Γ3 − 2Γ2

)
η2 ∂4φ

∂X2∂θ2
+

Γ1η
2

ξ2
∂4φ

∂θ4

= η2
( ∂2W

∂X∂θ

)2

− η2 ∂
2W

∂X2

∂2W

∂θ2
− η

∂2W

∂X2
+ 2τ s

(
Γ1η

∂2W

∂X2
−

Γ2η

ξ2
∂2W

∂θ2

)

− 2τ sΓ1η
2
( ∂3W

∂X∂θ2
∂W

∂X
+ 2

( ∂2W

∂X∂θ

)2

+
∂3W

∂X2∂θ

∂W

∂θ

)

+ 2τ sΓ2

(∂3W

∂X3

∂W

∂X
+
η2

ξ2
∂3W

∂θ3
∂W

∂θ
+ η2ξ2

(∂2W

∂X2

)2

+
η2

ξ2

(∂2W

∂θ2

)2)

+ τ sΓ3

( ∂3W

∂X2∂θ

∂W

∂θ
+
∂2W

∂X2

∂2W

∂θ2
+

( ∂2W

∂X∂θ

)2

+
∂W

∂X

∂3W

∂X∂θ2

)
, (27b)

where





Γ1 =
a∗11

(a∗11)
2 − (a∗12)

2
, Γ2 =

a∗12
(a∗11)

2 − (a∗12)
2
, Γ3 =

1

a∗55
,

Γ4 = d∗11 − e∗11, Γ5 = d∗12 + 2d∗55 − e∗11.

(28)

In order to analyze the nonlinear vibration response of shell-type structures, several expan-
sions have been proposed for the lateral deflection. Refs. [42] and [43] have demonstrated that
in order to capture accurate and practical results, it is necessary to consider the companion
mode in addition to the simple linear vibration mode. On the other hand, those modes which
lead to convergence of the answer are the symmetric modes. As a result, in this work, the
following expansion is assumed for the lateral deflection of a nanoshell:

W (X, θ) = A1,n cos(nθ) sin(πX) +A1,0 sin(πX) +A3,0 sin(3πX) +A5,0 sin(5πX). (29)

Also, based upon the Weaver and Unny theory, the harmonic external excitation can be
modeled in the following form[42–43]:

Fw(x, θ, t) = fn cos(nθ) sin
(πx
L

)
cos(Ωt). (30)

By inserting Eq. (29) into Eq. (27b), the geometrical compatibility is satisfied. Accordingly,
the solution for the variable of φ can be expressed via the summation of the homogenous and
particular parts as below

φ = φh + φp, (31)

where the particular part of the solution can be given as

φp = c1(t) cos(nθ) sin(πX) + c2(t) sin(πX) + c3(t) sin(3πX) + c4(t) sin(5πX)

+ c5(t) cos(2πX) + c6(t) cos(nθ) + c7(t) cos(nθ) cos(2πX)

+ c8(t) cos(nθ) cos(4πX) + c9(t) cos(nθ) cos(6πX) + c10(t) cos(2nθ). (32)

The parameters of ci(t), i = 1, 2, · · · , 10, are presented in Appendix A.
The homogeneous part of the solution is extracted in such a way that the following conditions

are satisfied completely[42–43]:





1

2π

∫ 2π

0

∫ 1

0

∂V

∂θ
dXdθ = 0,

Ñxx =
1

2π

∫ 2π

0

∫ 1

0

N
∗

xxdXdθ = 0,

Ñxθ =
1

2π

∫ 2π

0

∫ 1

0

N
∗

xθdXdθ = 0,

(33)
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where





N
∗

xx = a∗11

( ∂U
∂X

+
1

2
ξ2η2

(∂W
∂X

)2)
+ a∗12

(∂V
∂θ

− ηW +
1

2
η2

(∂W
∂θ

)2)
,

N
∗

xθ = a∗55

(1

ξ

∂U

∂θ
+ ξ

∂V

∂X
+ η2ξ

∂W

∂X

∂W

∂θ

)
.

(34)

Also, one will have

φh =
1

2
X2

(
N

∗

θθ −
1

2π

∫ 2π

0

∫ 1

0

∂2φp

∂X2
dXdθ

)
, (35)

where

N
∗

θθ = a∗11

(∂V
∂θ

− ηW +
1

2
η2

(∂W
∂θ

)2)
+ a∗12

( ∂U
∂X

+
1

2
ξ2η2

(∂W
∂X

)2)
. (36)

By using Eqs. (12) and (35), one will have

Ñθθ =
1

2π

∫ 2π

0

∫ 1

0

(1

2

η2

Γ1

(∂W
∂θ

)2

−
η

Γ1

W
)
dXdθ. (37)

Substituting Eq. (29) into Eq. (37), and then integrating within the associated limitations
yield

Ñθθ =
n2η2

8Γ1

A2
1,n −

2η

πΓ1

(
A1,0 +

A3,0

3
+
A5,0

5

)
. (38)

By inserting Eqs. (32), (33), and (38) into Eq. (35), the homogeneous part of the solution
can be extracted as

φh =
1

2
X2

(n2η2

8Γ1

A2
1,n

)
. (39)

Now, the obtained solution for the Airy stress function is substituted in Eq. (27a) which
results in a general equation with three unknown parameters as unknown general coordinates. In
order to continue the solving process, the Galerkin technique is put to use including orthogonal
basis functions as follows:

gs(X, θ) =






cos(nθ) sin(πX) for s = 1,

sin(πX) for s = 2,

sin(3πX) for s = 3,

sin(5πX) for s = 4.

