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Abstract The vibroimpact systems with bilateral barriers are often encountered in
practice. However, the dynamics of the vibroimpact system with bilateral barriers is
full of challenges. Few closed-form solutions were obtained. In this paper, we propose a
novel method for random vibration analysis of single-degree-of-freedom (SDOF) vibroim-
pact systems with bilateral barriers under Gaussian white noise excitations. A periodic
approximate transformation is employed to convert the equations of the motion to a con-
tinuous form. The probabilistic description of the system is subsequently defined through
the corresponding Fokker-Planck-Kolmogorov (FPK) equation. The closed-form station-
ary probability density function (PDF) of the response is obtained by solving the reduced
FPK equation and using the proposed iterative method of weighted residue together with
the concepts of the circulatory probability low and the potential probability flow. Finally,
the versatility of the proposed approach is demonstrated by its application to two typical
examples. Note that the solution obtained by using the proposed method can be used
as the benchmark to examine the accuracy of approximate solutions obtained by other
methods.
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1 Introduction

Systems with the vibroimpact interaction are often encountered in practice, ranging from
imple toys, such as a skipping stone on the water surface, to practical engineering systems,
such as impact machines, centrifugal dewatering machines, heat exchanger tube fretting due
to adjacent tubes interaction, and ship roll motion against one-sided barrier. The vibroimpact
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interaction makes the system strongly nonlinear and discontinuous that leads to various non-
linear phenomena, e.g., frequency doubling, grazing phenomena, and even chaotic responsel!).
Therefore, it is of great importance to investigate the dynamic properties of this kind of system.
In fact, the vibroimpact system has been studied extensively in the past decades. Excellent
books or monographs?% reviews” 8!, and huge regular papers are now available in this field.

As for the investigation of stochastic vibroimpact systems, several methods have been sug-
gested. But most of these methods belong to the ones popularly applied in the smooth dy-
namical systems at first and then extended to stochastic vibroimpact systems. For example,
the stochastic averaging method was in dominant position to tackle the random vibration
problems!® 12, In the last decades, this method has been widely adopted to the stochastic vi-
broimpact systems!'® 22/ under the assumptions of small energy loss, weakly random intensity,
and light damping. The generalized cell mapping method could compute both the nonstation-
ary and stationary response of stochastic systems(?326l. Recently, the generalized cell mapping
method has been elegantly suggested to calculate the stochastic response of a class of impact
systems?”).  Monte Carlo simulation is one of the most general techniques to calculate the
response of stochastic vibroimpact systems!?®! except for the challenge in computational effi-
ciency and convergence. The exponential-polynomial closure (EPC) method was first explored
by Er?%! and later has been generalized to obtain the stationary probability density function
(PDF) solutions of the vibroimpact systems with a unilateral barrier under Gaussian white
noise excitation®” or Poisson white noise excitation!®!]. Dimentberg et al.?? replaced the
Zhuravlev transformation[®3 with the Zhuravlev-Ivanov transformation, and examined the sta-
tionary PDF solution of stochastic mass-spring vibroimpact systems with high energy losses
and one side impacts by using a path integration method. Kumar and his coworkers introduced
the same transformation as that in Ref.[32], and studied a stochastically excited vibroimpact
Duffing-van der Pol oscillator with unilateral rigid barrier!®¥ or bilateral barriers!*® with the
aid of the finite element method. However, it should be noted that the solutions obtained by
the aforementioned methods are almost limited to smooth approximations of the non-smooth
response of the intrinsically discontinuous vibroimpact oscillators.

Very recently, Chen et al.[3¢! proposed a new procedure for the closed-form stationary PDF
of the response of Gaussian white noise excited single-degree-of-freedom (SDOF) vibroimpact
system with unilateral rigid barrier. The obtained solution is piecewise form which reflects the
intrinsically discontinuous characteristic of vibroimpact oscillators. In this paper, we continue
this work in the field of stochastic vibroimpact system, and aim to propose a new scheme for the
closed-form solution of stationary response of SDOF vibroimpact system with bilateral barrier
under random excitations. First, a piecewise differentiable periodic transformation is utilized
to convert the equations of motion to a continuous form. Then, the piecewise solution of sta-
tionary PDF is then obtained by solving the reduced FPK equation and using the iterative
method of weighted residue procedure. Finally, two examples are worked out to illustrate the
proposed scheme. The validity of the obtained closed-form solution is confirmed by using the
Monte Carlo simulation data of the original system.

The layout of the paper is as follows. Section 2 formulates the problem of stationary PDF
solution of the SDOF vibroimpact systems with bilateral barriers under Gaussian white noise
excitation. Section 3 introduces the iterative method of weighted residue procedure to con-
struct the approximate solution of the reduced FPK equation associated with the converted
systems of vibroimpact systems with bilateral barriers. In Section 4, two examples are studied
to demonstrate the proposed scheme. The accuracy of the approximate PDF is examined by
the Monte Carlo simulations. Section 5 concludes the paper.

