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Abstract The nonlinear behaviors and vibration reduction of a linear system with a
nonlinear energy sink (NES) are investigated. The linear system is excited by a harmonic
and random base excitation, consisting of a mass block, a linear spring, and a linear viscous
damper. The NES is composed of a mass block, a linear viscous damper, and a spring
with ideal cubic nonlinear stiffness. Based on the generalized harmonic function method,
the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response
of the system. The path integral method based on the Gauss-Legendre polynomial is used
to achieve the numerical solutions. The performance of vibration reduction is evaluated
by the displacement and velocity transition probability densities, the transmissibility
transition probability density, and the percentage of the energy absorption transition
probability density of the linear oscillator. The sensitivity of the parameters is analyzed
for varying the nonlinear stiffness coefficient and the damper ratio. The investigation
illustrates that a linear system with NES can also realize great vibration reduction under
harmonic and random base excitations and random bifurcation may appear under different
parameters, which will affect the stability of the system.
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1 Introduction

Malatkar and Nayfeh[1] first proposed that adding nonlinearity to a traditional linear vibra-
tion reduction device could effectively increase the bandwidth of the vibration suppression and
improve the robustness of the vibration reduction system. Recently, the principle of targeted
energy transfer has been prospering as a method of research to achieve the energy transfer
from a linear oscillator to a nonlinear oscillator, i.e., the nonlinear energy sink (NES). It is a
representative passive vibration reduction device, which is able to achieve the targeted energy
transfer. The NES is an effective device to reduce vibration passively[2–3].

In the past years, the steady-state response of multi-degree-of-freedom systems under har-
monic excitations has been predicted by numerical simulation methods[4–10] and approximate
analytical methods[4,11–15], e.g., the complexification averaging method[4,6,8,11,13–18] and the
harmonic balance method[19–22].

Currently, the vibration reduction efficiency of the linear system coupled with an NES sys-
tem under complex external excitations is a hot research topic for scholars at home and abroad.
Gendelman et al.[23] investigated the dynamic response of a small mass with a nonlinear damper
under impact loading. Kerschen et al.[24–25] studied the vibration reduction mechanism of a
two-degree-of-freedom system with an NES. Tsakirtzi et al.[26] investigated the dynamic be-
havior of the multi-degree-of-freedom system coupled with an NES. Shiroky and Gendelman[27]

investigated the dynamic behavior of a single degree-of-freedom system with an NES under
parametric excitations. Starosvetsky and Gendelman[28] verified the vibration reduction effect
of a single degree-of-freedom system coupled with an NES under narrow-band random excita-
tions with a numerical method. Xiong et al.[29] simply sketched out the response regimes of a
single degree-of-freedom system coupled with an NES under a narrow-band random excitation.
Huang et al.[30] analyzed the steady-state response, random jump, and bifurcation phenomenon
of the Duffing system under harmonic and white noise excitations. Yan et al.[31] studied the
dynamic behavior of an axially moving beam excited by harmonic and parametric excitations
with the Galerkin truncation method. Zhao et al.[32] studied the vehicle random vibration with
the pseudo-excitation method. Su et al.[33] used the explicit time-domain method to analyze a
coupled vehicle-bridge system.

However, the excitations in the aforementioned studies are the most common random ones,
and no efficiency of vibration reduction under the excitations has been interpreted sufficiently
and intuitively. In view of the above problems, in this paper, the nonlinear behaviors and
vibration reduction of a linear system with an NES are investigated. The paper is arranged
as follows. In Section 2, a simple model of a linear system with an NES is presented, and the
steady-state Fokker-Planck-Kolmogorov equation is determined by the method of generalized
harmonic function. In Section 3, the path integral method based on the Gauss-Legendre polyno-
mial is used to calculate the numerical solutions of the steady-state Fokker-Planck-Kolmogoov
equation. In Section 4, the responses and evaluation of vibration reduction are simulated under
some given parameters. In Section 5, the nonlinear stiffness coefficient and damper ratio are
proven to have a significant effect on the vibration reduction. At last, in Section 6, the main
conclusions are summarized.

2 A linear single degree-of-freedom system coupled with an NES

Consider a linear system with an NES under a harmonic and random excitation (see Fig. 1).
The model consists of a mass block m1, a linear stiffness k1, and a linear vicious damper c1.
The harmonic and random excitation is u(t) = Au sin(ωt) +W (t). The NES is composed of a
mass block m2, a spring with an ideal cubic nonlinear stiffness k2, and a linear vicious damper
c2.

