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Abstract The wavelet approach is introduced to study the influence of the natural
convection stagnation point flow of the Williamson fluid in the presence of thermophys-
ical and Brownian motion effects. The thermal radiation effects are considered along a
permeable stretching surface. The nonlinear problem is simulated numerically by using a
novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the
Williamson fluid increases for assisting flow cases while decreases for opposing flow cases
when the unsteadiness and suction parameters increase, and the magnetic effect on the
velocity increases for opposing flow cases while decreases for assisting flow cases. When
the thermal radiation parameter, the Dufour number, and Williamson’s fluid parameter
increase, the temperature increases for both assisting and opposing flow cases. Mean-
while, the temperature decreases when the Prandtl number increases. The concentration
decreases when the Soret parameter increases, while increases when the Schmidt number
increases. It is perceived that the assisting force decreases more than the opposing force.
The findings endorse the credibility of the proposed algorithm, and could be extended to
other nonlinear problems with complex nature.
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Nomenclature

λ, Buoyancy effect due to the tempera-
ture difference;

λ∗, Buoyancy effect due to the concen-
tration difference;

k∗, coefficient of the mean absorption;
βC, coefficient of the concentration ex-

pansion;
ρ, density of the fluid;
σ, electrical conductivity;
M , Hartmann number;
B, magnetic field strength;
Tm, mean fluid temperature;
cs, ratio of the thermal diffusion;
Re, Reynolds number;
r, stagnation point parameter;
Sr, Soret number;
k, thermal conductivity;

A, unsteadiness parameter;
σ∗, Boltzmann constant;
kT, concentration susceptibility;
Γ, coefficient of the Williamson fluid;
βT, coefficient of thermal expansion;
Du, Dufour number;
g, gravitational acceleration;
ν, kinematic viscosity;
DB, mass diffusivity coefficient;
Pr, Prandtl number;
R, ratio of λ∗ to λ;
cp, specific heat;
S, suction parameter;
Sc, Schmidt number;
Rd, thermal radiation;
Λ, Williamson fluid parameter.

1 Introduction

The empathetic nature of non-Newtonian flows and motion near a stagnation region of a solid
body needs more investigations recently due to its vital applications in industry, engineering,
and other sciences. The thermal oil recovery, high-speed flows, and thrust bearing are few
scientific applications, where the role of the Said mechanism is very frequent. The stagnation
area of the solid body could be a moving surface or a fixed area in the liquid. The pioneering
effort in this domain is presented by Hiemenz[1], where the two-dimensional (2D) Navier-Stokes
equations were transformed into the nonlinear ordinary differential form, and the exact solutions
were obtained. Later on, Homann and Angew[2] reported the three-dimensional axisymmetric
stagnation point flow, and obtained the similarity solution of the modeled problem. After
these pioneering investigations, several researchers carried out this specific domain by means
of different aspects and mechanisms. Makinde et al.[3] analyzed the influence of buoyancy on
the heat transfer and magnetohydrodynamics (MHD) stagnation point nanofluid flow past a
convectively heated stretching/shrinking sheet. They showed that, an increase in the buoyancy
force intensity resulted in an increase in the local Nusselt number while a decrease in the
skin friction coefficient and the local Sherwood number. Haq et al.[4] studied the influence of
thermal radiation and slip on the MHD stagnation point nanofluid flow over a stretching sheet.
They showed that, the velocity profile was enhanced when the ratio of the free stream velocity
increased, and the temperature profile dropped when the thermal slip parameter increased.
Hayat et al.[5] numerically examined the radiation and melting heat transfer impacts on the
stagnation point flow of the carbon-H2O nanofluid. Tarakaramu and Narayana[6] examined
the Joule heating and nonlinear thermal radiation effects on the MHD stagnation point flow
of a nanofluid over a convectively heated stretching surface. They showed that, when the
temperature ratio parameter increased, the rate of heat transfer increased. For more details
about such research, one may refer to Refs. [7]−[11] and the references therein.