2 Problem formulation

Consider an SDOF vibroimpact oscillator under Gaussian white noise excitations as
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1
X+ 01X, X)X +g2(X) =D hi( X, X)Wi(t), |X]|<
=1

A
=, 1
> 1)
where X, X , and X denote the system displacement, velocity, and acceleration, respectively.
g1(X, X)X is the linear or nonlinear damping, g2(X) represents restoring forces, h;(X, X) is a
linear or nonlinear function of X and X, and W;(¢) denotes Gaussian white noises with zero
mean and correlation matrix, i.e., E[W;(¢)W;(t + 7)] = 2D;;6(7) (4,5 =1,2,---,1).
The impact condition for the inelastic instantaneous interaction is
. . A

X+ = —TX_, X = :lZE, (2)
where r is a restitution factor (0 < r < 1). The subscripts and “4” denote the values of
the velocity before and after impact, respectively. | X| = % is the position of the rigid barrier.
First of all, we shall define a non-dimensional displacement variable as follows:

w. »

Xr
Y = — 3
- (3)
The equation of motion for Y reads
. l .
.. YA YA\ T YA T YA YA T
= _= . =)y - = (= = ) < =
Y+gl(7r ’ 7T)Y+Ag2(ﬂ' ) A;hl(ﬂ' ’ W)Wz(t)’ |Y|\2 )
with the impact condition defined as
V=Y., Y=x4I. (5)

2
Second, we shall introduce the piecewise smooth variable transformation®? as follows:
Y =1I(Z)+ AN (2),
Y = (M(Z)+ \I(2))Z, (6)
Y = (M(Z)+ MNI(2))Z + A\M(Z) 2,
where II(Z), N(Z), and M(Z) are 27 periodic functions defined by, respectively,

™
Z —=—<Z< =,
, as 2 <2
(Z) = ;
™ ™
_Z _<Z\_7
+m, as 5 5
2 2
N(Z) = (7)
(Z—7T)2+7T2 Tz 3
2 87 as 2\ \27
1, as —g§Z<g,
M(Z) =
T 3
_17 as _<Z<_7
2 2

and \ = %(};:) Note that the transformation (6) has just a two-order approximation, and

would be valid when 1 — r is supposed to be small. Thus, the cases studied herein are limited
to the elastic impact or weakly inelastic impact.
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Now, let us substitute these transformations in Eq.(6) into Eq.(4). We can derive the
equation of motion as follows:

1
Z4+an(Z,2)+ 422 Zﬁ (Z, 2)W, (8)
where )
0(2,2) = % Fou(202) 4 AN (), 2 ((2) 4 2)Z) 2 )
. 7 g2(Z2(I(Z) + AN(2)))
92(2) = § M(Z) FA(Z) (10)
o mhi(21(Z) £ AN(2)), 2 (M(Z) + NI(Z))Z)
hi(2,2) = § M(Z) + N1(Z) ' (11)
Then, writing Eq. (8) in the state space form yields
dz
d—tl - ! (12)
% = —01(Z1, Z2) — 92(Z1) — Z i(Z1, Za)Wi(t).

The stationary PDF, p,,., = p(z1, 22), of the system response is governed by the reduced
FPK equation,

0 0 1 0%
= — 53 Pzi2o — 7 Wzi129 5902 lezb ’ 1
0 821 (p 1 ml) 622 (p m?) + 2 azg (p 22) ( 3)

where the drift and diffusion terms mq, ms, and bos are given by

my = z2,

_ ! ! 8h 21,22) 7
= 91(2’1,22 92 21 ZZ( 92 ——=h (21,22)),

bog = Z Z (2Dijili(21, Zz)ilj(zlv 22)) .

i=1 j=1

According to the detail balance method, the reduced Fokker-Planck-Kolmogorov (FPK)
equation (13) is solved under the following conditions:

(14)

8pZ1Z2 ~ 8p2122 _

—_ 2’28—21 + 92(2}1)8—22 = 07 (15)
0 . 1 02

- D2o (pz1z2 (m2 + 92(21))) + 5 82‘% (p2122b22) =0. (16)

Equations (15) and (16) imply the equilibrium of the circulatory probability flow and vanishing
the potential probability flow, respectively. Note that p,,,, and its first derivative with respect
to 2z vanish at the infinity boundary, Eq. (16) is reduced to

by (pab) =0, a7)

An exact stationary solution to the reduced FPK equation (13) can be obtained from
Egs. (15) and (17) under the solvability condition. However, such a condition is often not
met in practice. In this case, the reduced FPK equation (13) has no exact solution in general.
In the next section, we shall introduce the iterative method of weighted residue procedurel®7!
to compute the approximate solution of the reduced FPK equation (13).

—Dzy 2 (M2 + G2(21)) +
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3 Iterative method of weighted residue procedure

The iterative method of weighted residue procedure may consist of three steps as follows:
construct a trial solution of reduced FPK equation (13) on the basis of the concepts of circulatory
probability flow and potential probability flow, determine the unknown parameters in the trial
solution with application of weighted residue procedure, and impose the iterative method to
improve the accuracy of the solution obtained with weighted residue procedure.

3.1 Trial solution
Assume that the approximate solution of the reduced FPK equation (13) is written as

Dz 22 :152122(21722) =Co exp(_90(21722))7 (18)

where Cp is a normalization constant. ¢(z,,2;) denotes the probability potential, which can
be divided into three parts according to Ref. [37]. That is,

P(z1,29) = Z Z ciiiyh + ki (21, 22) + kotba (21, 22), (19)

720 0<itj<n

in which ¢;;, k1, and ko are unknown parameters that needed to be determined. y; and y» are
respectively given by the following equations:

{yl =TI(21) + AN(z1),

yo = (M(z1) + All(21)) 22 (20)

The term 7 denotes the circulatory probability flow and is determined by Eq. (15), while )9
denotes the circulatory probability flow and is determined by Eq. (17). One set of expressions
for ¥1 and 1, is given below,

. (M(z1) + )\H(Zl))2z§ /H(Zl)-H\N(Zl)E %
= 2 + o Ag2( - )dS, (21)
— 22 2 R 81)22(2:17 ZQ)
(0> —/0 m(_mz(zum)—gz(mH— T)sz. (22)

In addition, the approximate stationary PDF p,,,, of the system should be subject to the
existence conditions,

3
exp(—p(z,, z,)) = finite, as 2z = —g and ;, (23)
exp(—¢(z1,22)) =0, as |z2] — oo,
and the integrability condition at the origin,
o(z1,29) x A%, a>-1, if V8e[0,2r) as A—0, (24)

where z;1 = Acosf and zo = Asin6.