The model moves in the horizontal direction, and the effects of gravity and friction are
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Fig. 1 A single degree-of-freedom system coupled with an NES

neglected. According to the second Newton’s law, the governing dynamic equations are as
follows:






m1ẍ1 + c1ẋ1 + k1x1 + c2(ẋ1 − ẋ2) + k2(x1 − x2)
3 = c1u̇+ k1u,

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1)
3 = 0,

(1)

where x1 and x2 are the displacements of the mass blocks m1 and m2, respectively.

The dimensionless form of Eq. (1) can be obtained as follows:






ÿ1 + ζ1ẏ1 + y1 + ζ2(ẏ1 − ẏ2) + β(y1 − y2)
3 = ft sin(γτ ) + ξ(t),

εÿ2 + ζ2(ẏ2 − ẏ1) + β(y2 − y1)
3 = 0,

(2)

where y1 is the dimensionless displacement of the mass block m1, y2 is the dimensionless dis-
placement of the mass block m2, τ is the dimensionless time, and

y1 =
x1

l
, y2 =

x2

l
, u0 =

u

l
, τ = ω0t. (3)

In the above equations, u0 is the dimensionless displacement of the base, l represents the
elongation or compression when the linear spring is subjected to an external force of 1 kN. The
natural frequency of the linear oscillator ω0, the mass ratio ε, the damper ratios of the linear
oscillator ζ1 and the NES oscillator ζ2, the ideal cubic nonlinear stiffness β, the amplitude of
the harmonic excitation ft, and the frequency ratio γ are expressed as follows:






ω0 =

√
k1

m1
, ε =

m2

m1
, ζ1 =

c1
m2ω0

,

ζ2 =
c2

m2ω0
, β =

k2l
2

m1ω2
0

, ft =
Au

k1l
, γ =

ω

ω0
.

(4)

The random excitation is concretized with the Gaussian white noise, whose strength is two-
dimensional, and the autocorrelation function is E(ξ(t)ξ(t + τ)) = δ(τ) in which δ(τ) is the
Dirac delta function.

Some new state variables are introduced as follows:

q1 = y1, q2 = y1 − y2, p1 = q̇1, p2 = q̇2. (5)
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Substitute Eq. (5) into Eq. (2). Then, after applying a few simple algebraic transformations,
we can convert Eq. (2) into the following state-space equation:

ṗi + gi(qi) = −εhi(pi; qi) + ξ(t). (6)

Based on the generalized harmonic function method, the solution to Eq. (6) can be assumed
to be as follows:

qi(t) = Ai(t) cosφi(t), pi(t) = −Ai(t)υi(Ai, φi) sinφi(t), φi(t) = αi(t) + ψi(t), (7)

where υi = (Ai, φi) is the instantaneous angular frequency of the ith oscillator. It converts a
function of the generalized displacement and velocity into a function of magnitude and phase
as follows:

υi(Ai, φi) =
dαi

dt
=

√
2(Ui(Ai) − Ui(Ai cosφi))

A2
i sin2 φi

. (8)

Substitute Eq. (7) into Eq. (6). Then, we can obtain the standard random Itô differential
equation as follows:






dA1

dt
= F11(A1, φ1, ωt) +H11ξ(t),

dA2

dt
= F21(A2, φ2, ωt) +H21ξ(t),

dφ1

dt
= F12(A1, φ1, ωt) +H12ξ(t),

dφ2

dt
= F22(A2, φ2, ωt) +H22ξ(t),

(9)

where





F11 = − εA1

g1(A1)
h1υ1 sinφ1, H11 = − A1

g1(A1)
υ1 sinφ1,

F21 = − εA2

g2(A2)
h2υ2 sinφ2, H21 = − A2

g2(A2)
υ2 sinφ2,

F12 = − ε

g1(A1)
h1υ1 cosφ1, H12 = − 1

g1(A1)
υ1 cosφ1,

F22 = − ε

g2(A2)
h2υ2 cosφ2, H22 = − 1

g2(A2)
υ2 cosφ2.

(10)

According to the Itô differential law, since the amplitude Ai is the slow variable and the
phase φi is the fast variable, if the phases are averaged over time, we can denote the deterministic
random average Itô differential equation for amplitude and phase difference as follows:






dA1 = m11(A1, A2,Θ)dt+ σ11dB(t),

dA2 = m21(A1, A2,Θ)dt+ σ21dB(t),

dΘ = m12(A1, A2,Θ)dt+ σ12dB(t),

(11)

where m11, m21, and m12 are drift coefficients, and σ11, σ21, and σ12 are diffusion coefficients.
B(t) is a standard Wiener process.