Recently, nanotechnology and heat transport come to be hot topics of research due to their
vigorous roles in scientific and practical applications, e.g., solar water heating, engine cooling,
and drilling[12]. Choi[13] made a pioneering contribution to improve the heat transfer rate.
Buongiorno[14] and Tiwari and Das[15] proposed mathematical models to study nanofluids.
Hayat et al.[16] studied the Joule heating and slip impacts in mixed convection peristaltic
transport of nanofluids. Reddy and Chamkha[17] analyzed the MHD convective flow of TiO2-
water and Al2O3-water nanofluids past a stretching sheet in porous media. For more details
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about nanofluids, one may refer to Refs. [18]−[21].
The nature of non-Newtonian fluids is complex as compared with that of Newtonian fluids,

and many models have been proposed. Williamsonin presented a non-Newtonian nanofluid
model in 1929, where the flow of pseudoplastic materials was analyzed experimentally[22]. The
flow model has been successfully used in fields such as the preparation of emulsions and the
extrusion of polymer sheets. Amanulla et al.[23] numerically explored the effects of the Biot
number and the thermal radiation on the MHD Williamson fluid flow over a vertical convective
surface. Jain and Parmar[24] carried out a detailed study on the radiation effects on the MHD
Williamson fluid flow over a stretching cylinder through a porous medium with heat source.
Recently, Hamid et al.[25] performed a numerical study on the unsteady MHD Williamson
nanofluid flow in a permeable channel, and analyzed the effects of thermal radiation and the
heat source/sink. Mustafa et al.[26] examined the effects of buoyancy on the MHD nanofluid
flow past a vertical surface with the activation energy and chemical reaction. They showed
that the thermal boundary layer thickness decreased due to the concentration and temperature
differences as well as the buoyancy, and the mixed convection parameter was directly propor-
tional to the velocity of the fluid. For more details about natural convection, one may refer to
Refs. [7] and [27]−[29].

The motivation of the current work is to analyze the effects of buoyancy assisting and
opposing on the stagnation point flow of the Williamson nanofluid in the presence of thermal
radiation. Appropriate similarity techniques transform the governing flow equations into a
nonlinear system of ordinary differential equations. Numerical simulations are performed by
means of the Chebyshev wavelet method. The significant effects of the emerging parameters are
presented graphically. It is concluded that the modification in traditional Chebyshev wavelets
brings more accuracy and it is a compatible technique to tackle nonlinear flow problems.

2 Mathematical and geometrical analysis

Consider the 2D unsteady viscous stagnation point flow of an incompressible Williamson
nanofluid past a permeable stretched surface (see Fig. 1). The velocity is

uw = cx/(1 − εt),

where c and ε are the stretching coefficient and the unsteadiness of the problem, respectively,

Fig. 1 Geometry of the problem
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and ε > 0. The free stream velocity is

ue = ax/(1 − εt),

where a > 0 is the stagnation flow strength. Further, we assume that the temperature and the
concentration at the sheet are, respectively, as follows:

Tw = T∞ +
b

1 − εt
x, Cw = C∞ +

b

1 − εt
x,

where b > 0. The ambient temperature and concentration are defined as T∞ and C∞, respec-
tively. Moreover, in the y-axis direction (normal to the sheet), a magnetic field having the
strength B is applied. The effects of the Soret and Dufour numbers are considered. The above
restrictions provide a modeled mathematical problem as follows:

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

=
∂ue

∂t
+ ue

∂ue

∂x
+ ν

∂2u

∂y2
+
√

2νΓ
(∂u
∂y

)(∂2u

∂y2

)
± g(βT(T − T∞) + βC(C − C∞)) − σB

ρ
(u − ue), (2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

16σ∗T 3∞
3k∗ρcp

∂2T

∂y2
+
DBkT

cscp

∂2C

∂y2
, (3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2T

∂y2
+
DBkT

Tm

∂2T

∂y2
, (4)

⎧⎪⎨⎪⎩
u = uw, v = − v0√

1 − εt
, T = Tw, C = Cw at y = 0,

u = ue, C = C∞, T = T∞ as y → ∞,

(5)

where u and v are the velocity components along the x- and y-axes, respectively. σ is the
electrical conductivity. ν is the kinematic viscosity. Γ is the coefficient of the Williamson
fluid. βT is the coefficient of thermal expansion. g is the gravitational acceleration. βC is the
coefficient of concentration expansion. B is the magnetic field strength. ρ is the density. k is
the thermal conductivity. cs is the ratio of thermal diffusion. σ∗ is the Boltzmann constant.
cp is the specific heat. k∗ is the coefficient of mean absorption. DB is the mass diffusivity
coefficient. kT is the concentration susceptibility. Tm is the mean fluid temperature.