(40)

As a result, the following four coupled ordinary differential equations are acquired:





Ä1,n + ω2
1,nA1,n + α1A

3
1,n + α2A1,nA1,0 + α3A1,nA3,0 + α4A1,nA5,0

+ α5A1,nA
2
1,0 + α6A1,nA

2
3,0 + α7A1,nA

2
5,0

+ α8A1,nA1,0A3,0 + α9A1,nA3,0A5,0 = fn cos(Ωt),

Ä1,0 + ω2
1,0A1,0 + β1A

2
1,n + β2A1,0A

2
1,n + β3A3,0A

2
1,n = 0,

Ä3,0 + ω2
3,0A3,0 + ϑ1A

2
1,n + ϑ2A1,0A

2
1,n + ϑ3A3,0A

2
1,n + ϑ4A5,0A

2
1,n = 0,

Ä5,0 + ω2
5,0A5,0 + ψ1A

2
1,n + ψ2A3,0A

2
1,n + ψ3A5,0A

2
1,n = 0,

(41)
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where αi, βi, ϑi, and ψi are constants as functions of the material properties and geometrical
parameters.

In order to achieve the solution to the problem in a more general form, the following dimen-
sionless parameters are defined:





q1 = A1,n, q2 = A1,0, q3 = A3,0, q4 = A5,0,

f̃n =
fn

ω̂2
1,n

, t̂ = ω̂1,nt,
(42)

where ω̂1,n represents the value of ω1,n without consideration of the surface free energy effect.
As a consequence, Eq. (41) can be rewritten in the dimensionless form as follows:





q̈1 + ω2
0q1 + α1q

3
1 + α2q1q2 + α3q1q3 + α4q1q4

+ α5q1q
2
2 + α6q1q

2
3 + α7q1q

2
4 + α8q1q2q3 + α9q1q3q4 = f̃n cos(Ω̃t̂),

q̈2 + ω2
1q2 + β1q

2
1 + β2q2q

2
1 + β3q3q

2
1 = 0,

q̈3 + ω2
3q3 + ϑ1q

2
1 + ϑ2q2q

2
1 + ϑ3q3q

2
1 + ϑ4q4q

2
1 = 0,

q̈4 + ω2
5q4 + ψ1q

2
1 + ψ2q3q

2
1 + ψ3q4q

2
1 = 0,

(43)

where





(ω0, ω1, ω3, ω5, Ω̃) =
(ω1,n

ω̂1,n

,
ω1,0

ω̂1,n

ω3,0

ω̂1,n

ω5,0

ω̂1,n

Ω

ω̂1,n

)
,

(
α2, α3, α4, β1, ϑ1, ψ1

)
=

( α2

ω̂2
1,n

,
α3

ω̂2
1,n

,
α4

ω̂2
1,n

,
β1

ω̂2
1,n

,
ϑ1

ω̂2
1,n

,
ψ1

ω̂2
1,n

)
,

(α1, α5, α6, α7, α8, α9) =
( α1

ω̂2
1,n

,
α5

ω̂2
1,n

,
α6

ω̂2
1,n

,
α7

ω̂2
1,n

,
α8

ω̂2
1,n

,
α9

ω̂2
1,n

)
,

(
β2, β3, ϑ2, ϑ3, ϑ4, ψ2, ψ3

)
=

( β2

ω̂2
1,n

,
β3

ω̂2
1,n

,
ϑ2

ω̂2
1,n

,
ϑ3

ω̂2
1,n

,
ϑ4

ω̂2
1,n

,
ψ2

ω̂2
1,n

,
ψ3

ω̂2
1,n

)
.

(44)

3.1 Solution for the main vibration mode

In this case, only the terms related to the main vibration mode are considered and the other
ones are ignored. Therefore, it yields only one differential equation of motion as follows:

q̈1 + 2εξ1,nω0q̇1 + ω2
0q1 + εα1q

3
1 = εf̃n cos(Ω̃ t̂), (45)

where ε denotes the scaling parameter to scale the nonlinear terms, damping, and external
excitation. Also, in accordance with the Rayleigh dissipation function, the damping is assumed
as a function of the linear frequency of the system.

Now, with the aid of the multi-time-scale method, it is assumed that

q1(T0, T1) = q10(T0, T1) + εq11(T0, T1), (46)

where T0 = t̂ and T1 = εt̂ denote different time scales.

On the other hand, the perturbation of the excitation frequency around the linear frequency
of the system is taken into account as below,

Ω̃ = ω0 + εη, (47)

where η is the detuning parameter.
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Through inserting Eqs. (46) and (47) into Eq. (45) and employing the multi-time-scale tech-
nique, the following set of equations are obtained:

{
ε0 → D2

0q10 + ω2
0q10 = 0,

ε1 → D2
0q11 + ω2

0q11 = −2D0D1q10 − α1q
2
10 + f̃n cos(ω0T0 + ηT1),

(48)

where Dj
i =

dj

dT j
i

are various orders of time derivative.

The solution to the first part of the set of Eq. (48) can be expressed as

q10 = Aeiω0T0 +Ae−iω0T0 , (49)

where A is a complex function of T0 and T1. Also, A stands for the complex conjugate of A.