The phase difference can be expressed as follows:

Θ = εστ1 − φ1. (12)
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The averaged drift coefficients can be expressed as follows:






m11 = F11 +D
(
H11

∂H11

∂A1
+H12

∂H11

∂φ1

)
,

m21 = F21 +D
(
H21

∂H21

∂A2
+H22

∂H21

∂φ2

)
,

m12 = F12 +D
(
H11

∂H12

∂A1
+H12

∂H12

∂φ1

)
.

(13)

The averaged diffusion coefficients can be expressed as follows:






b111 = 2DH2
11,

b211 = 2DH2
21,

b112 = 2DH11H12,

b122 = 2DH2
12.

According to Eq. (11), the steady-state Fokker-Planck-Kolmogorov equation can be estab-
lished as follows:

∂p

∂t
= − ∂(m11p)

∂A1
− ∂(m21p)

∂A2
− ∂(m12p)

∂Θ

+
1

2

∂2(b111p)

∂A2
1

+
1

2

∂2(b211p)

∂A2
2

+
1

2

∂2(b122p)

∂Θ2
= 0, (14)

where A1, A2, and Θ constitute a three-dimensional (3D) state vector X(t), m11, m21, and m12

are 3D averaged drift coefficient function vectors, and b111, b211, and b122 are averaged diffusion
coefficient matrix functions.

3 Solving the steady-state Fokker-Planck-Kolmogorov equation

It is known that for the general linear systems and some specific single degree-of-freedom
nonlinear systems, e.g., the Duffing system and the Van der Pol system, it is easy to get the
exact stationary solutions to a transition probability density function; but for complex multi-
degree-of-freedom nonlinear systems, it is difficult to get the exact stationary solutions. The
transition probability density function can be used to indicate the probability of a stochastic
variable appearing at a certain time after a period of time. In terms of vibration reduction,
if the transition probability density of the system at the equilibrium position is larger, the
performance of vibration reduction will be better. The approximate numerical solution to a
transition probability density function can only be obtained by a numerical method, e.g., the
finite difference method[34], the cell mapping method[37], and the finite element method[35–36].
In this paper, a new revised path integral method is adopted to calculate the numerical solution
to the steady-state Fokker-Planck-Kolmogorov equation of our proposed system.

The revised path integral method replaces some complex interpolation integral functions
with some discrete Gaussian integration points, and enhances the computational efficiency in
solving the high-dimensional high-order partial differential equations without boundary singu-
larity.

In a Markov process, the following equation, called the transition probability density func-
tion, can be used to describe the probability of the stochastic variables passing a period of time
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s at the moment t:

P (X(t+ s) = j|X(t) = i) = Pij(t, t+ s). (15)

Then, Eq. (14) can be rewritten as follows:

∂p(X, t
∣∣X0, t0 )

∂t

= − ∂(mij(X, t
∣∣X0, t0 )p(X, t

∣∣X0, t0 ))

∂xi

+
1

2

∂(bijk(X, t
∣∣X0, t0 )p(X, t

∣∣X0, t0 ))

∂xi∂xj

. (16)

Given an initial probability condition and some appropriate boundary conditions as follows:

lim
t→0

p(X, t
∣∣X0, t0 ) = δ(X −X0), (17)

p(Xi, t) → 0 as {X} → ±∞, (18)

the transition probability density function can be used to completely define the statistical
steady-state solution.

According to the initial probability condition and the appropriate boundary conditions, the
solution to the transition probability density function can be expressed as follows:

p(X, t) =

∫

Ω

p(X, t
∣∣X0, t0 )p(X0, t0)dX, (19)

where Ω is the range of the state vector for X(t). The interval [t0, t] is divided into M sub-
intervals, and the probability density function can be derived as follows:

p(X, t) =

∫

Ω

p(X, t|XM−1, tM−1)dX
M−1 ×

∫

Ω

p(XM−1, tM−1|XM−2, tM−2)dX
M−2 × · · ·

×
∫

Ω

p(X2, t2|X1, t1)dX
1 ×

∫

Ω

p(X1, t1|X0, t0)dX
0. (20)