The following similarity transformations are used to nondimensionalize the nonlinear flow
equations (1)−(5)[10]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u =
cx

1 − εt
F ′(η), v = −

√
cν

1 − εt
F (η), θ =

T − T∞
Tw − T∞

,

φ =
C − C∞
Cw − C∞

, η =
√

c

(1 − εt)ν
y.

(6)
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The partial differential equation (PDE) system (2)−(5) takes the following form after incorpo-
rating the similarity variables in Eq. (6):

(1 + ΛF ′′(η))F ′′′(η) − F ′2(η) + (F (η) −Aη/2)F ′′(η) −M(r + F ′(η))

+ A(r − F ′(η)) ± λ(θ(η) +Rφ(η)) + r2 = 0, (7)

(1 +Rd)θ′′(η) + Pr(F (η) −Aη/2)θ′(η) + PrDuφ′′(η) = 0, (8)

φ′′(η) + Sc(F (η) −Aη/2)φ′(η) + SrScθ′′(η) = 0. (9)

The boundary conditions are

{
F (η) = S, F ′(η) = 1, θ(η) = φ(η) = 1 for η = 0,

F ′(η) = r, θ(η) = φ(η) = 0 as η → ∞.
(10)

In Eqs. (7)–(10), ± characterize the assisting flow and the opposing flow, respectively, and
R > 0. Λ is the Williamson fluid parameter. A is the unsteadiness parameter. M is the
Hartmann number. λ represents the buoyancy effect due to the temperature difference. λ∗

represents the buoyancy effect due to the concentration difference. R is the ratio of λ∗ to λ.
r is the stagnation point parameter. Rd is the thermal radiation. Du is the Dufour number.
Pr is the Prandtl number. Sr is the Soret number. S > 0 is the suction parameter. They are
defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ =
√

2Γxc3/2

√
ν

, A =
ε

c
, M =

B2σ

ρc
,

λ =
GrT
Re2x

, GrT =
βg(Tw − T∞)

ν2
, Rex =

xue

ν
,

R =
λ∗

λ
, λ∗ =

GrC
Rex

, GrC =
βg(Tw − T∞)

ν2
,

r =
a

c
, Rd =

16σ∗T 3∞
3kk∗

, P r =
ν

α
, Sc =

ν

DB
,

Du =
(Cw − C∞)DBkT

ν(Tw − T∞)cpcs
, Sr =

(Tw − T∞)kTDB

ν(Cw − C∞)Tm
, S =

v0√
νc
.

The skin friction coefficient (Cf), the local Nusselt number (Nu), and the Sherwood number
(Sh) are the physical quantities of interest, and are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cf =
μ

ρu2
w

(∂u
∂y

+
Γ√
2

(∂u
∂y

)2)
y=0

,

Nu = − kx

k(Tw − T∞)

(∂T
∂y

)
y=0

,

Sh = − DBx

DB(Cw−C∞)

(∂C
∂y

)
y=0

.
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By means of Eq. (6), the nondimensional form of the skin friction coefficient Cf , the local Nusselt
number Nu, and the Sherwood number Sh are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ReCf =

(
F ′′(0) +

Λ
2
F ′′2(0)

)
,

Nu√
Re

= −(1 +Rd)θ′(0),

Sh√
Re

= −φ′(0),

(11)

where Re = xue/ν is the Reynolds number.

3 Chebyshev polynomials and properties

The Chebyshev polynomials and their properties are discussed in this section briefly. The
Chebyshev polynomials Tm of the mth-order must satisfy

(1 − η2)
d2Tm(η)

dη2
− η

dTm(η)
dη

+m2Tm(η) = 0.

The Chebyshev polynomials can be attained via the recurrence relation stated as follows:{
T0(η) = 1, T1(η) = η,

Tm+1(η) = 2ηTm(η) − Tm−1(η), m � 1.

The Chebyshev polynomials of the third kind are given as follows[8,30–32]:

Cm(η) = cos
((
m+

1
2

)
θ
)

cos
θ

2
,

where cos θ = η. The Chebyshev polynomials of the third kind are orthogonal in [−1, 1] w.r.t.

the weight function w =
√

1+η
1−η , i.e.,

∫ 1

−1

Cm(η)Cn(η)wdη =

{
0, m �= n,

π, m = n.