Numerical examples studied in the next section will verify that the trial solution to Eq. (18)
is very adaptable since the terms 1 and 19 already describe the main features of the system.
3.2 Weighted residue procedure

By substituting 7, ., for p.,., in Eq.(13), one can obtain a residual error, ¥(z1, 22, cij, ki1,
k2)p., .,» where

9o _Omz . 00
821 822 2821
b (227 32_@) _ Op Obn | 10%bx
2 \\ 0z 0z3 Ozg Ozo 2 023

V(21 22, Cij, k1, k2) = —my
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By making use of the weighted residue procedure, ¥(z1, 22, ¢;j, ki,k2) equals zero by a
weighted average of a chosen set of weighting functions M;(z1,22) (1 =1,2,--- ,n+ 2),

—+o0 —+o0
/ M[(Zl,22)’(9(21,ZQ,Cij,kl,kg)dZ]dZQ = 0. (26)

Note that the key to the weighted residue procedure depends highly on the choice of the
weighting function. Let us select a set of weighting functions in the following form:

My (21, 22) = pm (21, 22)0093, k=1,2,---.n
My11(21,22) = (21, 22)91 (21, 22), (27)
My y2(21, 22) = pm (21, 22)12 (21, 22),

where pp, (21, 22) can be the Gaussian PDF obtained from the system (4) by using equivalent
linearization method, or can be directly constructed as follows:

Pm (21, 22) = exp(—1(z1, 22) — Pa(21, 22)). (28)

By inserting the weighting function (27) into Eq. (26), a set of nonlinear algebraic equations
can be obtained and then solved by using any numerical solution under the conditions (23) and
(24).

3.3 Iterative method

It should be emphasized that the accuracy of results obtained with the weighted residue
procedure may not be sufficient. In Refs. [38]-[39], an iterative method is employed to improve
the accuracy of the solution. In such procedure, the approximate PDF p,. ., is obtained after
Then,
updating with p,, in Eq. (27) by 7% for all k > 0 and using the weighted residue procedure
again yield the next approximate PDF denoted as p**1). The iterative method is stopped as
the convergence criterion with a preset tolerance ¢,

+oo
/ / Y Az dzy < 2o, (29)
:

/ / (Up k)) dz1dze < e, (30)
z
is satisfied.

Numerical computations have indicated that the convergence of the iterative method is quite
fast. However, the iterative method also may converge to an insufficiently accurate solution
in some cases, particularly for strongly nonlinear systems. In this regard, Chen and Sun!®9
suggested a progressively way to computer the stationary PDF's of strongly nonlinear systems.
By choosing a converged solution of a weakly nonlinear system as p,,, and then slowly increasing
the nonlinear parameter when applying the iterative method of weighted residue procedure, the
stationary PDFs of strongly nonlinear systems can be captured effectively. Here, the converged
solution of the elastic impact case is chosen as p,, to search the solution of the weakly inelastic
impact case progressively.

Once p,, ,, is obtained with the above procedure, the PDF py.y- of system (4) can be calcu-
lated from

applying the weighted residue procedure in the previous subsection, and let p(t) = Dy 2o

or

Pyy =pyy(Y,9) = (732122 (fl(y)’ 1+ Ayf1 (y)) ’dﬁ;y) 1+ Alfl ) ‘ )

_ Ui dfa(y) 1
P () —1—Afz(y)+A7r)‘ dy —1=Afa(y) +Ar|’
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where f1(y) is determined by

¥y, as A=0,
fily) = 2% =2 1 1 (32)

and f2(y) is determined by

T—1y, as A=0,
f2ly) = T (33)

1
—T-i-z—f—ﬁ-f-ﬂ'—x, as )\750

The marginal PDFs, py and py, can be obtained from Eq. (31) as follows:

+3
pv =)= [ pyy i),

o en
py =Py () =/ Pyy (¥, 9)dy.

4 Examples

In this section, we will study two typical examples to examine the effectiveness and accuracy
of the proposed procedure.