Substitution of Eq. (49) into the second part of the set of Eq. (48) leads to the following
differential equation:

D2
0q11 + ω2

0q11 = −

(
2iω0

( ∂A
∂T1

+ ξ1,nω0A
)

+ 3α1A
2A

)
eiω0T0 − α1A

3e3iω0T0

+
1

2
f̃nei(ω0T0+ηT1) + C.C., (50)

where the term of C.C. represents the complex conjugate of its previous expressions.

To eliminate the secular terms, one will have

2iω0

( ∂A
∂T1

+ ξ1,nω0A
)

+ 3α1A
2A+

1

2
f̃neiηT1 = 0. (51)

Polar functions are assumed for A(T0, T1) as follows:

A(T1) =
1

2
a(T1)e

iς(T1). (52)

By inserting Eq. (52) into Eq. (51), each of the real and imaginary parts gives





da

dT1
= −ξ1,nω0a−

1

2ω0
sin(ηT1 − ς),

a
dς

dT1
=

3α1

8ω0
a3

−
1

2ω0
cos(ηT1 − ς).

(53)

In order to extract the steady-state solution, the derivative terms on the left side of Eq. (53)
are set to be zero. Consequently, it yields





ξ1,nω0a =
1

2ω0
sin(ηT1 − ς),

ηa−
3α1

8ω0
a3 = −

1

2ω0
cos(ηT1 − ς).

(54)

As a result, one will have

η =
3α1a

2

8ω0
±

√
f̃2

n

4a2ω2
0

− ξ21,nω
2
0 . (55)
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3.2 Solution for the interaction of the main and first symmetric vibration modes

In order to enhance the accuracy of the resonance solution, at the first step, the interaction
of the only first symmetric vibration mode with the main one is taken into consideration.
Therefore, it gives





q̈1 + 2ε2ξ1,nω0q̇1 + ω2

0q1 + ε2α1q
3
1 + εα2q1q2 + ε2α5q1q

2
2 = ε2f̃n cos(Ω̃ t̂),

q̈2 + 2ε2ξ1,0ω1q̇2 + ω2
1q2 + εβ1q

2
1 + ε2β2q2q

2
1 = 0.

(56)

To apply the multi-time-scale method, it is supposed that





q1(T0, T1, T2) = q10(T0, T1, T2) + εq11(T0, T1, T2) + ε2q12(T0, T1, T2),

q2(T0, T1, T2) = q20(T0, T1, T2) + εq21(T0, T1, T2) + ε2q22(T0, T1, T2),

Ω̃ = ω0 + ε2η,

(57)

where T2 = ε2t̂.
By inserting Eq. (57) into Eq. (56) and employing the multi-time-scale technique, the sets of

equations corresponding to different orders of ε are obtained which are presented in
Appendix B.

The associated solution can be written as






D2
0q12 + ω2

0q12 = − 2iω0
∂A

∂T2
eiω0T0 − 2iξ1,nω

2
0Aeiω0T0 − 3α1A

2Aeiω0T0

−
α2β1

4ω2
0 − ω2

1

A2Aeiω0T0 +
2α2β1

ω2
1

A2Aeiω0T0

−
α2

2

(ω1 + ω0)2 − 1
ABBeiω0T0 −

α2
2

(ω1 − ω0)2 − 1
ABBeiω0T0

− α5ABBeiω0T0 +
1

2
f̃nei(ω0T0+ηT2) + N.S.T.+ C.C.,

D2
0q22 + ω2

1q22 = − 2iω1
∂B

∂T2
eiω1T0 − 2iξ1,0ω

2
1Beiω1T0 −

2α2β1

(ω1 + ω0)2 − 1
AABeiω1T0

−
2α2β1

(ω1 − ω0)2 − 1
AABeiω1T0 − β2AABeiω1T0 + N.S.T.+ C.C.,

(58)

where N.S.T. represents the non-secular terms.
Through the elimination of the secular terms, it yields





−2iω0
∂A

∂T2
−2iξ1,nω

2
0A− 3α1A

2A−
α2β1

4ω2
0−ω

2
1

A2A+
2α2β1

ω2
1

A2A−
α2

2

(ω1+ω0)2 − 1
ABB

−
α2

2

(ω1 − ω0)2 − 1
ABB − α5ABB +

1

2
f̃neiηT2 = 0,

−2iω1
∂B

∂T2
−2iξ1,0ω

2
1B−

2α2β1

(ω1+ω0)2 − 1
AAB−

2α2β1

(ω1−ω0)2−1
AAB−β2AAB = 0.

(59)

Polar functions are assumed for A(T2) and B(T2) as follows:

A(T2) =
1

2
a(T2)e

iς(T2), B(T2) =
1

2
b(T2)e

iζ(T2). (60)
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Substitution of Eq. (60) into Eq. (59) leads to the following relationships:





−
da

dT2
− ξ1,nω0a+

1

2ω0
f̃n sin(ηT2 − ς) = 0,

a
dς

dT2
−

3α1

8ω0
a3

−
α2β1

4ω0ω2
1

a3
−

α2
2

8ω0((ω1 + ω0)2 − 1)
ab2

−
α2

2

8ω0((ω1 − ω0)2 − 1)
ab2 −

α5

8ω0
ab2 +

1

2ω0
fn cos(ηT2 − ς) = 0,

−
db

dT2
− ξ1,0ω1b = 0,

b
dζ

dT2
−

α2β1

4ω1((ω1 + ω0)2 − 1)
a2b−

α2β1

4ω1((ω1 − ω0)2 − 1)
a2b−

β2

8ω1
a2b = 0.