The third kind of Cheyshev polyomials can be obtained by means of the following relation[8,30–32]:{
V0(η) = 1, V1(η) = 2η − 1,

Vm(η) = 2ηVm−1(η) − Vm−2(η), m � 2.
(12)

The properties of the third kind Chebyshev polynomials are as follows[8,30–32]:

(i) Cm(1) = 1, Cm(−1) = (−1)m(2m+ 1).

(ii)
dnCm(η)

dxn
=

√
π(m+ n)

2n(m− n)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ
(
n+ 1

2

) , x = 1,

(−1)m+n(2m+ 1)
2Γ

(
n+ 1

2

) , x = −1.
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3.1 Wavelets and Chebyshev wavelets
Many numerical algorithms have been proposed to study non-Newton fluids. The wavelet

method is one of the most widely used one among all these methods. It has been successfully
used in the engineering field, the physical field, and biological sciences[8,30–32]. The Chebyshev
wavelets of the third kind are defined as follows[30]:

ψp,q(η) =

⎧⎪⎨⎪⎩
2

k
2 C̃q(2kη − (2p− 1)),

p− 1
2k−1

� η � p

2k−1
,

0, otherwise,
(13)

where

C̃q =
1√
π
Cq, q = 0, 1, 2, · · · ,M − 1, p = 0, 1, · · · , 2k−1.

Cq(η) is the qth-order Chebyshev polynomials of the third kind. A function g(η) from the
L2(R)-space defined in [0, 1) can be expanded in terms of the third kind Chebyshev wavelets
as follows:

g(η) =
∞∑

p=1

∞∑
q=0

ξp,qψp,q(η), (14)

where

ξp,q =
∫ 1

0

g(η)ψp,q(η)wpdη.

Equation (14) can be truncated as follows:

g(η) =
2k−1∑
p=1

M−1∑
q=0

ξp,qψp,q(η) = MTψ(η), (15)

where M and ψ(η) are 2k−1M × 1 orders, which are given in Refs. [8] and [30]–[32].
3.2 Modified Chebyshev wavelet method (MCWM) and solution procedure

This section is devoted to a comprehensive study of the MCWM[8] and its applications to
solve the flow problem (7)–(10). The solution procedure for the MCWM is explained as follows:

Step 1 Consider the problem

(1 + ∧F ′′(η))F ′′′(η) − F ′2(η) +
(
F (η) − A

2
η
)
F ′′(η) − (M +A)(F ′(η) − r)

± λ(θ(η) +Rφ(η)) + r2 = 0, (16)

(1 +Rd)θ′′(η) + Pr
(
F (η) − A

2
η
)
θ′(η) + PrDuφ′′(η) = 0, (17)

φ′′(η) + Sc
(
F (η) − A

2
η
)
φ′(η) + SrScθ′′(η) = 0. (18)

Step 2 Introduce the following trial solutions suggested by the traditional Chebyshev
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wavelet method to solve Eqs. (16)–(18):

F̃ =
2k−1∑
p=1

M−1∑
q=0

ξ1p,qψp,q(η) = MT
1ψ(η), (19)

θ̃ =
2k−1∑
p=1

M−1∑
q=0

ξ2p,qψp,q(η) = MT
2ψ(η), (20)

φ̃ =
2k−1∑
p=1

M−1∑
q=0

ξ3p,qψp,q(η) = MT
3ψ(η), (21)

where Mi (i = 1, 2, 3) and ψ(η) are presented in Ref. [8]. The trial solutions (19)–(21) can be
rewritten as follows:

F̃ = γ1χ(η), θ̃ = γ2χ(η), φ̃ = γ1χ(η), (22)

where χ(η) and γi (i = 1, 2, 3) are presented in Ref. [8]. Now, we introduce a new set of
unknowns {ζi

0, ζ
i
1, ζ

i
2, · · · } for i = 1, 2, 3 such that⎧⎨⎩ ξi

0,1 −
√

3ξi
1,1 +

√
5ξi

1,2 − · · · = ζi
0,

2
√

3ξi
1,1 − 6

√
5ξi

1,2 + 12
√

7ξi
1,3 + · · · = ζi

1,
(23)

⎧⎨⎩ 6
√

5ξi
1,2 − 30

√
7ξi

1,3 + · · · = ζi
2,

20
√

7ξi
1,3 + · · · = ζi

3,
(24)

....