Example 1 As the first example, the van der Pol oscillator with two-sided barriers subject to
external and parametrical Gaussian white noise excitations is studied. The governing equation
is given below,

X — BoX + f1X2X 4+ WX = Wi(t) + XWa(t), (35)

where (o, 1, and w are positive, and W;(t) denotes the independent Gaussian white noise
excitation with correlations function 2D;(7). The impact condition is defined by Eq. (2).
Let Y = %. Then, Eq. (35) can be converted as follows:

; . A2 .
V= BoY + B YV 0Py = %Wl(t) FYWa(t), (36)

with the impact condition (5). With the application of the transformation in Eq. (6), a modified
equation can be derived as follows:

AM(Z) 2?2 A2 ZI(Z) + AN (2)

Z+ V(Z) 7)) BoZ + Ar—5 (1(2) + AN (Z2)Z +w N(Z) T 7

I (410 1(Z) + AN (Z)
‘ZM<Z>iAH<Z> MZ) Tz 2O (37)

The reduced FPK equation governing the stationary PDF of the system (37) is the form as
Eq. (13) with the following drift and diffusion coefficients:

my = 2z,
B AM (21)23 A? o II(21) + AN (21)

ma = —m + Poze — 51§(H(21) +AN(21))%22 —w mv (38)
B 2D, 72 II(Z) + AN(Z)\2

b2 = A2(M(z1) ir NI 2D2(M(Z) + /\H(Z)) '
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1(21, 22) and 1o (21, 22) are written as follows:

(M (21) + M(21))*23 n w?(TI(21) + AN (21))?

P1(21,22) = 5 5 , (39)
Vo(21,22) = . ( - ﬁo? + %M(iff%%m 6;§2 (M) + /\2N(z1))3z§)' (40)

Construct p,, for the case of r =1 as
pm = Coexp(—1h1(z1, 22) — ¥2(21, 22)). (41)

Let 8o = 0.25, 1 = 1.0, w = 1.0, D; = Dy = 0.25, A = 4.0, and £y = 1073, unless otherwise
mentioned. By using the iterative method of weighted residue procedure after 4 iterations, a
piecewise closed-form solution of » = 1.0 and order n = 4 is obtained as follows:

1_91(21722)7 as -
ﬁzlzg =

7r
1_92 (217 22)7 as 5
where Py (21, 22) and Py(21, 22) are given by

By(21, 22) = Coexp( — 013357442 X 24+ 0.470 003 83 x 2123

—0.98134009 x 2723 4+ 0.335359 38 x 2329
—0.52460297 x 2 — 0.049 15802 x 22
—0.916977 15 X 2129 + 1.028 157 11 x 2}

0.01947333 x 22(1.6211389 x 22 — 0.25))
0.25 x 22 + 0.154 21257 ’

pa2(21, 22) = Coexp ( —0.13357442 x z5 + 0.470003 83 x (7 — 21) 25

—0.98134009 x (7 — 21)%22 4+ 0.335359 38 x (7 — 21)%22
—0.52460297 x (7 — 21)* — 0.049 15802 x 25
—0.91697715 x (7 — 21) 22 + 1.028 157 11 x 23

0.01947333 x 22((m — )2 — 0.25))
0.25 x (7 — 21)2 + 0.154 21257

The approximate PDF solution of 7 = 0.99 and order n = 4 is obtained with the approximate
PDF solution of » = 1.0 in Eq. (42) as p,, after 4 iterations. The detailed expression of the
closed-form solution is given by Eq.(Al). In Figs.1 and 2, the stationary PDFs of the cases
r = 1.0 and r = 0.99 with A = 4.0, respectively, of the system (37) are plotted. From Figs. 1 and
2, a fancy limited cycle can be observed, and the analytical solutions are in good agreement
with those obtained with Monte Carlo simulation of a sample size of 4 x 107. It should be
pointed out that the numerical studying of this example belongs to the strongly nonlinear van
der Pol oscillator. The conventional method of stochastic averaging is not suitable.
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Fig. 1 Stationary PDFs of system (36) in the case of r = 1.0 and A = 4. (a) denotes the joint
PDFs of pyy obtained with the Monte Carlo simulation; (b) represents the joint PDFs of
Pyy obtained with the proposed scheme; (c) and (d) denote the marginal PDFs of py and py,
respectively. Solid line is the analytical result, and symbols are the Monte Carlo simulation
data. The other parameters are 3o = 0.25, 31 = 1.0,w = 1.0, and D1 = D> (color online)
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Stationary PDFs of system (36) in the case of r = 0.99. (a) denotes the joint PDFs of pyy

obtained with the Monte Carlo simulation; (b) represents the joint PDFs of pyy- obtained
with the proposed scheme; (c) and (d) denote the marginal PDFs of py and py., respectively.
Solid line is the analytical result, and symbols are the Monte Carlo simulation data. The
other parameters are the same as those in Fig. 1 (color online)

Example 2 As the second example, the Duffing system with two-sided barriers subject to
external Gaussian white noise excitations is considered. The equation of the motion is given

below,

X 4 BoX +w?X 4+ aX? =Wy (1),

(44)

where 0y and w are positive constants, and Wi (t) denotes the Gaussian white noise excitation
with correlation function 2D16(7). The impact condition is defined by Eq. (2).
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With application of non-dimensional transformation in Eq. (3), the equation of motion for

Y reads

. . 2

V4 BoY + WY +a=5Y? = S () (45)
T A

with the impact condition in Eq. (5). By substituting the piecewise smooth variable transfor-

mation in Eq. (6) into Eq. (46), the equation of motion for Z is expressed by

M (Z) 2> 5,2 1(2) +AN(Z) A2 (II(Z) + AN(2))3
o2y aZ) TR M(Z) F A(2)

M) NI2)
- ™ W1 (t)
T AM(Z)+ MI(Z)

The reduced FPK equation associated with Eq. (46) is the same as Eq. (13) with the following

N:

(46)

drift and diffusion coefficients:

my = z2,
B AM (21)23
2= T M) + AL 07
_ e E) +ANG) A7 ([I(z1) + AN (21))° (47)
M(z1) + M(21) 72 M(z1) + Al(21) ’
. 1 2D, 72
2T (M (z1) + MI(2,))2 A2
Accordingly, 11 (21, 22) and ©2(z1, 22) can be obtained as follows:
2,2 2
Y1(21,22) = Wz “F;\H(Zl)) 2 4 %(H(zl) + AN(z1))?
A2
+ S (1) + AN ()", (48)
21 AM(z1)z3 22
Pa(21,22) = E(g—M(Zl) S ATL(z1) +50?)- (49)
(50)

Pm is supposed as
Pm = Coexp(—1(21, 22) — 2(21, 22)).