(61)

In order to extract the steady-state solution, the derivative terms in Eq. (61) are set to be
zero. As a consequence, one will have





ξ1,nω0a =
1

2ω0
f̃n sin(ηT2 − ς),

ηa−
3α1

8ω0
a3

−
α2β1

8ω0(4ω2
0 − ω2

1)
a3 +

α2β1

4ω0ω2
1

a3 = −
1

2ω0
f̃n cos(ηT2 − ς).

(62)

Therefore, it can be concluded that

η =
(3α1

8ω0
+

α2β1

8ω0(4ω2
0 − ω2

1)
−

α2β1

4ω0ω2
1

)
a2

±

√
f̃2

n

4a2ω2
0

− ξ21,nω
2
0 . (63)

3.3 Solution for the interaction of the main, first, and third symmetric vibration

modes

In order to achieve more accuracy, the interactions of the first and third symmetric vibration
modes with the main one are taken into consideration. Therefore, it gives





q̈1+2ε2ξ1,nω0q̇1+ω2
0q1+ε2α1q

3
1 + εα2q1q2+εα3q1q3+ε2α5q1q

2
2+ε2α6q1q

2
3

+ ε2α8q1q2q3 = ε2f̃n cos(Ω̃t̂),

q̈2 + 2ε2ξ1,0ω1q̇2 + ω2
1q2 + εβ1q

2
1 + ε2β2q2q

2
1 + ε2β3q3q

2
1 = 0,

q̈3 + 2ε2ξ3,0ω3q̇3 + ω2
3q3 + εϑ1q

2
1 + ε2ϑ2q2q

2
1 + ε2ϑ3q3q

2
1 = 0.

(64)

To apply the multi-time-scale method, it is supposed that





q1(T0, T1, T2) = q10(T0, T1, T2) + εq11(T0, T1, T2) + ε2q12(T0, T1, T2),

q2(T0, T1, T2) = q20(T0, T1, T2) + εq21(T0, T1, T2) + ε2q22(T0, T1, T2),

q3(T0, T1, T2) = q30(T0, T1, T2) + εq31(T0, T1, T2) + ε2q32(T0, T1, T2),

Ω̃ = ω0 + ε2η.

(65)

By inserting Eq. (65) into Eq. (64) and employing the multi-time-scale technique, the sets of
equations corresponding to different orders of ε are obtained which are given in Appendix B.
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The associated solution can be expressed as





D2
0q12 + ω2

0q12 = − 2iω0
∂A

∂T2
eiω0T0 − 2iξ1,nω

2
0Aeiω0T0 − 3α1A

2Aeiω0T0

−
α2β1

4ω2
0 − ω2

1

A2Aeiω0T0 +
2α2β1

ω2
1

A2Aeiω0T0

−
α2

2

(ω1 + ω0)2 − 1
ABBeiω0T0 −

α2
2

(ω1 − ω0)2 − 1
ABBeiω0T0

−
α3ϑ1

4ω2
0 − ω2

3

A2Aeiω0T0 +
2α3ϑ1

ω2
3

A2Aeiω0T0

−
α2

3

(ω3 + ω0)2 − 1
ACCeiω0T0 −

α2
3

(ω3 − ω0)2 − 1
ACCeiω0T0

− α5ABBeiω0T0 − α6ACCeiω0T0 +
1

2
f̃nei(ω0T0+ηT2) + N.S.T.+ C.C.,

D2
0q22 + ω2

1q22 = − 2iω1
∂B

∂T2
eiω1T0 − 2iξ1,0ω

2
1Beiω1T0 −

2α2β1

(ω1 + ω0)2 − 1
AABeiω1T0

−
2α2β1

(ω1 − ω0)2 − 1
AABeiω1T0 − β2AABeiω1T0 + N.S.T.+ C.C.,

D2
0q32 + ω2

3q32 = − 2iω3
∂C

∂T2
eiω3T0 − 2iξ3,0ω

2
3Ceiω3T0 −

2α3ϑ1

(ω3 + ω0)2 − 1
AACeiω3T0

−
2α3ϑ1

(ω3 − ω0)2 − 1
AACeiω3T0 − ϑ2AACeiω3T0 + N.S.T.+ C.C.

(66)

Through the elimination of the secular terms, it yields






−2iω0
∂A

∂T2
−2iξ1,nω

2
0A−3α1A

2A−
α2β1

4ω2
0−ω

2
1

A2A+
2α2β1

ω2
1

A2A−
α2

2

(ω1+ω0)2 − 1
ABB

−
α2

2

(ω1 − ω0)2 − 1
ABB −

α3ϑ1

4ω2
0 − ω2

3

A2A+
2α3ϑ1

ω2
3

A2A−
α2

3

(ω3 + ω0)2 − 1
ACC

−
α2

3

(ω3 − ω0)2 − 1
ACC − α5ABB − α6ACC +

1

2
f̃neiηT2 = 0,

−2iω1
∂B

∂T2
− 2iξ1,0ω

2
1B −

2α2β1

(ω1 + ω0)2 − 1
AAB −

2α2β1

(ω1 − ω0)2 − 1
AAB − β2AAB = 0,

−2iω3
∂C

∂T2
−2iξ3,0ω

2
3C−

2α3ϑ1

(ω3+ω0)2 − 1
AAC−

2α3ϑ1

(ω3−ω0)2 − 1
AAC − ϑ2AAC = 0.