The trial solutions given in Ref. [8] takes the following forms after incorporating Eqs. (23)
and (24):

F̃ (η) =
M∑

n=0

ζ1
nη

n, θ̃(η) =
M∑

n=0

ζ2
nη

n, φ̃(η) =
M∑

n=0

ζ3
nη

n. (25)

After incorporating the boundary conditions in Eq. (10), we can rewrite the trial solutions
in Eq. (25) as follows:

F̃ (η) = S + η − 1
2η∞

(1 − r)η2 +
M−3∑
k=1

ζ1
k

(
ηk − k + 2

2
ηk
∞

)
η2, (26)

θ̃(η) = 1 − 1
η∞

η +
M−2∑
k=1

ζ2
k(ηk − ηk

∞)η, (27)

φ̃(η) = 1 − 1
η∞

η +
M−2∑
k=1

ζ3
k(ηk − ηk

∞)η. (28)

Step 3 The residuals for F (η), θ(η), and φ(η) can be obtained after inserting the trial
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solutions (26)–(28) into Eqs. (16)–(18) as follows:

RF = (1 + ΛF̃
′′
(η))F̃ ′′′(η) − F̃

′2
(η) +

(
F̃ (η) − A

2
η
)
F̃

′′
(η)

− (M +A)(F̃
′
(η) − r) ± λ(θ̃(η) +Rφ̃(η)) + r2, (29)

Rθ = (1 + Rd)θ̃
′′
(η) + Pr

(
F̃ (η) − A

2
η
)
θ̃

′
(η) + PrDuφ̃

′′
(η), (30)

Rφ = φ̃
′′
(η) + Sc

(
F̃ (η) − A

2
η
)
φ̃

′
(η) + SrScθ̃

′′
(η). (31)

Step 4 In Step 3, the given problem is reduced to an equivalent number of algebraic equa-
tions having 3M − 7 unknowns. Therefore, to find the unknowns ζi

0, ζ
i
1, ζ

i
2, · · · (i = 1, 2, 3),

we need 3M − 7 equations. Here, we use the collocation points for Eqs. (29)–(31) to generate
the equations as ηn = n

M η∞ (n = 1, 2, · · · ,M − 3), ηn = n
M η∞ (n = 1, 2, · · · ,M − 2), and

ηn = n
M η∞ (n = 1, 2, · · · ,M − 2), respectively.

Step 5 After solving the system of equations achieved in the last step, we can obtain the
values of the unknowns ζ’s. The values of ξ’s can be obtained by using the relations (23) and
(24). Finally, we can obtain the approximate solutions of the problem (7)–(10) after substituting
the values of ξ’s into Eqs. (19)–(21).

4 Results and discussion

Herein, the thermal radiation effects and the buoyancy assisting and opposing effects on
the stagnation point flow of the Williamson nanofluid are briefly discussed. The flow is 2D
unsteady, viscous, and incompressible over a porous stretching surface. The combined effects
of the thermal radiation and the conduction or convection in the presence of buoyancy forces
appear in various areas of science including spacecrafts, high temperature heat exchangers,
combustion chambers, thermal insulations, industrial furnaces, etc. In account of these practical
applications, a model study is conducted. A wavelet algorithm is adopted to analyze the
problem theoretically. The emerging parameters, the physical quantities, and their effects on
the velocity F̃

′
(η), the temperature θ(η), and the concentration φ(η) of the fluid are plotted

graphically and described on the basis of the already reported values of parameters[10,23,33–35].
Various suitable ranges for the dimensionless velocity, the temperature, and the concentration
are deliberated, and particular exertions are made on the effects of these parameters on the
fluid flow and heat transport. The selection of the values for the aforementioned parameters
is based on the physical characteristics of the proposed model, and is related to the stability
of the solution. A tabular form of comparison with the existing literature is enclosed in the
discussion part. Table 1 shows the credibility of our technique. The comparison analysis with
the existing literature[10,33–35] is endorsing that wavelet algorithms are efficient and compatible
tools to tackle nonlinear flow problems.