Now, we first examine the sensibility of r to the accuracy of the proposed method. Let
Bo =01, w=10 a =20 D = 0.1, A =20, and gg = 1073, unless otherwise stated.

By using the iterative method of weighted residue procedure after 2 iterations, a piecewise

closed-form solution of » = 1.0 and order n = 4 can be obtained as

P1(21,22), as  —

.2_9Z1Z2 =
Pa(21,22), as
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where Py (21, 22) and Py(21, 22) are given by the following equations, respectively:

Py (21, 22) = Coexp(—0.202 64236 x 27 — 1.31 x 107 x 2125 — 0.202642 36 x 23
—0.08212786 x 2 4+ 5.41 x 10713 x 2525 +4.05 x 10712 x 2222
+1.79 x 1071 x 2125 —4.20 x 10712 x 23),

Bo(21, 22) = Co exp(—0.202 64236 x (7 — 21)% — 1.31 x 1011 x (1 — 21) 29 (52)

—0.20264236 x 23 — 0.082127858 x (1 — 2,)*
+5.41 x 1075 x (1 — 21)%20 + 4.05 x 1072 x (7 — 21)?23

+1.79x 1071 x (1 — 21)25 +4.20 x 10712 x 23),

The solution of pyy can be obtained from Eq. (51) with the application of relation in Eq. (31).
The solution of py.y- should be the exact stationary PDF of system (46) by neglecting the terms
with coefficients of the order 10711, As far as we know, such a solution is obtained first time in
the literature. It can be used as a benchmark problem in nonlinear random vibration. In Fig. 3,
numerical results of pyy, and the marginal PDFs, py and py, of system (45) computed by
the proposed procedure and the Monte Carlo simulation are shown. Obviously, the analytical
results agree well with the Monte Carlo simulation data.

0.2

e~
IS
0.1F

=15 -1.0 -05 00 05 10 15 -15 -1.0 -05 00 05 10 15

0.0 ! ' . 0.0

Yy Y
(© (C))

Fig. 3 Stationary PDFs of system (45) in the case of » = 1.0. (a) denotes the joint PDFs of pyy
obtained with the Monte Carlo simulation; (b) represents the joint PDFs of pyy obtained
with the proposed scheme; (c) and (d) denote the marginal PDFs of py and py, respectively.
Solid line is the analytical result, and symbols are the Monte Carlo simulation data. The

other parameters are 8o = 0.1,w = 1.0, & = 2.0, D1 = 0.1, A = 2.0, and g0 = 1073 (color
online)

Now let the elastic impact’s PDF solution to Eq. (51) be p,,. The solution with » = 0.99
and order n = 4 is obtained after 2 iterations. The piecewise result is similar as the form in
Eq. (51) with p; (21, 22) and Py(21, 22) are proposed in Eq. (A4). In Fig. 4, the stationary PDFs
of the case r = 0.99 and A = 2 are depicted. It can be observed that the analytical solutions
obtained with the proposed technique are very close to the Monte Carlo simulation data of a
sample size of 4 x 107.
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Fig. 4 Stationary PDFs of system (45) in the case of r = 0.99. (a) denotes the joint PDFs of pyy
obtained with the Monte Carlo simulation; (b) represents the joint PDFs of pyy- obtained
with the proposed scheme; (c) and (d) denote the marginal PDFs of py and py., respectively.
Solid line is the analytical result, and symbols are the Monte Carlo simulation data. The
other parameters are the same as those in Fig. 3 (color online)

Next, we examine the effect of barrier to the practicability of the proposed technique. The
solution of A = 4 for the case of r = 0.99 and order n = 4 is obtained with the approximate PDF
solution in Eq. (A4) as p,, after 2 iterations. The expression of solution is given in Eq. (A5).
Figure 5 presents comparison of analytical and Monte Carlo simulation results of a sample size
of 4 x 107 for Py Py, and py in the case of r = 0.99 and A = 4. Similar good agreement can
be observed again. From Fig. 5, a very small probability can be found in the collision boundary