(67)

Polar functions are assumed for A(T2), B(T2), and C(T2) as follows:

A(T2) =
1

2
a(T2)e

iς(T2), B(T2) =
1

2
b(T2)e

iζ(T2), C(T2) =
1

2
c(T2)e

iχ(T2). (68)
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Substitution of Eq. (68) into Eq. (67) leads to the following relationships:





−
da

dT2
− ξ1,nω0a+

1

2ω0
f̃n sin(ηT2 − ς) = 0,

a
dς

dT2
−

3α1

8ω0
a3

−
α2β1

8ω0(4ω2
0 − ω2

1)
a3 +

α2β1

4ω0ω2
1

a3
−

α3ϑ1

8ω0(4ω2
0 − ω2

3)
a3 +

α3ϑ1

4ω0ω2
3

a3

−
α2

2

8ω0((ω1 + ω0)2 − 1)
ab2 −

α2
2

8ω0((ω1 − ω0)2 − 1)
ab2

−
α2

3

8ω0((ω3 + ω0)2 − 1)
ac2 −

α2
3

8ω0((ω3 − ω0)2 − 1)
ac2

−
α5

8ω0
ab2 −

α6

8ω0
ac2 +

1

2ω0
fn cos(ηT2 − ς) = 0,

−
db

dT2
− ξ1,0ω1b = 0,

b
dζ

dT2
−

α2β1

4ω1((ω1 + ω0)2 − 1)
a2b −

α2β1

4ω1((ω1 − ω0)2 − 1)
a2b−

β2

8ω1
a2b = 0,

−
dc

dT2
− ξ3,0ω3c = 0,

c
dχ

dT2
−

α3ϑ1

4ω3((ω3 + ω0)2 − 1)
a2c−

α3ϑ1

4ω3((ω3 − ω0)2 − 1)
a2c−

ϑ2

8ω3
a2c = 0.

(69)

In order to extract the steady-state solution, the derivative terms in Eq. (69) are set to zero.
As a consequence, one will have





ξ1,nω0a =
1

2ω0
f̃n sin(ηT2 − ς),

ηa−
3α1

8ω0
a3

−
α2β1

8ω0(4ω2
0 − ω2

1)
a3 +

α2β1

4ω0ω2
1

a3
−

α3ϑ1

8ω0(4ω2
0 − ω2

3)
a3 +

α3ϑ1

4ω0ω2
3

a3

= −
1

2ω0
f̃n cos(ηT2 − ς).

(70)

Therefore, it can be concluded that

η=
(3α1

8ω0
+

α2β1

8ω0(4ω2
0−ω

2
1)

−
α2β1

4ω0ω2
1

+
α3ϑ1

8ω0(4ω2
0 − ω2

3)
−
α3ϑ1

4ω0ω2
3

)
a2

±

√
f̃2

n

4a2ω2
0

− ξ21,nω
2
0 . (71)

3.4 Solution for the interaction of the main, first, third, and fifth symmetric

vibration modes

In order to achieve more accuracy, the interactions of the first, third, and fifth symmetric
vibration modes with the main one are taken into consideration. Therefore, it results in





q̈1 + 2ε2ξ1,nω0q̇1 + ω2
0q1 + ε2α1q

3
1 + εα2q1q2 + εα3q1q3 + εα4q1q4 + ε2α5q1q

2
2

+ ε2α6q1q
2
3 + ε2α7q1q

2
4 + ε2α8q1q2q3 + ε2α9q1q3q4 = ε2f̃n cos(Ω̃ t̂),

q̈2 + 2ε2ξ1,0ω1q̇2 + ω2
1q2 + εβ1q

2
1 + ε2β2q2q

2
1 + ε2β3q3q

2
1 = 0,

q̈3 + 2ε2ξ3,0ω3q̇3 + ω2
3q3 + εϑ1q

2
1 + ε2ϑ2q2q

2
1 + ε2ϑ3q3q

2
1 + ε2ϑ4q4q

2
1 = 0,

q̈4 + 2ε2ξ5,0ω5q̇4 + ω2
5q4 + εψ1q

2
1 + ε2ψ2q2q

2
1 + ε2ψ3q4q

2
1 = 0.

(72)
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To apply the multi-time-scale method, it is supposed that






q1(T0, T1, T2) = q10(T0, T1, T2) + εq11(T0, T1, T2) + ε2q12(T0, T1, T2),

q2(T0, T1, T2) = q20(T0, T1, T2) + εq21(T0, T1, T2) + ε2q22(T0, T1, T2),

q3(T0, T1, T2) = q30(T0, T1, T2) + εq31(T0, T1, T2) + ε2q32(T0, T1, T2),

q4(T0, T1, T2) = q40(T0, T1, T2) + εq41(T0, T1, T2) + ε2q42(T0, T1, T2),

Ω̃ = ω0 + ε2η.