Table 1 Comparison of the present results for Re
−1/2
x Nu with the existing results in Refs. [10] and

[33]–[35] for different values of Pr when r = M = Λ = A = S = λ = 0

η Ref. [33] Ref. [34] Ref. [35] Ref. [10] MCWM

0.01 0.029 44 0.029 4 0.029 42 0.029 425 0.029 425 210 4

0.72 1.088 55 1.088 5 1.088 53 1.088 575 1.088 575 452 1

1.00 1.333 34 1.333 3 1.333 34 1.333 270 1.333 270 145 2

3.00 2.509 71 2.509 7 2.509 72 2.509 465 2.509 465 120 4
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4.1 Behavior of the velocity profiles
The effects of various emerging parameters, including the Hartmann number M , the ratio

parameter λ, the stagnation parameter r, the unsteadiness parameter A, the Williamson fluid
parameter Λ, and the Suction parameter S, on the velocity profiles F ′(η) are shown in Figs. 2–7
according to Eqs. (2)–(7).

Figure 2 is plotted to show the behavior of a magnetic parameter for the assisting and
opposing flow regions. It is noted that, when M increases, F ′(η) is enhanced for the opposing
case while decreases for the assisting case. Figure 3 shows the effects of the ratio parameter
λ. It can be clearly seen that, when λ increases the velocity increases for the assisting case
while decreases for the opposing case. The variation is significant for higher values of the ratio
parameter for both the assisting and opposing cases.

η

η

Fig. 2 Variations in M and effects on F ′(η),
where r = 1, and A = l = Λ = R =
0.5 (color online)

η

η

λ

λ

Fig. 3 Variations in λ and effects on F ′(η),
where r = 1, Λ = 0.5, R = 0.25, and
M = A = 0.5 (color online)

The variations in the stagnation point parameter r are presented in Fig. 4. It can be seen
that an increase in the values of r results in an increase in the velocity profile F ′(η) for both
the assisting and opposing cases. It is perceived that the assisting effects are more significant
than the opposing ones. As shown in Fig. 5, when the unsteadiness parameter A increases, the
velocity of the fluid increases for the assisting case while decreases for the opposing case.

η

η

Fig. 4 Variations in r and effects on F ′(η),
where M = 2, = 0.2, and R = l =
A = 0.5 (color online)

η

η

Fig. 5 Variations in A and effects on F ′(η),
where M = 2, Λ = R = l = 0.5, and
r = 0.5 (color online)

Figure 6 shows the effects of the Williamson parameter Λ on the velocity profiles. From
the figure, we can see that when Λ increases, the velocity decreases for both the assisting and
opposing cases. Moreover, Williamson parameter Λ has negligible effects on the velocity profile.
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Figure 7 shows the effects of the suction parameter S on the velocity profiles. It can be
seen that, when S increases, the velocity decreases for the opposing case while increases for the
assisting case.

η

η

Fig. 6 Effects of Λ on F ′(η), where M = 2,
A = l = R = 0.5, and r = 1 (color
online)

η

η

Fig. 7 Effects of S on F ′(η), where M = 2,
A = l = Λ = R = 0.5, and r = 1 (color
online)

4.2 Behaviors of the temperature profiles
The buoyancy (assisting and opposing) effects with various physical parameters on the tem-

perature profiles are shown in Figs. 8–11.
Figure 8 shows the effects of the unsteadiness parameter A on the temperature profiles.

It can be seen that, when A increases, the temperature increases for both the assisting and
opposing cases, while the effects of the opposing flow are a little more dominant than those of
the assisting flow.

Figure 9 shows the effects of the radiation parameter Rd on the temperature profiles. It can
be seen that, when Rd increases, the temperature increases for both the assisting and opposing
cases, while the opposing effects are more significant than the assisting ones.

η

θ
η

Fig. 8 Effects of A on θ(η), where Sr =
Rd = Du = 0.5, Sc = 2, and Pr =
6.2 (color online)

η

θ
η

Fig. 9 Effects of Rd on θ(η), where Sr = A =
Du = 0.5, Sc = 2, and Pr = 6.2 (color
online)

Figure 10 shows the effects of the Dufour parameter Du on the temperature profiles. It can
be seen that, when Du increases, the temperature increases for both the assisting and opposing
cases, while the opposing effects are more prevailing than those of the assisting ones.

Figure 11 shows the effects of the Prandtl number Pr on the temperature profiles. It can
be seen that, when Pr increases, the temperature decreases for both the assisting and opposing
cases, while the assisting effects are more significant than those of the opposing ones.
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η

θ
η

Fig. 10 Effects of Du on θ(η), where Sr =
0.2, A = Rd = 0.5, Sc = 2, Pr =
6.2 (color online)

η

θ
η

Fig. 11 Effects of Pr on θ(η), where Sr = 0.2,
A = Rd = 0.5, Sc = 2, and Du = 0.5
(color online)

4.3 Behaviors of the concentration profiles
Figures 12 and 13 are plotted to describe the behaviors of the concentration profiles φ(η).