The integral equation (20) can be discretized at Gauss-Legendre orthogonal points and embod-
ied as follows:

p(xi, ti) =

K∑

k=1

zk

2

L∑

l=1

cklp(x
(i−1)
kl , ti−1)p(x

i, ti|x(i−1)
kl , ti−1), (21)

where K is the quantity of the sub-intervals, L is the quantity of the Gauss-Legendre orthogonal
points in sub-intervals, zk is the length of the sub-intervals, each xkl is a location of a Gauss-
Legendre orthogonal point, and ckl is the corresponding weight coefficient. According to the
initial conditions and boundary conditions, Eq. (21) can be used to calculate the transition
probability density function of some point in a certain time point. Given some point in a
previous time point, it is convenient to calculate some point in a next time point. However,
only the following transition probability density function at the Gauss-Legendre orthogonal
points is essential:

p(xi
mn, ti) =

K∑

k=1

zk

2

L∑

l=1

cklp(x
(i−1)
kl , ti−1)p(x

i
mn, ti|x

(i−1)
kl , ti−1), (22)

where m = 1, 2, · · · ,K, and n = 1, 2, · · · , L.
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It is worth observing that it is generally assumed that the short-term probability density
function is approximately Gaussian, but the approximation of the short-term transition prob-
ability density function is different at any Gauss-Legendre orthogonal points. Sun and Hsu[38]

proposed to use the moment equations to derive the first moment and the second moment of
the short-term transition probability density function. This method does not require a step
size. However, the moment equations of nonlinear stochastic systems are usually infinite and
non-closed. Based on the Gaussian truncation method, the short-term displacement and ve-
locity transition probability density functions of the linear and NES oscillators and their joint
transition probability density functions can be presented as follows:

p(xi
mn, ti|xi−1

kl , ti−1) =
1√

2πσ(ti)
exp

(
− (xi

mn −m1(ti))
2

2σ2(ti)

)
, (23)

p(xi
mn, y

i
mnti|xi−1

kl , yi−1
kl , ti−1)

=
1√

2πσ1(ti)σ2(ti)
√

1 − ρ12(ti)
exp(−((σ2

2(ti)(x
i
mn −m10(ti))

2

− 2σ1(ti)σ2(ti)(x
i
mn −m10(ti))(y

i
mn −m01(ti))

+ σ2
1(ti)(y

i
mn −m01(ti))

2))(2σ2
1(ti)σ

2
2(ti)(1 − ρ12(ti))

2)), (24)

where
{
mij = E[X iẊj], σ2

1(ti) = m20(ti) − (m10(ti))
2,

σ2
2(ti) = m02(ti) − (m01(ti))

2, σ1(ti)σ2(ti)ρ12(ti) = m11(ti) −m10(ti)m01(ti).
(25)

Substitute Eq. (25) into Eqs. (23) and (24). Then, the global transition probability density
function can be obtained

4 Simulation

The reduced interval for the path integral method is selected from −0.5 to 0.5, and is divided
into 500 consistent sub-intervals with 10 Gauss-Legendre orthogonal points in each sub-interval,
i.e., K = 500, zk = 1/500, and L = 10. The time step is 0.01.

In order to better evaluate the performance of the vibration reduction of the system under
the harmonic and random excitation, the transmissibility transition probability density defined
by the standard deviation ratio of the passed force and the excitation and the percentage of
the energy absorption transition probability density of the linear oscillator are used to evaluate
the performance of the vibration reduction of the system.

T =
Sd(y1 + ζ1ẏ1)

D +RMS(ft sin(γτ))
, (26)

ηp = A/B, (27)

where





A = Sd

(1

2
m1ẏ

2
1 +

1

2
ω2

0y
2
1 +

∫ t

0

c1ẏ
2
1(t)dt

)
,

B = Sd

(1

2
m1ẏ

2
1 +

1

2
ω2

0y
2
1 +

∫ t

0

c1ẏ
2
1(t)dt+

1

2
m2ẏ

2
2

+
1

2
kn(y1 − y2)

4 +

∫ t

0

c1(ẏ
2
1(t) − ẏ2

2(t))dt
)
.



8 Jiren XUE, Yewei ZHANG, Hu DING, and Liqun CHEN

Table 1 Parameters and their values

Parameter Symbol Value

Nonlinear stiffness coefficient k2 300

Damper ratio of the linear oscillator ζ1 0.1

Damper ratio of the NES oscillator ζ2 0.15

Mass ratio ε 0.1

Harmonic excitation amplitude ft 10

Frequency ratio γ 0.5

Strength of Gaussian white noise D 0.01

Figures 2 and 3 depict the transition probability densities of the displacement and velocity
of the linear and the NES oscillators. The numerical result shows that the peak of the linear
oscillator coupled with the NES in the equilibrium is higher than the peak of a two-degree-of-
freedom linear system.