(73)

By inserting Eq. (73) into Eq. (72) and employing the multi-time-scale technique, the sets of
equations corresponding to different orders of ε are obtained as presented in Appendix B. The
associated solution can be written as





D2
0q12 + ω2

0q12 = − 2iω0
∂A

∂T2
eiω0T0 − 2iξ1,nω

2
0Aeiω0T0 − 3α1A

2Aeiω0T0

−
α2β1

4ω2
0 − ω2

1

A2Aeiω0T0 +
2α2β1

ω2
1

A2Aeiω0T0

−
α2

2

(ω1 + ω0)2 − 1
ABBeiω0T0 −

α2
2

(ω1 − ω0)2 − 1
ABBeiω0T0

−
α3ϑ1

4ω2
0 − ω2

3

A2Aeiω0T0 +
2α3ϑ1

ω2
3

A2Aeiω0T0

−
α2

3

(ω3 + ω0)2 − 1
ACCeiω0T0 −

α2
3

(ω3 − ω0)2 − 1
ACCeiω0T0

−
α4ψ1

4ω2
0 − ω2

5

A2Aeiω0T0 +
2α4ψ1

ω2
5

A2Aeiω0T0

−
α2

4

(ω5 + ω0)2 − 1
AFF eiω0T0 −

α2
4

(ω5 − ω0)2 − 1
AFF eiω0T0

− α5ABBeiω0T0 − α6ACCeiω0T0 − α7AFF eiω0T0

+
1

2
f̃nei(ω0T0+ηT2) + N.S.T.+ C.C.,

D2
0q22 + ω2

1q22 = − 2iω1
∂B

∂T2
eiω1T0 − 2iξ1,0ω

2
1Beiω1T0 −

2α2β1

(ω1 + ω0)2 − 1
AABeiω1T0

−
2α2β1

(ω1 − ω0)2 − 1
AABeiω1T0 − β2AABeiω1T0 + N.S.T.+ C.C.,

D2
0q32 + ω2

3q32 = − 2iω3
∂C

∂T2
eiω3T0 − 2iξ3,0ω

2
3Ceiω3T0 −

2α3ϑ1

(ω3 + ω0)2 − 1
AACeiω3T0

−
2α3ϑ1

(ω3 − ω0)2 − 1
AACeiω3T0 − ϑ2AACeiω3T0 + N.S.T.+ C.C.,

D2
0q42 + ω2

5q42 = − 2iω5
∂F

∂T2
eiω5T0 − 2iξ5,0ω

2
5F eiω5T0 −

2α4ψ1

(ω5 + ω0)2 − 1
AAF eiω5T0

−
2α4ψ1

(ω5 − ω0)2 − 1
AAF eiω5T0 − ψ2AAF eiω5T0 + N.S.T.+ C.C.

(74)
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Through the elimination of the secular terms, it yields




−2iω0
∂A

∂T2
−2iξ1,nω

2
0A−3α1A

2A−
α2β1

4ω2
0−ω

2
1

A2A+
2α2β1

ω2
1

A2A−
α2

2

(ω1 + ω0)2 − 1
ABB

−
α2

2

(ω1 − ω0)2 − 1
ABB −

α3ϑ1

4ω2
0 − ω2

3

A2A+
2α3ϑ1

ω2
3

A2A−
α2

3

(ω3 + ω0)2 − 1
ACC

−
α2

3

(ω3 − ω0)2 − 1
ACC −

α4ψ1

4ω2
0 − ω2

5

A2A+
2α4ψ1

ω2
5

A2A−
α2

4

(ω5 + ω0)2 − 1
AFF

−
α2

4

(ω5 − ω0)2 − 1
AFF − α5ABB − α6ACC − α7AFF +

1

2
f̃neiηT2 = 0,

−2iω1
∂B

∂T2
− 2iξ1,0ω

2
1B −

2α2β1

(ω1 + ω0)2 − 1
AAB −

2α2β1

(ω1 − ω0)2 − 1
AAB − β2AAB = 0,

−2iω3
∂C

∂T2
− 2iξ3,0ω

2
3C −

2α3ϑ1

(ω3 + ω0)2 − 1
AAC −

2α3ϑ1

(ω3 − ω0)2 − 1
AAC − ϑ2AAC = 0,

−2iω5
∂F

∂T2
− 2iξ5,0ω

2
5F −

2α4ψ1

(ω5 + ω0)2 − 1
AAF −

2α4ψ1

(ω5 − ω0)2 − 1
AAF − ψ2AAF = 0.

(75)

Polar functions are assumed for A(T2), B(T2), C(T2), and F (T2) as follows:





A(T2) =
1

2
a(T2)e

iς(T2), B(T2) =
1

2
b(T2)e

iζ(T2),

C(T2) =
1

2
c(T2)e

iχ(T2), F (T2) =
1

2
f(T2)e

iδ(T2).

(76)

Substitution of Eq. (76) into Eq. (75) leads to the following relationships:





−
da

dT2
− ξ1,nω0a+

1

2ω0
f̃n sin(ηT2 − ς) = 0,

a
dς

dT2
−

3α1

8ω0
a3

−
α2β1

8ω0(4ω2
0 − ω2

1)
a3 +

α2β1

4ω0ω2
1

a3
−

α3ϑ1

8ω0(4ω2
0 − ω2

3)
a3 +

α3ϑ1

4ω0ω2
3

a3

−
α4ψ1

8ω0(4ω2
0 − ω2

5)
a3 +

α4ψ1

4ω0ω2
5

a3
−

α2
2

8ω0((ω1 + ω0)2 − 1)
ab2

−
α2

2

8ω0((ω1 − ω0)2 − 1)
ab2 −

α2
3

8ω0((ω3 + ω0)2 − 1)
ac2

−
α2

3
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In order to extract the steady-state solution, the derivative terms in Eq. (77) are set to zero.
As a consequence, one will have


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(78)

Therefore, it can be concluded that
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4 Results and discussion

In this section, the frequency-response and amplitude-response associated with the nonlinear
primary resonance of a silicon nanoshell are given corresponding to various interaction between
vibration modes. The mechanical properties and surface elastic constants of silicon material
are given in Table 1. It is assumed that L/R = 2 which results in m = 1 and n = 5.