by comparison with the case of A = 2. Thus, the stochastic P-bifurcation occurs as the change
in A.
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Fig. 5 Stationary PDFs of system (45) in the case of r = 0.99 and A = 4. (a) denotes the joint
PDFs of pyy obtained with the Monte Carlo simulation; (b) represents the joint PDFs of
Pyy obtained with the proposed scheme; (c) and (d) denote the marginal PDFs of py and py,
respectively. Solid line is the analytical result, and symbols are the Monte Carlo simulation
data. The other parameters are the same as those in Fig. 3 (color online)
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Finally, we examine the effect of excitation intensity D; to the accuracy of the proposed
technique. Here, the solutions of the cases D7 = 0.5 and 1.0 under A = 4 and r» = 0.99 are
obtained with the approximate PDF solution in Eq. (A5) as p,, after 3 iterations, respectively.
For the sake of brevity and the limited space, the expressions of the solutions for D; = 0.5
and 1.0 are omitted here. Figures 6 and 7 show the results pyy., py, and py,, given by the
proposed method (order n = 4) and Monte Carlo simulation results of a sample size of 4 x 107,
respectively. As expected, the related comparisons have demonstrated an excellent agreement
between the present solution and Monte Carlo simulation.
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Fig. 6 Stationary PDFs of system (45) in the case of r = 0.99 and D1 = 0.5. (a) denotes the joint
PDFs of pyy obtained with the Monte Carlo simulation; (b) represents the joint PDFs of
Dyy obtained with the proposed scheme; (c) and (d) denote the marginal PDF's of py and py,
respectively. Solid line is the analytical result, and symbols are the Monte Carlo simulation
data. The other parameters are the same as those in Fig. 3 (color online)
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Fig. 7 Stationary PDFs of system (45) in the case of r = 0.99 and D1 = 1.0. (a) denotes the joint
PDFs of pyy obtained with the Monte Carlo simulation; (b) represents the joint PDFs of
Pyy obtained with the proposed scheme; (c) and (d) denote the marginal PDFs of py and py,
respectively. Solid line is the analytical result, and symbols are the Monte Carlo simulation
data. The other parameters are the same as those in Fig. 3 (color online)
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5 Conclusions

In this paper, a new method has been proposed to predict the stationary PDF's solution of
the SDOF vibroimpact systems with bilateral barriers under a Gaussian white noise excitation.
The method involves converting the non-smooth vibroimpact system with bilateral barriers
to such a system without barriers through piecewise differentiable periodic transformation,
constructing the approximate solution of the corresponding reduced FPK equation with the
help of the concepts of the circulatory probability flow and the potential probability flow, and
determining the unknown parameters in the trial solution by using the iterative method of
weighted residue procedure. The proposed scheme has been applied to two typical examples of
van der Pol oscillator and Duffing oscillator. It has been shown that the proposed scheme could
yield a high precision in all results compared to the Monte Carlo simulation data. Besides, an
interesting nonlinear characteristic of limit cycle together with two tentacles in the strongly
nonlinear van der Pol oscillator has been fully captured and firstly expressed in the closed-
form. As for the Duffing oscillator, the analytical closed-form stationary PDF solution in the
case of elastic-impact has been obtained for the first time in the literature. The stochastic
P-bifurcation has also been observed as some parameters change. Furthermore, all solutions
obtained in this paper can be utilized as benchmark for the studies of vibroimpact systems with
bilateral barriers.

References

[1] XU, W., FENG, J., and RONG, H. Melnikov’s method for a general nonlinear vibro-impact
oscillator. Nonlinear Analysis: Theory, Methods & Applications, 71(1), 418-426 (2009)

[2] DIMENTBERG, M. F. Statistical Dynamics of Nonlinear and Time-Varying Systems, Research
Studies Press, Taunton (1988)

[3] BROGLIATO, B. Nonsmooth Impact Mechanics: Models, Dynamics and Control, Springer-Verlag,
London (1996)

[4] BABISTKY, V. Theory of Vibro-Impact Systems and Applications, Springer-Verlag, Berlin (1998)

[5] IBRHIM, R. A., CHALHOUB, N. G., and FALZARANO, J. Interaction of ships and ocean struc-
tures with ice loads and stochastic ocean waves. Applied Mechanics Reviews, 60(5), 246-289
(2007)

[6] ALBERT LUO, C. J. and GUO, Y. Vibro-Impact Dynamics, John Wiley & Sons, New York (2012)

[7] DIMENTBERG. M. F. and IOURTCHENKO, D. V. Random vibrations with impacts: a review.
Nonlinear Dynamics, 36(2), 229-254 (2004)

[8] IBRAHIM, R. A. Vibro-Impact Dynamics: Modeling, Mapping and Applications, Springer-Verlag,
Berlin (2009)

[9] JIN, X. L., HUANG, Z. L., and LEUNG, Y. T. Nonstationary probability densities of system re-
sponse of strongly nonlinear single-degree-of-freedom system subject to modulated white noise
excitation. Applied Mathematics and Mechanics (English Edition), 32(11), 1389-1398 (2011)
https://doi.org/10.1007/s10483-011-1509-7

[10] LIU, Q., XU, Y., XU, C., and KURTHS, J. The sliding mode control for an airfoil system driven
by harmonic and colored Gaussian noise excitations. Applied Mathematical Modelling, 64, 249-264
(2018)

[11] LIU, Q., XU, Y., and KURTHS, J. Active vibration suppression of a novel airfoil model with
fractional order viscoelastic constitutive relationship. Journal of Sound and Vibration, 432, 50-64
(2018)



Novel method for random vibration analysis of single-degree-of-freedom vibroimpact systems 1773

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

24]

[25]

JIANG, W. A., SUN, P., ZHAO, G. L., and CHEN, L. Q. Path integral solution of vibratory energy
harvesting systems. Applied Mathematics and Mechanics (English Edition), 40(4), 579-590 (2019)
https://doi.org/10.1007/s10483-019-2467-8

DIMENTBERG, M. F., IOURTCHENKO, D. V., and VAN EWIJK, O. Subharmonic response of
a quasi-isochronous vibroimpact system to a randomly disordered periodic excitation. Nonlinear
Dynamics, 17(2), 173-186 (1998)