Fig. 2 Transition probability densities of the displacement and velocity of the linear oscillator

Fig. 3 Transition probability densities of the displacement and velocity of the NES oscillator

Figure 4 shows the joint transition probability densities of the displacement and velocity of
the linear and NES oscillators. From Fig. 4, we can see a typical response exhibiting a random
jump phenomenon of the linear system coupled with the NES under the joint harmonic and
Gaussian white noise. The essence of random jump is a response transition, and is near the
equilibrium state.
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Fig. 4 Combined transition probability densities of the displacement and velocity of the linear and
NES oscillators (color online)

Figures 5 and 6 reveal the transmissibility transition probability density and the energy
absorption percentage of the linear oscillator transition probability density. From the figures,
it can be seen that the transition probability density of the linear oscillator coupled with the
NES is larger than that of the two-degree-of-freedom linear system when the transmissibility
and the energy absorption percentage of the linear oscillator are close to zero.

Fig. 5 Transition probability densities of transmissibility and energy percentage

5 Parameters analysis

In order to discuss and analyze the effects of the vibration reduction performance of the
linear system coupled with the NES under harmonic and Gaussian white noise excitations
with different parameters, the effects of the nonlinear stiffness k2 and the damper ratio ζ2 are
investigated.

Figures 6 and 7 show the probability densities of the displacement and velocity of the linear
and NES oscillators except the difference in the nonlinear stiffness. It can be seen that in all
four cases shown in Figs. 6 and 7, the velocity transition probability density is bimodal, which
indicates that random jump may occur. However, there is still a slight difference between
them. The two peaks are slightly separated, and jump occurs more likely with the increase in
the nonlinear stiffness.
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Fig. 6 Transition probability densities of the displacement and velocity of the linear oscillator except
the difference in the nonlinear stiffness

Fig. 7 Transition probability densities of the displacement and velocity of the NES oscillator except
the difference in the nonlinear stiffness

Figure 8 presents the transition probability densities of the transmissibility and energy
absorption percentage of the linear oscillator except the difference of the nonlinear stiffness. It
can be seen that the transition probability density increases with the increase in the nonlinear
stiffness when the transmissibility and the energy absorption percentage of the linear oscillator
approaches to zero.

Fig. 8 Transition probability densities of the transmissibility and energy percentage except the dif-
ference in the nonlinear stiffness
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Figures 9 and 10 present the probability densities of the displacement and velocity of the
linear and NES oscillators except the difference of the damper ratio. In all four cases shown
in Figs. 9 and 10, the velocity transition probability density is bimodal. Not only it is possible
for the occurrence of random jump, but also there is a large difference between them. The two
peaks are obviously separated, and jump occurs more likely with the increase in the damper
ratio. It can be expected that when the damper ratio approaches to zero, the random jump
may disappear. The appearance and disappearance of random jump with the changes of the
system parameters are called random jump bifurcations.

Fig. 9 Transition probability densities of the displacement and velocity of the linear oscillator except
the difference in the damper ratio

Fig. 10 Transition probability densities of the displacement and velocity of the NES oscillator except
the difference in the damper ratio

Figure 11 presents the transition probability densities of the transmissibility and energy
absorption percentage of the linear oscillator except the difference in the damper ratio. The
transition probability density decreases with the increase in the damper ratio when the trans-
missibility or the energy absorption percentage of the linear oscillator is close to zero.

6 Conclusions

This paper mainly focuses on the numerical calculation of the response of the linear system
with an NES under a harmonic and Gaussian white noise excitation. The path integral based
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Fig. 11 Transition probability densities of the transmissibility and energy percentage of the linear
oscillator except the difference in the damper ratio

on the Gauss-Legendre polynomial is used to solve the steady-state Fokker-Planck-Kolmogorov
equation. The transition probability densities of displacement and velocity are used to deter-
mine the dynamical behaviors. The transition probability densities of the transmissibility and
input energy absorption percentage of the linear oscillator are used as the indicators to evaluate
the performance of vibration reduction. The investigation shows that an NES with reasonable
parameters also has an efficient effect of vibration reduction. The conclusions lie in the following
aspects.

(i) The linear system with an NES still has a good performance of vibration reduction under
a harmonic and random excitation.

(ii) Random jump may appear in the linear system with an NES. The jump may occur from
one peak to another peak randomly at any frequency of the harmonic excitation. It is harmful
to the stability of the linear system with an NES system.

(iii) Increasing the nonlinear stiffness can effectively improve the vibration reduction per-
formance of the linear system with an NES while ignoring its influence on the system stability,
because the change is slight in the same system except the difference in the nonlinear stiffness.
Decreasing the damping ratio can effectively improve the performance of vibration reduction of
the linear system with an NES and enhance the stability at the same time.
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