Table 1 Material properties of a nanoshell made of silicon[44–45]

Variable Value

E/GPa 210

v 0.24

µs/(N·m−1) −2.774

λs/(N·m−1) −4.488

τs/(N·m−1) 0.604 8

First, the validity of the present solution methodology is checked. For this purpose, the
linear natural frequencies of a single-walled carbon nanotube modeled via the classical shell
theory are obtained and compared with those reported by Zeighampour and Tadi Beni[46] using
the Navier-type of the exact solution. As tabulated in Table 2, excellent agreement is found
which confirms the validity and accuracy of the current study.

Table 2 Comparison of the dimensionless linear frequencies of a single-walled carbon nanotube cor-
responding to different mode numbers (h/R = 0.02, R = 2.32 nm, E = 1.06 TPa, and
L/R = 5)

Natural frequency Ref. [63] Present study

m = 1, n = 1 0.196 86 0.197 68

m = 2, n = 2 0.256 32 0.254 37

m = 3, n = 3 0.277 30 0.277 12

m = 4, n = 4 0.301 78 0.302 23

m = 5, n = 5 0.343 75 0.347 81

The stability analysis is performed for the nonlinear primary resonance of a soft harmonic
excited nanoshell including the interaction between all considered vibration modes (the main
mode and the first, third, and fifth symmetric modes). In Figs. 2 and 3, the frequency-response
and amplitude-response are plotted, respectively, in which the stable and unstable parts of the
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responses and the associated bifurcation points are indicated. It is revealed that for very high
and very low values of the detuning parameter, the structure is stable. Through increment in the
value of the detuning parameter, the deflection of the structure increases until approaching the
first saddle-node bifurcation point. After that, the structure becomes unstable as by decreasing
the value of the detuning parameter, the shell deflection increases. Thin increment continues up
to a peak representing the second saddle-node bifurcation point. Subsequently, the structure
becomes stable again in such a way by increasing the detuning parameter, while the deflection
of nanoshell reduces.

-

-

Fig. 2 Stability analysis for the frequency-response associated with the nonlinear primary resonance
of a nanoshell incorporating the main mode and 1st, 3rd, and 5th symmetric modes

-

-

Fig. 3 Stability analysis for the amplitude-response associated with the nonlinear primary resonance
of a nanoshell incorporating the main mode and 1st, 3rd, and 5th symmetric modes

Figure 4 represents the influence of different vibration mode interactions on the nonlinear free
vibration behavior of a silicon nanoshell in the presence of surface free energy effects. It is seen
that by considering only the main vibration mode, the plot curves to the right side representing
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a hardening response. However, by adding the interaction between the first symmetric mode
and the main mode, the curvature to the right side reduces. After that, the addition of higher
symmetric modes including the third and fifth symmetric modes, the frequency-response plot
curves to the left side which shows a softening behavior.

Fig. 4 Influence of the interaction between vibration modes on the frequency-response associated
with the nonlinear free vibrations of a nanoshell

In Fig. 5, the influence of various interactions between vibrations mode on the frequency-
response and amplitude-response associated with the nonlinear primary resonance of a silicon
nanoshell is depicted incorporating surface free energy effects. It is found that by adding the
interaction between higher symmetric vibrations modes (the third and fifth ones), the jump
phenomenon tends to the left side which indicates a softening behavior. Consequently, for a
negative value of the detuning parameter, the amplitude-response including only the interaction
between the main mode and the first symmetric mode has no unstable part.

Fig. 5 Influence of the interaction between vibration modes on the nonlinear primary resonance of
a nanoshell under harmonic excitation, (a) the frequency-response and (b) the amplitude-
response

Figure 6 illustrates the surface free energy effects on the frequency-response and amplitude-
response of silicon nanoshells with different shell thicknesses including the interaction between
vibration modes. It is observed that by increasing the shell thickness, the surface effects diminish
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and the responses tend to the classical counterparts. It is indicated that the surface free energy
effects cause to reduce the height of the jump phenomenon. Also, by taking the surface effects
into account, the shell deflection as well as the force amplitude associated with both of the
bifurcation points enhances.

Fig. 6 Classical and non-classical nonlinear primary resonance responses of a nanoshell including
the interaction between vibration modes, (a) the frequency-response and (b) the amplitude-
response

The influence of surface elastic constants on the frequency-response and amplitude-response
associated with the nonlinear primary resonance of a soft harmonic excited nanoshell is shown
in Fig. 7 including the interaction between the main vibration mode and the symmetric modes.
It can be seen that a positive value of the surface elastic constants leads to a decrease in the
height of the jump phenomenon as well as the shell deflection associated with both of the
bifurcation points, while a negative one causes to increase them.