NAMACHCHIVAYA, N. S. and PARK, J. H. Stochastic dynamics of impact oscillators. Journal
of Applied Mechanics, 72(6), 862-870 (2004)

RONG, H. W., WANG, X. D., XU, W., and FANG, T. Resonant response of a non-linear vibro-
impact system to combined deterministic harmonic and random excitations. International Journal
of Non-Linear Mechanics, 45(5), 474-481 (2010)

RONG, H. W., WANG, X. D., LUO, Q. Z., XU, W., and FANG, T. Subharmonic re-
sponse of single-degree-of-freedom linear vibroimpact system to narrow-band random ex-
citation. Applied Mathematics and Mechanics (English Edition), 32(9), 1159-1168 (2011)
https://doi.org/10.1007/s10483-011-1489-x

LI, C., XU, W., FENG J. Q., and WANG, L. Response probability density functions of Duffing-
Van der Pol vibro-impact system under correlated gaussian white noise excitations. Physica A:
Statistical Mechanics and its Applications, 392(6), 1269-1279 (2013)

YANG, G. D., XU, W., GU, X. D., and HUANG, D. M. Response analysis for a vibroimpact
Duffing system with bilateral barriers under external and parametric gaussian white noises. Chaos,
Solitons & Fractals, 87(S), 125-135 (2016)

XIE, X., LI, J., LIU, D., and GUO, R. Transient response of nonlinear vibro-impact system under
Gaussian white noise excitation through complex fractional moments. Acta Mechanica, 228(3),
1153-1163 (2017)

ZHAO, X. R., XU, W., YANG, Y. G., and WANG, X. Y. Stochastic responses of a viscoelastic-
impact system under additive and multiplicative random excitations. Communications in Nonlin-
ear Science and Numerical Simulation, 35, 166-176 (2016)

YURCHENKO, D., BURLON, A., PAOLA, M. D., and PIRROTTA, A. Approximate analytical
mean-square response of an impacting stochastic system oscillator with fractional damping. ASCE-
ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering,
3(3), 030903 (2017)

LIU, L., XU, W., YUE, X. L., and HAN, Q. Stochastic response of Duffing-Van der Pol vibro-

impact system with viscoelastic term under wide-band excitation. Chaos, Solitons & Fractals,
104, 748-757 (2017)

SUN, J. Q. and HSU, C. S. First-passage time probability of non-linear stochastic systems by
generalized cell mapping method. Journal of Sound and Vibration, 124(2), 233-248 (1988)

SUN, J. Q. and HSU, C. S. A statistical study of generalized cell mapping. Journal of Applied
Mechanics, 55(3), 694-701 (1988)

SUN, J. Q. and HSU, C. S. The generalized cell mapping method in nonlinear random vibration
based upon short-time Gaussian approximation. Journal of Applied Mechanics, 57(4), 1018-1025
(1990)



1774 Lincong CHEN, Haisheng ZHU, and J. Q. SUN

[26) HAN, Q., XU, W., and YUE, X. L. Stochastic response analysis of noisy system with non-
negative real-power restoring force by generalized cell mapping method. Applied Mathematics and
Mechanics (English Edition), 36(3), 329-336 (2015) https://doi.org/10.1007/s10483-015-1918-6

[27] WANG, L., MA, S., JIA, W. T., and XU, W. The stochastic response of a class of impact
systems calculated by a new strategy based on generalized cell mapping method. Journal of
Applied Mechanics, 85(5), 054502 (2018)

[28] IOURTCHENKO, D. V. and SONG, L. L. Numerical investigation of a response probability
density function of stochastic vibroimpact systems with inelastic impacts. International Journal
of Non-Linear Mechanics, 41(3), 447-455 (2006)

[29] ER, G. K. An improved closure method for analysis of nonlinear stochastic systems. Nonlinear
Dynamics, 17(3), 285-297 (1998)

[30] ZHU, H. T. Stochastic response of a parametrically excited vibro-impact system with a nonzero
offset constraint. International Journal of Dynamics and Control, 4(2), 180-194 (2016)

[31] ZHU, H. T. Stochastic response of a vibro-impact Duffing system under external poisson impulses.
Nonlinear Dynamics, 82(1), 1001-1013 (2015)

[32] DIMENTBERG, M. F., GAIDAI, O., and NAESS, A. Random vibrations with strongly inelastic
impacts: response PDF by the path integration method. International Journal of Non-Linear
Mechanics, 44(7), 791-796 (2009)

[33] ZHURAVLEV, V. F. A method for analyzing vibration-impact systems by means of special func-
tions. Mechanics of Solids, 11, 23-27 (1976)

[34] KUMER, P., NARAYANAN, S., and GUPTA, S. Stochastic bifurcations in a vibro-impact
Duffing-Van der Pol oscillator. Nonlinear Dynamics, 85(1), 439-452 (2016)

[35]) KUMER, P., NARAYANAN;, S.; and GUPTA, S. Bifurcation analysis of a stochastically excited
vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers. International Journal of
Mechanical Sciences, 127(S), 103-117 (2017)

[36] CHEN, L. C., QIAN, J. M., ZHU, H. S.; and SUN, J. Q. The closed-form stationary probability
distribution of the stochastically excited vibro-impact oscillators. Journal of Sound and Vibration,
439, 260270 (2019)

[37) CHEN, L. C., LIU, J., and SUN, J. Q. Stationary response probability distribution of SDOF
nonlinear stochastic systems. Journal of Applied Mechanics, 84(5), 051006 (2017)