From these figures, we can see that, when the Soret number Sr increases, the concentration
φ(η) increases for both the assisting and opposing cases, and the opposing effects are a slightly
dominant as compared with the assisting ones (see Fig. 12). However, when the Schmidt number
Sc increases, the concentration φ(η) decreases for both the assisting and opposing cases, and
the assisting effects are more significant than the opposing ones.

η

φ
η

Fig. 12 Effects of Sr on φ(η), where Du =
0.2, A = Rd = 0.5, Sc = 24, and
Pr = 6.2 (color online)

h

f
h

Fig. 13 Effects of Sc on φ(η), where Du = 0.2,
A = Rd = 0.5, Sr = 24, and Pr = 6.2
(color online)

4.4 Behaviors of the physical quantities
Figures 14–18 show the effects of buoyancy and the emerging parameters on the physical

quantities briefly.
Figure 14 shows the effects of Λ, M , and S on the skin friction coefficient. The behaviors

of the skin friction coefficient for the buoyancy effects and various values of the unsteadiness
parameter A, the stagnation parameter r, and the ration parameter Λ are also presented. From
Fig. 14, we can see that, when A or S increases, the skin friction increases for the assisting case
while decreases for the opposing case. Moreover, The effects of λ provide higher values of the
skin friction coefficient for the assisting case while lower values for the opposing case. When the
magnetic parameter M increases, the skin friction coefficient increases for both the assisting
and opposing cases, while the assisting effects are more significant than the opposing ones.
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λ 

λ 

Fig. 14 Effects of Λ, M , and S on the skin friction coefficient (color online)

Figure 15 is designed to show the effects of the Dufour number Du for the assisting and
opposing cases. It can be seen that, when Du increases, the local Nusselt number Nu decreases
for both the assisting and opposing cases. Here, it is important to mention that the opposing
case provides a more significant decrease than the assisting case.

Figure 16 shows the effects of the Prandtl number Pr for the assisting and opposing cases.
It can be seen that, when Pr increases, the local Nusselt number Nu increases for both the
assisting and opposing cases, and the assisting effects are more dominant than the opposing
ones.

Fig. 15 Effects of Du on the Nusselt num-
ber (color online)

Fig. 16 Effects of Pr on the Nusselt number
(color online)

Figures 17 and 18 show the effects of the Soret number Sr and the Prandtl number Pr for
the assisting and opposing cases. It can be seen that, when Sr or Pr increases, the Sherwood
number decreases, and the opposing effects are more dominant than the assisting ones.

5 Concluding remarks

A wavelet analysis is presented for the effects of buoyancy forces on the stagnation point flow
of the Williamson nanofluid with thermal radiation. The set of flow equations are reduced to
a nonlinear ordinary differential equation system with the appropriate similarity method, and
are numerically tackled via a new wavelet algorithm based on Chebyshev polynomials. The key
findings are as follows:
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Fig. 17 Effects of Sr on the Sherwood num-
ber (color online)

Fig. 18 Effects of Pr on the Sherwood number
(color online)

(i) When A, S, or λ increases, F ′(η) increases for the assisting case while decreases for the
opposing case. When the magnetic parameter increases, the velocity increases for the opposing
case while decreases for the assisting case.

(ii) When Du, Rd, or A increases, the temperature increases for both the assisting and
opposing cases. When Pr increases, the temperature decreases. Moreover, the opposing effects
are slightly more dominant than the assisting ones.

(iii) The concentration decreases when Sr increases while increases when Sc increases. It is
perceived that the assisting force causes more decrease than the opposing one.

(iv) When r increases, the skin friction coefficient increases for both the assisting and oppos-
ing cases. When λ or A increases, the skin friction coefficient increases in the assisting region
while decreases in the opposing region.

(v) When Pr increases, the local Nusselt number increases while the Sherwood number
decreases. When Sr or Sc increases, the Sherwood and Nusselt numbers decrease.

(vi) A worthy comparison of outcomes obtained via the MCWM is presented. It is evident
that the MCWM is very accurate, and could be extended to other complex natural nonlinear
flow problems.
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