Fig. 7 Influence of the surface elastic constants on the nonlinear primary resonance of a nanoshell
including the interaction between vibration modes, (a) the frequency-response and (b) the
amplitude-response

In Fig. 8, the influence of the surface residual stress on the frequency-response and amplitude-
response associated with the nonlinear primary resonance of a soft harmonic excited nanoshell
is displayed including the interaction between the main vibration mode and the symmetric
modes. It is found that a positive value of the surface residual stress makes a reduction in
the height of the jump phenomenon as well as the force amplitude associated with both of the
bifurcation points, while a negative one leads to an increase in them.
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Fig. 8 Influence of the surface residual stress on the nonlinear primary resonance of a nanoshell
including the interaction between vibration modes, (a) the frequency-response and (b) the
amplitude-response

Figures 9 and 10 demonstrate the influence of the interaction between vibration modes on
the nonlinear primary resonance characteristics of a soft harmonic excited nanoshell correspond-
ing to various values of surface elastic constants and surface residual stress, respectively. It is
revealed that for both of the positive and negative values of the surface parameters, by adding
the interaction between higher symmetric vibration modes with the main mode, the hardening
behavior changes to the softening one. As a result, for a negative value of the detuning param-
eter, the amplitude-response plot including only the interaction between the first symmetric
mode and the main mode has no unstable part. However, by taking the third and fifth sym-
metric modes into consideration, the unstable part with the two saddle-node bifurcation points
can be observed.

Fig. 9 Influence of the interaction between vibration modes on the nonlinear primary resonance
response corresponding to different surface elastic constants, (a) λs + 2µs = −10 N/m, (b)
λs + 2µs = 0 N/m, and (c) λs + 2µs = 10 N/m
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Fig. 10 Influence of the interaction between vibration modes on the nonlinear primary resonance
response corresponding to different surface residual stresses, (a) τs = −1 N/m, (b) τs =
0 N/m, and (c) τs = −1 N/m

5 Conclusions

In this investigation, for the first time, the nonlinear primary resonance response of soft
harmonic excited nanoshells including the surface free energy effects and interaction between
vibration modes was studied. To the end, the Gurtin-Murdoch theory of elasticity was imple-
mented into the classical shell theory to develop a non-classical shell model with the capability
to capture the surface effects. Afterward, with the aid of the multi-time-scale method, the
size-dependent nonlinear governing differential equations of motion were solved analytically
corresponding to various interactions between the main mode and symmetric vibration modes.

It was displayed that by adding the interaction between higher symmetric vibrations modes
(the third and fifth ones), the jump phenomenon tends to shift from the hardening response to
the softening one. Consequently, for a negative value of the detuning parameter, the amplitude-
response including only the interaction between the main mode and the first symmetric mode
has no unstable part. Furthermore, it was found that by increasing the shell thickness, the
surface effects diminish and the responses tend to the classical counterparts. It was seen that
the surface free energy effects cause to reduce the height of the jump phenomenon. Also,
by taking the surface effects into account, the shell deflection as well as the force amplitude
associated with both of the bifurcation points enhances. Additionally, it was observed that
a positive value of the surface residual stress makes a reduction in the height of the jump
phenomenon as well as the force amplitude associated with both of the bifurcation points,
while a negative one leads to increasing them.
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Appendix A

The parameters of ci(t) with i = 1, 2, · · · , 10 are presented as follows:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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Appendix B

The following sets of equations corresponding to different orders of ε of the main and first symmetric
vibration modes are obtained:

ε0 →

(
D2

0q10 + ω2
0q10 = 0,

D2
0q20 + ω2

1q20 = 0,
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ε1 →

(
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2
10.

The following sets of equations corresponding to different orders of ε of the main, first, and third
symmetric vibration modes are obtained:
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The following sets of equations corresponding to different orders of ε of the main, first, third, and
fifth symmetric vibration modes are obtained:
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1q21 = −2D0D1q20 − β1q
2
10,

D2
0q31 + ω2

3q31 = −2D0D1q30 − ϑ1q
2
10,

D2
0q41 + ω2

5q41 = −2D0D1q40 − ψ1q
2
10,

ε2 →

8
>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

D2
0q12 + ω2

0q12 = −2D0D1q11 −D2
1q10 − 2D0D1q10 − 2ξ1,nω0D0q10 − α1q

3
10

−α2q10q21 − α2q20q11 − α3q10q31 − α3q30q11 − α4q10q41

−α4q40q11 − α5q10q
2
20 − α6q10q

2
30 − α7q10q

2
40

−α8q10q20q30 − α9q10q30q40 +
1

2
efnei(ω0T0+ηT2),

D2
0q22 + ω2

1q22 = −2D0D1q21 −D2
1q20 − 2D0D1q20 − 2ξ1,0ω1D0q20 − 2β1q10q11

−β2q20q
2
10 − β3q30q

2
10,

D2
0q32 + ω2

3q32 = −2D0D1q31 −D2
1q30 − 2D0D1q30 − 2ξ3,0ω3D0q30 − 2ϑ1q10q11

−ϑ2q20q
2
10 − ϑ3q30q

2
10 − ϑ4q40q

2
10,

D2
0q42 + ω2

5q42 = −2D0D1q41 −D2
1q40 − 2D0D1q40 − 2ξ5,0ω5D0q40 − 2ψ1q10q11

−ψ2q30q
2
10 − ψ3q40q

2
10.