[38] PAOLA, M. D. and SOFI, A. Approximate solution of the Fokker-Planck-Kolmogorov equation.
Probabilistic Engineering Mechanics, 17(4), 369-384 (2002)

[39] CHEN, L. C. and SUN, J. Q. The closed-form solution of the reduced Fokker-Planck-Kolmogorov
equation for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation,

41(12), 1-10 (2016)

Appendix A

Example 1 The stationary PDF of van der Pol oscillator with bilateral barriers under r = 0.99 of
order n = 4 is given below,

Py(z1,22), as —
Poyzy = . (A1)
2

where P, (21, 22) and Py(z1, 22) are of the forms as follows:

Pa(21,22), as
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P, (21, 22) = Co exp (0.479 89979 x s1(z1)wi (21, 22)% — 0.98491297 X s1(21) w1 (21, 22)°

+0.353 33495 x s1(21)%wi (21, 22) — 0.569 640 76 x s1(21)"
4 0.093 16363 x w1 (21, 22)> — 0.951 30466 x s1(21)w1 (21, 22)

+ 1.150 68989 X s1(21)* — 0.140 828 18 X w1 (21, 22)"

+0.019705 811

21, 22)%(1.621 1389 X s1(21)? — 0.25) + 0.002 132 68w (21, 22)25)
0.308 42513 + 0.5 x s1(21)2 ’
(A2)
Py(21,22) =Coexp (0.479 89979 x sa(z1)wa (21, 22)® — 0.98491297 X s9(21)wa(z1, 22)°
+0.353 33495 X s2(21)%w2 (21, 22) — 0.569 640 76 X s2(z1)"
+ 0.09316363 x w2 (,2“17 Z2)2 —0.951 304 66 x S2 (,2“1)11/2(2:17 22)

+ 1.150 689 89 X s2(21)% — 0.140 828 18 X w2 (21, z2)"

+0.01970581%2

(21,22)%(1.621 1389 x s2(21)? — 0.25) + 0.002 132 68w2 (21, 22)25)
0.308 42513 + 0.5 x s2(21)2 ’

where s1(z1), w1 (21, 22), s2(z1), and wa(z1, 22), respectively, are determined by
s1(21) = 21 + 0.001 599 55 x 22 — 0.003 946 72,
w1(z1,22) = (0.00319909 X 21 + 1)z2,
s2(z1) = —z1 — 0.00159955 X (21 — 7)* + T,
wa (21, z2) = —(0.989 949 74 + 0.003 199 09 X 21 )22

Example 2 P, (21, 22) and Py(z1,22) for the case r = 0.99 of order n = 4 are given by following
equations, respectively,

Dy (z1,22) = Coexp(—9.31 x 1077 x w1(21,22)4 +7.71 x 1078 x sl(zl)wl(zl,22)3
+3.34x107%x 51(z1)2w1 (217,22)2 ~1.85 x 1078 x 51(:/:1)311/1(:/:17 22)
—0.08213106 x wi (21, 22)" — 0.202 638 34 x w1 (21, z2)°
40.98 x 107° x s1(21)wi (21, 22) — 0.202 68211 X 51 (21)*
4+ (0.11 x 107% x 21 + 0.000 035 37) x z3),

Do(z1, 22) = Coexp(—9.31 x 1077 x wz(z17z2)4 +7.71 x 1078 x 82(21)'[[}2(21722)3 (A4)
+3.34x10°%x 52(z1)2w2(z17z2)2 ~1.85 x 1078 x 52(:/:1)311/2(:/:17 22)
—0.08213106 x wa (21, 22)" — 0.202 638 34 x w2 (21, 22)°
+0.98 x 107 x s2(21)w2 (21, 22) — 0.202 68211 X s2(21)*

+(0.11 x 107% x 21 +0.000 035 37) x z3),

in which s1(21), wi(z1, 22), s2(21), and w2 (z1, 22), respectively, are given by Eq. (A3). The solution of
A = 4 for the case of r = 0.99 and order n = 4 is given by
_ T ™
Di(z1,22), as —-<z1< 7,
_ 2 2
pzlzz = T 3T (A5)
Do(z1,22), as 5 <21 < 5
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where P, (21, 22) and P, (21, 22) are of the forms as follows:

Dy (21, 22) = Co exp(—0.000016 57 x w1 (21, z2)4
+0.000 023 71 X s1(21)wi (21, 22)® 4 0.000 132 87 X s1(21) w1 (21, 22)°
—0.000 01351 x s1(21)%w1 (21, 22) — 1.314142 33 x s1(21)*

—0.810523 88 x w1 (1, :/:2)2 —0.00001511 X s1(z1)wi(z1, 22)
—0.810444 86 x s1(21)° 4 (6.718 x 107° x 21 + 0.001 044 80) X z3),

Py (21, 22) = Co exp(—0.000 016 57 X w2 (21, 22)* (A9)
+0.000 023 71 X s2(z1)wa(z1, 22)® 4 0.000 132 87 X s2(21) w2 (21, 22)°
—0.00001351 x sa(z1)*wa(z1, z2) — 1.314142 33 X s2(21)"

—0.810523 88 x wa(z1, :/:2)2 —0.00001511 X s2(z1)w2(z1, 22)

—0.810444 86 X sa(z1)® — (6.72 x 10% x 21 4 0.001 023 69) x 23),

in which s1(21), wi(z1, 22), s2(z1), and wa(z1, 22), respectively, are given by Eq. (A3).



